1
|
Manna A, Sonker M, Koh D, Steiger M, Ansari A, Hu H, Quereda-Moraleda I, Grieco A, Doppler D, de Sanctis D, Basu S, Orlans J, Rose SL, Botha S, Martin-Garcia JM, Ros A. Cyclic Olefin Copolymer-Based Fixed-Target Sample Delivery Device for Protein X-ray Crystallography. Anal Chem 2024; 96:20371-20381. [PMID: 39679637 PMCID: PMC11696833 DOI: 10.1021/acs.analchem.4c03484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024]
Abstract
Serial macromolecular X-ray crystallography plays an important role in elucidating protein structures and consequently progressing the field of targeted therapeutics. The use of pulsed beams at different repetition frequencies requires the development of various sample-conserving injection strategies to minimize sample wastage between X-ray exposures. Fixed-target sample delivery methods that use solid support to hold the crystals in the X-ray beam path are gaining interest as a sample-conserving delivery system for X-ray crystallography with high crystal hit rates. Here, we present a novel fixed-target microfluidic system for delivering protein microcrystals to X-ray beams for diffraction data collection and structure determination. The fixed-target design consists of 3 symmetric sections arranged in an area of 1 in. × 1 in. with up to 18,000 crystal traps per device. Each trap is targeted to hold one crystal up to 50 μm in size in the largest dimension. The device has been fabricated using cyclic olefin copolymer (COC) for high-quality diffraction data collection with low background scattering induced through the fixed-target material. The newly developed fixed-target device is designed for vacuum compatibility which will enable the use in vacuum experimental chambers of X-ray radiation sources including the newly developed, first-of-its-kind compact X-ray light source (CXLS), which is currently in commissioning at Arizona State University. To assess the validity of the COC device, serial crystallography experiments were performed on the model protein lysozyme at the new European Synchrotron Radiation Facility-Extremely Brilliant Source (ESRF-EBS) beamline ID29. A 1.6 Å crystal structure of the protein was solved, demonstrating that, in general, the COC device can be used to generate high-quality data from macromolecular crystals at the CXLS and synchrotron radiation sources, which holds enormous potential for advancing the field of protein structure determination by fixed-target X-ray crystallography.
Collapse
Affiliation(s)
- Abhik Manna
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Mukul Sonker
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Domin Koh
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Michael Steiger
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Adil Ansari
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
- School
for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
- Department
of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Hao Hu
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Isabel Quereda-Moraleda
- Department
of Crystallography and Structural Biology, Institute of Physical Chemistry
Blas Cabrera, Spanish National Research
Council (CSIC), Madrid 28006, Spain
| | - Alice Grieco
- Department
of Crystallography and Structural Biology, Institute of Physical Chemistry
Blas Cabrera, Spanish National Research
Council (CSIC), Madrid 28006, Spain
| | - Diandra Doppler
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | | | - Shibom Basu
- European
Molecular Biology Laboratory, 38042 Grenoble, France
| | - Julien Orlans
- ESRF—The
European Synchrotron, P.O. Box 38000 Grenoble, France
| | - Samuel L. Rose
- ESRF—The
European Synchrotron, P.O. Box 38000 Grenoble, France
| | - Sabine Botha
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
- Department
of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Jose Manuel Martin-Garcia
- Department
of Crystallography and Structural Biology, Institute of Physical Chemistry
Blas Cabrera, Spanish National Research
Council (CSIC), Madrid 28006, Spain
| | - Alexandra Ros
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
2
|
Gu KK, Liu Z, Narayanasamy SR, Shelby ML, Chan N, Coleman MA, Frank M, Kuhl TL. All polymer microfluidic chips-A fixed target sample delivery workhorse for serial crystallography. BIOMICROFLUIDICS 2023; 17:051302. [PMID: 37840537 PMCID: PMC10576627 DOI: 10.1063/5.0167164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
The development of x-ray free electron laser (XFEL) light sources and serial crystallography methodologies has led to a revolution in protein crystallography, enabling the determination of previously unobtainable protein structures and near-atomic resolution of otherwise poorly diffracting protein crystals. However, to utilize XFEL sources efficiently demands the continuous, rapid delivery of a large number of difficult-to-handle microcrystals to the x-ray beam. A recently developed fixed-target system, in which crystals of interest are enclosed within a sample holder, which is rastered through the x-ray beam, is discussed in detail in this Perspective. The fixed target is easy to use, maintains sample hydration, and can be readily modified to allow a broad range of sample types and different beamline requirements. Recent innovations demonstrate the potential of such microfluidic-based fixed targets to be an all-around "workhorse" for serial crystallography measurements. This Perspective will summarize recent advancements in microfluidic fixed targets for serial crystallography, examine needs for future development, and guide users in designing, choosing, and utilizing a fixed-target sample delivery device for their system.
