1
|
Holvec S, Barchet C, Lechner A, Fréchin L, De Silva SNT, Hazemann I, Wolff P, von Loeffelholz O, Klaholz BP. The structure of the human 80S ribosome at 1.9 Å resolution reveals the molecular role of chemical modifications and ions in RNA. Nat Struct Mol Biol 2024; 31:1251-1264. [PMID: 38844527 DOI: 10.1038/s41594-024-01274-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 03/14/2024] [Indexed: 08/17/2024]
Abstract
The ribosomal RNA of the human protein synthesis machinery comprises numerous chemical modifications that are introduced during ribosome biogenesis. Here we present the 1.9 Å resolution cryo electron microscopy structure of the 80S human ribosome resolving numerous new ribosomal RNA modifications and functionally important ions such as Zn2+, K+ and Mg2+, including their associated individual water molecules. The 2'-O-methylation, pseudo-uridine and base modifications were confirmed by mass spectrometry, resulting in a complete investigation of the >230 sites, many of which could not be addressed previously. They choreograph key interactions within the RNA and at the interface with proteins, including at the ribosomal subunit interfaces of the fully assembled 80S ribosome. Uridine isomerization turns out to be a key mechanism for U-A base pair stabilization in RNA in general. The structural environment of chemical modifications and ions is primordial for the RNA architecture of the mature human ribosome, hence providing a structural framework to address their role in healthy states and in human diseases.
Collapse
Affiliation(s)
- Samuel Holvec
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Charles Barchet
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Antony Lechner
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
- Architecture et Réactivité de l'ARN, CNRS UPR9002, Institute of Molecular and Cellular Biology, Université de Strasbourg, Strasbourg, France
| | - Léo Fréchin
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - S Nimali T De Silva
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Isabelle Hazemann
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Philippe Wolff
- Architecture et Réactivité de l'ARN, CNRS UPR9002, Institute of Molecular and Cellular Biology, Université de Strasbourg, Strasbourg, France
| | - Ottilie von Loeffelholz
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Bruno P Klaholz
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France.
- Centre National de la Recherche Scientifique UMR, Illkirch, France.
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France.
- Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
2
|
Nowzari ZR, D'Esposito RJ, Vangaveti S, Chen AA. Elucidating the influence of RNA modifications and Magnesium ions on tRNA Phe conformational dynamics in S. cerevisiae : Insights from Replica Exchange Molecular Dynamics simulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584441. [PMID: 38559076 PMCID: PMC10979867 DOI: 10.1101/2024.03.11.584441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Post-transcriptional modifications in RNA can significantly impact their structure and function. In particular, transfer RNAs (tRNAs) are heavily modified, with around 100 different naturally occurring nucleotide modifications contributing to codon bias and decoding efficiency. Here, we describe our efforts to investigate the impact of RNA modifications on the structure and stability of tRNA Phenylalanine (tRNA Phe ) from S. cerevisiae using molecular dynamics (MD) simulations. Through temperature replica exchange MD (T-REMD) studies, we explored the unfolding pathway to understand how RNA modifications influence the conformational dynamics of tRNA Phe , both in the presence and absence of magnesium ions (Mg 2+ ). We observe that modified nucleotides in key regions of the tRNA establish a complex network of hydrogen bonds and stacking interactions which is essential for tertiary structure stability of the tRNA. Furthermore, our simulations show that modifications facilitate the formation of ion binding sites on the tRNA. However, high concentrations of Mg 2+ ions can stabilize the tRNA tertiary structure in the absence of modifications. Our findings illuminate the intricate interactions between modifications, magnesium ions, and RNA structural stability.
Collapse
|
3
|
Deng L, Kumar J, Rose R, McIntyre W, Fabris D. Analyzing RNA posttranscriptional modifications to decipher the epitranscriptomic code. MASS SPECTROMETRY REVIEWS 2024; 43:5-38. [PMID: 36052666 DOI: 10.1002/mas.21798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
The discovery of RNA silencing has revealed that non-protein-coding sequences (ncRNAs) can cover essential roles in regulatory networks and their malfunction may result in severe consequences on human health. These findings have prompted a general reassessment of the significance of RNA as a key player in cellular processes. This reassessment, however, will not be complete without a greater understanding of the distribution and function of the over 170 variants of the canonical ribonucleotides, which contribute to the breathtaking structural diversity of natural RNA. This review surveys the analytical approaches employed for the identification, characterization, and detection of RNA posttranscriptional modifications (rPTMs). The merits of analyzing individual units after exhaustive hydrolysis of the initial biopolymer are outlined together with those of identifying their position in the sequence of parent strands. Approaches based on next generation sequencing and mass spectrometry technologies are covered in depth to provide a comprehensive view of their respective merits. Deciphering the epitranscriptomic code will require not only mapping the location of rPTMs in the various classes of RNAs, but also assessing the variations of expression levels under different experimental conditions. The fact that no individual platform is currently capable of meeting all such demands implies that it will be essential to capitalize on complementary approaches to obtain the desired information. For this reason, the review strived to cover the broadest possible range of techniques to provide readers with the fundamental elements necessary to make informed choices and design the most effective possible strategy to accomplish the task at hand.
Collapse
Affiliation(s)
- L Deng
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - J Kumar
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - R Rose
- Department of Advanced Research Technologies, New York University Langone Health Center, New York, USA
| | - W McIntyre
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Daniele Fabris
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
4
|
Narayan G, Gracia Mazuca LA, Cho SS, Mohl JE, Koculi E. RNA Post-transcriptional Modifications of an Early-Stage Large-Subunit Ribosomal Intermediate. Biochemistry 2023; 62:2908-2915. [PMID: 37751522 PMCID: PMC11088935 DOI: 10.1021/acs.biochem.3c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Protein production by ribosomes is fundamental to life, and proper assembly of the ribosome is required for protein production. The RNA, which is post-transcriptionally modified, provides the platform for ribosome assembly. Thus, a complete understanding of ribosome assembly requires the determination of the RNA post-transcriptional modifications in all of the ribosome assembly intermediates and on each pathway. There are 26 RNA post-transcriptional modifications in 23S RNA of the mature Escherichia coli (E. coli) large ribosomal subunit. The levels of these modifications have been investigated extensively only for a small number of large subunit intermediates and under a limited number of cellular and environmental conditions. In this study, we determined the level of incorporations of 2-methyl adenosine, 3-methyl pseudouridine, 5-hydroxycytosine, and seven pseudouridines in an early-stage E. coli large-subunit assembly intermediate with a sedimentation coefficient of 27S. The 27S intermediate is one of three large subunit intermediates accumulated in E. coli cells lacking the DEAD-box RNA helicase DbpA and expressing the helicase inactive R331A DbpA construct. The majority of the investigated modifications are incorporated into the 27S large subunit intermediate to similar levels to those in the mature 50S large subunit, indicating that these early modifications or the enzymes that incorporate them play important roles in the initial events of large subunit ribosome assembly.
Collapse
MESH Headings
- RNA Processing, Post-Transcriptional
- Escherichia coli/genetics
- Escherichia coli/metabolism
- RNA, Bacterial/metabolism
- RNA, Bacterial/genetics
- RNA, Bacterial/chemistry
- Escherichia coli Proteins/metabolism
- Escherichia coli Proteins/genetics
- RNA, Ribosomal, 23S/metabolism
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/chemistry
- Ribosome Subunits, Large, Bacterial/metabolism
- Ribosome Subunits, Large, Bacterial/genetics
- DEAD-box RNA Helicases/metabolism
- DEAD-box RNA Helicases/genetics
- Pseudouridine/metabolism
- Ribosomes/metabolism
- Ribosomes/genetics
Collapse
Affiliation(s)
- Gyan Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Luis A Gracia Mazuca
- Bioinformatics Program, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Samuel S Cho
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, United States
- Department of Computer Science, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Jonathon E Mohl
- Bioinformatics Program, The University of Texas at El Paso, El Paso, Texas 79968, United States
- Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Eda Koculi
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
5
|
Abedeera SM, Jayalath KS, Xie J, Rauff RM, Abeysirigunawardena SC. Pseudouridine Synthase RsuA Confers a Survival Advantage to Bacteria under Streptomycin Stress. Antibiotics (Basel) 2023; 12:1447. [PMID: 37760743 PMCID: PMC10525438 DOI: 10.3390/antibiotics12091447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Bacterial ribosome small subunit rRNA (16S rRNA) contains 11 nucleotide modifications scattered throughout all its domains. The 16S rRNA pseudouridylation enzyme, RsuA, which modifies U516, is a survival protein essential for bacterial survival under stress conditions. A comparison of the growth curves of wildtype and RsuA knock-out E. coli strains illustrates that RsuA renders a survival advantage to bacteria under streptomycin stress. The RsuA-dependent growth advantage for bacteria was found to be dependent on its pseudouridylation activity. In addition, the role of RsuA as a trans-acting factor during ribosome biogenesis may also play a role in bacterial growth under streptomycin stress. Furthermore, circular dichroism spectroscopy measurements and RNase footprinting studies have demonstrated that pseudouridine at position 516 influences helix 18 structure, folding, and streptomycin binding. This study exemplifies the importance of bacterial rRNA modification enzymes during environmental stress.
Collapse
Affiliation(s)
| | | | | | | | - Sanjaya C. Abeysirigunawardena
- Department of Chemistry and Biochemistry, Kent State University, 1175 Risman Dr., Kent, OH 44242, USA; (S.M.A.); (K.S.J.); (J.X.); (R.M.R.)
| |
Collapse
|
6
|
Ali Z, Kaur S, Kukhta T, Abu-Saleh AAAA, Jhunjhunwala A, Mitra A, Trant JF, Sharma P. Structural Mapping of the Base Stacks Containing Post-transcriptionally Modified Bases in RNA. J Phys Chem B 2023. [PMID: 37369074 DOI: 10.1021/acs.jpcb.3c02268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Post-transcriptionally modified bases play vital roles in many biochemical processes involving RNA. Analysis of the non-covalent interactions associated with these bases in RNA is crucial for providing a more complete understanding of the RNA structure and function; however, the characterization of these interactions remains understudied. To address this limitation, we present a comprehensive analysis of base stacks involving all crystallographic occurrences of the most biologically relevant modified bases in a large dataset of high-resolution RNA crystal structures. This is accompanied by a geometrical classification of the stacking contacts using our established tools. Coupled with quantum chemical calculations and an analysis of the specific structural context of these stacks, this provides a map of the stacking conformations available to modified bases in RNA. Overall, our analysis is expected to facilitate structural research on altered RNA bases.
