1
|
Yau MQ, Liew CWY, Toh JH, Loo JSE. A head-to-head comparison of MM/PBSA and MM/GBSA in predicting binding affinities for the CB 1 cannabinoid ligands. J Mol Model 2024; 30:390. [PMID: 39480515 DOI: 10.1007/s00894-024-06189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
CONTEXT The substantial increase in the number of active and inactive-state CB1 receptor experimental structures has provided opportunities for CB1 drug discovery using various structure-based drug design methods, including the popular end-point methods for predicting binding free energies-Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA). In this study, we have therefore evaluated the performance of MM/PBSA and MM/GBSA in calculating binding free energies for CB1 receptor. Additionally, with both MM/PBSA and MM/GBSA being known for their highly individualized performance, we have evaluated the effects of various simulation parameters including the use of energy minimized structures, choice of solute dielectric constant, inclusion of entropy, and the effects of the five GB models. Generally, MM/GBSA provided higher correlations than MM/PBSA (rMM/GBSA = 0.433 - 0.652 vs. rMM/PBSA = 0.100 - 0.486) regardless of the simulation parameters, while also offering faster calculations. Improved correlations were observed with the use of molecular dynamics ensembles compared with energy minimized structures and larger solute dielectric constants. Incorporation of entropic terms led to unfavorable results for both MM/PBSA and MM/GBSA for a majority of the dataset, while the evaluation of the various GB models exerted a varying effect on both the datasets. The findings obtained in this study demonstrate the utility of MM/PBSA and MM/GBSA in predicting binding free energies for the CB1 receptor, hence providing a useful benchmark for their applicability in the endocannabinoid system as well as other G protein-coupled receptors. METHODS The study utilized the docked dataset (Induced Fit Docking with Glide XP scoring function) from Loo et al., consisting of 46 ligands-23 agonists and 23 antagonists. The equilibrated structures from Loo et al. were subjected to 30 ns production simulations using GROMACS 2018 at 300 K and 1 atm with the velocity rescaling thermostat and the Parinello-Rahman barostat. AMBER ff99SB*-ILDN was used for the proteins, General Amber Force Field (GAFF) was used for the ligands, and Slipids parameters were used for lipids. MM/PBSA and MM/GBSA binding free energies were then calculated using gmx_MMPBSA. The solute dielectric constant was varied between 1, 2, and 4 to study the effect of different solute dielectric constants on the performance of MM/PB(GB)SA. The effect of entropy on MM/PB(GB)SA binding free energies was evaluated using the interaction entropy module implemented in gmx_MMPBSA. Five GB models, GBHCT, GBOBC1, GBOBC2, GBNeck, and GBNeck2, were evaluated to study the effect of the choice of GB models in the performance of MM/GBSA. Pearson correlation coefficients were used to measure the correlation between experimental and predicted binding free energies.
Collapse
Affiliation(s)
- Mei Qian Yau
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, No. 1 Jalan Taylors 47500 Subang Jaya, Selangor, Malaysia.
- Digital Health and Medical Advancement Impact Lab, Taylor's University, No. 1 Jalan Taylors, 47500 Subang Jaya, Selangor, Malaysia.
| | - Clarence W Y Liew
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, No. 1 Jalan Taylors 47500 Subang Jaya, Selangor, Malaysia
| | - Jing Hen Toh
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, No. 1 Jalan Taylors 47500 Subang Jaya, Selangor, Malaysia
| | - Jason S E Loo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, No. 1 Jalan Taylors 47500 Subang Jaya, Selangor, Malaysia
- Digital Health and Medical Advancement Impact Lab, Taylor's University, No. 1 Jalan Taylors, 47500 Subang Jaya, Selangor, Malaysia
| |
Collapse
|
2
|
Zhao L, Liu B, Tong HHY, Yao X, Liu H, Zhang Q. Inhibitor binding and disruption of coupled motions in MmpL3 protein: Unraveling the mechanism of trehalose monomycolate transport. Protein Sci 2024; 33:e5166. [PMID: 39291929 PMCID: PMC11409367 DOI: 10.1002/pro.5166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/07/2024] [Accepted: 08/24/2024] [Indexed: 09/19/2024]
Abstract
Mycobacterial membrane protein Large 3 (MmpL3) of Mycobacterium tuberculosis (Mtb) is crucial for the translocation of trehalose monomycolate (TMM) across the inner bacterial cell membrane, making it a promising target for anti-tuberculosis (TB) drug development. While several structural, microbiological, and in vitro studies have provided significant insights, the precise mechanisms underlying TMM transport by MmpL3 and its inhibition remain incompletely understood at the atomic level. In this study, molecular dynamic (MD) simulations for the apo form and seven inhibitor-bound forms of Mtb MmpL3 were carried out to obtain a thorough comprehension of the protein's dynamics and function. MD simulations revealed that the seven inhibitors in this work stably bind to the central channel of the transmembrane domain and primarily forming hydrogen bonds with ASP251, ASP640, or both residues. Through dynamical cross-correlation matrix and principal component analysis analyses, several types of coupled motions between different domains were observed in the apo state, and distinct conformational states were identified using Markov state model analysis. These coupled motions and varied conformational states likely contribute to the transport of TMM. However, simulations of inhibitor-bound MmpL3 showed an enlargement of the proton channel, potentially disrupting coupled motions. This indicates that inhibitors may impair MmpL3's transport function by directly blocking the proton channel, thereby hindering coordinated domain movements and indirectly affecting TMM translocation.
Collapse
Affiliation(s)
- Likun Zhao
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied SciencesMacao Polytechnic UniversityMacaoChina
| | - Bo Liu
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied SciencesMacao Polytechnic UniversityMacaoChina
| | - Henry H. Y. Tong
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied SciencesMacao Polytechnic UniversityMacaoChina
| | - Xiaojun Yao
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied SciencesMacao Polytechnic UniversityMacaoChina
| | - Huanxiang Liu
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied SciencesMacao Polytechnic UniversityMacaoChina
| | - Qianqian Zhang
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied SciencesMacao Polytechnic UniversityMacaoChina
| |
Collapse
|
3
|
Yassen ASA, Abdel-Wahab SM, Darwish KM, Nafie MS, Abdelhameed RFA, El-Sayyad GS, El-Batal AI, Attia KM, Elshihawy HA, Elrayess R. Novel curcumin-based analogues as potential VEGFR2 inhibitors with promising metallic loading nanoparticles: synthesis, biological evaluation, and molecular modelling investigation. RSC Med Chem 2024:d4md00574k. [PMID: 39345715 PMCID: PMC11428034 DOI: 10.1039/d4md00574k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/31/2024] [Indexed: 10/01/2024] Open
Abstract
VEGFR2 inhibition has been established as a therapeutic approach for managing cancer. A series of curcumin-based analogues were designed, synthesized, and screened for their anticancer activity against MCF-7 and HepG-2 cell lines and WISH normal cells. Compounds 4b, 4d, 4e, and 4f showed potent cytotoxicity against MCF-7 with IC50 values of 0.49, 0.14, 0.01, and 0.32 μM, respectively, compared to curcumin (IC50 = 13.8 μM) and sorafenib (IC50 = 2.13 μM). Interestingly, compound 4e, the most active compound, exhibited potent VEGFR2 inhibition with an IC50 value of 11.6 nM (96.5% inhibition) compared to sorafenib with an IC50 value of 30 nM (94.8% inhibition). Additionally, compound 4e significantly induced apoptotic cell death in MCF-7 cells by 41.1% compared to a control group (0.8%), halting cell division during the G2/M phase by 39.8% compared to the control (21.7%). Molecular docking-coupled dynamics simulations highlighted the bias of the VEGFR2 pocket towards compound 4e compared to other synthesized compounds. Predicting superior binding affinities and relevant interactions with the pocket's key residues recapitulated in vitro findings towards higher inhibition activity for compound 4e. Furthermore, compound 4e with adequate pharmacokinetic and drug-likeness profiles in terms of ADME and safety characteristics can serve as a promising clinical candidate for future lead optimization and development. Notably, 4e-Fe2O3-humic acid NPs exhibited potent cytotoxicity with IC50 values of 2.41 and 13.4 ng mL-1 against MCF-7 and HepG-2 cell lines, respectively. Hence, compound 4e and its Fe2O3-humic acid-NPs could be further developed as promising anti-breast cancer agents.
Collapse
Affiliation(s)
- Asmaa S A Yassen
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
- Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University New Galala 43713 Egypt
| | - Sherief M Abdel-Wahab
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology Giza Egypt
| | - Khaled M Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University New Galala 43713 Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah P.O. 27272 Sharjah United Arab Emirates
- Department of Chemistry, Faculty of Science, Suez Canal University Ismailia 41522 Egypt
| | - Reda F A Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Galala University New Galala City Suez 43713 Egypt
- Pharmacognosy Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Gharieb S El-Sayyad
- Microbiology and Immunology Department, Faculty of Pharmacy, Galala University New Galala City Suez 43713 Egypt
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
- Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC) Cairo Egypt
| | - Ahmed I El-Batal
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | - Khadiga M Attia
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology Giza Egypt
| | - Hosam A Elshihawy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Ranza Elrayess
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
- Al-Ayen University, College of Pharmacy Dhi Qar Iraq
| |
Collapse
|
4
|
Khanal P, Zargari F, Dey YN, Nikfarjam Z. Olanzapine manipulates neuroactive signals and may onset metabolic disturbances. J Biomol Struct Dyn 2024; 42:6613-6627. [PMID: 37477254 DOI: 10.1080/07391102.2023.2235617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Abstract
Olanzapine is one of the most prescribed atypical antipsychotics to treat psychiatric illness and is associated with weight gain and metabolic disturbance. The present study investigated the olanzapine-regulated metabolic pathways using functional enrichent analysis including binding affinity with G-protein-coupled receptors (GPCRs). Proteins modulated by olanzapine were retrieved from SwissTargetPrediction, DIGEP-Pred, and BindingDB and then enriched in Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) to assess molecular function, biological process, and cellular components including Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. We used homology modeling to improve the 3D structure for GPCR synapse proteins including dopamine, serotonin, muscarinic, and histamine receptors which were then optimized using molecular dynamics (MD) simulations. The protein-olanzapine binding mechanisms for different GPCR binders were evaluated using molecular docking; later refined by MD simulations. Binding mechanism of olanzapine with D2, 5HT1A, 5HT2A, 5HT2B, 5HT2C, M1, and M2 receptors were created using homology modeling and optimized using MD simulations. In target identification, it was observed that olanzapine majority targeted G-protein coupled receptors. Further, enrichment analysis identified around 76% of the total genes regulated in molecular function, biological process, and cellular components were common including KEGG pathways. Moreover, it was observed that olanzapine had a major potency over the neurotransmitter synapse including neuroactive signals . Olanzapine-induced weight gain and metabolic alterations could be due to the deregulation of multiple synapses like dopamine, serotonin, muscarinic, and histamine at the feeding center followed by cGMP-PKG, cAMP, and PI3K-Akt signaling pathways. HIGHLIGHTSOlanzapine is used in the management of psychiatric illnesses.Olanzapine causes disturbance in lipids and glucosehomeostasis and manipulates energy expenditure.Olanzapine-induced weight gain may occur due to the deregulation of the multiple synapse and cGMP-PKG, cAMP, and PI3K-Akt signaling pathwayCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pukar Khanal
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore, India
| | - Farshid Zargari
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Yadu Nandan Dey
- Department of Pharmacology, B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, India
| | - Zahra Nikfarjam
- Department of Physical Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| |
Collapse
|
5
|
Alrumaihi F. Identification of novel chemical scaffolds against kinase domain of cancer causing human epidermal growth factor receptor 2: a systemic chemoinformatic approach. J Biomol Struct Dyn 2024; 42:6269-6279. [PMID: 37424103 DOI: 10.1080/07391102.2023.2233618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023]
Abstract
The Human epidermal growth factor receptor 2 (HER2) is expressed in high magnitude in several cancers. Designing new drug molecules that target kinase domain of the HER2 enzyme might provide an appealing platform. Considering this, herein, a multi-phase bioinformatic approach is applied to screen diverse natural and chemical scaffolds to identify compounds that fit best at the kinase domain of HER2. By doing so, three compounds; LAS_51187157, LAC_51217113, LAC_51390233 were pointed with docking score of -11.4 kcal/mol, -11.3 kcal/mol and -11.2 kcal/mol, respectively. In molecular dynamic simulation, the complexes behaved in a stable dynamic with no major local/global structural variations. The intermolecular binding free energies were further estimated that concluded LAC_51390233 complex was the most stable and has less entropy energy. The good docked affinity of LAC_51390233 with HER2 was confirmed by WaterSwap absolute binding free energy. The entropy energy demonstrated that LAC_51390233 has less freedom energy compared to others. Similarly, all three compounds revealed very favorable druglike properties and pharmacokinetics. All the selected three compounds were also non-carcinogenic, non-immunotoxicity, non-mutagenicity, and non-cytotoxic. In a nutshell, the compounds are interesting scaffolds and might be subjected to extensive experimental testing to reveal their real biological potency.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
6
|
Mittal RK, Purohit P, Sankaranarayanan M, Muzaffar-Ur-Rehman M, Taramelli D, Signorini L, Dolci M, Basilico N. In-vitro antiviral activity and in-silico targeted study of quinoline-3-carboxylate derivatives against SARS-Cov-2 isolate. Mol Divers 2024; 28:2651-2665. [PMID: 37480422 DOI: 10.1007/s11030-023-10703-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
In recent years, the viral outbreak named COVID-19 showed that infectious diseases have a huge impact on both global health and the financial and economic sectors. The lack of efficacious antiviral drugs worsened the health problem. Based on our previous experience, we investigated in vitro and in silico a series of quinoline-3-carboxylate derivatives against a SARS-CoV-2 isolate. In the present study, the in-vitro antiviral activity of a series of quinoline-3-carboxylate compounds and the in silico target-based molecular dynamics (MD) and metabolic studies are reported. The compounds' activity against SARS-CoV-2 was evaluated using plaque assay and RT-qPCR. Moreover, from the docking scores, it appears that the most active compounds (1j and 1o) exhibit stronger binding affinity to the primary viral protease (NSP5) and the exoribonuclease domain of non structural protein 14 (NSP14). Additionally, the in-silico metabolic analysis of 1j and 1o defines CYP2C9 and CYP3A4 as the major P450 enzymes involved in their metabolism.