Collapse
Affiliation(s)
- Kevin K. Gu
- Department of Chemical Engineering, University of California at Davis, Davis, California 95616, USA
| | - Zhongrui Liu
- Department of Chemical Engineering, University of California at Davis, Davis, California 95616, USA
| | - Sankar Raju Narayanasamy
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Megan L. Shelby
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Nicholas Chan
- Department of Chemical Engineering, University of California at Davis, Davis, California 95616, USA
| | | | | | - Tonya L. Kuhl
- Department of Chemical Engineering, University of California at Davis, Davis, California 95616, USA
| |
Collapse
|
3
|
Grünbein ML, Kovacs GN, Kloos M, Gorel A, Doak RB, Shoeman RL, Barends TRM, Schlichting I. Crystallographic Studies of Rhodopsins: Structure and Dynamics. Methods Mol Biol 2022; 2501:147-168. [PMID: 35857227 DOI: 10.1007/978-1-0716-2329-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Crystal structures have provided detailed insight in the architecture of rhodopsin photoreceptors. Of particular interest are the protein-chromophore interactions that govern the light-induced retinal isomerization and ultimately induce the large structural changes important for the various biological functions of the family. The reaction intermediates occurring along the rhodopsin photocycle have vastly differing lifetimes, from hundreds of femtoseconds to milliseconds. Detailed insight at high spatial and temporal resolution can be obtained by time-resolved crystallography using pump-probe approaches at X-ray free-electron lasers. Alternatively, cryotrapping approaches can be used. Both the approaches are described, including illumination and sample delivery. The importance of appropriate photoexcitation avoiding multiphoton absorption is stressed.
Collapse
Affiliation(s)
| | | | - Marco Kloos
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Alexander Gorel
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | - R Bruce Doak
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | | | | | | |
Collapse
|
4
|
Micheal Raj P, Barbe L, Andersson M, De Albuquerque Moreira M, Haase D, Wootton J, Nehzati S, Terry AE, Friel RJ, Tenje M, Sigfridsson Clauss KGV. Fabrication and characterisation of a silicon-borosilicate glass microfluidic device for synchrotron-based hard X-ray spectroscopy studies. RSC Adv 2021; 11:29859-29869. [PMID: 35479529 PMCID: PMC9040903 DOI: 10.1039/d1ra05270e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/26/2021] [Indexed: 01/09/2023] Open
Abstract
Some of the most fundamental chemical building blocks of life on Earth are the metal elements. X-ray absorption spectroscopy (XAS) is an element-specific technique that can analyse the local atomic and electronic structure of, for example, the active sites in catalysts and energy materials and allow the metal sites in biological samples to be identified and understood. A microfluidic device capable of withstanding the intense hard X-ray beams of a 4th generation synchrotron and harsh chemical sample conditions is presented in this work. The device is evaluated at the K-edges of iron and bromine and the L 3-edge of lead, in both transmission and fluorescence mode detection and in a wide range of sample concentrations, as low as 0.001 M. The device is fabricated in silicon and glass with plasma etched microchannels defined in the silicon wafer before anodic bonding of the glass wafer into a complete device. The device is supported with a well-designed printed chip holder that made the microfluidic device portable and easy to handle. The chip holder plays a pivotal role in mounting the delicate microfluidic device on the beamline stage. Testing validated that the device was sufficiently robust to contain and flow through harsh acids and toxic samples. There was also no significant radiation damage to the device observed, despite focusing with intense X-ray beams for multiple hours. The quality of X-ray spectra collected is comparable to that from standard methods; hence we present a robust microfluidic device to analyse liquid samples using synchrotron XAS.
Collapse
Affiliation(s)
| | - Laurent Barbe
- Dept. Materials Science and Engineering, Science for Life Laboratory, Uppsala University Uppsala Sweden
| | - Martin Andersson
- Dept. Materials Science and Engineering, Science for Life Laboratory, Uppsala University Uppsala Sweden
| | | | | | | | | | - Ann E Terry
- MAX IV Laboratory, Lund University Lund Sweden
| | - Ross J Friel
- School of Information Technology, Halmstad University Halmstad Sweden
| | - Maria Tenje
- Dept. Materials Science and Engineering, Science for Life Laboratory, Uppsala University Uppsala Sweden
| | | |
Collapse
|
5
|
Gavira JA, Rodriguez-Ruiz I, Martinez-Rodriguez S, Basu S, Teychené S, McCarthy AA, Mueller-Dieckman C. Attaining atomic resolution from in situ data collection at room temperature using counter-diffusion-based low-cost microchips. Acta Crystallogr D Struct Biol 2020; 76:751-758. [PMID: 32744257 DOI: 10.1107/s2059798320008475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022] Open
Abstract
Sample handling and manipulation for cryoprotection currently remain critical factors in X-ray structural determination. While several microchips for macromolecular crystallization have been proposed during the last two decades to partially overcome crystal-manipulation issues, increased background noise originating from the scattering of chip-fabrication materials has so far limited the attainable resolution of diffraction data. Here, the conception and use of low-cost, X-ray-transparent microchips for in situ crystallization and direct data collection, and structure determination at atomic resolution close to 1.0 Å, is presented. The chips are fabricated by a combination of either OSTEMER and Kapton or OSTEMER and Mylar materials for the implementation of counter-diffusion crystallization experiments. Both materials produce a sufficiently low scattering background to permit atomic resolution diffraction data collection at room temperature and the generation of 3D structural models of the tested model proteins lysozyme, thaumatin and glucose isomerase. Although the high symmetry of the three model protein crystals produced almost complete data sets at high resolution, the potential of in-line data merging and scaling of the multiple crystals grown along the microfluidic channels is also presented and discussed.