Collapse
Affiliation(s)
- Zakir Ali
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Sarabjeet Kaur
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
- Surface Chemistry and Catalysis: Characterisation and Application Team (COK-KAT), Leuven (Arenberg) Celestijnenlaan 200f─Box 2461, 3001 Leuven, Belgium
| | - Teagan Kukhta
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| | - Abd Al-Aziz A Abu-Saleh
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
- Binary Star Research Services, LaSalle, Ontario N9J 3X8, Canada
| | - Ayush Jhunjhunwala
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad, Telangana 500032, India
| | - Abhijit Mitra
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad, Telangana 500032, India
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
- Binary Star Research Services, LaSalle, Ontario N9J 3X8, Canada
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
7
|
Bortoletto E, Pieretti F, Brun P, Venier P, Leonardi A, Rosani U. Meta-Analysis of Keratoconus Transcriptomic Data Revealed Altered RNA Editing Levels Impacting Keratin Genomic Clusters. Invest Ophthalmol Vis Sci 2023; 64:12. [PMID: 37279397 DOI: 10.1167/iovs.64.7.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
Introduction Keratoconus (KC) is an ocular disorder with a multifactorial origin. Transcriptomic analyses (RNA-seq) revealed deregulations of coding (mRNA) and non-coding RNAs (ncRNAs) in KC, suggesting that mRNA-ncRNA co-regulations can promote the onset of KC. The present study investigates the modulation of RNA editing mediated by the adenosine deaminase acting on dsRNA (ADAR) enzyme in KC. Materials The level of ADAR-mediated RNA editing in KC and healthy corneas were determined by two indexes in two different sequencing datasets. REDIportal was used to localize known editing sites, whereas new putative sites were de novo identified in the most extended dataset only and their possible impact was evaluated. Western Blot analysis was used to measure the level of ADAR1 in the cornea from independent samples. Results KC was characterized by a statistically significant lower RNA-editing level compared to controls, resulting in a lower editing frequency, and less edited bases. The distribution of the editing sites along the human genome showed considerable differences between groups, particularly relevant in the chromosome 12 regions encoding for Keratin type II cluster. A total of 32 recoding sites were characterized, 17 representing novel sites. JUP, KRT17, KRT76, and KRT79 were edited with higher frequencies in KC than in controls, whereas BLCAP, COG3, KRT1, KRT75, and RRNAD1 were less edited. Both gene expression and protein levels of ADAR1 appeared not regulated between diseased and controls. Conclusions Our findings demonstrated an altered RNA-editing in KC possibly linked to the peculiar cellular conditions. The functional implications should be further investigated.
Collapse
Affiliation(s)
| | - Fabio Pieretti
- Department of Molecular Medicine, Histology Unit, University of Padova, Padova, Italy
| | - Paola Brun
- Department of Molecular Medicine, Histology Unit, University of Padova, Padova, Italy
| | - Paola Venier
- Department of Biology, University of Padova, Padova, Italy
| | - Andrea Leonardi
- Department of Neuroscience, Ophthalmology Unit, University of Padova, Padova, Italy
| | - Umberto Rosani
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
8
|
Li X, Lin S, Xiang C, Liu W, Zhang X, Wang C, Lu X, Liu M, Wang T, Liu Z, Wang N, Gao L, Han X, Zhang W. CUCUME: An RNA methylation database integrating systemic mRNAs signals, GWAS and QTL genetic regulation and epigenetics in different tissues of Cucurbitaceae. Comput Struct Biotechnol J 2023; 21:837-846. [PMID: 36698975 PMCID: PMC9842799 DOI: 10.1016/j.csbj.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023] Open
Abstract
As an internal modification of transcripts, RNA methylation determines RNA fate by changing RNA-protein binding affinity. In plants, RNA methylation is ubiquitous and is involved in all aspects of RNA post-transcriptional regulation. For instance, long-distance mobile RNAs, strongly influenced by their methylation status, play important roles in plant growth, development and environmental adaptation. Cucumber/pumpkin heterografts are widely used to improve stress tolerance of cucumber and to study mobile RNA signals due to their strong developed vasculature system. Here, we developed the Cucume (Cucurbit RNA methylation, http://cucume.cn/) database for these two important vegetables, cucumber (Cucumis sativus L.) and pumpkin (Cucurbita moschata) with high productivity worldwide. We identified mRNAs harboring 5-methylcytosine (m5C) and N6-methyladenosine (m6A) sites in pumpkin and cucumber at the whole genome level via Methylated RNA Immunoprecipitation sequencing (MeRIP-seq) of different tissues and the vascular exudates. In addition to RNA methylation sites, the Cucume database includes graft-transmissible systemic mRNAs identified in previous studies using cucumber/pumpkin heterografts. The further integration of cucumber genome-wide association analysis (GWAS) and quantitative trait loci (QTL) allows the study of RNA methylation-related genetic and epigenetic regulation in cucurbits. Therefore, the here developed Cucume database will promote understanding the role of cucurbit RNA methylation in RNA mobility and QTL, ultimately benefitting future breeding of agronomic crop germplasms.
Collapse
Affiliation(s)
- Xiaojun Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Shujin Lin
- College of Biology Science and Engineering, Fuzhou University, Fuzhou, China
| | - Chenggang Xiang
- College of Life Science and Technology, HongHe University, Mengzi, Yunnan, 661100, China
| | - Wenqian Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Xiaojing Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Cuicui Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Xiaohong Lu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Mengshuang Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Tao Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Zixi Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Naonao Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| | - Xiao Han
- College of Biology Science and Engineering, Fuzhou University, Fuzhou, China,Corresponding authors.
| | - Wenna Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China,Corresponding authors.
| |
Collapse
|
9
|
Wang Z, Sun J, Zu X, Gong J, Deng H, Hang R, Zhang X, Liu C, Deng X, Luo L, Wei X, Song X, Cao X. Pseudouridylation of chloroplast ribosomal RNA contributes to low temperature acclimation in rice. THE NEW PHYTOLOGIST 2022; 236:1708-1720. [PMID: 36093745 DOI: 10.1111/nph.18479] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Ribosomal RNAs (rRNAs) undergo many modifications during transcription and maturation; homeostasis of rRNA modifications is essential for chloroplast biogenesis in plants. The chloroplast acts as a hub to sense environmental signals, such as cold temperature. However, how RNA modifications contribute to low temperature responses remains unknown. Here we reveal that pseudouridine (Ψ) modification of rice chloroplast rRNAs mediated by the pseudouridine synthase (OsPUS1) contributes to cold tolerance at seedling stage. Loss-function of OsPUS1 leads to abnormal chloroplast development and albino seedling phenotype at low temperature. We find that OsPUS1 is accumulated upon cold and binds to chloroplast precursor rRNAs (pre-rRNAs) to catalyse the pseudouridylation on rRNA. These modifications on chloroplast rRNAs could be required for their processing, as the reduction of mature chloroplast rRNAs and accumulation of pre-rRNAs are observed in ospus1-1 at low temperature. Therefore, the ribosome activity and translation in chloroplasts is disturbed in ospus1-1. Furthermore, transcriptome and translatome analysis reveals that OsPUS1 balances growth and stress-responsive state, preventing excess reactive oxygen species accumulation. Taken together, our findings unveil a crucial function of Ψ in chloroplast ribosome biogenesis and cold tolerance in rice, with potential applications in crop improvement.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jing Sun
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaofeng Zu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jie Gong
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Hongjing Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Runlai Hang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaofan Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Chunyan Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lilan Luo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311401, China
| | - Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
10
|
Yang X, Yang F, Lan L, Wen N, Li H, Sun X. Diagnostic and prognostic value of m5C regulatory genes in hepatocellular carcinoma. Front Genet 2022; 13:972043. [PMID: 36105093 PMCID: PMC9465290 DOI: 10.3389/fgene.2022.972043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/05/2022] [Indexed: 12/20/2022] Open
Abstract
Background: A high mortality rate makes hepatocellular carcinoma (HCC) one of the most common types of cancer globally. 5-methylcytosine (m5C) is an epigenetic modification that contributes to the prognosis of several cancers, but its relevance to HCC remains unknown. We sought to determine if the m5C-related regulators had any diagnostic or prognostic value in HCC. Methods: M5C regulatory genes were screened and compared between HCC and normal tissue from The Cancer Genome Atlas (TCGA)and Gene Expression Omnibus (GEO) databases. Least absolute shrinkage and selection operator method (LASSO) and univariate Cox regression analysis of differentially expressed genes were then performed to identify diagnostic markers. A LASSO prognostic model was constructed using M5C regulatory genes with prognostic values screened by TCGA expression data. HCC patients were stratified based on risk score, then clinical characteristics analysis and immune correlation analysis were performed for each subgroup, and the molecular functions of different subgroups were analyzed using both Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA). The prognostic model was evaluated using univariate and multivariate Cox analyses as well as a nomogram. Molecular typing was performed according to m5C regulatory genes and immune checkpoint genes expression respectively, and clinical characterization and immune correlation analysis were performed for each subgroup. Results: M5C regulatory genes are expressed differently in HCC patients with different clinical and pathological characteristics, and mutations in these genes are frequent. Based on five m5C regulators (NOP2, NSUN2, TET1, YBX1, and DNMT3B), we constructed a prognostic model with high predictive ability. The risk score was found to be an independent prognostic indicator. Additionally, risk scores can also be applied in subgroups with different clinical characteristics as prognostic indicators. Conclusion: The study combined data from TCGA and GEO for the first time to reveal the genetic and prognostic significance of m5C-related regulators in HCC, which provides new directions for identifying predictive biomarkers and developing molecularly targeted therapies for HCC.