Collapse
Affiliation(s)
- Ravi Kumar Mittal
- National Institute of Pharmaceutical Education and Research, S A S Nagar Mohali, Punjab, 160062, India
- Galgotias College of Pharmacy, Greater Noida, UttarPradesh, India
| | - Priyank Purohit
- School of Pharmacy, Graphic Era Hill University, Dehradun, Uttarakhand, 248002, India.
| | - Murugesan Sankaranarayanan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, BITS Pilani, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Mohammed Muzaffar-Ur-Rehman
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, BITS Pilani, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Donatella Taramelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Pascal Street 36, 20133, Milan, Italy
| | - Lucia Signorini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Pascal Street 36, 20133, Milan, Italy
| | - Maria Dolci
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Pascal Street 36, 20133, Milan, Italy
| | - Nicoletta Basilico
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Pascal Street 36, 20133, Milan, Italy
| |
Collapse
|
7
|
Fathallah N, Elkady WM, Zahran SA, Darwish KM, Elhady SS, Elkhawas YA. Unveiling the Multifaceted Capabilities of Endophytic Aspergillus flavus Isolated from Annona squamosa Fruit Peels against Staphylococcus Isolates and HCoV 229E-In Vitro and In Silico Investigations. Pharmaceuticals (Basel) 2024; 17:656. [PMID: 38794226 PMCID: PMC11124496 DOI: 10.3390/ph17050656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Recently, there has been a surge towards searching for primitive treatment strategies to discover novel therapeutic approaches against multi-drug-resistant pathogens. Endophytes are considered unexplored yet perpetual sources of several secondary metabolites with therapeutic significance. This study aims to isolate and identify the endophytic fungi from Annona squamosa L. fruit peels using morphological, microscopical, and transcribed spacer (ITS-rDNA) sequence analysis; extract the fungus's secondary metabolites by ethyl acetate; investigate the chemical profile using UPLC/MS; and evaluate the potential antibacterial, antibiofilm, and antiviral activities. An endophytic fungus was isolated and identified as Aspergillus flavus L. from the fruit peels. The UPLC/MS revealed seven compounds with various chemical classes. The antimicrobial activity of the fungal ethyl acetate extract (FEA) was investigated against different Gram-positive and Gram-negative standard strains, in addition to resistant clinical isolates using the agar diffusion method. The CPE-inhibition assay was used to identify the potential antiviral activity of the crude fungal extract against low pathogenic human coronavirus (HCoV 229E). Selective Gram-positive antibacterial and antibiofilm activities were evident, demonstrating pronounced efficacy against both methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA). However, the extract exhibited very weak activity against Gram-negative bacterial strains. The ethyl acetate extract of Aspergillus flavus L exhibited an interesting antiviral activity with a half maximal inhibitory concentration (IC50) value of 27.2 µg/mL against HCoV 229E. Furthermore, in silico virtual molecular docking-coupled dynamics simulation highlighted the promising affinity of the identified metabolite, orienting towards three MRSA biotargets and HCoV 229E main protease as compared to reported reference inhibitors/substrates. Finally, ADME analysis was conducted to evaluate the potential oral bioavailability of the identified metabolites.
Collapse
Affiliation(s)
- Noha Fathallah
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt;
| | - Wafaa M. Elkady
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt;
| | - Sara A. Zahran
- Department of Microbiology and Immunology, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt;
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Sameh S. Elhady
- King Abdulaziz University Herbarium, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yasmin A. Elkhawas
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt;
| |
Collapse
|
8
|
Purohit P, Barik D, Agasti S, Panda M, Meher BR. Evaluation of the inhibitory potency of anti-dengue phytocompounds against DENV-2 NS2B-NS3 protease: virtual screening, ADMET profiling and molecular dynamics simulation investigations. J Biomol Struct Dyn 2024; 42:2990-3009. [PMID: 37194462 DOI: 10.1080/07391102.2023.2212798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/28/2023] [Indexed: 05/18/2023]
Abstract
Dengue fever has been a worldwide concern, with 50-100 million new infections each year mainly due to five different serotypes of the Dengue virus (DENV). Designing a perfect anti-dengue agent that can inhibit all the serotypes by distinguishing antigenic differences is quite difficult. Previous anti-dengue researches have included chemical compounds screening against DENV enzymes. The ongoing analysis is meant for investigation of the plant-based compounds as antagonistic to DENV-2 focusing on the specific NS2B-NS3Pro target, a trypsin like serine protease that cuts the DENV polyprotein into separate proteins crucial for viral reproduction. Initially, a virtual library of more than 130 phytocompounds was prepared from previously published reports of plants with anti-dengue properties, which were then virtually screened and shortlisted against the WT, H51N and S135A mutant of DENV-2 NS2B-NS3Pro. The three top-most compounds were viewed as Gallocatechin (GAL), Flavokawain-C (FLV), and Isorhamnetin (ISO) showing docking scores of -5.8, -5.7, -5.7 kcal/mol for WT, -7.5, -6.8, -7.6 kcal/mol for the H51N, and -6.9, -6.5, -6.1 kcal/mol for the S135A mutant protease, respectively. 100 ns long MD simulations and MM-GBSA based free energy calculations were performed on the NS2B-NS3Pro complexes to witness the relative binding affinity of the compounds and favourable molecular interactions network. A comprehensive analysis of the study reveals some promising outcomes with ISO as the topmost compound with favourable pharmacokinetic properties for the WT and mutants (H51N and S135A) as well, suggesting as a novel anti-NS2B-NS3Pro agent with better adapting characters in both the mutants.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Priyanka Purohit
- Computational Biology and Bioinformatics Laboratory, PG Department of Botany, Berhampur University, Berhampur, Odisha, India
| | - Debashis Barik
- Computational Biology and Bioinformatics Laboratory, PG Department of Botany, Berhampur University, Berhampur, Odisha, India
| | - Sidhartha Agasti
- Computational Biology and Bioinformatics Laboratory, PG Department of Botany, Berhampur University, Berhampur, Odisha, India
| | - Madhusmita Panda
- Computational Biology and Bioinformatics Laboratory, PG Department of Botany, Berhampur University, Berhampur, Odisha, India
| | - Biswa Ranjan Meher
- Computational Biology and Bioinformatics Laboratory, PG Department of Botany, Berhampur University, Berhampur, Odisha, India
| |
Collapse
|
9
|
Alabbas AB. Targeting XGHPRT enzyme to manage Helicobacter pylori induced gastric cancer: A multi-pronged machine learning, artificial intelligence and biophysics-based study. Saudi J Biol Sci 2024; 31:103960. [PMID: 38404541 PMCID: PMC10891342 DOI: 10.1016/j.sjbs.2024.103960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 02/27/2024] Open
Abstract
Helicobacter pylori infects the stomach mucosa of over half of the global population and can lead to gastric cancer. This pathogen has demonstrated resistance to many frequently prescribed antibiotics, thereby underscoring the pressing need to identify novel therapeutic targets. The inhibition or disruption of nucleic acid biosynthesis constitutes a promising avenue for either restraining or eradicating bacterial proliferation. The synthesis of RNA and DNA precursors (6-oxopurine nucleoside monophosphates) is catalyzed by the XGHPRT enzyme. In this study, using machine learning, artificial intelligence and biophysics-based software, CHEMBRIDGE-10000196, CHEMBRIDGE-10000295, and CHEMBRIDGE-10000955 were predicted as promising binders to the XGHPRT with a binding score of -14.20, -13.64, and -12.08 kcal/mol, respectively, compared to a control guanosine-5'-monophosphate exhibiting a docking score of -10.52 kcal/mol. These agents formed strong interactions with Met33, Arg34, Ala57, Asp92, Ser93, and Gly94 at short distance. The docked complexes of the lead compounds exhibited stable dynamics during the simulation time with no global changes noticed. The docked complexes demonstrate a significantly stable MM-GBSA and MM-PBSA net binding energy of -60.1 and -61.18 kcal/mol for the CHEMBRIDGE-10000196 complex. The MM-GBSA net energy value of the CHEMBRIDGE-10000295 complex and the CHEMBRIDGE-10000955 complex is -71.17 and -65.29 kcal/mol, respectively. The CHEMBRIDGE-10000295 and CHEMBRIDGE-10000955 complexes displayed a net value of -71.91 and -63.49 kcal/mol, respectively, as per the MM-PBSA. The major driving intermolecular interactions for the docked complexes were found to be the electrostatic and van der Waals. The three filtered molecules hold potential for experimental evaluation of their potency against the XGHPRT enzyme.
Collapse
Affiliation(s)
- Alhumaidi B. Alabbas
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| |
Collapse
|
10
|
Altharawi A, Alqahatani SM, Alanazi MM, Tahir Ul Qamar M. Unveiling MurE ligase potential inhibitors for treating multi-drug resistant Acinetobacter baumannii. J Biomol Struct Dyn 2024; 42:2358-2368. [PMID: 37099644 DOI: 10.1080/07391102.2023.2204499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023]
Abstract
Acinetobacter baumannii is an opportunistic pathogen with ability to cause serious infection such as bacteremia, ventilator associated pneumonia, and wound infections. As strains of A. baumannii are resistant to almost all clinically used antibiotics and with the emergence of carbapenems resistant phenotypes warrants the search for novel antibiotics. Considering this, herein, a series of computer aided drug designing approach was utilized to search novel chemical scaffolds that bind stronger to MurE ligase enzyme of A. baumannii, which is involved peptidoglycan synthesis. The work identified LAS_22461675, LAS_34000090 and LAS_51177972 compounds as promising binding molecules with MurE enzyme having binding energy score of -10.5 kcal/mol, -9.3 kcal/mol and -8.6 kcal/mol, respectively. The compounds were found to achieve docked inside the MurE substrate binding pocket and established close distance chemical interactions. The interaction energies were dominated by van der Waals and less contributions were seen from hydrogen bonding energy. The dynamic simulation assay predicted the complexes stable with no major global and local changes noticed. The docked stability was also validated by MM/PBSA and MM/GBSA binding free energy methods. The net MM/GBSA binding free energy of LAS_22461675 complex, LAS_34000090 complex and LAS_51177972 complex is -26.25 kcal/mol, -27.23 kcal/mol and -29.64 kcal/mol, respectively. Similarly in case of MM-PBSA, the net energy value was in following order; LAS_22461675 complex (-27.67 kcal/mol), LAS_34000090 complex (-29.94 kcal/mol) and LAS_51177972 complex (-27.32 kcal/mol). The AMBER entropy and WaterSwap methods also confirmed stable complexes formation. Further, molecular features of the compounds were determined that predicted compounds to have good druglike properties and pharmacokinetic favorable. The study concluded the compounds to good candidates to be tested by in vivo and in vitro experimental assays.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Safar M Alqahatani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Tahir Ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Pakistan
| |
Collapse
|
11
|
Alawam AS, M Alneghery L, Alwethaynani MS, Alamri MA. A hierarchical approach towards identification of novel inhibitors against L, D-transpeptidase YcbB as an anti-bacterial therapeutic target. J Biomol Struct Dyn 2024:1-11. [PMID: 38411016 DOI: 10.1080/07391102.2024.2322619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/16/2024] [Indexed: 02/28/2024]
Abstract
The bacterial cell wall, being a vital component for cell viability, is regarded as a promising drug target. The L, D-Transpeptidase YcbB enzyme has been implicated for a significant role in cell wall polymers cross linking during typhoid toxin release, β-lactam resistance and outer membrane defect rescue. These observations have been recorded in different bacterial pathogens such as Salmonella Typhimurium, Citrobacter rodentium, and Salmonella typhi. In this work, we have shown structure based virtual screening of diverse natural and synthetic drug libraries against the enzyme and revealed three compounds as LAS_32135590, LAS_34036730 and LAS-51380924. These compounds showed highly stable energies and the findings are very competitive with the control molecule ((1RG or (4 R,5S)-3-({(3S,5S)-5-[(3-carboxyphenyl)carbamoyl]pyrrolidin-3-yl}sulfanyl)-5-[(1S,2R)-1-formyl-2-hydroxypropyl]-4-methyl-4,5-dihydro-1H-pyrrole-2-carboxylic acid or ertapenem)) used. Compared to control (which has binding energy score of -11.63 kcal/mol), the compounds showed better binding energy. The binding energy score of LAS_32135590, LAS_34036730 and LAS-51380924 is -12.63 kcal/mol, -12.22 kcal/mol and -12.10 kcal/mol, respectively. Further, the docked snapshot of the lead compounds and control were investigated for stability under time dependent dynamics environment. All the three leads complex and control system showed significant equilibrium (mean RMSD < 3 Å) both in term of intermolecular docked conformation and binding interactions network. Further validation on the complex's stability was acquired from the end-state MMPB/GBSA analysis that observed greater contribution from van der Waals forces and electrostatic energy while less contribution was noticed from solvation part. The compounds were also showed good drug-likeness and are non-toxic and non-mutagenic. In short, the compounds can be used in experimental testing's and might be subjected to structure modification to get better results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdullah S Alawam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Lina M Alneghery
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Maher S Alwethaynani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Saudi Arabia
| | - Mubarak A Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
12
|
Barbhuiya T, Beard S, Shah ET, Mason S, Bolderson E, O’Byrne K, Guddat LW, Richard DJ, Adams MN, Gandhi NS. Targeting the hSSB1-INTS3 Interface: A Computational Screening Driven Approach to Identify Potential Modulators. ACS OMEGA 2024; 9:8362-8373. [PMID: 38405517 PMCID: PMC10882649 DOI: 10.1021/acsomega.3c09267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/27/2024]
Abstract
Human single-stranded DNA binding protein 1 (hSSB1) forms a heterotrimeric complex, known as a sensor of single-stranded DNA binding protein 1 (SOSS1), in conjunction with integrator complex subunit 3 (INTS3) and C9ORF80. This sensory protein plays an important role in homologous recombination repair of double-strand breaks in DNA to efficiently recruit other repair proteins at the damaged sites. Previous studies have identified elevated hSSB1-mediated DNA repair activities in various cancers, highlighting its potential as an anticancer target. While prior efforts have focused on inhibiting hSSB1 by targeting its DNA binding domain, this study seeks to explore the inhibition of the hSSB1 function by disrupting its interaction with the key partner protein INTS3 in the SOSS1 complex. The investigative strategy entails a molecular docking-based screening of a specific compound library against the three-dimensional structure of INTS3 at the hSSB1 binding interface. Subsequent assessments involve in vitro analyses of protein-protein interaction (PPI) disruption and cellular effects through co-immunoprecipitation and immunofluorescence assays, respectively. Moreover, the study includes an evaluation of the structural stability of ligands at the INTS3 hot-spot site using molecular dynamics simulations. The results indicate a potential in vitro disruption of the INTS3-hSSB1 interaction by three of the tested compounds obtained from the virtual screening with one impacting the recruitment of hSSB1 and INTS3 to chromatin following DNA damage. To our knowledge, our results identify the first set of drug-like compounds that functionally target INTS3-hSSB1 interaction, and this provides the basis for further biophysical investigations that should help to speed up PPI inhibitor discovery.