Collapse
Affiliation(s)
- Jose A Gavira
- Laboratorio de Estudios Cristalográficos, IACT, CSIC-Universidad de Granada, Avenida Las Palmeras 4, 18100 Armilla, Spain
| | - Isaac Rodriguez-Ruiz
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, INSA, UPS Toulouse, Toulouse, France
| | - Sergio Martinez-Rodriguez
- Laboratorio de Estudios Cristalográficos, IACT, CSIC-Universidad de Granada, Avenida Las Palmeras 4, 18100 Armilla, Spain
| | - Shibom Basu
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Sébastien Teychené
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, INSA, UPS Toulouse, Toulouse, France
| | - Andrew A McCarthy
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | | |
Collapse
|
6
|
Wang JW, Gao J, Wang HF, Jin QH, Rao B, Deng W, Cao Y, Lei M, Ye S, Fang Q. Miniaturization of the Whole Process of Protein Crystallographic Analysis by a Microfluidic Droplet Robot: From Nanoliter-Scale Purified Proteins to Diffraction-Quality Crystals. Anal Chem 2019; 91:10132-10140. [PMID: 31276402 DOI: 10.1021/acs.analchem.9b02138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To obtain diffraction-quality crystals is one of the largest barriers to analyze the protein structure using X-ray crystallography. Here we describe a microfluidic droplet robot that enables successful miniaturization of the whole process of crystallization experiments including large-scale initial crystallization screening, crystallization optimization, and crystal harvesting. The combination of the state-of-the-art droplet-based microfluidic technique with the microbatch crystallization mode dramatically reduces the volumes of droplet crystallization reactors to tens nanoliter range, allowing large-scale initial screening of 1536 crystallization conditions and multifactor crystallization condition optimization with extremely low protein consumption, and on-chip harvesting of diffraction-quality crystals directly from the droplet reactors. We applied the droplet robot in miniaturized crystallization experiments of seven soluble proteins and two membrane proteins, and on-chip crystal harvesting of six proteins. The X-ray diffraction data sets of these crystals were collected using synchrotron radiation for analyzing the structures with similar diffraction qualities as conventional crystallization methods.
Collapse
Affiliation(s)
- Jian-Wei Wang
- Institute of Microanalytical Systems, Department of Chemistry , Zhejiang University , Hangzhou , 310058 , China
| | - Jie Gao
- Institute of Microanalytical Systems, Department of Chemistry , Zhejiang University , Hangzhou , 310058 , China
| | - Hui-Feng Wang
- Institute of Microanalytical Systems, Department of Chemistry , Zhejiang University , Hangzhou , 310058 , China
| | - Qiu-Heng Jin
- Life Sciences Institute , Zhejiang University , Hangzhou , 310058 , China
| | - Bing Rao
- State Key Laboratory of Molecular Biology , National Center for Protein Science · Shanghai , Shanghai , 201210 , China
| | - Wei Deng
- State Key Laboratory of Molecular Biology , National Center for Protein Science · Shanghai , Shanghai , 201210 , China
| | - Yu Cao
- State Key Laboratory of Molecular Biology , National Center for Protein Science · Shanghai , Shanghai , 201210 , China
| | - Ming Lei
- State Key Laboratory of Molecular Biology , National Center for Protein Science · Shanghai , Shanghai , 201210 , China
| | - Sheng Ye
- Life Sciences Institute , Zhejiang University , Hangzhou , 310058 , China.,School of Life Sciences , Tianjin University , Tianjin , 300072 , China
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry , Zhejiang University , Hangzhou , 310058 , China
| |
Collapse
|
7
|
Candoni N, Grossier R, Lagaize M, Veesler S. Advances in the Use of Microfluidics to Study Crystallization Fundamentals. Annu Rev Chem Biomol Eng 2019; 10:59-83. [PMID: 31018097 DOI: 10.1146/annurev-chembioeng-060718-030312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review compares droplet-based microfluidic systems used to study crystallization fundamentals in chemistry and biology. An original high-throughput droplet-based microfluidic platform is presented. It uses nanoliter droplets, generates a chemical library, and directly solubilizes powder, thus economizing both material and time. It is compatible with all solvents without the need for surfactant. Its flexibility permits phase diagram determination and crystallization studies (screening and optimizing experiments) and makes it easy to use for nonspecialists in microfluidics. Moreover, it allows concentration measurement via ultraviolet spectroscopy and solid characterization via X-ray diffraction analysis.