Collapse
Affiliation(s)
- Xiawei Yang
- Graduate School, Guangxi Medical University, Nanning, China
| | - Feng Yang
- Department of Gynocology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liugen Lan
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, China
- Guangxi Key Laboratory for Transplantation Medicine, Nanning, China
- Guangxi Transplantation Medicine Research Center of Engineering Technology, Nanning, China
| | - Ning Wen
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, China
- Guangxi Key Laboratory for Transplantation Medicine, Nanning, China
- Guangxi Transplantation Medicine Research Center of Engineering Technology, Nanning, China
| | - Haibin Li
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, China
- Guangxi Key Laboratory for Transplantation Medicine, Nanning, China
- Guangxi Transplantation Medicine Research Center of Engineering Technology, Nanning, China
| | - Xuyong Sun
- Graduate School, Guangxi Medical University, Nanning, China
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, China
- Guangxi Key Laboratory for Transplantation Medicine, Nanning, China
- Guangxi Transplantation Medicine Research Center of Engineering Technology, Nanning, China
- *Correspondence: Xuyong Sun,
| |
Collapse
|
11
|
Koculi E, Cho SS. RNA Post-Transcriptional Modifications in Two Large Subunit Intermediates Populated in E. coli Cells Expressing Helicase Inactive R331A DbpA. Biochemistry 2022; 61:833-842. [PMID: 35481783 DOI: 10.1021/acs.biochem.2c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
23S ribosomal RNA (rRNA) of Escherichia coli 50S large ribosome subunit contains 26 post-transcriptionally modified nucleosides. Here, we determine the extent of modifications in the 35S and 45S large subunit intermediates, accumulating in cells expressing the helicase inactive DbpA protein, R331A, and the native 50S large subunit. The modifications we characterized are 3-methylpseudouridine, 2-methyladenine, 5-hydroxycytidine, and nine pseudouridines. These modifications were detected using 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide metho-p-toluenesulfonate (CMCT) treatment followed by alkaline treatment. In addition, KMnO4 treatment of 23S rRNA was employed to detect 5-hydroxycytidine modification. CMCT and KMnO4 treatments produce chemical changes in modified nucleotides that cause reverse transcriptase misincorporations and deletions, which were detected employing next-generation sequencing. Our results show that the 2-methyladenine modification and seven uridines to pseudouridine isomerizations are present in both the 35S and 45S to similar extents as in the 50S. Hence, the enzymes that perform these modifications, namely, RluA, RluB, RluC, RluE, RluF, and RlmN, have already acted in the intermediates. Two uridines to pseudouridine isomerizations, the 3-methylpseudouridine and 5-hydroxycytidine modifications, are significantly less present in the 35S and 45S, as compared to the 50S. Therefore, the enzymes that incorporate these modifications, RluD, RlmH, and RlhA, are in the process of modifying the 35S and 45S or will incorporate these modifications during the later stages of ribosome assembly. Our study employs a novel high throughput and single nucleotide resolution technique for the detection of 2-methyladenine and two novel high throughput and single nucleotide resolution techniques for the detection of 5-hydroxycytidine.
Collapse
Affiliation(s)
- Eda Koculi
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, United States
| | - Samuel S Cho
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, United States.,Department of Computer Science, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| |
Collapse
|
12
|
Abstract
SignificanceThe presence of RNA chemical modifications has long been known, but their precise molecular consequences remain unknown. 2'-O-methylation is an abundant modification that exists in RNA in all domains of life. Ribosomal RNA (rRNA) represents a functionally important RNA that is heavily modified by 2'-O-methylations. Although abundant at functionally important regions of the rRNA, the contribution of 2'-O-methylations to ribosome activities is unknown. By establishing a method to disturb rRNA 2'-O-methylation patterns, we show that rRNA 2'-O-methylations affect the function and fidelity of the ribosome and change the balance between different ribosome conformational states. Our work links 2'-O-methylation to ribosome dynamics and defines a set of critical rRNA 2'-O-methylations required for ribosome biogenesis and others that are dispensable.
Collapse
|
13
|
Kagra D, Mahmi AS, Kumar NVS, Prabhakar PS, Sharma P. Influence of the Number, Nature and Position of Methyl Posttranscriptional Modifications on Nucleobase Stacking in RNA. Chemphyschem 2021; 22:1622-1630. [PMID: 34101319 DOI: 10.1002/cphc.202100333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/30/2021] [Indexed: 01/08/2023]
Abstract
DFT calculations are employed to quantify the influence of the presence, number, nature, and position of posttranscriptional methylation on stacking strength of RNA bases. We carry out detailed potential energy scans of the variation in stacking energies with characteristic geometrical parameters in three categories of forty stacked dimers - canonical base homodimers (N||N), methylated base homodimers (mN||mN) and heterodimers of canonical bases and methylated counterparts (N||mN). Our analysis reveals that neutral methylation invariably enhances the stacking of bases. Further, N||mN stacking is stronger than mN||mN stacking and charged N||mN exhibit strongest stacking among all dimers. This indicates that methylations greatly enhance stacking when dispersed in RNA sequences containing identical bases. Comparison of stacks involving singly- and doubly-methylated purines reveal that incremental methylation enhances the stacking in neutral dimers. Although methylation at the carbon position of neutral pyrimidine dimers greatly enhances the stacking, methylation on the 5-membered ring imparts better stacking compared to methylation on the 6-membered ring in adenine dimers. However, methylation at the ring nitrogen (N1 ) provides better stacking than the amino group (N2 ) in guanine dimers. Our results thus highlight subtle structural effects of methylation on RNA base stacking and will enhance our understanding of the physicochemical principles of RNA structure and dynamics.
Collapse
Affiliation(s)
- Deepika Kagra
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Amanpreet Singh Mahmi
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - N V Suresh Kumar
- Department of Humanities and Sciences (Physics), VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad, 500090, India
| | - Preethi Seelam Prabhakar
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, T1K3M4, Canada
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
14
|
Hilander T, Jackson CB, Robciuc M, Bashir T, Zhao H. The roles of assembly factors in mammalian mitoribosome biogenesis. Mitochondrion 2021; 60:70-84. [PMID: 34339868 DOI: 10.1016/j.mito.2021.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 02/08/2023]
Abstract
As ancient bacterial endosymbionts of eukaryotic cells, mitochondria have retained their own circular DNA as well as protein translation system including mitochondrial ribosomes (mitoribosomes). In recent years, methodological advancements in cryoelectron microscopy and mass spectrometry have revealed the extent of the evolutionary divergence of mitoribosomes from their bacterial ancestors and their adaptation to the synthesis of 13 mitochondrial DNA encoded oxidative phosphorylation complex subunits. In addition to the structural data, the first assembly pathway maps of mitoribosomes have started to emerge and concomitantly also the assembly factors involved in this process to achieve fully translational competent particles. These transiently associated factors assist in the intricate assembly process of mitoribosomes by enhancing protein incorporation, ribosomal RNA folding and modification, and by blocking premature or non-native protein binding, for example. This review focuses on summarizing the current understanding of the known mammalian mitoribosome assembly factors and discussing their possible roles in the assembly of small or large mitoribosomal subunits.
Collapse
Affiliation(s)
- Taru Hilander
- Faculty of Biological and Environmental Sciences, University of Helsinki, Finland.
| | - Christopher B Jackson
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Finland.
| | - Marius Robciuc
- Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Tanzeela Bashir
- Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Hongxia Zhao
- Faculty of Biological and Environmental Sciences, University of Helsinki, Finland; Key Laboratory of Stem Cell and Biopharmaceutical Technology, School of Life Sciences, Guangxi Normal University, Guangxi, China.
| |
Collapse
|
15
|
Streit D, Schleiff E. The Arabidopsis 2'-O-Ribose-Methylation and Pseudouridylation Landscape of rRNA in Comparison to Human and Yeast. FRONTIERS IN PLANT SCIENCE 2021; 12:684626. [PMID: 34381476 PMCID: PMC8351944 DOI: 10.3389/fpls.2021.684626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/16/2021] [Indexed: 05/25/2023]
Abstract
Eukaryotic ribosome assembly starts in the nucleolus, where the ribosomal DNA (rDNA) is transcribed into the 35S pre-ribosomal RNA (pre-rRNA). More than two-hundred ribosome biogenesis factors (RBFs) and more than two-hundred small nucleolar RNAs (snoRNA) catalyze the processing, folding and modification of the rRNA in Arabidopsis thaliana. The initial pre-ribosomal 90S complex is formed already during transcription by association of ribosomal proteins (RPs) and RBFs. In addition, small nucleolar ribonucleoprotein particles (snoRNPs) composed of snoRNAs and RBFs catalyze the two major rRNA modification types, 2'-O-ribose-methylation and pseudouridylation. Besides these two modifications, rRNAs can also undergo base methylations and acetylation. However, the latter two modifications have not yet been systematically explored in plants. The snoRNAs of these snoRNPs serve as targeting factors to direct modifications to specific rRNA regions by antisense elements. Today, hundreds of different sites of modifications in the rRNA have been described for eukaryotic ribosomes in general. While our understanding of the general process of ribosome biogenesis has advanced rapidly, the diversities appearing during plant ribosome biogenesis is beginning to emerge. Today, more than two-hundred RBFs were identified by bioinformatics or biochemical approaches, including several plant specific factors. Similarly, more than two hundred snoRNA were predicted based on RNA sequencing experiments. Here, we discuss the predicted and verified rRNA modification sites and the corresponding identified snoRNAs on the example of the model plant Arabidopsis thaliana. Our summary uncovers the plant modification sites in comparison to the human and yeast modification sites.
Collapse
Affiliation(s)
- Deniz Streit
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt, Germany
- Frankfurt Institute for Advanced Studies (FIAS), Frankfurt, Germany
| |
Collapse
|
16
|
Zannino L, Siciliani S, Biggiogera M. Timing of Cytosine Methylation on Newly Synthesized RNA by Electron Microscopy. Methods Mol Biol 2021; 2175:197-205. [PMID: 32681492 DOI: 10.1007/978-1-0716-0763-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Increasing evidence demonstrates that RNA nucleotides undergo epigenetic modifications, such as methylation on cytosine. Although the presence of modified bases on mRNA has been proven, their molecular significance is largely undefined. We describe here a methodology to dissect the timing of modification of cytosine to 5-methylcytosine (5mC or m5C) in relation to RNA elongation and processing. To do this we use chlorouridine and iodouridine, two synthetically modified nucleotide bases which can be recognized by RNA polymerase II and incorporated into nascent RNA. These modified bases are added to a cell culture for defined intervals of time, and then immunocytochemical staining using antibodies against the modified nucleotides is carried out. This procedure allows us to identify the range of time in which 5mC is produced in nascent mRNA. This method provides the ultra-resolution of electron microscopy and allows following nascent RNA molecules during their elongation.