Collapse
Affiliation(s)
- Tabassum
Khair Barbhuiya
- Centre
for Genomics and Personalised Health, and School of Chemistry and
Physics, Faculty of Science, Queensland
University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
- Cancer
and Ageing Research Program, Woolloongabba, QLD 4102, Australia
| | - Sam Beard
- Cancer
and Ageing Research Program, Woolloongabba, QLD 4102, Australia
- Centre
for Genomics and Personalised Health, and School of Biomedical Sciences,
Faculty of Health, Queensland University
of Technology, Kelvin Grove, QLD 4059, Australia
| | - Esha T. Shah
- Cancer
and Ageing Research Program, Woolloongabba, QLD 4102, Australia
- Centre
for Genomics and Personalised Health, and School of Biomedical Sciences,
Faculty of Health, Queensland University
of Technology, Kelvin Grove, QLD 4059, Australia
| | - Steven Mason
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Emma Bolderson
- Cancer
and Ageing Research Program, Woolloongabba, QLD 4102, Australia
- Centre
for Genomics and Personalised Health, and School of Biomedical Sciences,
Faculty of Health, Queensland University
of Technology, Kelvin Grove, QLD 4059, Australia
| | - Ken O’Byrne
- Cancer
and Ageing Research Program, Woolloongabba, QLD 4102, Australia
- Centre
for Genomics and Personalised Health, and School of Biomedical Sciences,
Faculty of Health, Queensland University
of Technology, Kelvin Grove, QLD 4059, Australia
| | - Luke W. Guddat
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Derek J. Richard
- Cancer
and Ageing Research Program, Woolloongabba, QLD 4102, Australia
- Centre
for Genomics and Personalised Health, and School of Biomedical Sciences,
Faculty of Health, Queensland University
of Technology, Kelvin Grove, QLD 4059, Australia
| | - Mark N. Adams
- Cancer
and Ageing Research Program, Woolloongabba, QLD 4102, Australia
- Centre
for Genomics and Personalised Health, and School of Biomedical Sciences,
Faculty of Health, Queensland University
of Technology, Kelvin Grove, QLD 4059, Australia
| | - Neha S. Gandhi
- Centre
for Genomics and Personalised Health, and School of Chemistry and
Physics, Faculty of Science, Queensland
University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
- Cancer
and Ageing Research Program, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
13
|
Ahmad F, Ismail S, Azam SS. Discovery of novel inhibitor via molecular dynamics simulations against D-alanyl-D-alanine carboxypeptidase of Enterobacter cloacae. J Biomol Struct Dyn 2024:1-16. [PMID: 38375604 DOI: 10.1080/07391102.2024.2316790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/01/2024] [Indexed: 02/21/2024]
Abstract
Antibiotics resistance by bacterial pathogens is a major concern to public health worldwide resulting in high health care costs and rising mortality. Subtractive proteomics prioritized D-alanyl-D-alanine carboxypeptidas (DacB) enzyme from Enterobacter cloacae ATCC 13047 as a potential candidate for drugs designing to block pathogen cell wall biosynthesis. Virtual screening of an antibacterial library against the target unraveled a hit compound (2-[(1-methylsulfonylpiperidin-3-yl)methyl]-6-(1H-pyrazol-4-yl) pyrazine) showing high affinity and stability with the target. The N-methyl-N-propyl-methanesulfonamide of the compound is seen as a closed affinity towards domain involving strong hydrogen bonds with Ser41, Lys44, Ser285, and Asn287. The 4-methyl-1H-pyrazole is posed towards the open cavity of domain I and II and formed hydrophobic and hydrophilic contacts. The system is highly stable with average carbon-alpha deviations of 1.69 Å over trajectories of 400-ns. Three vital residues projected: Arg437, Arg438 and Leu400 from enzyme pocket via Radial distribution function (RDF) assay, which actively engaged the inhibitor. Further confirmation is done by estimating binding free energies, which confirms the very low delta energy of -7.24 kcal/mol in Generalized Born (GB) method and -7.4363 kcal/mol in Poisson-Boltzmann (PB) method. WaterSwap calculations were performed that revealed the energies highly converged, an agreement on good system stability. Lastly, three DacB mutants were created to investigate the role of functional active residues and a decline in binding affinity of the residues was noticed. These computational results provide a gateway for experimentalists to further confirm their efficacy both in-vitro and in-vivo.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Faisal Ahmad
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, Pakistan
| | - Saba Ismail
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, Pakistan
| | - Syed Sikander Azam
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
14
|
Erukainure OL, Oyebode OA, Chuturgoon AA, Ghazi T, Muhammad A, Aljoundi A, Elamin G, Chukwuma CI, Islam MS. Potential molecular mechanisms underlying the ameliorative effect of Cola nitida (Vent.) Schott & Endl. on insulin resistance in rat skeletal muscles. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117249. [PMID: 37806534 DOI: 10.1016/j.jep.2023.117249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cola nitida (Vent.) Schott & Endl. are among the common medicinal plants employed in traditional medicine for treating diabetes and its complications. AIM OF THE STUDY The present study investigated the effect of Cola nitida infusion on the expression of key genes involved in insulin signaling vis-à-vis Insulin receptor substrate 1 (IRS-1), tumor protein P53 gene, glucose transporter type 4 (GLUT4), phosphoinositide 3-kinases (PI3K) and B-cell lymphoma-2 (BCL2) in skeletal muscles of type 2 diabetic (T2D) rats. METHODS Type 2 diabetic rats were administered C. nitida infusion at low and high doses (150 and 300 mg/kg bodyweight, respectively), while a high dose of the infusion was also administered to a normal toxicological group. Metformin served as the standard antidiabetic drug. The rats were sacrificed at the end of the experimental period. Their psoas muscles were harvested and assayed for the expressions of IRS1, p53, GLUT4, PI3K and BCL2. The studied genes were further subjected to enrichment analysis using the ShinyGO 0.76 online software. RESULTS Induction of T2D upregulated the expressions of IRS-1, p53, PI3K and BCL2 in psoas muscles, while concomitantly downregulating GLUT4 expression. These expressions were significantly reversed in type 2 diabetic rats treated with C. nitida infusion, and the results were statistically significant compared to metformin. Gene enrichment analysis revealed that the genes were linked to intrinsic pathways and biological processes involved in insulin resistance. The infusion further improved muscle glucose uptake, ex vivo. Molecular docking and molecular dynamics stimulation of C. nitida infusion phytoconstituents, caffeine and theobromine with IRS-1, p53, GLUT4, PI3K and BCL2 revealed a strong binding affinity as evident by the RMSD and RMSF values. CONCLUSION These results indicate the potentials of C. nitida infusion to improve glucose homeostasis in skeletal muscles of type 2 diabetic rats.
Collapse
Affiliation(s)
- Ochuko L Erukainure
- Department of Biochemistry, University of KwaZulu-Natal (Westville Campus), Durban, 4000, South Africa
| | - Olajumoke A Oyebode
- Department of Biochemistry, University of KwaZulu-Natal (Westville Campus), Durban, 4000, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal (Howard College Campus), Durban, 4000, South Africa
| | - Terisha Ghazi
- Discipline of Medical Biochemistry and Chemical Pathology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal (Howard College Campus), Durban, 4000, South Africa
| | - Aliyu Muhammad
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL, 36088, USA; Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, P.M.B. 1044, Nigeria
| | - Aimen Aljoundi
- School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Ghazi Elamin
- School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Chika I Chukwuma
- Center for Quality of Health and Living, Faculty of Health Sciences, Central University of Technology, Bloemfontein, 9301, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, University of KwaZulu-Natal (Westville Campus), Durban, 4000, South Africa.
| |
Collapse
|
15
|
Li X, Sun X. 1,3-Proton Transfer of Pyridoxal 5'-Phosphate Schiff Base in the Branched-Chain Aminotransferase: Concerted or Stepwise Mechanism? J Phys Chem B 2024; 128:77-85. [PMID: 38131279 DOI: 10.1021/acs.jpcb.3c05875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The branched-chain aminotransferase from Mycobacterium tuberculosis (MtIlvE) is a pyridoxal 5'-phosphate (PLP) dependent enzyme, and it is essential for the synthesis of the branched-chain amino acids. Ketimine is an important intermediate in the catalytic process. We have investigated the mechanism of ketimine formation and the energy landscape using the multiple computational methods. It is found that the 1,3-proton transfer involved in ketimine formation occurs through a stepwise process rather than a one-step process. Lys204 is identified as a key residue for ligand binding and as a base that abstracts the Cα proton from the PLP-Glu Schiff base, yielding a carbanionic intermediate. The first proton transfer is the rate-limiting step with an energy barrier of 17.8 kcal mol-1. Our study disclosed the detailed pathway of the proton transfer from external aldimine to ketimine, providing novel insights into the catalytic mechanism of other PLP-dependent enzymes.
Collapse
Affiliation(s)
- Xue Li
- School of Life Sciences, Changchun Normal University, Changchun 130023, People's Republic of China
| | - Xiaoli Sun
- Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China
| |
Collapse
|
16
|
Elamin G, Aljoundi A, Alahmdi MI, Abo-Dya NE, Soliman MES. Revealing the Role of the Arg and Lys in Shifting Paradigm from BTK Selective Inhibition to the BTK/HCK Dual Inhibition - Delving into the Inhibitory Activity of KIN-8194 against BTK, and HCK in the Treatment of Mutated BTKCys481 Waldenström Macroglobulinemia: A Computational Approach. Anticancer Agents Med Chem 2024; 24:813-825. [PMID: 36752293 DOI: 10.2174/1871520623666230208102609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/30/2022] [Accepted: 12/08/2022] [Indexed: 02/09/2023]
Abstract
BACKGROUND Despite the early success of Bruton's tyrosine kinase (BTK) inhibitors in the treatment of Waldenström macroglobulinemia (WM), these single-target drug therapies have limitations in their clinical applications, such as drug resistance. Several alternative strategies have been developed, including the use of dual inhibitors, to maximize the therapeutic potential of these drugs. OBJECTIVE Recently, the pharmacological activity of KIN-8194 was repurposed to serve as a 'dual-target' inhibitor of BTK and Hematopoietic Cell Kinase (HCK). However, the structural dual inhibitory mechanism remains unexplored, hence the aim of this study. METHODS Conducting predictive pharmacokinetic profiling of KIN-8194, as well as demonstrating a comparative structural mechanism of inhibition against the above-mentioned enzymes. RESULTS Our results revealed favourable binding affinities of -20.17 kcal/mol, and -35.82 kcal/mol for KIN-8194 towards HCK and BTK, respectively. Catalytic residues Arg137/174 and Lys42/170 in BTK and Arg303 and Lys75/173/244/247 in HCK were identified as crucial mediators of the dual binding mechanism of KIN-8194, corroborated by high per-residue energy contributions and consistent high-affinity interactions of these residues. Prediction of the pharmacokinetics and physicochemical properties of KIN-8194 further established its inhibitory potential, evidenced by the favourable absorption, metabolism, excretion, and minimal toxicity properties. Structurally, KIN-8194 impacted the stability, flexibility, solvent-accessible surface area, and rigidity of BTK and HCK, characterized by various alterations observed in the bound and unbound structures, which proved enough to disrupt their biological function. CONCLUSION These structural insights provided a baseline for the understanding of the dual inhibitory activity of KIN- 8194. Establishing the cruciality of the interactions between the KIN-8194 and Arg and Lys residues could guide the structure-based design of novel dual BTK/HCK inhibitors with improved therapeutic activities.