Collapse
Affiliation(s)
- Nadine Candoni
- Aix-Marseille Université, CNRS, CINaM UMR 7325, 13288 Marseille, France; , , ,
| | - Romain Grossier
- Aix-Marseille Université, CNRS, CINaM UMR 7325, 13288 Marseille, France; , , ,
| | - Mehdi Lagaize
- Aix-Marseille Université, CNRS, CINaM UMR 7325, 13288 Marseille, France; , , ,
| | - Stéphane Veesler
- Aix-Marseille Université, CNRS, CINaM UMR 7325, 13288 Marseille, France; , , ,
| |
Collapse
|
8
|
de Wijn R, Hennig O, Roche J, Engilberge S, Rollet K, Fernandez-Millan P, Brillet K, Betat H, Mörl M, Roussel A, Girard E, Mueller-Dieckmann C, Fox GC, Olieric V, Gavira JA, Lorber B, Sauter C. A simple and versatile microfluidic device for efficient biomacromolecule crystallization and structural analysis by serial crystallography. IUCRJ 2019; 6:454-464. [PMID: 31098026 PMCID: PMC6503916 DOI: 10.1107/s2052252519003622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/14/2019] [Indexed: 05/15/2023]
Abstract
Determining optimal conditions for the production of well diffracting crystals is a key step in every biocrystallography project. Here, a microfluidic device is described that enables the production of crystals by counter-diffusion and their direct on-chip analysis by serial crystallography at room temperature. Nine 'non-model' and diverse biomacromolecules, including seven soluble proteins, a membrane protein and an RNA duplex, were crystallized and treated on-chip with a variety of standard techniques including micro-seeding, crystal soaking with ligands and crystal detection by fluorescence. Furthermore, the crystal structures of four proteins and an RNA were determined based on serial data collected on four synchrotron beamlines, demonstrating the general applicability of this multipurpose chip concept.
Collapse
Affiliation(s)
- Raphaël de Wijn
- Architecture et Réactivité de l’ARN, UPR 9002, CNRS, Institut de Biologie Moléculaire et Cellulaire (IBMC), Université de Strasbourg, 15 Rue René Descartes, 67084 Strasbourg, France
| | - Oliver Hennig
- Institute for Biochemistry, Leipzig University, Bruederstrasse 34, 04103 Leipzig, Germany
| | - Jennifer Roche
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257 CNRS–Aix Marseille University, 163 Avenue de Luminy, 13288 Marseille, France
| | | | - Kevin Rollet
- Architecture et Réactivité de l’ARN, UPR 9002, CNRS, Institut de Biologie Moléculaire et Cellulaire (IBMC), Université de Strasbourg, 15 Rue René Descartes, 67084 Strasbourg, France
| | - Pablo Fernandez-Millan
- Architecture et Réactivité de l’ARN, UPR 9002, CNRS, Institut de Biologie Moléculaire et Cellulaire (IBMC), Université de Strasbourg, 15 Rue René Descartes, 67084 Strasbourg, France
| | - Karl Brillet
- Architecture et Réactivité de l’ARN, UPR 9002, CNRS, Institut de Biologie Moléculaire et Cellulaire (IBMC), Université de Strasbourg, 15 Rue René Descartes, 67084 Strasbourg, France
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Bruederstrasse 34, 04103 Leipzig, Germany
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Bruederstrasse 34, 04103 Leipzig, Germany
| | - Alain Roussel
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257 CNRS–Aix Marseille University, 163 Avenue de Luminy, 13288 Marseille, France
| | - Eric Girard
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | | | - Gavin C. Fox
- PROXIMA 2A beamline, Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, 91192 Gif-sur-Yvette, France
| | - Vincent Olieric
- Paul Scherrer Institute, Swiss Light Source, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - José A. Gavira
- Laboratorio de Estudios Cristalográficos, IACT, CSIC–Universidad de Granada, Avenida Las Palmeras 4, 18100 Armilla, Granada, Spain
| | - Bernard Lorber
- Architecture et Réactivité de l’ARN, UPR 9002, CNRS, Institut de Biologie Moléculaire et Cellulaire (IBMC), Université de Strasbourg, 15 Rue René Descartes, 67084 Strasbourg, France
| | - Claude Sauter
- Architecture et Réactivité de l’ARN, UPR 9002, CNRS, Institut de Biologie Moléculaire et Cellulaire (IBMC), Université de Strasbourg, 15 Rue René Descartes, 67084 Strasbourg, France
| |
Collapse
|
9
|
Microfluidic Technologies and Platforms for Protein Crystallography. Bioanalysis 2019. [DOI: 10.1007/978-981-13-6229-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
10
|
Sevim S, Sorrenti A, Franco C, Furukawa S, Pané S, deMello AJ, Puigmartí-Luis J. Self-assembled materials and supramolecular chemistry within microfluidic environments: from common thermodynamic states to non-equilibrium structures. Chem Soc Rev 2018; 47:3788-3803. [PMID: 29714390 PMCID: PMC5989397 DOI: 10.1039/c8cs00025e] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 12/15/2022]
Abstract
Self-assembly is a crucial component in the bottom-up fabrication of hierarchical supramolecular structures and advanced functional materials. Control has traditionally relied on the use of encoded building blocks bearing suitable moieties for recognition and interaction, with targeting of the thermodynamic equilibrium state. On the other hand, nature leverages the control of reaction-diffusion processes to create hierarchically organized materials with surprisingly complex biological functions. Indeed, under non-equilibrium conditions (kinetic control), the spatio-temporal command of chemical gradients and reactant mixing during self-assembly (the creation of non-uniform chemical environments for example) can strongly affect the outcome of the self-assembly process. This directly enables a precise control over material properties and functions. In this tutorial review, we show how the unique physical conditions offered by microfluidic technologies can be advantageously used to control the self-assembly of materials and of supramolecular aggregates in solution, making possible the isolation of intermediate states and unprecedented non-equilibrium structures, as well as the emergence of novel functions. Selected examples from the literature will be used to confirm that microfluidic devices are an invaluable toolbox technology for unveiling, understanding and steering self-assembly pathways to desired structures, properties and functions, as well as advanced processing tools for device fabrication and integration.