Collapse
Affiliation(s)
- Lorena Zannino
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Stella Siciliani
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Marco Biggiogera
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| |
Collapse
|
17
|
Tian S, Lai J, Yu T, Li Q, Chen Q. Regulation of Gene Expression Associated With the N6-Methyladenosine (m6A) Enzyme System and Its Significance in Cancer. Front Oncol 2021; 10:623634. [PMID: 33552994 PMCID: PMC7859513 DOI: 10.3389/fonc.2020.623634] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/04/2020] [Indexed: 01/19/2023] Open
Abstract
N6-methyladenosine (m6A), an important RNA modification, is a reversible behavior catalyzed by methyltransferase complexes (m6A "writers"), demethylated transferases (m6A "erasers"), and binding proteins (m6A "readers"). It plays a vital regulatory role in biological functions, involving in a variety of physiological and pathological processes. The level of m6A will affect the RNA metabolism including the degradation of mRNA, and processing or translation of the modified RNA. Its abnormal changes will lead to disrupting the regulation of gene expression and promoting the occurrence of aberrant cell behavior. The abnormal expression of m6A enzyme system can be a crucial impact disturbing the abundance of m6A, thus affecting the expression of oncogenes or tumor suppressor genes in various types of cancer. In this review, we elucidate the special role of m6A "writers", "erasers", and "readers" in normal physiology, and how their altered expression affects the cell metabolism and promotes the occurrence of tumors. We also discuss the potential to target these enzymes for cancer diagnosis, prognosis, and the development of new therapies.
Collapse
Affiliation(s)
- Shuoran Tian
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Junzhong Lai
- The Cancer Center, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Tingting Yu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Qiumei Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
18
|
Russell-Hallinan A, Watson CJ, O'Dwyer D, Grieve DJ, O'Neill KM. Epigenetic Regulation of Endothelial Cell Function by Nucleic Acid Methylation in Cardiac Homeostasis and Disease. Cardiovasc Drugs Ther 2020; 35:1025-1044. [PMID: 32748033 PMCID: PMC8452583 DOI: 10.1007/s10557-020-07019-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pathological remodelling of the myocardium, including inflammation, fibrosis and hypertrophy, in response to acute or chronic injury is central in the development and progression of heart failure (HF). While both resident and infiltrating cardiac cells are implicated in these pathophysiological processes, recent evidence has suggested that endothelial cells (ECs) may be the principal cell type responsible for orchestrating pathological changes in the failing heart. Epigenetic modification of nucleic acids, including DNA, and more recently RNA, by methylation is essential for physiological development due to their critical regulation of cellular gene expression. As accumulating evidence has highlighted altered patterns of DNA and RNA methylation in HF at both the global and individual gene levels, much effort has been directed towards defining the precise role of such cell-specific epigenetic changes in the context of HF. Considering the increasingly apparent crucial role that ECs play in cardiac homeostasis and disease, this article will specifically focus on nucleic acid methylation (both DNA and RNA) in the failing heart, emphasising the key influence of these epigenetic mechanisms in governing EC function. This review summarises current understanding of DNA and RNA methylation alterations in HF, along with their specific role in regulating EC function in response to stress (e.g. hyperglycaemia, hypoxia). Improved appreciation of this important research area will aid in further implicating dysfunctional ECs in HF pathogenesis, whilst informing development of EC-targeted strategies and advancing potential translation of epigenetic-based therapies for specific targeting of pathological cardiac remodelling in HF.
Collapse
Affiliation(s)
- Adam Russell-Hallinan
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Chris J Watson
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Denis O'Dwyer
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - David J Grieve
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Karla M O'Neill
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
19
|
He Y, Shi Q, Zhang Y, Yuan X, Yu Z. Transcriptome-Wide 5-Methylcytosine Functional Profiling of Long Non-Coding RNA in Hepatocellular Carcinoma. Cancer Manag Res 2020; 12:6877-6885. [PMID: 32801911 PMCID: PMC7414925 DOI: 10.2147/cmar.s262450] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/19/2020] [Indexed: 12/11/2022] Open
Abstract
Background Growing evidence indicates that methylation status is associated with the pathogenesis of numerous types of cancers. Among these, hepatocellular carcinoma (HCC) is a deadly disease threatening global human health. Although 5-methylcytosine (m5C) has been identified as an important regulatory modification, its distribution in solid tumors, including HCC, remains unclear. The present study aimed to explore the distribution of m5C in HCC. Materials and Methods Six pairs of human HCC tissues and adjacent non-tumor tissues were collected to analyze the transcriptome-wide m5C methylation of long non-coding RNA (lncRNA). RNA MeRIP-seq was performed to identify m5C peaks on lncRNA and differences in m5C distribution between HCC and adjacent tissues. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathway analyses were explored to predict the possible roles of m5C. Results Using m5C peak sequencing, we observed that a sequence motif was necessary for m5C methylation in HCC lncRNA. Unsupervised hierarchical cluster analysis confirmed that lncRNA m5C methylation occurred more frequently in HCC than adjacent non-tumor tissues. RNA sequencing data demonstrated that more genes were up-regulated by methylation in HCC, while methylation down-regulated more genes in adjacent non-tumor tissues. GO and KEGG pathway analyses revealed that genes having a significant correlation with m5C sites in lncRNA were involved in HCC signaling pathways. Conclusion Our results revealed the substantially different amounts and distributions of m5C in HCC compared to adjacent non-tumor tissue. We further predicted the cellular functions in HCC that m5C may participate in to provide evidence implicating m5C lncRNA epigenetic regulation in the tumorigenesis and progression in HCC.
Collapse
Affiliation(s)
- Yuting He
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China.,Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Qingmiao Shi
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China.,Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Yize Zhang
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China.,Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Xin Yuan
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China.,Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Zujiang Yu
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China.,Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| |
Collapse
|
20
|
Peters-Clarke TM, Quan Q, Brademan DR, Hebert AS, Westphall MS, Coon JJ. Ribonucleic Acid Sequence Characterization by Negative Electron Transfer Dissociation Mass Spectrometry. Anal Chem 2020; 92:4436-4444. [PMID: 32091202 PMCID: PMC7161943 DOI: 10.1021/acs.analchem.9b05388] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Modified oligonucleotides represent a promising avenue for drug development, with small interfering RNAs (siRNA) and microRNAs gaining traction in the therapeutic market. Mass spectrometry (MS)-based analysis offers many benefits for characterizing modified nucleic acids. Negative electron transfer dissociation (NETD) has proven valuable in sequencing oligonucleotide anions, particularly because it can retain modifications while generating sequence-informative fragments. We show that NETD can be successfully implemented on a widely available quadrupole-Orbitrap-linear ion trap mass spectrometer that uses a front-end glow discharge source to generate radical fluoranthene reagent cations. We characterize both unmodified and modified ribonucleic acids and present the first application of activated-ion negative electron transfer dissociation (AI-NETD) to nucleic acids. AI-NETD achieved 100% sequence coverage for both a 6-mer (5'-rGmUrArCmUrG-3') with 2'-O-methyl modifications and a 21-mer (5'-rCrArUrCrCrUrCrUrArGrArGrGrArUrArGrArArUrG-3'), the luciferase antisense siRNA. Both NETD and AI-NETD afforded complete sequence coverage of these molecules while maintaining a relatively low degree of undesired base-loss products and internal products relative to collision-based methods.
Collapse
Affiliation(s)
| | - Qiuwen Quan
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Dain R. Brademan
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | | | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
21
|
Gc K, Gyawali P, Balci H, Abeysirigunawardena S. Ribosomal RNA Methyltransferase RsmC Moonlights as an RNA Chaperone. Chembiochem 2020; 21:1885-1892. [PMID: 31972066 DOI: 10.1002/cbic.201900708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/14/2020] [Indexed: 01/31/2023]
Abstract
Ribosomes are ribonucleoprotein particles that are essential for protein biosynthesis in all forms of life. During ribosome biogenesis, transcription, folding, modification, and processing of rRNA are coupled to the assembly of proteins. Various assembly factors are required to synchronize all different processes that occur during ribosome biogenesis. Herein, the RNA chaperone and RNA strand annealing activity of rRNA modification enzyme ribosome small subunit methyltransferase C (RsmC), which modifies guanine to 2-methylguanosine (m2 G) at position 1207 of 16S rRNA (Escherichia coli nucleotide numbering) located at helix 34 (h34), are reported. A 25-fold increase in the h34 RNA strand annealing rates is observed in the presence of RsmC. Single-molecule FRET experiments confirmed the ability of protein RsmC to denature a non-native structure formed by one of the two h34 strands and to form a native-like duplex. This observed RNA chaperone activity of protein RsmC might play a vital role in the rapid generation of functional ribosomes.