Collapse
Affiliation(s)
- Ghazi Elamin
- Department of Pharmaceutical Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Aimen Aljoundi
- Department of Pharmaceutical Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Mohamed I Alahmdi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, 7149, Saudi Arabia
| | - Nader E Abo-Dya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tabuk University, Tabuk, 71491, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mahmoud E S Soliman
- Department of Pharmaceutical Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| |
Collapse
|
17
|
Peters XQ, Elamin G, Aljoundi A, Alahmdi MI, Abo-Dya NE, Sidhom PA, Tawfeek AM, Ibrahim MAA, Soremekun O, Soliman MES. Therapeutic Path to Triple Knockout: Investigating the Pan-inhibitory Mechanisms of AKT, CDK9, and TNKS2 by a Novel 2-phenylquinazolinone Derivative in Cancer Therapy- An In-silico Investigation Therapy. Curr Pharm Biotechnol 2024; 25:1288-1303. [PMID: 37581526 DOI: 10.2174/1389201024666230815145001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Blocking the oncogenic Wnt//β-catenin pathway has of late been investigated as a viable therapeutic approach in the treatment of cancer. This involves the multi-targeting of certain members of the tankyrase-kinase family; Tankyrase 2 (TNKS2), Protein Kinase B (AKT), and Cyclin- Dependent Kinase 9 (CDK9), which propagate the oncogenic Wnt/β-catenin signalling pathway. METHODS During a recent investigation, the pharmacological activity of 2-(4-aminophenyl)-7-chloro- 3H-quinazolin-4-one was repurposed to serve as a 'triple-target' inhibitor of TNKS2, AKT and CDK9. Yet, the molecular mechanism that surrounds its multi-targeting activity remains unanswered. As such, this study aims to explore the pan-inhibitory mechanism of 2-(4-aminophenyl)-7-chloro-3H-quinazolin- 4-one towards AKT, CDK9, and TNKS2, using in silico techniques. RESULTS Results revealed favourable binding affinities of -34.17 kcal/mol, -28.74 kcal/mol, and -27.30 kcal/mol for 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one towards TNKS2, CDK9, and AKT, respectively. Pan-inhibitory binding of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one is illustrated by close interaction with specific residues on tankyrase-kinase. Structurally, 2-(4-aminophenyl)-7-chloro- 3H-quinazolin-4-one had an impact on the flexibility, solvent-accessible surface area, and stability of all three proteins, which was illustrated by numerous modifications observed in the unbound as well as the bound states of the structures, which evidenced the disruption of their biological function. Prediction of the pharmacokinetics and physicochemical properties of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4- one further established its inhibitory potential, evidenced by the favourable absorption, metabolism, excretion, and minimal toxicity properties. CONCLUSION The following structural insights provide a starting point for understanding the paninhibitory activity of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one. Determining the criticality of the interactions that exist between the pyrimidine ring and catalytic residues could offer insight into the structure-based design of innovative tankyrase-kinase inhibitors with enhanced therapeutic effects.
Collapse
Affiliation(s)
- Xylia Q Peters
- Department of Pharmaceutical Science, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Ghazi Elamin
- Department of Pharmaceutical Science, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Aimen Aljoundi
- Department of Pharmaceutical Science, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Mohamed Issa Alahmdi
- Department of Pharmaceutical Science, University of Tabuk, Tabuk, 7149, Saudi Arabia
| | - Nader E Abo-Dya
- Department of Pharmaceutical Science, University of Tabuk, Tabuk, 7149, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Peter A Sidhom
- Department of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Ahmed M Tawfeek
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mahmoud A A Ibrahim
- Department of Pharmaceutical Science, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
- Chemistry Department, Computational Chemistry Laboratory, Faculty of Science, Minia University, Minia, 61519, Egypt
| | - Opeyemi Soremekun
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Mahmoud E S Soliman
- Department of Pharmaceutical Science, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| |
Collapse
|
18
|
Shehzadi K, Yu M, Liang J. De Novo Potent Peptide Nucleic Acid Antisense Oligomer Inhibitors Targeting SARS-CoV-2 RNA-Dependent RNA Polymerase via Structure-Guided Drug Design. Int J Mol Sci 2023; 24:17473. [PMID: 38139312 PMCID: PMC10744289 DOI: 10.3390/ijms242417473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Global reports of novel SARS-CoV-2 variants and recurrence cases continue despite substantial vaccination campaigns, raising severe concerns about COVID-19. While repurposed drugs offer some treatment options for COVID-19, notably, nucleoside inhibitors like Remdesivir stand out as curative therapies for COVID-19 that are approved by the US Food and Drug Administration (FDA). The emergence of highly contagious SARS-CoV-2 variants underscores the imperative for antiviral drugs adaptable to evolving viral mutations. RNA-dependent RNA polymerase (RdRp) plays a key role in viral genome replication. Currently, inhibiting viral RdRp function remains a pivotal strategy to tackle the notorious virus. Peptide nucleic acid (PNA) therapy shows promise by effectively targeting specific genome regions, reducing viral replication, and inhibiting infection. In our study, we designed PNA antisense oligomers conjugated with cell-penetrating peptides (CPP) aiming to evaluate their antiviral effects against RdRp target using structure-guided drug design, which involves molecular docking simulations, drug likeliness and pharmacokinetic evaluations, molecular dynamics simulations, and computing binding free energy. The in silico analysis predicts that chemically modified PNAs might act as antisense molecules in order to disrupt ribosome assembly at RdRp's translation start site, and their chemically stable and neutral backbone might enhance sequence-specific RNA binding interaction. Notably, our findings demonstrate that PNA-peptide conjugates might be the most promising inhibitors of SARS-CoV-2 RdRp, with superior binding free energy compared to Remdesivir in the current COVID-19 medication. Specifically, PNA-CPP-1 could bind simultaneously to the active site residues of RdRp protein and sequence-specific RdRp-RNA target in order to control viral replication.
Collapse
Affiliation(s)
| | - Mingjia Yu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100811, China;
| | - Jianhua Liang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100811, China;
| |
Collapse
|
19
|
Ahmed AH, Jassim TS, Ali RW, Hameed AR, Alfalki AM. Systemic computational investigation to identify potential inhibitors against cancer by targeting P21-activated kinase 4 and D(CGATCG). J Biomol Struct Dyn 2023; 41:9356-9365. [PMID: 36326467 DOI: 10.1080/07391102.2022.2141894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Cancer accounts for more than 10 million deaths in the year 2020. Development of drugs that specifically target cancer signaling pathways and proteins attain significant importance in the recent past. The p21-activated kinase 4 enzyme, which plays diverse functions in cancer and is reported in elevated expression makes this enzyme an attractive anti-cancer drug target. Similarly, cancer cells' DNA could also serve as a good platform for anti-cancer drug development. Herein, a robust in silico framework is designed to virtually screen multiple drug libraries from diverse sources to identify potential binders of the mentioned cancer targets. The virtual screening process identified three compounds (BAS_01059603, ASN_10027856, and ASN_06916672) as best docked molecules with a binding energy score of ≤ -10 kcal/mol for p21-activated kinase 4 and ≤ -6 kcal/mol for D(CGATCG). In the docking analysis, the filtered compounds revealed stable binding to the same site to which controls bind in X-ray structures. The binding interactions of the compounds with receptors are dominated by van der Waals interactions. The average root mean square deviation (rmsd) value for p21-activated kinase 4 systems is noticed at ∼2 Å, while for D(CGATCG), the average rmsd is 2.7 Å. The MMGB/PBSA interpreted ASN_12674021 to show strong intermolecular binding energy compared to the other two systems and control in both receptors. Moreover, the entropy energy contribution is less than the mean binding energy. In short, the compounds are showing promising binding to the biomolecules and therefore must be evaluated for anti-cancer activity in experimental studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ameen Haider Ahmed
- Department of Medical Laboratory Technique, Al Salam University College, Baghdad, Iraq
| | - Tabarak Sabah Jassim
- Department of Medical Laboratory Technique, Dijlah University College, Baghdad University, Baghdad, Iraq
| | - Rusul Waleed Ali
- Department of Medical Laboratory Technique, Dijlah University College, Baghdad University, Baghdad, Iraq
| | - Alaa R Hameed
- Department of Medical Laboratory Techniques, School of Life Sciences, Dijlah University College, Baghdad, Iraq
| | - Ali Mamoon Alfalki
- College of Health Professions, University of New England, Biddeford, ME, USA
| |
Collapse
|
20
|
Tahir Khan M, Dumont E, Chaudhry AR, Wei DQ. Free energy landscape and thermodynamics properties of novel mutations in PncA of pyrazinamide resistance isolates of Mycobacterium tuberculosis. J Biomol Struct Dyn 2023:1-12. [PMID: 37837425 DOI: 10.1080/07391102.2023.2268216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/29/2023] [Indexed: 10/16/2023]
Abstract
Pyrazinamide (PZA) is one of the first-line antituberculosis therapy, active against non-replicating Mycobacterium tuberculosis (Mtb). The conversion of PZA into pyrazinoic acid (POA), the active form, required the activity of pncA gene product pyrazinamidase (PZase) activity. Mutations occurred in pncA are the primary cause behind the PZA resistance. However, the resistance mechanism is important to explore using high throughput computational approaches. Here we aimed to explore the mechanism of PZA resistance behind novel P62T, L120R, and V130M mutations in PZase using 200 ns molecular dynamics (MD) simulations. MD simulations were performed to observe the structural changes for these three mutants (MTs) compared to the wild types (WT). Root means square fluctuation, the radius of gyration, free energy landscape, root means square deviation, dynamic cross-correlation motion, and pocket volume were found in variation between WT and MTs, revealing the effects of P62T, L120R, and V130M. The free energy conformational landscape of MTs differs significantly from the WT system, lowering the binding of PZA. The geometric shape complementarity of the drug (PZA) and target protein (PZase) further confirmed that P62T, L120R, and V130M affect the protein structure. These effects on PZase may cause vulnerability to convert PZA into POA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad Tahir Khan
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Nanyang, PR China
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Elise Dumont
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR7272, Nice, France
- Institut Universitaire de France, Paris, France
| | | | | |
Collapse
|
21
|
Abideen SA, Khan M, Al-Harbi AI, Ahmad S. Pharmacological inhibition of cathepsin C (CatC) as a potential approach for cancer therapeutics. J Biomol Struct Dyn 2023; 41:8682-8689. [PMID: 36264138 DOI: 10.1080/07391102.2022.2135603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/08/2022] [Indexed: 10/24/2022]
Abstract
Studies have established that proteolytic enzyme inhibition holds significant promise in cancer prevention and treatment. Cathepsin C (CatC) is conserved lysosomal cysteine dipeptidyl aminopeptidase, which is the key for pro-inflammatory neutrophil serine protease activation and biological functioning. This makes CatC as a promising therapeutic drug target for the management of different cancer types. Considering this, using a wide range of computer aided drug-designing applications, several inhibitors are shortlisted against CatC active pocket, which interact with the enzyme with high affinity and form strong intermolecular interaction network. Compared to control, three molecules ASN_06916232, ASN_06917112 and ASN_06916892 are filtered as best binders of the CatC active pocket with binding energy value of -10.9 kcal/mol, -10.9 kcal/mol and -10.7 kcal/mol, respectively. These compounds interact with several important active side residues of CatC such as Ser233, Cys234, Gly277, Asn380 and His38. Furthermore, the complexes of these compounds with CatC reveal very stable dynamics with average RMSD value less than 3 Å. The binding energy analysis further indicates the compounds to have very stable van der Waals and electrostatic energies. In conclusion, these molecules are promising and require experimental validation to prove them as anti-CatC molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Syed Ainul Abideen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Murad Khan
- Shanghai Center for System Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Alhanouf I Al-Harbi
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| |
Collapse
|
22
|
Makki Almansour N. Cheminformatics and biomolecular dynamics studies towards the discovery of anti-staphylococcal nuclease domain-containing 1 (SND1) inhibitors to treat metastatic breast cancer. Saudi Pharm J 2023; 31:101751. [PMID: 37693734 PMCID: PMC10491775 DOI: 10.1016/j.jsps.2023.101751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/16/2023] [Indexed: 09/12/2023] Open
Abstract
Metastatic breast cancer is a prime health concern and leading health burden across the globe. Previous efforts have shown that protein-protein interaction between Metadherin and Staphylococcal nuclease domaincontaining 1 (SND1) promotes initiation of breast cancer, progression, therapy resistance and metastasis. Therefore, small drug molecules that can interrupt the Metadherin and SND1 interaction may be ideal to suppress tumor growth, metastasis and increases chemotherapy sensitivity of triple negative breast cancer. Here, in this study, structure based virtual screening was conducted against the reported active site of SND1 enzyme, which revealed three promising lead molecules from Asinex library. These compounds were; BAS_00381028, BAS_00327287, and BAS_01293454 with binding energy score -10.25 kcal/mol, -9.65 kcal/mol and -9.32 kcal/mol, respectively. Compared to control (5-chloro-2-methoxy-N-([1,2,4]triazolo[1,5-a]pyridin-8-yl)benzene-1-sulfonamide) the lead molecules showed robust hydrophilic and hydrophobic interactions with the enzyme and revealed stable docked conformation in molecular dynamics simulation. During the simulation time, the compounds reported stable dynamics with no obvious fluctuation in binding mode and interactions noticed. The mean root mean square deviation (RMSD) of BAS_00381028, BAS_00327287, and BAS_01293454 complexes were 1.87 Å, 1.75 Å, 1.34 Å, respectively. Furthermore, the MM/GBSA analysis was conduction on the simulation trajectories of complexes that unveiled binding energy score of -19.25 kcal/mol, -27.03 kcal/mol, -34.6 kcal/mol and -29.61 kcal/mol for control, BAS_00381028, BAS_00327287, and BAS_01293454, respectively. In MM/PBSA, the binding energy value of for control, BAS_00381028, BAS_00327287, and BAS_01293454 was -20.45 kcal/mol, -27.89 kcal/mol, -36.41 kcal/mol and -32.01 kcal/mol, respectively. Additionally, the compounds were classified as druglike and have favorable pharmacokinetic properties. The compounds were predicted as promising leads and might be used in experimental investigation to study their anti-SND1 activity.