Collapse
Affiliation(s)
- S. Sevim
- Institute for Chemical & Bioengineering
, Department of Chemistry & Applied Biosciences, ETH Zurich
,
Zurich 8093
, Switzerland
.
;
| | - A. Sorrenti
- Institute for Chemical & Bioengineering
, Department of Chemistry & Applied Biosciences, ETH Zurich
,
Zurich 8093
, Switzerland
.
;
| | - C. Franco
- Institute for Chemical & Bioengineering
, Department of Chemistry & Applied Biosciences, ETH Zurich
,
Zurich 8093
, Switzerland
.
;
| | - S. Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)
, Kyoto University
, Yoshida
,
Sakyo-ku
, Kyoto 606-8501
, Japan
| | - S. Pané
- Multi-Scale Robotics Lab (MSRL)
, Institute of Robotics & Intelligent Systems (IRIS)
, ETH Zurich
,
Zurich 8092
, Switzerland
| | - A. J. deMello
- Institute for Chemical & Bioengineering
, Department of Chemistry & Applied Biosciences, ETH Zurich
,
Zurich 8093
, Switzerland
.
;
| | - J. Puigmartí-Luis
- Institute for Chemical & Bioengineering
, Department of Chemistry & Applied Biosciences, ETH Zurich
,
Zurich 8093
, Switzerland
.
;
| |
Collapse
|
11
|
Schieferstein JM, Pawate AS, Varel MJ, Guha S, Astrauskaite I, Gennis RB, Kenis PJA. X-ray transparent microfluidic platforms for membrane protein crystallization with microseeds. LAB ON A CHIP 2018; 18:944-954. [PMID: 29469138 PMCID: PMC5849577 DOI: 10.1039/c7lc01141e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Crystallization of membrane proteins is a critical step for uncovering atomic resolution 3-D structures and elucidating structure-function relationships. Microseeding, the process of transferring sub-microscopic crystal nuclei from initial screens into new crystallization experiments, is an effective, yet underutilized approach to grow crystals suitable for X-ray crystallography. Here, we report simplified methods for crystallization of membrane proteins that utilize microseeding in X-ray transparent microfluidic chips. First, a microfluidic method for introduction of microseed dilutions into metastable crystallization experiments is demonstrated for photoactive yellow protein and cytochrome bo3 oxidase. As microseed concentration decreased, the number of crystals decreased while the average size increased. Second, we demonstrate a microfluidic chip for microseed screening, where many crystallization conditions were formulated on-chip prior to mixing with microseeds. Crystallization composition, crystal size, and diffraction data were collected and mapped on phase diagrams, which revealed that crystals of similar diffraction quality and size typically grow in distinct regions of the phase diagram.
Collapse
Affiliation(s)
- Jeremy M Schieferstein
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
High-throughput in situ X-ray screening of and data collection from protein crystals at room temperature and under cryogenic conditions. Nat Protoc 2018; 13:260-292. [PMID: 29300389 DOI: 10.1038/nprot.2017.135] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein crystallography has significantly advanced in recent years, with in situ data collection, in which crystals are placed in the X-ray beam within their growth medium, being a major point of focus. In situ methods eliminate the need to harvest crystals, a previously unavoidable drawback, particularly for often small membrane-protein crystals. Here, we present a protocol for the high-throughput in situ X-ray screening of and data collection from soluble and membrane-protein crystals at room temperature (20-25°C) and under cryogenic conditions. The Mylar in situ method uses Mylar-based film sandwich plates that are inexpensive, easy to make, and compatible with automated imaging, and that show very low background scattering. They support crystallization in microbatch and vapor-diffusion modes, as well as in lipidic cubic phases (LCPs). A set of 3D-printed holders for differently sized patches of Mylar sandwich films makes the method robust and versatile, allows for storage and shipping of crystals, and enables automated mounting at synchrotrons, as well as goniometer-based screening and data collection. The protocol covers preparation of in situ plates and setup of crystallization trials; 3D printing and assembly of holders; opening of plates, isolation of film patches containing crystals, and loading them onto holders; basic screening and data-collection guidelines; and unloading of holders, as well as reuse and recycling of them. In situ plates are prepared and assembled in 1 h; holders are 3D-printed and assembled in ≤90 min; and an in situ plate is opened, and a film patch containing crystals is isolated and loaded onto a holder in 5 min.