Collapse
Affiliation(s)
- Keshav Gc
- Department of Chemistry and Biochemistry, Kent State University, 1175 Risman Drive, Kent, OH, 44242, USA
| | - Prabesh Gyawali
- Department of Physics, Kent State University, 103 Smith Hall, Kent, OH, 44242, USA
| | - Hamza Balci
- Department of Physics, Kent State University, 103 Smith Hall, Kent, OH, 44242, USA
| | | |
Collapse
|
22
|
Uddin MB, Wang Z, Yang C. Dysregulations of Functional RNA Modifications in Cancer, Cancer Stemness and Cancer Therapeutics. Theranostics 2020; 10:3164-3189. [PMID: 32194861 PMCID: PMC7053189 DOI: 10.7150/thno.41687] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
More than a hundred chemical modifications in coding and non-coding RNAs have been identified so far. Many of the RNA modifications are dynamic and reversible, playing critical roles in gene regulation at the posttranscriptional level. The abundance and functions of RNA modifications are controlled mainly by the modification regulatory proteins: writers, erasers and readers. Modified RNA bases and their regulators form intricate networks which are associated with a vast array of diverse biological functions. RNA modifications are not only essential for maintaining the stability and structural integrity of the RNA molecules themselves, they are also associated with the functional outcomes and phenotypic attributes of cells. In addition to their normal biological roles, many of the RNA modifications also play important roles in various diseases particularly in cancer as evidenced that the modified RNA transcripts and their regulatory proteins are aberrantly expressed in many cancer types. This review will first summarize the most commonly reported RNA modifications and their regulations, followed by discussing recent studies on the roles of RNA modifications in cancer, cancer stemness as wells as functional RNA modification machinery as potential cancer therapeutic targets. It is concluded that, while advanced technologies have uncovered the contributions of many of RNA modifications in cancer, the underlying mechanisms are still poorly understood. Moreover, whether and how environmental pollutants, important cancer etiological factors, trigger abnormal RNA modifications and their roles in environmental carcinogenesis remain largely unknown. Further studies are needed to elucidate the mechanism of how RNA modifications promote cell malignant transformation and generation of cancer stem cells, which will lead to the development of new strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
| | | | - Chengfeng Yang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536-0305, USA
| |
Collapse
|
23
|
Dai X, Gonzalez G, Li L, Li J, You C, Miao W, Hu J, Fu L, Zhao Y, Li R, Li L, Chen X, Xu Y, Gu W, Wang Y. YTHDF2 Binds to 5-Methylcytosine in RNA and Modulates the Maturation of Ribosomal RNA. Anal Chem 2020; 92:1346-1354. [PMID: 31815440 PMCID: PMC6949395 DOI: 10.1021/acs.analchem.9b04505] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
5-Methylcytosine is found in both DNA and RNA; although its functions in DNA are well established, the exact role of 5-methylcytidine (m5C) in RNA remains poorly defined. Here we identified, by employing a quantitative proteomics method, multiple candidate recognition proteins of m5C in RNA, including several YTH domain-containing family (YTHDF) proteins. We showed that YTHDF2 could bind directly to m5C in RNA, albeit at a lower affinity than that toward N6-methyladenosine (m6A) in RNA, and this binding involves Trp432, a conserved residue located in the hydrophobic pocket of YTHDF2 that is also required for m6A recognition. RNA bisulfite sequencing results revealed that, after CRISPR-Cas9-mediated knockout of the YTHDF2 gene, the majority of m5C sites in rRNA (rRNA) exhibited substantially augmented levels of methylation. Moreover, we found that YTHDF2 is involved in pre-rRNA processing in cells. Together, our data expanded the functions of the YTHDF2 protein in post-transcriptional regulations of RNA and provided novel insights into the functions of m5C in RNA biology.
Collapse
Affiliation(s)
- Xiaoxia Dai
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
- State Key Laboratory of Chemo/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Gwendolyn Gonzalez
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
| | - Lin Li
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Jie Li
- Fudan University Shanghai Cancer Center, Department of Oncology; and Institutes of Biomedical Sciences and School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Changjun You
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
- State Key Laboratory of Chemo/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Weili Miao
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Junchi Hu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lijuan Fu
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
| | - Yonghui Zhao
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521-0403, United States
| | - Ruidong Li
- Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521-0403, United States
| | - Lichao Li
- Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521-0403, United States
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521-0403, United States
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Department of Oncology; and Institutes of Biomedical Sciences and School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Weifeng Gu
- Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
| |
Collapse
|
24
|
Christofi T, Zaravinos A. RNA editing in the forefront of epitranscriptomics and human health. J Transl Med 2019; 17:319. [PMID: 31547885 PMCID: PMC6757416 DOI: 10.1186/s12967-019-2071-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022] Open
Abstract
Post-transcriptional modifications have been recently expanded with the addition of RNA editing, which is predominantly mediated by adenosine and cytidine deaminases acting on DNA and RNA. Here, we review the full spectrum of physiological processes in which these modifiers are implicated, among different organisms. Adenosine to inosine (A-to-I) editors, members of the ADAR and ADAT protein families are important regulators of alternative splicing and transcriptional control. On the other hand, cytidine to uridine (C-to-U) editors, members of the AID/APOBEC family, are heavily implicated in innate and adaptive immunity with important roles in antibody diversification and antiviral response. Physiologically, these enzymes are present in the nucleus and/or the cytoplasm, where they modify various RNA molecules, including miRNAs, tRNAs apart from mRNAs, whereas DNA editing is also possible by some of them. The expansion of next generation sequencing technologies provided a wealth of data regarding such modifications. RNA editing has been implicated in various disorders including cancer, and neurological diseases of the brain or the central nervous system. It is also related to cancer heterogeneity and the onset of carcinogenesis. Response to treatment can also be affected by the RNA editing status where drug efficacy is significantly compromised. Studying RNA editing events can pave the way to the identification of new disease biomarkers, and provide a more personalised therapy to various diseases.
Collapse
Affiliation(s)
- Theodoulakis Christofi
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404, Nicosia, Cyprus
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404, Nicosia, Cyprus. .,Centre for Risk and Decision Sciences (CERIDES), 2404, Nicosia, Cyprus.
| |
Collapse
|
25
|
Waduge P, Sakakibara Y, Chow CS. Chemical probing for examining the structure of modified RNAs and ligand binding to RNA. Methods 2019; 156:110-120. [DOI: 10.1016/j.ymeth.2018.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/04/2018] [Accepted: 10/22/2018] [Indexed: 12/15/2022] Open
|
26
|
Topological Characterization of Human and Mouse m 5C Epitranscriptome Revealed by Bisulfite Sequencing. Int J Genomics 2018; 2018:1351964. [PMID: 30009162 PMCID: PMC6020461 DOI: 10.1155/2018/1351964] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 11/17/2022] Open
Abstract
Background Compared with the well-studied 5-methylcytosine (m5C) in DNA, the role and topology of epitranscriptome m5C remain insufficiently characterized. Results Through analyzing transcriptome-wide m5C distribution in human and mouse, we show that the m5C modification is significantly enriched at 5′ untranslated regions (5′UTRs) of mRNA in human and mouse. With a comparative analysis of the mRNA and DNA methylome, we demonstrate that, like DNA methylation, transcriptome m5C methylation exhibits a strong clustering effect. Surprisingly, an inverse correlation between mRNA and DNA m5C methylation is observed at CpG sites. Further analysis reveals that RNA m5C methylation level is positively correlated with both RNA expression and RNA half-life. We also observed that the methylation level of mitochondrial RNAs is significantly higher than RNAs transcribed from the nuclear genome. Conclusions This study provides an in-depth topological characterization of transcriptome-wide m5C modification by associating RNA m5C methylation patterns with transcriptional expression, DNA methylations, RNA stabilities, and mitochondrial genome.
Collapse
|
27
|
Sabooh MF, Iqbal N, Khan M, Khan M, Maqbool HF. Identifying 5-methylcytosine sites in RNA sequence using composite encoding feature into Chou's PseKNC. J Theor Biol 2018; 452:1-9. [PMID: 29727634 DOI: 10.1016/j.jtbi.2018.04.037] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 02/02/2023]
Abstract
This study examines accurate and efficient computational method for identification of 5-methylcytosine sites in RNA modification. The occurrence of 5-methylcytosine (m5C) plays a vital role in a number of biological processes. For better comprehension of the biological functions and mechanism it is necessary to recognize m5C sites in RNA precisely. The laboratory techniques and procedures are available to identify m5C sites in RNA, but these procedures require a lot of time and resources. This study develops a new computational method for extracting the features of RNA sequence. In this method, first the RNA sequence is encoded via composite feature vector, then, for the selection of discriminate features, the minimum-redundancy-maximum-relevance algorithm was used. Secondly, the classification method used has been based on a support vector machine by using jackknife cross validation test. The suggested method efficiently identifies m5C sites from non- m5C sites and the outcome of the suggested algorithm is 93.33% with sensitivity of 90.0 and specificity of 96.66 on bench mark datasets. The result exhibits that proposed algorithm shown significant identification performance compared to the existing computational techniques. This study extends the knowledge about the occurrence sites of RNA modification which paves the way for better comprehension of the biological uses and mechanism.
Collapse
Affiliation(s)
- M Fazli Sabooh
- Department of Computer Science, Abdul Wali Khan University Mardan, Pakistan
| | - Nadeem Iqbal
- Department of Computer Science, Abdul Wali Khan University Mardan, Pakistan.
| | - Mukhtaj Khan
- Department of Computer Science, Abdul Wali Khan University Mardan, Pakistan
| | - Muslim Khan
- Department of Computer Science, Abdul Wali Khan University Mardan, Pakistan
| | - H F Maqbool
- University of Engineering & Technology Lahore, Pakistan
| |
Collapse
|
28
|
|
29
|
Visualization of chemical modifications in the human 80S ribosome structure. Nature 2017; 551:472-477. [PMID: 29143818 DOI: 10.1038/nature24482] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/03/2017] [Indexed: 12/18/2022]
Abstract
Chemical modifications of human ribosomal RNA (rRNA) are introduced during biogenesis and have been implicated in the dysregulation of protein synthesis, as is found in cancer and other diseases. However, their role in this phenomenon is unknown. Here we visualize more than 130 individual rRNA modifications in the three-dimensional structure of the human ribosome, explaining their structural and functional roles. In addition to a small number of universally conserved sites, we identify many eukaryote- or human-specific modifications and unique sites that form an extended shell in comparison to bacterial ribosomes, and which stabilize the RNA. Several of the modifications are associated with the binding sites of three ribosome-targeting antibiotics, or are associated with degenerate states in cancer, such as keto alkylations on nucleotide bases reminiscent of specialized ribosomes. This high-resolution structure of the human 80S ribosome paves the way towards understanding the role of epigenetic rRNA modifications in human diseases and suggests new possibilities for designing selective inhibitors and therapeutic drugs.