Collapse
Affiliation(s)
- Nahlah Makki Almansour
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| |
Collapse
|
23
|
Alhassan HH, Alruwaili YS, Alzarea SI, Alruwaili M, Alsaidan OA, Alzarea AI, Manni E, Tahir Ul Qamar M. Identification and dynamics of novel scaffolds against Enterococcus faecium serine hydroxymethyltransferase enzyme: a potential target for antibiotics development. J Biomol Struct Dyn 2023; 42:10510-10520. [PMID: 37713363 DOI: 10.1080/07391102.2023.2257313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
Serine hydroxymethyltransferase enzyme is a significant player in purine, thymidylate, and L-serine biosynthesis and has been tagged as a potential target for cancer, viruses, and parasites. However, this enzyme as an anti-bacterial druggable target has not been explored much. Herein, in this work, different computational chemistry and biophysics techniques were applied to identify potential computational predicted inhibitory molecules against Enterococcus faecium serine hydroxymethyltransferase enzyme. By structure based virtual screening process of ASINEX antibacterial library against the enzyme two main compounds: Top-1_BDC_21204033 and Top-2_BDC_20700155 were reported as best binding molecules. The Top-1_BDC_21204033 and Top-2_BDC_20700155 binding energy value is -9.3 and -8.9 kcal/mol, respectively. The control molecule binding energy score is -6.55 kcal/mol. The mean RMSD of Top-1-BDC_21204033, Top-2-BDC_20700155 and control is 3.7 Å (maximum 5.03 Å), 1.7 Å (maximum 3.05 Å), and 3.84 Å (maximum of 6.7 Å), respectively. During the simulation time, the intermolecular docked conformation and interactions were seen stable despite of few small jumps by the compounds/control, responsible for high RMSD in some frames. The MM/GBSA and MM/PBSA binding free energy of lead Top-2-BDC_20700155 complex is -79.52 and -82.63 kcal/mol, respectively. This complex was seen as the most stable compared to the control. Furthermore, the lead molecules and control showed good druglikeness and pharmacokinetics profile. The lead molecules were non-toxic and non-mutagenic. In short, the compounds are promising in terms of binding to the serine hydroxymethyltransferase enzyme and need to be subjected to experimental studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hassan H Alhassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Al-Jouf Region, Saudi Arabia
| | - Yasir S Alruwaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Al-Jouf Region, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf Region, Saudi Arabia
| | - Muharib Alruwaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Al-Jouf Region, Saudi Arabia
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf Region, Saudi Arabia
| | - Abdulaziz Ibrahim Alzarea
- Clinical Pharmacy Department, College of Pharmacy, Jouf University, Sakaka, Al-Jouf Region, Saudi Arabia
| | - Emad Manni
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Al-Jouf Region, Saudi Arabia
| | | |
Collapse
|
24
|
Ramharack P, Salifu EY, Agoni C. Dual-Target Mycobacterium tuberculosis Inhibition: Insights into the Molecular Mechanism of Antifolate Drugs. Int J Mol Sci 2023; 24:14021. [PMID: 37762327 PMCID: PMC10530724 DOI: 10.3390/ijms241814021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The escalating prevalence of drug-resistant strains of Mycobacterium tuberculosis has posed a significant challenge to global efforts in combating tuberculosis. To address this issue, innovative therapeutic strategies are required that target essential biochemical pathways while minimizing the potential for resistance development. The concept of dual targeting has gained prominence in drug discovery against resistance bacteria. Dual targeting recognizes the complexity of cellular processes and disrupts more than one vital pathway, simultaneously. By inhibiting more than one essential process required for bacterial growth and survival, the chances of developing resistance are substantially reduced. A previously reported study investigated the dual-targeting potential of a series of novel compounds against the folate pathway in Mycobacterium tuberculosis. Expanding on this study, we investigated the predictive pharmacokinetic profiling and the structural mechanism of inhibition of UCP1172, UCP1175, and UCP1063 on key enzymes, dihydrofolate reductase (DHFR) and 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione 5'-phosphate reductase (RV2671), involved in the folate pathway. Our findings indicate that the compounds demonstrate lipophilic physiochemical properties that promote gastrointestinal absorption, and may also inhibit the drug-metabolizing enzyme, cytochrome P450 3A4, thus enhancing their biological half-life. Furthermore, key catalytic residues (Serine, Threonine, and Aspartate), conserved in both enzymes, were found to participate in vital molecular interactions with UCP1172, which demonstrated the most favorable free binding energies to both DHFR and RV2671 (-41.63 kcal/mol, -48.04 kcal/mol, respectively). The presence of characteristic loop shifts, which are similar in both enzymes, also indicates a common inhibitory mechanism by UCP1172. This elucidation advances the understanding of UCP1172's dual inhibition mechanism against Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Pritika Ramharack
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Cape Town 7505, South Africa
- Discipline of Pharmaceutical Sciences, School of Health Sciences, Westville Campus, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Elliasu Y. Salifu
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Cape Town 7505, South Africa
| | - Clement Agoni
- Discipline of Pharmaceutical Sciences, School of Health Sciences, Westville Campus, University of KwaZulu-Natal, Durban 4001, South Africa
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Belfield, Ireland
| |
Collapse
|
25
|
Alabbas AB. Identification of promising methionine aminopeptidase enzyme inhibitors: A combine study of comprehensive virtual screening and dynamics simulation study. Saudi Pharm J 2023; 31:101745. [PMID: 37638221 PMCID: PMC10448168 DOI: 10.1016/j.jsps.2023.101745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/05/2023] [Indexed: 08/29/2023] Open
Abstract
Methionine aminopeptidase (MetAP) enzymes play a critical role in bacterial cell survival by cleaving formyl-methionine initiators at N-terminal of nascent protein, a process which is vital in proper protein folding. This makes MetAP an attractive and novel antibacterial target to unveil promising antibiotics. In this study, the crystal structure of R. prowazekii MetAP was used in structure-based virtual screening of drug libraries such as Asinex antibacterial library and Comprehensive Marine Natural Products Database (CMNPD) to identify promising lead molecules against the enzyme. This shortlisted three drug molecules; BDE-25098678, BDE-30686468 and BDD_25351157 as most potent leads that showed strong binding to the MetAP enzyme. The static docked conformation of the compounds to the MetAP was reevaluated in molecular dynamics simulation studies. The analysis observed the docked complexes as stable structure with no major local or global deviations noticed. These findings suggest the formation of strong intermolecular docked complexes, which showed stable dynamics and atomic level interactions network. The binding free energy analysis predicted net MMGBSA energy of complexes as: BDE-25098678 (-73.41 kcal/mol), BDE-30686468 (-59.93 kcal/mol), and BDD_25351157 (-75.39 kcal/mol). In case of MMPBSA, the complexes net binding energy was as; BDE-25098678 (-77.47 kcal/mol), BDE-30686468 (-69.47 kcal/mol), and BDD_25351157 (-75.6 kcal/mol). Further, the compounds were predicted to follow the famous Lipinski rule of five and have non-toxic, non-carcinogenic and non-mutagenic profile. The screened compounds might be used in experimental test to highlight the real anti- R. prowazekii MetAP activity.
Collapse
Affiliation(s)
- Alhumaidi B. Alabbas
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
26
|
Grillberger K, Cöllen E, Trivisani CI, Blum J, Leist M, Ecker GF. Structural Insights into Neonicotinoids and N-Unsubstituted Metabolites on Human nAChRs by Molecular Docking, Dynamics Simulations, and Calcium Imaging. Int J Mol Sci 2023; 24:13170. [PMID: 37685977 PMCID: PMC10487998 DOI: 10.3390/ijms241713170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 09/10/2023] Open
Abstract
Neonicotinoid pesticides were initially designed in order to achieve species selectivity on insect nicotinic acetylcholine receptors (nAChRs). However, concerns arose when agonistic effects were also detected in human cells expressing nAChRs. In the context of next-generation risk assessments (NGRAs), new approach methods (NAMs) should replace animal testing where appropriate. Herein, we present a combination of in silico and in vitro methodologies that are used to investigate the potentially toxic effects of neonicotinoids and nicotinoid metabolites on human neurons. First, an ensemble docking study was conducted on the nAChR isoforms α7 and α3β4 to assess potential crucial molecular initiating event (MIE) interactions. Representative docking poses were further refined using molecular dynamics (MD) simulations and binding energy calculations using implicit solvent models. Finally, calcium imaging on LUHMES neurons confirmed a key event (KE) downstream of the MIE. This method was also used to confirm the predicted agonistic effect of the metabolite descyano-thiacloprid (DCNT).
Collapse
Affiliation(s)
- Karin Grillberger
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | - Eike Cöllen
- In Vitro Toxicology and Biomedicine, University of Konstanz, 78457 Konstanz, Germany
| | | | - Jonathan Blum
- In Vitro Toxicology and Biomedicine, University of Konstanz, 78457 Konstanz, Germany
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, University of Konstanz, 78457 Konstanz, Germany
| | - Gerhard F. Ecker
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
27
|
Liao J, Shu Z, Gao J, Wu M, Chen C. SurfPB: A GPU-Accelerated Electrostatic Calculation and Visualization Tool for Biomolecules. J Chem Inf Model 2023; 63:4490-4496. [PMID: 37500509 DOI: 10.1021/acs.jcim.3c00745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
In this work, we present SurfPB as a useful tool for the study of biomolecules. It can do many typical calculations, including the molecular surface, electrostatic potential, solvation free energy, entropy, and binding free energy. Among all of the calculations, the entropy calculation is the most time-consuming one. In SurfPB, the calculation can be performed in a vacuum or implicit solvent and accelerated on GPU. The Poisson-Boltzmann equation solver is accelerated on GPU as well. Moreover, we developed a graphical user interface for SurfPB. It allows users to input the parameters and complete the whole calculation in a visual way. The calculated electrostatic potentials are shown on the molecular surface in a three-dimensional scene.
Collapse
Affiliation(s)
- Jun Liao
- Biomolecular Physics and Modeling Group, School of Physics Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Zirui Shu
- Biomolecular Physics and Modeling Group, School of Physics Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Junyong Gao
- Biomolecular Physics and Modeling Group, School of Physics Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Mincong Wu
- Biomolecular Physics and Modeling Group, School of Physics Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Changjun Chen
- Biomolecular Physics and Modeling Group, School of Physics Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
28
|
Bhat ZR, Gahlawat A, Kumar N, Sharma N, Garg P, Tikoo K. Target validation and structure-based virtual screening to Discover potential lead molecules against the oncogenic NSD1 histone methyltransferase. In Silico Pharmacol 2023; 11:21. [PMID: 37575680 PMCID: PMC10421842 DOI: 10.1007/s40203-023-00158-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023] Open
Abstract
The aim of the study was to validate Nuclear receptor-binding SET Domain NSD1 as a cancer drug target followed by the design of lead molecules against NSD1. TCGA clinical data, molecular expression techniques were used to validate the target and structure-based virtual screening was performed to design hits against NSD1. Clinical data analysis suggests the role of NSD1 in metastasis, prognosis and influence on overall survival in various malignancies. Furthermore, the mRNA and protein expression profile of NSD1 was evaluated in various cell lines. NSD1 was exploited as a target protein for in silico design of inhibitors using two major databases including ZINC15 and ChemDiv by structure-based virtual screening approach. Virtual screening was performed using the pharmacophore hypothesis designed with a protein complex S-adenosyl-l-methionine (SAM) as an endogenous ligand. Subsequently, a combined score was used to distinguish the top 10 compounds from the docking screened compounds having high performance in all four scores (docking score, XP, Gscore, PhaseScreenScore, and MMGBSA delta G Bind). Finally, the top three Zinc compounds were subjected to molecular dynamic simulation. The binding MMGBSA data suggests that ZINC000257261703 and ZINC000012405780 can be taken for in vitro and in vivo studies as they have lesser MMGBSA energy towards the cofactor binding site of NSD1 than the sinefungin. Our data validates NSD1 as a cancer drug target and provides promising structures that can be utilized for further lead optimization and rational drug design to open new gateways in the field of cancer therapeutics. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00158-0.