Collapse
|
13
|
Shi HH, Xiao Y, Ferguson S, Huang X, Wang N, Hao HX. Progress of crystallization in microfluidic devices. LAB ON A CHIP 2017; 17:2167-2185. [PMID: 28585942 DOI: 10.1039/c6lc01225f] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Microfluidic technology provides a unique environment for the investigation of crystallization processes at the nano or meso scale. The convenient operation and precise control of process parameters, at these scales of operation enabled by microfluidic devices, are attracting significant and increasing attention in the field of crystallization. In this paper, developments and applications of microfluidics in crystallization research including: crystal nucleation and growth, polymorph and cocrystal screening, preparation of nanocrystals, solubility and metastable zone determination, are summarized and discussed. The materials used in the construction and the structure of these microfluidic devices are also summarized and methods for measuring and modelling crystal nucleation and growth process as well as the enabling analytical methods are also briefly introduced. The low material consumption, high efficiency and precision of microfluidic crystallizations are of particular significance for active pharmaceutical ingredients, proteins, fine chemicals, and nanocrystals. Therefore, it is increasingly adopted as a mainstream technology in crystallization research and development.
Collapse
Affiliation(s)
- Huan-Huan Shi
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | | | | | | | | | | |
Collapse
|
14
|
Schieferstein JM, Pawate AS, Sun C, Wan F, Sheraden PN, Broecker J, Ernst OP, Gennis RB, Kenis PJA. X-ray transparent microfluidic chips for high-throughput screening and optimization of in meso membrane protein crystallization. BIOMICROFLUIDICS 2017; 11:024118. [PMID: 28469762 PMCID: PMC5403737 DOI: 10.1063/1.4981818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/10/2017] [Indexed: 05/10/2023]
Abstract
Elucidating and clarifying the function of membrane proteins ultimately requires atomic resolution structures as determined most commonly by X-ray crystallography. Many high impact membrane protein structures have resulted from advanced techniques such as in meso crystallization that present technical difficulties for the set-up and scale-out of high-throughput crystallization experiments. In prior work, we designed a novel, low-throughput X-ray transparent microfluidic device that automated the mixing of protein and lipid by diffusion for in meso crystallization trials. Here, we report X-ray transparent microfluidic devices for high-throughput crystallization screening and optimization that overcome the limitations of scale and demonstrate their application to the crystallization of several membrane proteins. Two complementary chips are presented: (1) a high-throughput screening chip to test 192 crystallization conditions in parallel using as little as 8 nl of membrane protein per well and (2) a crystallization optimization chip to rapidly optimize preliminary crystallization hits through fine-gradient re-screening. We screened three membrane proteins for new in meso crystallization conditions, identifying several preliminary hits that we tested for X-ray diffraction quality. Further, we identified and optimized the crystallization condition for a photosynthetic reaction center mutant and solved its structure to a resolution of 3.5 Å.
Collapse
Affiliation(s)
- Jeremy M Schieferstein
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ashtamurthy S Pawate
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Chang Sun
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Frank Wan
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Paige N Sheraden
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jana Broecker
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S IA8, Canada
| | | | - Robert B Gennis
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Paul J A Kenis
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
15
|
Abstract
Prompted by methodological advances in measurements with X-ray free electron lasers, it was realized in the last two years that traditional (or conventional) methods for data collection from crystals of macromolecular specimens can be complemented by synchrotron measurements on microcrystals that would individually not suffice for a complete data set. Measuring, processing, and merging many partial data sets of this kind requires new techniques which have since been implemented at several third-generation synchrotron facilities, and are described here. Among these, we particularly focus on the possibility of in situ measurements combined with in meso crystal preparations and data analysis with the XDS package and auxiliary programs.
Collapse
Affiliation(s)
- Kay Diederichs
- Department of Biology, Universität Konstanz, Box 647, D-78457, Konstanz, Germany.
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institute, CH-5232, Villigen, Switzerland
| |
Collapse
|
16
|
Broecker J, Klingel V, Ou WL, Balo AR, Kissick D, Ogata CM, Kuo A, Ernst OP. A Versatile System for High-Throughput In Situ X-ray Screening and Data Collection of Soluble and Membrane-Protein Crystals. CRYSTAL GROWTH & DESIGN 2016; 16:6318-6326. [PMID: 28261000 PMCID: PMC5328415 DOI: 10.1021/acs.cgd.6b00950] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/30/2016] [Indexed: 05/20/2023]
Abstract
In recent years, in situ data collection has been a major focus of progress in protein crystallography. Here, we introduce the Mylar in situ method using Mylar-based sandwich plates that are inexpensive, easy to make and handle, and show significantly less background scattering than other setups. A variety of cognate holders for patches of Mylar in situ sandwich films corresponding to one or more wells makes the method robust and versatile, allows for storage and shipping of entire wells, and enables automated crystal imaging, screening, and goniometer-based X-ray diffraction data-collection at room temperature and under cryogenic conditions for soluble and membrane-protein crystals grown in or transferred to these plates. We validated the Mylar in situ method using crystals of the water-soluble proteins hen egg-white lysozyme and sperm whale myoglobin as well as the 7-transmembrane protein bacteriorhodopsin from Haloquadratum walsbyi. In conjunction with current developments at synchrotrons, this approach promises high-resolution structural studies of membrane proteins to become faster and more routine.