Collapse
|
30
|
|
31
|
Li X, Xiong X, Yi C. Epitranscriptome sequencing technologies: decoding RNA modifications. Nat Methods 2017; 14:23-31. [PMID: 28032622 DOI: 10.1038/nmeth.4110] [Citation(s) in RCA: 291] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/28/2016] [Indexed: 12/27/2022]
Abstract
In recent years, major breakthroughs in RNA-modification-mediated regulation of gene expression have been made, leading to the emerging field of epitranscriptomics.Our understanding of the distribution, regulation and function of these dynamic RNA modifications is based on sequencing technologies. In this Review, we focus on the major mRNA modifications in the transcriptome of eukaryotic cells: N6-methyladenosine, N6, 2'-O-dimethyladenosine, 5-methylcytidine, 5-hydroxylmethylcytidine, inosine, pseudouridine and N1-methyladenosine. We discuss the sequencing technologies used to profile these epitranscriptomic marks, including scale, resolution, quantitative feature, pre-enrichment capability and the corresponding bioinformatics tools. We also discuss the challenges of epitranscriptome profiling and highlight the prospect of future detection tools. We aim to guide the choice of different detection methods and inspire new ideas in RNA biology.
Collapse
Affiliation(s)
- Xiaoyu Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Xushen Xiong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
32
|
Leppik M, Liiv A, Remme J. Random pseuoduridylation in vivo reveals critical region of Escherichia coli 23S rRNA for ribosome assembly. Nucleic Acids Res 2017; 45:6098-6108. [PMID: 28334881 PMCID: PMC5449589 DOI: 10.1093/nar/gkx160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/20/2017] [Accepted: 02/27/2017] [Indexed: 12/18/2022] Open
Abstract
Pseudouridine is the most common modified nucleoside in RNA, which is found in stable RNA species and in eukaryotic mRNAs. Functional analysis of pseudouridine is complicated by marginal effect of its absence. We demonstrate that excessive pseudouridines in rRNA inhibit ribosome assembly. Ten-fold increase of pseudouridines in the 16S and 23S rRNA made by a chimeric pseudouridine synthase leads to accumulation of the incompletely assembled large ribosome subunits. Hyper modified 23S rRNA is found in the r-protein assembly defective particles and are selected against in the 70S and polysome fractions showing modification interference. Eighteen positions of 23S rRNA were identified where isomerization of uridines interferes with ribosome assembly. Most of the interference sites are located in the conserved core of the large subunit, in the domain 0 of 23S rRNA, around the peptide exit tunnel. A plausible reason for pseudouridine-dependent inhibition of ribosome assembly is stabilization of rRNA structure, which leads to the folding traps of rRNA and to the retardation of the ribosome assembly.
Collapse
Affiliation(s)
- Margus Leppik
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Aivar Liiv
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Jaanus Remme
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| |
Collapse
|
33
|
Seelam PP, Sharma P, Mitra A. Structural landscape of base pairs containing post-transcriptional modifications in RNA. RNA (NEW YORK, N.Y.) 2017; 23:847-859. [PMID: 28341704 PMCID: PMC5435857 DOI: 10.1261/rna.060749.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/23/2017] [Indexed: 05/20/2023]
Abstract
Base pairs involving post-transcriptionally modified nucleobases are believed to play important roles in a wide variety of functional RNAs. Here we present our attempts toward understanding the structural and functional role of naturally occurring modified base pairs using a combination of X-ray crystal structure database analysis, sequence analysis, and advanced quantum chemical methods. Our bioinformatics analysis reveals that despite their presence in all major secondary structural elements, modified base pairs are most prevalent in tRNA crystal structures and most commonly involve guanine or uridine modifications. Further, analysis of tRNA sequences reveals additional examples of modified base pairs at structurally conserved tRNA regions and highlights the conservation patterns of these base pairs in three domains of life. Comparison of structures and binding energies of modified base pairs with their unmodified counterparts, using quantum chemical methods, allowed us to classify the base modifications in terms of the nature of their electronic structure effects on base-pairing. Analysis of specific structural contexts of modified base pairs in RNA crystal structures revealed several interesting scenarios, including those at the tRNA:rRNA interface, antibiotic-binding sites on the ribosome, and the three-way junctions within tRNA. These scenarios, when analyzed in the context of available experimental data, allowed us to correlate the occurrence and strength of modified base pairs with their specific functional roles. Overall, our study highlights the structural importance of modified base pairs in RNA and points toward the need for greater appreciation of the role of modified bases and their interactions, in the context of many biological processes involving RNA.
Collapse
Affiliation(s)
- Preethi P Seelam
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology Hyderabad (IIIT-H), Gachibowli, Hyderabad, Telangana 500032, India
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Abhijit Mitra
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology Hyderabad (IIIT-H), Gachibowli, Hyderabad, Telangana 500032, India
| |
Collapse
|
34
|
Castro-Vargas C, Linares-López C, López-Torres A, Wrobel K, Torres-Guzmán JC, Hernández GAG, Wrobel K, Lanz-Mendoza H, Contreras-Garduño J. Methylation on RNA: A Potential Mechanism Related to Immune Priming within But Not across Generations. Front Microbiol 2017; 8:473. [PMID: 28400750 PMCID: PMC5368179 DOI: 10.3389/fmicb.2017.00473] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 03/07/2017] [Indexed: 01/20/2023] Open
Abstract
Invertebrate immune priming is a growing field in immunology. This phenomenon refers to the ability of invertebrates to generate a more vigorous immune response to a second encounter with a specific pathogen and can occur within and across generations. Although the precise mechanism has not been elucidated, it has been suggested that methylation of DNA is a cornerstone for this phenomenon. Here, using a novel method of analytical chemistry (a reversed-phase liquid chromatography procedure) and the beetle Tenebrio molitor as a model system, we did not find evidence to support this hypothesis taking into account the percentage of methylated cytosine entities in DNA (5mdC) within or across generations. However, we found a lower percentage of methylated cytosine entities in RNA (5mC) within but not across generations in immune priming experiments with adults against the bacteria Micrococcus lysodeikticus and larvae against the fungus Metarhizium anisopliae. To our knowledge, this is the first report suggesting a role of differential methylation on RNA during immune priming within generations.
Collapse
Affiliation(s)
| | | | | | - Katarzyna Wrobel
- Departamento de Química, Universidad de Guanajuato Guanajuato, Mexico
| | | | | | - Kazimierz Wrobel
- Departamento de Química, Universidad de Guanajuato Guanajuato, Mexico
| | | | | |
Collapse
|
35
|
Zeng H, Qi CB, Liu T, Xiao HM, Cheng QY, Jiang HP, Yuan BF, Feng YQ. Formation and Determination of Endogenous Methylated Nucleotides in Mammals by Chemical Labeling Coupled with Mass Spectrometry Analysis. Anal Chem 2017; 89:4153-4160. [PMID: 28271879 DOI: 10.1021/acs.analchem.7b00052] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
5-Methylcytosine (5-mC) is an important epigenetic mark that plays critical roles in a variety of cellular processes. To properly exert physiological functions, the distribution of 5-mC needs to be tightly controlled in both DNA and RNA. In addition to methyltransferase-mediated DNA and RNA methylation, premethylated nucleotides can be potentially incorporated into DNA and RNA during replication and transcription. To exclude the premodified nucleotides into DNA and RNA, endogenous 5-methyl-2'-deoxycytidine monophosphate (5-Me-dCMP) generated from nucleic acids metabolism can be enzymatically deaminated to thymidine monophosphate (TMP). Therefore, previous studies failed to detect 5-Me-dCMP or 5-methylcytidine monophosphate (5-Me-CMP) in cells. In the current study, we established a method by chemical labeling coupled with liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS/MS) for sensitive and simultaneous determination of 10 nucleotides, including 5-Me-dCMP and 5-Me-CMP. As N,N-dimethyl-p-phenylenediamine (DMPA) was utilized for labeling, the detection sensitivities of nucleotides increased by 88-372-fold due to the introduction of a tertiary amino group and a hydrophobic moiety from DMPA. Using this method, we found that endogenous 5-Me-dCMP and 5-Me-CMP widely existed in cultured human cells, human tissues, and human urinary samples. The presence of endogenous 5-Me-dCMP and 5-Me-CMP indicates that deaminases may not fully deaminate these methylated nucleotides. Consequently, the remaining premethylated nucleosides could be converted to nucleoside triphosphates as building blocks for DNA and RNA synthesis. Furthermore, we found that the contents of 5-Me-dCMP and 5-Me-CMP exhibited significant decreases in renal carcinoma tissues and urine samples of lymphoma patients compared to their controls, probably due to more reutilization of methylated nucleotides in DNA and RNA synthesis. This study is, to the best of our knowledge, the first report for detecting endogenous 5-Me-dCMP and 5-Me-CMP in mammals. The detectable endogenous methylated nucleotides indicate the potential deleterious effects of premodified nucleotides on aberrant gene regulation in cancers.
Collapse
Affiliation(s)
- Huan Zeng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, People's Republic of China
| | - Chu-Bo Qi
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, People's Republic of China.,Department of Pathology, Hubei Cancer Hospital , Wuhan, Hubei 430079, People's Republic of China
| | - Ting Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, People's Republic of China
| | - Hua-Ming Xiao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, People's Republic of China
| | - Qing-Yun Cheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, People's Republic of China
| | - Han-Peng Jiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, People's Republic of China
| | - Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, People's Republic of China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, People's Republic of China
| |
Collapse
|
36
|
Niewczas MA, Mathew AV, Croall S, Byun J, Major M, Sabisetti VS, Smiles A, Bonventre JV, Pennathur S, Krolewski AS. Circulating Modified Metabolites and a Risk of ESRD in Patients With Type 1 Diabetes and Chronic Kidney Disease. Diabetes Care 2017; 40:383-390. [PMID: 28087576 PMCID: PMC5319475 DOI: 10.2337/dc16-0173] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 12/17/2016] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Patients with type 1 diabetes (T1D) with impaired renal function are at increased risk for end-stage renal disease (ESRD). Although the rate of progression varies, determinants and mechanisms of this variation are unknown. RESEARCH DESIGN AND METHODS We examined serum metabolomic profiles associated with variation in renal function decline in participants with T1D (the Joslin Kidney Study prospective cohort). One hundred fifty-eight patients with proteinuria and chronic kidney disease stage 3 were followed for a median of 11 years to determine estimated glomerular filtration rate slopes from serial measurements of serum creatinine and to ascertain time to onset of ESRD. Baseline serum samples were subjected to global metabolomic profiling. RESULTS One hundred ten amino acids and purine and pyrimidine metabolites were detected in at least 80% of participants. Serum levels of seven modified metabolites (C-glycosyltryptophan, pseudouridine, O-sulfotyrosine, N-acetylthreonine, N-acetylserine, N6-carbamoylthreonyladenosine, and N6-acetyllysine) were associated with renal function decline and time to ESRD (P < 0.001) independent of the relevant clinical covariates. The significant metabolites correlated with one another and with the indices of tubular injury. CONCLUSIONS This prospective cohort study in participants with T1D, proteinuria, and impaired renal function at baseline demonstrated that patients with increased circulating levels of certain modified metabolites experience faster renal function decline, leading to ESRD. Whether some of these candidate metabolites are risk factors or just prognostic biomarkers of progression to ESRD in T1D needs to be determined.