Collapse
Affiliation(s)
- Zahid Rafiq Bhat
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, India
| | - Anuj Gahlawat
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, 160062 Punjab India
| | - Navneet Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, 160062 Punjab India
| | - Nisha Sharma
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, 160062 Punjab India
| | - Kulbhushan Tikoo
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, India
| |
Collapse
|
29
|
Mishra SS, Kumar N, Karkara BB, Sharma CS, Kalra S. Identification of potential inhibitors of Zika virus targeting NS3 helicase using molecular dynamics simulations and DFT studies. Mol Divers 2023; 27:1689-1701. [PMID: 36063275 DOI: 10.1007/s11030-022-10522-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
Abstract
Despite the various research efforts towards the drug discovery program for Zika virus treatment, no antiviral drugs or vaccines have yet been discovered. The spread of the mosquito vector and ZIKV infection exposure is expected to accelerate globally due to continuing global travel. The NS3-Hel is a non-structural protein part and involved in different functions such as polyprotein processing, genome replication, etc. It makes an NS3-Hel protein an attractive target for designing novel drugs for ZIKV treatment. This investigation identifies the novel, potent ZIKV inhibitors by virtual screening and elucidates the binding pattern using molecular docking and molecular dynamics simulation studies. The molecular dynamics simulation results indicate dynamic stability between protein and ligand complexes, and the structures keep significantly unchanged at the binding site during the simulation period. All inhibitors found within the acceptable range having drug-likeness properties. The synthetic feasibility score suggests that all screened inhibitors can be easily synthesizable. Therefore, possible inhibitors obtained from this study can be considered a potential inhibitor for NS3 Hel, and further, it could be provided as a lead for drug development.
Collapse
Affiliation(s)
- Shashank Shekher Mishra
- Department of Pharmaceutical Chemistry, School of Pharmaceutical & Populations Health Informatics, DIT University, Dehradun, 248009, India.
| | - Neeraj Kumar
- Department of Pharmaceutical Chemistry, Bhupal Nobles' College of Pharmacy, Bhupal Nobles' University, Udaipur, 313001, India
| | - Bidhu Bhusan Karkara
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur, 522213, India
| | - C S Sharma
- Department of Pharmaceutical Chemistry, Bhupal Nobles' College of Pharmacy, Bhupal Nobles' University, Udaipur, 313001, India
| | - Sourav Kalra
- National Institute of Pharmaceutical Education & Research, Mohali, Punjab, India
| |
Collapse
|
30
|
Onikanni SA, Lawal B, Munyembaraga V, Bakare OS, Taher M, Khotib J, Susanti D, Oyinloye BE, Noriega L, Famuti A, Fadaka AO, Ajiboye BO. Profiling the Antidiabetic Potential of Compounds Identified from Fractionated Extracts of Entada africana toward Glucokinase Stimulation: Computational Insight. Molecules 2023; 28:5752. [PMID: 37570723 PMCID: PMC10420681 DOI: 10.3390/molecules28155752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Glucokinase plays an important role in regulating the blood glucose level and serves as an essential therapeutic target in type 2 diabetes management. Entada africana is a medicinal plant and highly rich source of bioactive ligands with the potency to develop new target drugs for glucokinase such as diabetes and obesity. Therefore, the study explored a computational approach to predict identified compounds from Entada africana following its intermolecular interactions with the allosteric binding site of the enzymes. We retrieved the three-dimensional (3D) crystal structure of glucokinase (PDB ID: 4L3Q) from the online protein data bank and prepared it using the Maestro 13.5, Schrödinger Suite 2022-3. The compounds identified were subjected to ADME, docking analysis, pharmacophore modeling, and molecular simulation. The results show the binding potential of the identified ligands to the amino acid residues, thereby suggesting an interaction of the amino acids with the ligand at the binding site of the glucokinase activator through conventional chemical bonds such as hydrogen bonds and hydrophobic interactions. The compatibility of the molecules was highly observed when compared with the standard ligand, thereby leading to structural and functional changes. Therefore, the bioactive components from Entada africana could be a good driver of glucokinase, thereby paving the way for the discovery of therapeutic drugs for the treatment of diabetes and its related complications.
Collapse
Affiliation(s)
- Sunday Amos Onikanni
- College of Medicine, Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan;
- Department of Chemical Sciences, Biochemistry Unit, Afe-Babalola University, Ado-Ekiti 360101, Ekiti State, Nigeria;
| | - Bashir Lawal
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Valens Munyembaraga
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, Taichung 40402, Taiwan;
- University Teaching Hospital of Butare, Huye 15232, Rwanda
| | - Oluwafemi Shittu Bakare
- Department of Biochemistry, Faculty Science, Adekunle Ajasin University, Akungba Akoko 342111, Ondo State, Nigeria;
| | - Muhammad Taher
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
- Pharmaceutics and Translational Research Group, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia
| | - Junaidi Khotib
- Department of Pharmacy Practice, Faculty of Pharmacy, Airlangga University, Surabaya 60115, Indonesia
| | - Deny Susanti
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
| | - Babatunji Emmanuel Oyinloye
- Department of Chemical Sciences, Biochemistry Unit, Afe-Babalola University, Ado-Ekiti 360101, Ekiti State, Nigeria;
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
- Institute of Drug Research and Development, SE Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Ekiti State, Nigeria;
| | - Lloyd Noriega
- College of Medicine, Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan;
| | - Ayodeji Famuti
- Honey T Scientific Company, Ibadan 234002, Oyo State, Nigeria;
| | | | - Basiru Olaitan Ajiboye
- Institute of Drug Research and Development, SE Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Ekiti State, Nigeria;
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University, Oye-Ekiti 371104, Ekiti State, Nigeria
| |
Collapse
|
31
|
Alrumaihi F. A cheminformatics-biophysics correlate to identify promising lead molecules against matrix metalloproteinase-2 (MMP-2) enzyme: A promising anti-cancer target. Saudi Pharm J 2023; 31:1244-1253. [PMID: 37284415 PMCID: PMC10239696 DOI: 10.1016/j.jsps.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Matrix metalloproteinase-2 (MMP-2) is an endopeptidase enzyme that is devoted to extracellular matrix proteins degradation. The enzyme is warranted as promising drugs target for different light threating diseases such as arthritis, cancer and fibrosis. Herein, in this study, three drug molecules: CMNPD8322, CMNPD8320, and CMNPD8318 were filtered as high affinity binding compounds with binding energy score of -9.75 kcal/mol, -9.11 kcal/mol, -9.05 kcal/mol, respectively. The control binding energy score was -9.01 kcal/mol. The compounds docked deeply inside the pocket interacting with S1 pocket residues. The docked complexes dynamics in real time at cellular environment was then done to decipher the stable binding conformation and intermolecular interactions network. The compounds complexes achieved very stable dynamics with root mean square deviation (RMSD) with mean value of around 2-3 Å compared to control complex that showed higher fluctuations of 5 Å. The simulation trajectories frames based binding free energy demonstrated all the compounds-MMP-2 complexes reported highly stable energy, particularly the van der Waals energy dominate the overall net energy. Similarly, the complexes revalidation of WaterSwap based energies also disclosed the complexes highly stable in term docked conformation. Also, the compounds illustrated the compounds favorable pharmacokinetics and were non-toxic and non-mutagenic. Thus, the compounds might be used thorough experimental assays to confirm compounds selective biological potency against MMP-2 enzyme.
Collapse
|
32
|
Mtetwa LM, Salifu EY, Omolo CA, Soliman ME, Faya M. Halting aberrant DNA methylation via in silico Identification of potent inhibitors of DNMT3B enzyme: Atomistic insights. Comput Biol Chem 2023; 105:107909. [PMID: 37418952 DOI: 10.1016/j.compbiolchem.2023.107909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/17/2023] [Accepted: 06/18/2023] [Indexed: 07/09/2023]
Abstract
To date, Cancer remains a global threat due to its impact on growing life expectancy. With the many efforts and methods of combating the disease, complete success remains a challenge owing to several limitations including cancer cells developing resistance through mutations, off-target effect of some cancer drugs resulting in toxicities, among many others. Aberrant DNA methylation is understood to be the primary reason for improper gene silence, which can result in neoplastic transformation, carcinogenesis, and tumour progression. DNA methyltransferase B (DNMT3B) enzyme is considered a potential target for the treatment of several cancers due to its important role in DNA methylation. However, only a few DNMT3B inhibitors have been reported to date. Herein, in silico molecular recognition techniques such as Molecular docking, Pharmacophore-based virtual screen and MD simulation were employed to identify potential inhibitors of DNMT3B that can halt aberrancy in DNA methylation. Findings initially identified 878 hit compounds based on a designed pharmacophore model from the reference compound Hypericin. Molecular docking was used to rank the hits by testing their efficiency when bound to the target enzyme and the top three (3) selected. All three (3) of the top hits showed excellent pharmacokinetic properties but two (2) (Zinc33330198 and Zinc77235130) were identified to be non-toxic. Molecular dynamic simulation of the final two hits showed good stability, flexibility, and structural rigidity of the compounds on DNMT3B. Finally, thermodynamic energy estimations show both compounds had favourable free energies comprising - 26.04 kcal/mol for Zinc77235130 and - 15.73 kcal/mol for Zinc33330198. Amongst the final two hits, Zinc77235130 showed consistency in favourable results across all the tested parameters and was thus selected as the lead compound for further experimental validation. The identification of this lead compound will form important basis for the inhibition of aberrant DNA methylation in cancer therapy.
Collapse
Affiliation(s)
- Lusanda M Mtetwa
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Elliasu Y Salifu
- West African Centre for Computational Analysis, Accra, Ghana; Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; School of Pharmacy and Health Sciences, United States International University of Africa, Nairobi, Kenya
| | - Mahmoud E Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Mbuso Faya
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
33
|
Yu Y, Wang Z, Wang L, Wang Q, Tang R, Xiang S, Deng Q, Hou T, Sun H. Deciphering the Shared and Specific Drug Resistance Mechanisms of Anaplastic Lymphoma Kinase via Binding Free Energy Computation. RESEARCH (WASHINGTON, D.C.) 2023; 6:0170. [PMID: 37342628 PMCID: PMC10278961 DOI: 10.34133/research.0170] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/25/2023] [Indexed: 06/23/2023]
Abstract
Anaplastic lymphoma kinase (ALK), a tyrosine receptor kinase, has been proven to be associated with the occurrence of numerous malignancies. Although there have been already at least 3 generations of ALK inhibitors approved by FDA or in clinical trials, the occurrence of various mutations seriously attenuates the effectiveness of the drugs. Unfortunately, most of the drug resistance mechanisms still remain obscure. Therefore, it is necessary to reveal the bottom reasons of the drug resistance mechanisms caused by the mutations. In this work, on the basis of verifying the accuracy of 2 main kinds of binding free energy calculation methodologies [end-point method of Molecular Mechanics with Poisson-Boltzmann/Generalized Born and Surface Area (MM/PB(GB)SA) and alchemical method of Thermodynamic Integration (TI)], we performed a systematic analysis on the ALK systems to explore the underlying shared and specific drug resistance mechanisms, covering the one-drug-multiple-mutation and multiple-drug-one-mutation cases. Through conventional molecular dynamics (cMD) simulation in conjunction with MM/PB(GB)SA and umbrella sampling (US) in conjunction with contact network analysis (CNA), the resistance mechanisms of the in-pocket, out-pocket, and multiple-site mutations were revealed. Especially for the out-pocket mutation, a possible transfer chain of the mutation effect was revealed, and the reason why different drugs exhibited various sensitivities to the same mutation was also uncovered. The proposed mechanisms may be prevalent in various drug resistance cases.