Collapse
Affiliation(s)
- Jana Broecker
- Department of Biochemistry and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- E-mail:
| | - Viviane Klingel
- Department of Biochemistry and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Wei-Lin Ou
- Department of Biochemistry and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Aidin R. Balo
- Department of Biochemistry and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David
J. Kissick
- GM/CA
at Advanced Photon Source, Argonne National
Laboratory, Lemont, Illinois 60439, United States
| | - Craig M. Ogata
- GM/CA
at Advanced Photon Source, Argonne National
Laboratory, Lemont, Illinois 60439, United States
| | - Anling Kuo
- Department of Biochemistry and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Oliver P. Ernst
- Department of Biochemistry and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- E-mail:
| |
Collapse
|
17
|
Ghazal A, Lafleur JP, Mortensen K, Kutter JP, Arleth L, Jensen GV. Recent advances in X-ray compatible microfluidics for applications in soft materials and life sciences. LAB ON A CHIP 2016; 16:4263-4295. [PMID: 27731448 DOI: 10.1039/c6lc00888g] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The increasingly narrow and brilliant beams at X-ray facilities reduce the requirements for both sample volume and data acquisition time. This creates new possibilities for the types and number of sample conditions that can be examined but simultaneously increases the demands in terms of sample preparation. Microfluidic-based sample preparation techniques have emerged as elegant alternatives that can be integrated directly into the experimental X-ray setup remedying several shortcomings of more traditional methods. We review the use of microfluidic devices in conjunction with X-ray measurements at synchrotron facilities in the context of 1) mapping large parameter spaces, 2) performing time resolved studies of mixing-induced kinetics, and 3) manipulating/processing samples in ways which are more demanding or not accessible on the macroscale. The review covers the past 15 years and focuses on applications where synchrotron data collection is performed in situ, i.e. directly on the microfluidic platform or on a sample jet from the microfluidic device. Considerations such as the choice of materials and microfluidic designs are addressed. The combination of microfluidic devices and measurements at large scale X-ray facilities is still emerging and far from mature, but it definitely offers an exciting array of new possibilities.
Collapse
Affiliation(s)
- Aghiad Ghazal
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| | - Josiane P Lafleur
- Dept. of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Kell Mortensen
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| | - Jörg P Kutter
- Dept. of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Lise Arleth
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| | - Grethe V Jensen
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
18
|
Chen X, Shen J, Hu Z, Huo X. Manufacturing methods and applications of membranes in microfluidics. Biomed Microdevices 2016; 18:104. [DOI: 10.1007/s10544-016-0130-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Sui S, Wang Y, Kolewe KW, Srajer V, Henning R, Schiffman JD, Dimitrakopoulos C, Perry SL. Graphene-based microfluidics for serial crystallography. LAB ON A CHIP 2016; 16:3082-96. [PMID: 27241728 PMCID: PMC4970872 DOI: 10.1039/c6lc00451b] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Microfluidic strategies to enable the growth and subsequent serial crystallographic analysis of micro-crystals have the potential to facilitate both structural characterization and dynamic structural studies of protein targets that have been resistant to single-crystal strategies. However, adapting microfluidic crystallization platforms for micro-crystallography requires a dramatic decrease in the overall device thickness. We report a robust strategy for the straightforward incorporation of single-layer graphene into ultra-thin microfluidic devices. This architecture allows for a total material thickness of only ∼1 μm, facilitating on-chip X-ray diffraction analysis while creating a sample environment that is stable against significant water loss over several weeks. We demonstrate excellent signal-to-noise in our X-ray diffraction measurements using a 1.5 μs polychromatic X-ray exposure, and validate our approach via on-chip structure determination using hen egg white lysozyme (HEWL) as a model system. Although this work is focused on the use of graphene for protein crystallography, we anticipate that this technology should find utility in a wide range of both X-ray and other lab on a chip applications.
Collapse
Affiliation(s)
- Shuo Sui
- Department of Chemical Engineering, The University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Yuxi Wang
- Department of Chemical Engineering, The University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Kristopher W Kolewe
- Department of Chemical Engineering, The University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Vukica Srajer
- BioCARS Center for Advanced Radiation Sources, The University of Chicago, Argonne, IL 60439, USA
| | - Robert Henning
- BioCARS Center for Advanced Radiation Sources, The University of Chicago, Argonne, IL 60439, USA
| | - Jessica D Schiffman
- Department of Chemical Engineering, The University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Christos Dimitrakopoulos
- Department of Chemical Engineering, The University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Sarah L Perry
- Department of Chemical Engineering, The University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
20
|
Zheng F, Wang D, Fang H, Wang H, Wang M, Huang K, Chen H, Feng S. Controlled Crystallization of Sodium Chloride Nanocrystals in Microdroplets Produced by Electrospray from an Ultra-Dilute Solution. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201501453] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Maeki M, Yamazaki S, Pawate AS, Ishida A, Tani H, Yamashita K, Sugishima M, Watanabe K, Tokeshi M, Kenis PJA, Miyazaki M. A microfluidic-based protein crystallization method in 10 micrometer-sized crystallization space. CrystEngComm 2016. [DOI: 10.1039/c6ce01671e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
22
|
MAEKI M, YAMAGUCHI H, TOKESHI M, MIYAZAKI M. Microfluidic Approaches for Protein Crystal Structure Analysis. ANAL SCI 2016; 32:3-9. [DOI: 10.2116/analsci.32.3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Masatoshi MAEKI
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University
- Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology
| | | | - Manabu TOKESHI
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University
| | - Masaya MIYAZAKI
- Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology
| |
Collapse
|
23
|
Murray TD, Lyubimov AY, Ogata CM, Vo H, Uervirojnangkoorn M, Brunger AT, Berger JM. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:1987-97. [PMID: 26457423 PMCID: PMC4601365 DOI: 10.1107/s1399004715015011] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/11/2015] [Indexed: 11/14/2022]
Abstract
Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10-15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.