Collapse
Affiliation(s)
- Monika A Niewczas
- Research Division, Joslin Diabetes Center, Boston, MA .,Department of Medicine, Harvard Medical School, Boston, MA
| | - Anna V Mathew
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | | | - Jaeman Byun
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Melissa Major
- Research Division, Joslin Diabetes Center, Boston, MA
| | | | - Adam Smiles
- Research Division, Joslin Diabetes Center, Boston, MA
| | - Joseph V Bonventre
- Department of Medicine, Harvard Medical School, Boston, MA.,Renal Division, Brigham and Women's Hospital, Boston, MA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Andrzej S Krolewski
- Research Division, Joslin Diabetes Center, Boston, MA.,Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
37
|
Epitranscriptomic regulation of viral replication. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:460-471. [PMID: 28219769 DOI: 10.1016/j.bbagrm.2017.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 12/11/2022]
Abstract
RNA plays central roles in biology and novel functions and regulation mechanisms are constantly emerging. To accomplish some of their functions within the cell, RNA molecules undergo hundreds of chemical modifications from which N6-methyladenosine (m6A), inosine (I), pseudouridine (ψ) and 5-methylcytosine (5mC) have been described in eukaryotic mRNA. Interestingly, the m6A modification was shown to be reversible, adding novel layers of regulation of gene expression through what is now recognized as epitranscriptomics. The development of molecular mapping strategies coupled to next generation sequencing allowed the identification of thousand of modified transcripts in different tissues and under different physiological conditions such as viral infections. As intracellular parasites, viruses are confronted to cellular RNA modifying enzymes and, as a consequence, viral RNA can be chemically modified at some stages of the replication cycle. This review focuses on the chemical modifications of viral RNA and the impact that these modifications have on viral gene expression and the output of infection. A special emphasis is given to m6A, which was recently shown to play important yet controversial roles in different steps of the HIV-1, HCV and ZIKV replication cycles.
Collapse
|
38
|
Abstract
The first chemical modification to RNA was discovered nearly 60 years ago; to date, more than 100 chemically distinct modifications have been identified in cellular RNA. With the recent development of novel chemical and/or biochemical methods, dynamic modifications to RNA have been identified in the transcriptome, including N6-methyladenosine (m6A), inosine (I), 5-methylcytosine (m5C), pseudouridine (Ψ), 5-hydroxymethylcytosine (hm5C), and N1-methyladenosine (m1A). Collectively, the multitude of RNA modifications are termed epitranscriptome, leading to the emerging field of epitranscriptomics. In this review, we primarily focus on recently reported chemical modifications to mRNA; we discuss their chemical properties, biological functions, and mechanisms with an emphasis on their high-throughput detection methods. We also envision that future tools, particularly novel chemical biology methods, could further facilitate and enable studies in the field of epitranscriptomics.
Collapse
Affiliation(s)
- Jinghui Song
- State
Key Laboratory of Protein and Plant Gene Research, School of Life
Sciences, and Peking-Tsinghua Center for Life Sciences and ‡Department of Chemical
Biology and Synthetic and Functional Biomolecules Center, College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chengqi Yi
- State
Key Laboratory of Protein and Plant Gene Research, School of Life
Sciences, and Peking-Tsinghua Center for Life Sciences and ‡Department of Chemical
Biology and Synthetic and Functional Biomolecules Center, College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
39
|
|
40
|
S. P. P, Sharma P, Mitra A. Higher order structures involving post transcriptionally modified nucleobases in RNA. RSC Adv 2017. [DOI: 10.1039/c7ra05284g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Quantum chemical studies are carried out to understand the structures and stabilities of higher order structures involving post-transcriptionally modified nucleobases in RNA.
Collapse
Affiliation(s)
- Preethi S. P.
- Center for Computational Natural Sciences and Bioinformatics
- International Institute of Information Technology Hyderabad (IIIT-H)
- Hyderabad
- India
| | - Purshotam Sharma
- Computational Biochemistry Laboratory
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh
- India
| | - Abhijit Mitra
- Center for Computational Natural Sciences and Bioinformatics
- International Institute of Information Technology Hyderabad (IIIT-H)
- Hyderabad
- India
| |
Collapse
|
41
|
Zhao M, Zhang H, Liu G, Wang L, Wang J, Gao Z, Dong Y, Zhang L, Gong Y. Structural Insights into the Methylation of C1402 in 16S rRNA by Methyltransferase RsmI. PLoS One 2016; 11:e0163816. [PMID: 27711192 PMCID: PMC5053481 DOI: 10.1371/journal.pone.0163816] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/14/2016] [Indexed: 11/18/2022] Open
Abstract
RsmI and RsmH are conserved S-Adenosylmethionine (AdoMet)-dependent methyltransferases (MTases) that are responsible for the 2'-O-methylation and N4-methylation of C1402 in bacterial 16S rRNA, respectively. Methylation of m4Cm1402 plays a role in fine-tuning the shape and functions of the P-site to increase the decoding fidelity, and was recently found to contribute to the virulence of Staphylococcus aureus in host animals. Here we report the 2.20-Å crystal structure of homodimeric RsmI from Escherichia coli in complex with the cofactor AdoMet. RsmI consists of an N-terminal putative RNA-binding domain (NTD) and a C-terminal catalytic domain (CTD) with a Rossmann-like fold, and belongs to the class III MTase family. AdoMet is specifically bound into a negatively charged deep pocket formed by both domains by making extensive contacts. Structure-based mutagenesis and isothermal titration calorimetry (ITC) assays revealed Asp100 and Ala124 are vital for AdoMet-binding. Although the overall fold of RsmI shows remarkable similarities to the characterized MTases involved in vitamin B12 biosynthesis, it exhibits a distinct charge distribution especially around the AdoMet-binding pocket because of different substrate specificity. The docking model of RsmI-AdoMet-RNA ternary complex suggested a possible base-flipping mechanism of the substrate RNA that has been observed in several known RNA MTases. Our structural and biochemical studies provide novel insights into the catalytic mechanism of C1402 methylation in 16S rRNA.
Collapse
Affiliation(s)
- Mohan Zhao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Heng Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Guangfeng Liu
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Li Wang
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Jian Wang
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Zengqiang Gao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Yuhui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Linbo Zhang
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Yong Gong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
42
|
The physiology and habitat of the last universal common ancestor. Nat Microbiol 2016; 1:16116. [DOI: 10.1038/nmicrobiol.2016.116] [Citation(s) in RCA: 545] [Impact Index Per Article: 68.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/21/2016] [Indexed: 02/03/2023]
|
43
|
Jiang J, Seo H, Chow CS. Post-transcriptional Modifications Modulate rRNA Structure and Ligand Interactions. Acc Chem Res 2016; 49:893-901. [PMID: 27064497 DOI: 10.1021/acs.accounts.6b00014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Post-transcriptional modifications play important roles in modulating the functions of RNA species. The presence of modifications in RNA may directly alter its interactions with binding partners or cause structural changes that indirectly affect ligand recognition. Given the rapidly growing list of modifications identified in noncoding and mRNAs associated with human disease, as well as the dynamic control over modifications involved in various physiological processes, it is imperative to understand RNA structural modulation by these modifications. Among the RNA species, rRNAs provide numerous examples of modification types located in differing sequence and structural contexts. In addition, the modified rRNA motifs participate in a wide variety of ligand interactions, including those with RNA, protein, and small molecules. In fact, several classes of antibiotics exert their effects on protein synthesis by binding to functionally important and highly modified regions of the rRNAs. These RNA regions often display conservation in sequence, secondary structure, tertiary interactions, and modifications, trademarks of ideal drug-targeting sites. Furthermore, ligand interactions with such regions often favor certain modification-induced conformational states of the RNA. Our laboratory has employed a combination of biophysical methods such as nuclear magnetic resonance spectroscopy (NMR), circular dichroism, and UV melting to study rRNA modifications in functionally important motifs, including helix 31 (h31) and helix h44 (h44) of the small subunit rRNA and helix 69 (H69) of the large subunit rRNA. The modified RNA oligonucleotides used in these studies were generated by solid-phase synthesis with a variety of phosphoramidite chemistries. The natural modifications were shown to impact thermal stability, dynamic behavior, and tertiary structures of the RNAs, with additive or cooperative effects occurring with multiple, clustered modifications. Taking advantage of the structural diversity offered by specific modifications in the chosen rRNA motifs, phage display was used to select peptides that bind with moderate (low micromolar) affinity and selectivity to modified h31, h44, and H69. Interactions between peptide ligands and RNAs were monitored by biophysical methods, including electrospray ionization mass spectrometry (ESI-MS), NMR, and surface plasmon resonance (SPR). The peptides compare well with natural compounds such as aminoglycosides in their binding affinities to the modified rRNA constructs. Some candidates were shown to exhibit specificity toward different modification states of the rRNA motifs. The selected peptides may be further optimized for improved RNA targeting or used in screening assays for new drug candidates. In this Account, we hope to stimulate interest in bioorganic and biophysical approaches, which may be used to deepen our understanding of other functionally important, naturally modified RNAs beyond the rRNAs.