Collapse
Affiliation(s)
- Yang Yu
- Department of Medicinal Chemistry,
China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| | - Zhe Wang
- Innovation Institute for Artificial Intelligence in Medicine ofZhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Lingling Wang
- Department of Medicinal Chemistry,
China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| | - Qinghua Wang
- Department of Medicinal Chemistry,
China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| | - Rongfan Tang
- Department of Medicinal Chemistry,
China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| | - Sutong Xiang
- Department of Medicinal Chemistry,
China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| | - Qirui Deng
- Department of Medicinal Chemistry,
China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine ofZhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Huiyong Sun
- Department of Medicinal Chemistry,
China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| |
Collapse
|
34
|
Eslami Moghadam M, Rezaeisadat M, Mansouri-Torshizi H, Hosseinzadeh S, Daneshyar H. New anticancer potential Pt complex with tertamyl dithiocarbamate ligand: Synthesis, DNA targeting behavior, molecular dynamic, and biological activity. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
35
|
Ye S, Han Y, Wei Z, Li J. Binding Affinity and Mechanisms of Potential Antidepressants Targeting Human NMDA Receptors. Molecules 2023; 28:4346. [PMID: 37298821 PMCID: PMC10254814 DOI: 10.3390/molecules28114346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Depression, a mental disorder that plagues the world, is a burden on many families. There is a great need for new, fast-acting antidepressants to be developed. N-methyl-D-aspartic acid (NMDA) is an ionotropic glutamate receptor that plays an important role in learning and memory processes and its TMD region is considered as a potential target to treat depression. However, due to the unclear binding sites and pathways, the mechanism of drug binding lacks basic explanation, which brings great complexity to the development of new drugs. In this study, we investigated the binding affinity and mechanisms of an FDA-approved antidepressant (S-ketamine) and seven potential antidepressants (R-ketamine, memantine, lanicemine, dextromethorphan, Ro 25-6981, ifenprodil, and traxoprodil) targeting the NMDA receptor by ligand-protein docking and molecular dynamics simulations. The results indicated that Ro 25-6981 has the strongest binding affinity to the TMD region of the NMDA receptor among the eight selected drugs, suggesting its potential effective inhibitory effect. We also calculated the critical binding-site residues at the active site and found that residues Leu124 and Met63 contributed the most to the binding energy by decomposing the free energy contributions on a per-residue basis. We further compared S-ketamine and its chiral molecule, R-ketamine, and found that R-ketamine had a stronger binding capacity to the NMDA receptor. This study provides a computational reference for the treatment of depression targeting NMDA receptors, and the proposed results will provide potential strategies for further antidepressant development and is a useful resource for the future discovery of fast-acting antidepressant candidates.
Collapse
Affiliation(s)
- Simin Ye
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China;
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano-Electronics, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Yanqiang Han
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano-Electronics, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Zhiyun Wei
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China;
| | - Jinjin Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China;
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano-Electronics, Shanghai Jiao Tong University, Shanghai 200240, China;
| |
Collapse
|
36
|
Maghsoud Y, Dong C, Cisneros GA. Computational Characterization of the Inhibition Mechanism of Xanthine Oxidoreductase by Topiroxostat. ACS Catal 2023; 13:6023-6043. [PMID: 37547543 PMCID: PMC10399974 DOI: 10.1021/acscatal.3c01245] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Xanthine oxidase (XO) is a member of the molybdopterin-containing enzyme family. It interconverts xanthine to uric acid as the last step of purine catabolism in the human body. The high uric acid concentration in the blood directly leads to human diseases like gout and hyperuricemia. Therefore, drugs that inhibit the biosynthesis of uric acid by human XO have been clinically used for many years to decrease the concentration of uric acid in the blood. In this study, the inhibition mechanism of XO and a new promising drug, topiroxostat (code: FYX-051), is investigated by employing molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) calculations. This drug has been reported to act as both a noncovalent and covalent inhibitor and undergoes a stepwise inhibition by all its hydroxylated metabolites, which include 2-hydroxy-FYX-051, dihydroxy-FYX-051, and trihydroxy-FYX-051. However, the detailed mechanism of inhibition of each metabolite remains elusive and can be useful for designing more effective drugs with similar inhibition functions. Hence, herein we present the computational investigation of the structural and dynamical effects of FYX-051 and the calculated reaction mechanism for all of the oxidation steps catalyzed by the molybdopterin center in the active site. Calculated results for the proposed reaction mechanisms for each metabolite's inhibition reaction in the enzyme's active site, binding affinities, and the noncovalent interactions with the surrounding amino acid residues are consistent with previously reported experimental findings. Analysis of the noncovalent interactions via energy decomposition analysis (EDA) and noncovalent interaction (NCI) techniques suggests that residues L648, K771, E802, R839, L873, R880, R912, F914, F1009, L1014, and A1079 can be used as key interacting residues for further hybrid-type inhibitor development.
Collapse
Affiliation(s)
- Yazdan Maghsoud
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Chao Dong
- Department of Chemistry and Physics, The University of Texas Permian Basin, Odessa, Texas 79762, United States
| | - G Andrés Cisneros
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States; Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
37
|
Altharawi A, Alossaimi MA, Alanazi MM, Alqahatani SM, Tahir Ul Qamar M. An integrated computational approach towards novel drugs discovery against polyketide synthase 13 thioesterase domain of Mycobacterium tuberculosis. Sci Rep 2023; 13:7014. [PMID: 37117557 PMCID: PMC10147368 DOI: 10.1038/s41598-023-34222-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/26/2023] [Indexed: 04/30/2023] Open
Abstract
The acquired drug resistance by Mycobacterium tuberculosis (M. tuberculosis) to antibiotics urges the need for developing novel anti-M. tuberculosis drugs that possess novel mechanism of action. Since traditional drug discovery is a labor-intensive and costly process, computer aided drug design is highly appreciated tool as it speeds up and lower the cost of drug development process. Herein, Asinex antibacterial compounds were virtually screened against thioesterase domain of Polyketide synthase 13, a unique enzyme that forms α-alkyl β-ketoesters as a direct precursor of mycolic acids which are essential components of the lipid-rich cell wall of M. tuberculosis. The study identified three drug-like compounds as the most promising leads; BBB_26582140, BBD_30878599 and BBC_29956160 with binding energy value of - 11.25 kcal/mol, - 9.87 kcal/mol and - 9.33 kcal/mol, respectively. The control molecule binding energy score is -9.25 kcal/mol. Also, the docked complexes were dynamically stable with maximum root mean square deviation (RMSD) value of 3 Å. Similarly, the MM-GB\PBSA method revealed highly stable complexes with mean energy values < - 75 kcal/mol for all three systems. The net binding energy scores are validated by WaterSwap and entropy energy analysis. Furthermore, The in silico druglike and pharmacokinetic investigation revealed that the compounds could be suitable candidates for additional experimentations. In summary, the study findings are significant, and the compounds may be used in experimental validation pipeline to develop potential drugs against drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Manal A Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Safar M Alqahatani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Muhammad Tahir Ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, 38000, Pakistan.
| |
Collapse
|
38
|
Rahmani F, Imani Fooladi AA, Ajoudanifar H, Soleimani NA. In silico and experimental methods for designing a potent anticancer arazyme-herceptin fusion protein in HER2-positive breast cancer. J Mol Model 2023; 29:160. [PMID: 37103612 DOI: 10.1007/s00894-023-05562-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 04/17/2023] [Indexed: 04/28/2023]
Abstract
CONTEXT Breast cancer is the most prevalent type of malignancies among women worldwide and is associated with serious physical and mental consequences. Current chemotherapies may lack successful outcomes; thus, the development of targeted recombinant immunotoxins is plausible. The predicted B cell and T cell epitopes of arazyme of the fusion protein are able to elicit immune response. The results of codon adaptation tool of herceptin-arazyme have improved from 0.4 to 1. The in silico immune simulation results showed significant response for immune cells. In conclusion, our findings show that the known multi-epitope fusion protein may activate humoral and cellular immune responses and maybe a possible candidate for breast cancer treatment. METHODS In this study, the selected monoclonal antibody constituting herceptin and the bacterial metalloprotease, arazyme, was used with different peptide linkers to design a novel fusion protein to predict different B cell and T cell epitopes by the means of the relevant databases. Modeler 10.1 and I-TASSER online server were used to predict and validate the 3D structure and then docked to HER2-receptor using HADDOCK2.4 web server. The molecular dynamics (MD) simulations of the arazyme-linker-herceptin-HER2 complex were performed by GROMACS 2019.6 software. The sequence of arazyme-herceptin was optimized for the expression in prokaryotic host using online servers and cloned into pET-28a plasmid. The recombinant pET28a was transferred into the Escherichia coli BL21DE3. Expression and binding affinity of arazyme-herceptin and arazyme to human breast cancer cell lines (SK-BR-3/HER2 + and MDA-MB-468/HER2 -) were validated by the SDS-PAGE and cell‑ELISA, respectively.
Collapse
Affiliation(s)
- Farideh Rahmani
- Department of Microbiology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Hatef Ajoudanifar
- Department of Microbiology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | | |
Collapse
|
39
|
Bivacqua R, Romeo I, Barreca M, Barraja P, Alcaro S, Montalbano A. HSV-1 Glycoprotein D and Its Surface Receptors: Evaluation of Protein-Protein Interaction and Targeting by Triazole-Based Compounds through In Silico Approaches. Int J Mol Sci 2023; 24:ijms24087092. [PMID: 37108255 PMCID: PMC10138673 DOI: 10.3390/ijms24087092] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Protein-protein interactions (PPI) represent attractive targets for drug design. Thus, aiming at a deeper insight into the HSV-1 envelope glycoprotein D (gD), protein-protein docking and dynamic simulations of gD-HVEM and gD-Nectin-1 complexes were performed. The most stable complexes and the pivotal key residues useful for gD to anchor human receptors were identified and used as starting points for a structure-based virtual screening on a library of both synthetic and designed 1,2,3-triazole-based compounds. Their binding properties versus gD interface with HVEM and Nectin-1 along with their structure-activity relationships (SARs) were evaluated. Four [1,2,3]triazolo[4,5-b]pyridines were identified as potential HSV-1 gD inhibitors, for their good theoretical affinity towards all conformations of HSV-1 gD. Overall, this study suggests promising basis for the design of new antiviral agents targeting gD as a valuable strategy to prevent viral attachment and penetration into the host cell.
Collapse
Affiliation(s)
- Roberta Bivacqua
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Isabella Romeo
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Marilia Barreca
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Paola Barraja
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Alessandra Montalbano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
40
|
Altharawi A. Targeting Toxoplasma gondii ME49 TgAPN2: A Bioinformatics Approach for Antiparasitic Drug Discovery. Molecules 2023; 28:molecules28073186. [PMID: 37049948 PMCID: PMC10096047 DOI: 10.3390/molecules28073186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
As fewer therapeutic options are available for treating toxoplasmosis, newer antiparasitic drugs that can block TgAPN2 M1 aminopeptidase are of significant value. Herein, we employed several computer-aided drug-design approaches with the objective of identifying drug molecules from the Asinex library with stable conformation and binding energy scores. By a structure-based virtual screening process, three molecules—LAS_52160953, LAS_51177972, and LAS_52506311—were identified as promising candidates, with binding affinity scores of −8.6 kcal/mol, −8.5 kcal/mol, and −8.3 kcal/mol, respectively. The compounds produced balanced interacting networks of hydrophilic and hydrophobic interactions, vital for holding the compounds at the docked cavity and stable binding conformation. The docked compound complexes with TgAPN2 were further subjected to molecular dynamic simulations that revealed mean RMSD for the LAS_52160953 complex of 1.45 Å), LAS_51177972 complex 1.02 Å, and LAS_52506311 complex 1.087 Å. Another round of binding free energy validation by MM-GBSA/MM-PBSA was done to confirm docking and simulation findings. The analysis predicted average MM-GBSA value of <−36 kcal/mol and <−35 kcal/mol by MM-PBSA. The compounds were further classified as appropriate candidates to be used as drug-like molecules and showed favorable pharmacokinetics. The shortlisted compounds showed promising biological potency against the TgAPN2 enzyme and may be used in experimental validation. They may also serve as parent structures to design novel derivatives with enhanced biological potency.