Collapse
Affiliation(s)
- Thomas D. Murray
- Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Artem Y. Lyubimov
- Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Structural Biology and Photon Science, and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Craig M. Ogata
- GM/CA@APS, X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Huy Vo
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Monarin Uervirojnangkoorn
- Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Structural Biology and Photon Science, and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Axel T. Brunger
- Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Structural Biology and Photon Science, and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - James M. Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
24
|
Nogly P, James D, Wang D, White TA, Zatsepin N, Shilova A, Nelson G, Liu H, Johansson L, Heymann M, Jaeger K, Metz M, Wickstrand C, Wu W, Båth P, Berntsen P, Oberthuer D, Panneels V, Cherezov V, Chapman H, Schertler G, Neutze R, Spence J, Moraes I, Burghammer M, Standfuss J, Weierstall U. Lipidic cubic phase serial millisecond crystallography using synchrotron radiation. IUCRJ 2015; 2:168-76. [PMID: 25866654 PMCID: PMC4392771 DOI: 10.1107/s2052252514026487] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/01/2014] [Indexed: 05/19/2023]
Abstract
Lipidic cubic phases (LCPs) have emerged as successful matrixes for the crystallization of membrane proteins. Moreover, the viscous LCP also provides a highly effective delivery medium for serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs). Here, the adaptation of this technology to perform serial millisecond crystallography (SMX) at more widely available synchrotron microfocus beamlines is described. Compared with conventional microcrystallography, LCP-SMX eliminates the need for difficult handling of individual crystals and allows for data collection at room temperature. The technology is demonstrated by solving a structure of the light-driven proton-pump bacteriorhodopsin (bR) at a resolution of 2.4 Å. The room-temperature structure of bR is very similar to previous cryogenic structures but shows small yet distinct differences in the retinal ligand and proton-transfer pathway.
Collapse
Affiliation(s)
- Przemyslaw Nogly
- Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Daniel James
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Dingjie Wang
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Thomas A. White
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg 22607, Germany
| | - Nadia Zatsepin
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Anastasya Shilova
- European Synchrotron Radiation Facility, Grenoble Cedex 9, F-38043, France
| | - Garrett Nelson
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Haiguang Liu
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Linda Johansson
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California USA
| | - Michael Heymann
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg 22607, Germany
| | - Kathrin Jaeger
- Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Markus Metz
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg 22607, Germany
- Centre for Ultrafast Imaging, Hamburg 22607, Germany
| | - Cecilia Wickstrand
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Wenting Wu
- Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Petra Båth
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Peter Berntsen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Dominik Oberthuer
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg 22607, Germany
- Centre for Ultrafast Imaging, Hamburg 22607, Germany
| | - Valerie Panneels
- Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Vadim Cherezov
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California USA
| | - Henry Chapman
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg 22607, Germany
- Department of Physics, University of Hamburg, Hamburg 22607, Germany
| | - Gebhard Schertler
- Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen 5232, Switzerland
- Deparment of Biology, ETH Zurich, Zürich 8093, Switzerland
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - John Spence
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Isabel Moraes
- Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Oxfordshire OX11 0DE, England
- Department of Life Sciences, Imperial College London, London, England
- Research Complex at Harwell Rutherford, Appleton Laboratory, Harwell, Didcot, Oxfordshire OX11 0FA, England
| | - Manfred Burghammer
- European Synchrotron Radiation Facility, Grenoble Cedex 9, F-38043, France
- Department of Analytical Chemistry, Ghent University, Ghent B-9000, Belgium
| | - Joerg Standfuss
- Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Uwe Weierstall
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
25
|
Ielasi FS, Hirtz M, Sekula-Neuner S, Laue T, Fuchs H, Willaert RG. Dip-Pen Nanolithography-Assisted Protein Crystallization. J Am Chem Soc 2014; 137:154-7. [DOI: 10.1021/ja512141k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Francesco S. Ielasi
- Department
of Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Michael Hirtz
- Institute
of Nanotechnology and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Sylwia Sekula-Neuner
- Institute
of Nanotechnology and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Thomas Laue
- Institute
of Nanotechnology and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Harald Fuchs
- Institute
of Nanotechnology and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
- Physical
Institute and Center for Nanotechnology, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Ronnie G. Willaert
- Department
of Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| |
Collapse
|