Collapse
Affiliation(s)
- Jun Jiang
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Hyosuk Seo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Christine S. Chow
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
44
|
Meyer B, Wurm JP, Sharma S, Immer C, Pogoryelov D, Kötter P, Lafontaine DLJ, Wöhnert J, Entian KD. Ribosome biogenesis factor Tsr3 is the aminocarboxypropyl transferase responsible for 18S rRNA hypermodification in yeast and humans. Nucleic Acids Res 2016; 44:4304-16. [PMID: 27084949 PMCID: PMC4872110 DOI: 10.1093/nar/gkw244] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/28/2016] [Indexed: 12/15/2022] Open
Abstract
The chemically most complex modification in eukaryotic rRNA is the conserved hypermodified nucleotide N1-methyl-N3-aminocarboxypropyl-pseudouridine (m(1)acp(3)Ψ) located next to the P-site tRNA on the small subunit 18S rRNA. While S-adenosylmethionine was identified as the source of the aminocarboxypropyl (acp) group more than 40 years ago the enzyme catalyzing the acp transfer remained elusive. Here we identify the cytoplasmic ribosome biogenesis protein Tsr3 as the responsible enzyme in yeast and human cells. In functionally impaired Tsr3-mutants, a reduced level of acp modification directly correlates with increased 20S pre-rRNA accumulation. The crystal structure of archaeal Tsr3 homologs revealed the same fold as in SPOUT-class RNA-methyltransferases but a distinct SAM binding mode. This unique SAM binding mode explains why Tsr3 transfers the acp and not the methyl group of SAM to its substrate. Structurally, Tsr3 therefore represents a novel class of acp transferase enzymes.
Collapse
Affiliation(s)
- Britta Meyer
- Institute for Molecular Biosciences, Goethe University, Frankfurt/M, Germany
| | - Jan Philip Wurm
- Institute for Molecular Biosciences, Goethe University, Frankfurt/M, Germany Center of Biomolecular Magnetic Resonance, Goethe University, Frankfurt/M, Germany
| | - Sunny Sharma
- RNA Molecular Biology & Center for Microscopy and Molecular Imaging, Fonds National de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles (ULB)
| | - Carina Immer
- Institute for Molecular Biosciences, Goethe University, Frankfurt/M, Germany Center of Biomolecular Magnetic Resonance, Goethe University, Frankfurt/M, Germany
| | - Denys Pogoryelov
- Institute of Biochemistry, Goethe University, Frankfurt/M, Germany
| | - Peter Kötter
- Institute for Molecular Biosciences, Goethe University, Frankfurt/M, Germany
| | - Denis L J Lafontaine
- RNA Molecular Biology & Center for Microscopy and Molecular Imaging, Fonds National de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles (ULB)
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Goethe University, Frankfurt/M, Germany Center of Biomolecular Magnetic Resonance, Goethe University, Frankfurt/M, Germany
| | - Karl-Dieter Entian
- Institute for Molecular Biosciences, Goethe University, Frankfurt/M, Germany
| |
Collapse
|
45
|
Deb I, Pal R, Sarzynska J, Lahiri A. Reparameterizations of theχTorsion and Lennard-JonesσParameters Improve the Conformational Characteristics of Modified Uridines. J Comput Chem 2016; 37:1576-88. [DOI: 10.1002/jcc.24374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/05/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Indrajit Deb
- Department of Biophysics, Molecular Biology and Bioinformatics; University of Calcutta; 92 APC Road Kolkata West Bengal 700009 India
- Institute of Bioorganic Chemistry, Polish Academy of Sciences; Noskowskiego 12/14 Poznan 61-704 Poland
| | - Rupak Pal
- Department of Biophysics, Molecular Biology and Bioinformatics; University of Calcutta; 92 APC Road Kolkata West Bengal 700009 India
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences; Noskowskiego 12/14 Poznan 61-704 Poland
| | - Ansuman Lahiri
- Department of Biophysics, Molecular Biology and Bioinformatics; University of Calcutta; 92 APC Road Kolkata West Bengal 700009 India
| |
Collapse
|
46
|
Post-Transcriptional Modifications of RNA: Impact on RNA Function and Human Health. MODIFIED NUCLEIC ACIDS IN BIOLOGY AND MEDICINE 2016. [DOI: 10.1007/978-3-319-34175-0_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
47
|
Feng P, Ding H, Chen W, Lin H. Identifying RNA 5-methylcytosine sites via pseudo nucleotide compositions. MOLECULAR BIOSYSTEMS 2016; 12:3307-3311. [DOI: 10.1039/c6mb00471g] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
RNA 5-methylcytosine (m5C) has been discovered from archaea to eukaryotes, which is catalyzed by RNA methyltransferase.
Collapse
Affiliation(s)
- Pengmian Feng
- School of Public Health
- North China University of Science and Technology
- Tangshan
- China
| | - Hui Ding
- Key Laboratory for NeuroInformation of Ministry of Education
- School of Life Science and Technology
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Wei Chen
- Department of Physics
- School of Sciences
- Center for Genomics and Computational Biology
- North China University of Science and Technology
- Tangshan 063009
| | - Hao Lin
- Key Laboratory for NeuroInformation of Ministry of Education
- School of Life Science and Technology
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| |
Collapse
|
48
|
Laptev IG, Golovina AY, Sergiev PV, Dontsova OA. Posttranscriptional modification of messenger RNAs in eukaryotes. Mol Biol 2015; 49:825-836. [PMID: 32214475 PMCID: PMC7088549 DOI: 10.1134/s002689331506014x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 06/25/2015] [Indexed: 11/30/2022]
Abstract
Transcriptome-wide mapping of posttranscriptional modifications in eukaryotic RNA revealed tens of thousands of modification sites. Modified nucleotides include 6-methyladenosine, 5-methylcytidine, pseudouridine, inosine, etc. Many modification sites are conserved, and many are regulated. The function is known for a minor subset of modified nucleotides, while the role of their majority is still obscure. In view of the global character of mRNA modification, RNA epigenetics arose as a new field of molecular biology. The review considers posttranscriptional modification of eukaryotic mRNA, focusing on the major modified nucleotides, the role they play in the cell, the methods to detect them, and the enzymes responsible for modification.
Collapse
Affiliation(s)
- I G Laptev
- 1Department of Chemistry, Moscow State University, Moscow, 119991 Russia
| | - A Ya Golovina
- 2Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992 Russia
| | - P V Sergiev
- 1Department of Chemistry, Moscow State University, Moscow, 119991 Russia.,2Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992 Russia
| | - O A Dontsova
- 1Department of Chemistry, Moscow State University, Moscow, 119991 Russia.,2Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992 Russia
| |
Collapse
|
49
|
Liu Y, Zhu Y, Teng M, Li X. Crystallographic analysis of RsmA, a ribosomal RNA small subunit methyltransferase A from Staphylococcus aureus. Acta Crystallogr F Struct Biol Commun 2015; 71:1063-6. [PMID: 26249700 PMCID: PMC4528942 DOI: 10.1107/s2053230x15011279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/09/2015] [Indexed: 11/11/2022] Open
Abstract
RsmA, a ribosomal RNA small subunit methyltransferase from Staphylococcus aureus, catalyzes the N(6) methylation of adenine in 16S rRNA. In this study, RsmA from Staphylococcus aureus was cloned, expressed, purified and crystallized. The crystal belonged to space group C2, with unit-cell parameters a = 84.38, b = 157.76, c = 96.50 Å, β = 95.04°. X-ray diffraction data were collected to a resolution of 3.2 Å. The self-rotation function and the Matthews coefficient suggested the presence of two molecules in the asymmetric unit.
Collapse
Affiliation(s)
- Yang Liu
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Science, Hefei, Anhui 230026, People’s Republic of China
| | - Yuwei Zhu
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Science, Hefei, Anhui 230026, People’s Republic of China
| | - Maikun Teng
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Science, Hefei, Anhui 230026, People’s Republic of China
| | - Xu Li
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Science, Hefei, Anhui 230026, People’s Republic of China
| |
Collapse
|
50
|
Fu L, Amato NJ, Wang P, McGowan SJ, Niedernhofer LJ, Wang Y. Simultaneous Quantification of Methylated Cytidine and Adenosine in Cellular and Tissue RNA by Nano-Flow Liquid Chromatography-Tandem Mass Spectrometry Coupled with the Stable Isotope-Dilution Method. Anal Chem 2015; 87:7653-9. [PMID: 26158405 DOI: 10.1021/acs.analchem.5b00951] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The rising interest in understanding the functions, regulation, and maintenance of the epitranscriptome calls for robust and accurate analytical methods for the identification and quantification of post-transcriptionally modified nucleosides in RNA. Monomethylations of cytidine and adenosine are common post-transcriptional modifications in RNA. Herein, we developed an LC-MS/MS/MS coupled with the stable isotope-dilution method for the sensitive and accurate quantifications of 5-methylcytidine (m(5)C), 2'-O-methylcytidine (Cm), N(6)-methyladenosine (m(6)A), and 2'-O-methyladenosine (Am) in RNA isolated from mammalian cells and tissues. Our results showed that the distributions of m(5)C, Cm and Am are tissue-specific. In addition, the 2'-O-methylated ribonucleosides (Cm and Am) are present at higher levels than the corresponding methylated nucleobase products (m(5)C and m(6)A) in total RNA isolated from mouse brain, pancreas, and spleen but not mouse heart. We also found that the levels of m(5)C, Cm, and Am are significantly lower (by 6.5-43-fold) in mRNA than in total RNA isolated from HEK293T cells, whereas the level of m(6)A was slightly higher (by 1.6-fold) in mRNA than in total RNA. The availability of this analytical method, in combination with genetic manipulation, may facilitate the future discovery of proteins involved in the maintenance and regulation of these RNA modifications.
Collapse
Affiliation(s)
| | | | | | - Sara J McGowan
- §Department of Metabolism and Aging, Scripps Florida, Jupiter, Florida 33458, United States
| | - Laura J Niedernhofer
- §Department of Metabolism and Aging, Scripps Florida, Jupiter, Florida 33458, United States
| | | |
Collapse
|