Collapse
Affiliation(s)
- Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
41
|
Altharawi A, Riadi Y, Tahir Ul Qamar M. An in silico quest for next-generation antimalarial drugs by targeting Plasmodium falciparum hexose transporter protein: a multi-pronged approach. J Biomol Struct Dyn 2023; 41:14450-14459. [PMID: 36812293 DOI: 10.1080/07391102.2023.2181635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/12/2023] [Indexed: 02/24/2023]
Abstract
The emergence of artemisinin resistance by malaria parasites is a major challenge in the fight against malaria, thus posing serious threat to the public health across the world. To tackle this, antimalarial drugs with unconventional mechanisms are therefore urgently needed. It has been reported that selective starvation of Plasmodium falciparum by blocking the function of hexose transporter 1 (PfHT1) protein, the only known transporter for glucose uptake in P. falciparum, could provide an alternative approach to fight the drug resistant malaria parasites. In this study, three high affinity molecules (BBB_25784317, BBB_26580136 and BBB_26580144) that have shown the best docked conformation and least binding energy with PfHT1 were shortlisted. The docking energy of BBB_25784317, BBB_26580136 and BBB_26580144 with PfHT1 were -12.5, -12.1 and -12.0 kcal/mol, respectively. In the follow up simulation studies, the protein 3D structure maintains considerable stability in the presence of the compounds. It was also observed that the compounds produced a number of hydrophilic and hydrophobic interactions with the protein allosteric site residues. This demonstrates strong intermolecular interaction guided by close distance hydrogen bonds of compounds with Ser45, Asn48, Thr49, Asn52, Ser317, Asn318, Ile330 and Ser334. Revalidation of compounds binding affinity was conducted by more appropriate simulation based binding free energy techniques (MM-GB/PBSA and WaterSwap). Additionally, entropy assay was performed that further strengthen the predictions. In silico pharmacokinetics confirmed that the compounds would be suitable candidates for oral delivery due to their high gastrointestinal absorption and less toxic reaction. Overall, the predicted compounds are promising and could be further sought as antimalarial leads and subjected to thorough experimental investigations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Muhammad Tahir Ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| |
Collapse
|
42
|
Medoro A, Jafar TH, Ali S, Trung TT, Sorrenti V, Intrieri M, Scapagnini G, Davinelli S. In silico evaluation of geroprotective phytochemicals as potential sirtuin 1 interactors. Biomed Pharmacother 2023; 161:114425. [PMID: 36812712 DOI: 10.1016/j.biopha.2023.114425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Sirtuin 1 (SIRT1) belongs to the histone deacetylase enzyme family and its activity regulates various signaling networks associated with aging. SIRT1 is widely involved in a large number of biological processes, including senescence, autophagy, inflammation, and oxidative stress. In addition, SIRT1 activation may improve lifespan and health in numerous experimental models. Therefore, SIRT1 targeting is a potential strategy to delay or reverse aging and age-related diseases. Although SIRT1 is activated by a wide array of small molecules, only a limited number of phytochemicals that directly interact with SIRT1 have been identified. Using the Geroprotectors.org database and a literature search, the aim of this study was to identify geroprotective phytochemicals that might interact with SIRT1. We performed molecular docking, density functional theory studies, molecular dynamic simulations (MDS), and absorption, distribution, metabolism, excretion, and toxicity (ADMET) prediction to screen potential candidates against SIRT1. After the initial screening of 70 phytochemicals, crocin, celastrol, hesperidin, taxifolin, vitexin, and quercetin had significant binding affinity scores. These six compounds established multiple hydrogen-bonding and hydrophobic interactions with SIRT1 and showed good drug-likeness and ADMET properties. In particular, crocin was further analyzed using MDS to study its complex with SIRT1 during simulation. Crocin has a high reactivity to SIRT1 and can form a stable complex with it, showing a good ability to fit into the binding pocket. Although further investigations are required, our results suggest that these geroprotective phytochemicals, especially crocin, are novel interacting partners of SIRT1.
Collapse
Affiliation(s)
- Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy
| | - Tassadaq Hussain Jafar
- Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy
| | - Sawan Ali
- Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy
| | - Truong Tan Trung
- Laboratory of Computation and Nanoscience, Dong Nai Technology University, Dong Nai, Vietnam
| | - Vincenzo Sorrenti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy.
| | - Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy
| |
Collapse
|
43
|
Valdés-Tresanco ME, Valdés-Tresanco MS, Moreno E, Valiente PA. Assessment of Different Parameters on the Accuracy of Computational Alanine Scanning of Protein-Protein Complexes with the Molecular Mechanics/Generalized Born Surface Area Method. J Phys Chem B 2023; 127:944-954. [PMID: 36661180 DOI: 10.1021/acs.jpcb.2c07079] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Computational alanine scanning with the molecular mechanics generalized Born surface area (MM/GBSA) method constitutes a widely used approach for identifying critical residues at protein-protein interfaces. Despite its popularity, the MM/GBSA method still has certain drawbacks due to its dependence on many factors. Here, we performed a systematical study on the impact of four different parameters, namely, the internal dielectric constant, the generalized Born model, the entropic term, and the inclusion of structural waters on the accuracy of computational alanine scanning calculations with the MM/GBSA method. Our results show that the internal dielectric constant is the most critical parameter for getting accurate predictions. The introduction of entropy and interfacial water molecules decreased the quality of the predictions, while the generalized Born model had little to no effect. Considering the significance of the internal dielectric value, we proposed a methodology based on the energetic predominance of a particular set of amino acids at the protein-protein interface for selecting an appropriate value for this variable. We hope that these results serve as a guideline for future studies of protein-protein complexes using the MM/GBSA method.
Collapse
Affiliation(s)
- Mario E Valdés-Tresanco
- Centre for Molecular Simulations and Department of Biological Sciences, University of Calgary, Calgary, AlbertaT2N 1N4, Canada.,Computational Biology and Biomolecular Dynamics Laboratory, Center for Proteins Studies, Faculty of Biology, University of Havana, Havana, Havana10400, Cuba
| | | | - Ernesto Moreno
- Faculty of Basic Sciences, University of Medellin, Medellin, Antioquia050031, Colombia
| | - Pedro A Valiente
- Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, OntarioM5S 3E1, Canada.,Computational Biology and Biomolecular Dynamics Laboratory, Center for Proteins Studies, Faculty of Biology, University of Havana, Havana, Havana10400, Cuba
| |
Collapse
|
44
|
Wangpaiboon K, Charoenwongpaiboon T, Klaewkla M, Field RA, Panpetch P. Cassava pullulanase and its synergistic debranching action with isoamylase 3 in starch catabolism. FRONTIERS IN PLANT SCIENCE 2023; 14:1114215. [PMID: 36778707 PMCID: PMC9911869 DOI: 10.3389/fpls.2023.1114215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Pullulanase (EC 3.2.1.41, PUL), a debranching enzyme belonging to glycoside hydrolase family 13 subfamily 13, catalyses the cleavage of α-1,6 linkages of pullulan and β-limit dextrin. The present work studied PUL from cassava Manihot esculenta Crantz (MePUL) tubers, an important economic crop. The Mepul gene was successfully cloned and expressed in E. coli and rMePUL was biochemically characterised. MePUL was present as monomer and homodimer, as judged by apparent mass of ~ 84 - 197 kDa by gel permeation chromatography analysis. Optimal pH and temperature were at pH 6.0 and 50 °C, and enzyme activity was enhanced by the addition of Ca2+ ions. Pullulan is the most favourable substrate for rMePUL, followed by β-limit dextrin. Additionally, maltooligosaccharides were potential allosteric modulators of rMePUL. Interestingly, short-chain maltooligosaccharides (DP 2 - 4) were significantly revealed at a higher level when rMePUL was mixed with cassava isoamylase 3 (rMeISA3), compared to that of each single enzyme reaction. This suggests that MePUL and MeISA3 debranch β-limit dextrin in a synergistic manner, which represents a major starch catabolising process in dicots. Additionally, subcellular localisation suggested the involvement of MePUL in starch catabolism, which normally takes place in plastids.
Collapse
Affiliation(s)
- Karan Wangpaiboon
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Methus Klaewkla
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Robert A. Field
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Pawinee Panpetch
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
45
|
Malik M, Khan S, Ullah A, Hassan M, Haq MU, Ahmad S, Al-Harbi AI, Sanami S, Abideen SA, Irfan M, Khurram M. Proteome-Wide Screening of Potential Vaccine Targets against Brucella melitensis. Vaccines (Basel) 2023; 11:263. [PMID: 36851141 PMCID: PMC9966016 DOI: 10.3390/vaccines11020263] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
The ongoing antibiotic-resistance crisis is becoming a global problem affecting public health. Urgent efforts are required to design novel therapeutics against pathogenic bacterial species. Brucella melitensis is an etiological agent of brucellosis, which mostly affects sheep and goats but several cases have also been reported in cattle, water buffalo, yaks and dogs. Infected animals also represent the major source of infection for humans. Development of safer and effective vaccines for brucellosis remains a priority to support disease control and eradication in animals and to prevent infection to humans. In this research study, we designed an in-silico multi-epitopes vaccine for B. melitensis using computational approaches. The pathogen core proteome was screened for good vaccine candidates using subtractive proteomics, reverse vaccinology and immunoinformatic tools. In total, 10 proteins: catalase; siderophore ABC transporter substrate-binding protein; pyridoxamine 5'-phosphate oxidase; superoxide dismutase; peptidylprolyl isomerase; superoxide dismutase family protein; septation protein A; hypothetical protein; binding-protein-dependent transport systems inner membrane component; and 4-hydroxy-2-oxoheptanedioate aldolase were selected for epitopes prediction. To induce cellular and antibody base immune responses, the vaccine must comprise both B and T-cells epitopes. The epitopes were next screened for antigenicity, allergic nature and water solubility and the probable antigenic, non-allergic, water-soluble and non-toxic nine epitopes were shortlisted for multi-epitopes vaccine construction. The designed vaccine construct comprises 274 amino acid long sequences having a molecular weight of 28.14 kDa and instability index of 27.62. The vaccine construct was further assessed for binding efficacy with immune cell receptors. Docking results revealed that the designed vaccine had good binding potency with selected immune cell receptors. Furthermore, vaccine-MHC-I, vaccine-MHC-II and vaccine-TLR-4 complexes were opted based on a least-binding energy score of -5.48 kcal/mol, 0.64 kcal/mol and -2.69 kcal/mol. Those selected were then energy refined and subjected to simulation studies to understand dynamic movements of the docked complexes. The docking results were further validated through MMPBSA and MMGBSA analyses. The MMPBSA calculated -235.18 kcal/mol, -206.79 kcal/mol, and -215.73 kcal/mol net binding free energy, while MMGBSA estimated -259.48 kcal/mol, -206.79 kcal/mol and -215.73 kcal/mol for TLR-4, MHC-I and MHC-II complexes, respectively. These findings were validated by water-swap and entropy calculations. Overall, the designed vaccine construct can evoke proper immune responses and the construct could be helpful for experimental researchers in formulation of a protective vaccine against the targeted pathogen for both animal and human use.
Collapse
Affiliation(s)
- Mahnoor Malik
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Saifullah Khan
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda 24550, Pakistan
| | - Asad Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Muhammad Hassan
- Department of Pharmacy, Bacha Khan University, Charsadda 24461, Pakistan
| | - Mahboob ul Haq
- Department of Pharmacy, Abasyn University, Peshawar 25000, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Alhanouf I. Al-Harbi
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 42353, Saudi Arabia
| | - Samira Sanami
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8815713471, Iran
| | - Syed Ainul Abideen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32611, USA
| | - Muhammad Khurram
- Department of Pharmacy, Abasyn University, Peshawar 25000, Pakistan
| |
Collapse
|
46
|
Wang KW, Riveros I, DeLoye J, Yildirim I. Dynamic docking of small molecules targeting RNA CUG repeats causing myotonic dystrophy type 1. Biophys J 2023; 122:180-196. [PMID: 36348626 PMCID: PMC9822796 DOI: 10.1016/j.bpj.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/05/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Expansion of RNA CUG repeats causes myotonic dystrophy type 1 (DM1). Once transcribed, the expanded CUG repeats strongly attract muscleblind-like 1 (MBNL1) proteins and disturb their functions in cells. Because of its unique structural form, expanded RNA CUG repeats are prospective drug targets, where small molecules can be utilized to target RNA CUG repeats to inhibit MBNL1 binding and ameliorate DM1-associated defects. In this contribution, we developed two physics-based dynamic docking approaches (DynaD and DynaD/Auto) and applied them to nine small molecules known to specifically target RNA CUG repeats. While DynaD uses a distance-based reaction coordinate to study the binding phenomenon, DynaD/Auto combines results of umbrella sampling calculations performed on 1 × 1 UU internal loops and AutoDock calculations to efficiently sample the energy landscape of binding. Predictions are compared with experimental data, displaying a positive correlation with correlation coefficient (R) values of 0.70 and 0.81 for DynaD and DynaD/Auto, respectively. Furthermore, we found that the best correlation was achieved with MM/3D-RISM calculations, highlighting the importance of solvation in binding calculations. Moreover, we detected that DynaD/Auto performed better than DynaD because of the use of prior knowledge about the binding site arising from umbrella sampling calculations. Finally, we developed dendrograms to present how bound states are connected to each other in a binding process. Results are exciting, as DynaD and DynaD/Auto will allow researchers to utilize two novel physics-based and computer-aided drug-design methodologies to perform in silico calculations on drug-like molecules aiming to target complex RNA loops.
Collapse
Affiliation(s)
- Kye Won Wang
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, Florida; Departments of Biological Sciences and Chemistry, Lehigh University, Bethlehem, Pennsylvania
| | - Ivan Riveros
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, Florida
| | - James DeLoye
- Department of Chemistry, University of California, Berkeley, Berkeley, California
| | - Ilyas Yildirim
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, Florida.
| |
Collapse
|
47
|
Zhang L, Gong Y, Shen L. Molecular Stapling of Human Pediatric RSV Phosphoprotein’s C-terminal Tail-Derived Peptides to Target the Coupled Folding-Upon-Binding Event Between Phosphoprotein and Nucleocapsid. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10483-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
48
|
Díaz N, Suárez D. Toward Reliable and Insightful Entropy Calculations on Flexible Molecules. J Chem Theory Comput 2022; 18:7166-7178. [PMID: 36426866 DOI: 10.1021/acs.jctc.2c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The absolute entropy of a flexible molecule can be approximated by the sum of a rigid-rotor-harmonic-oscillator (RRHO) entropy and a Gibbs-Shannon entropy associated to the Boltzmann distribution for the occupation of the conformational energy levels. Herein, we show that such partitioning, which has received renewed interest, leads to accurate entropies of single molecules of increasing size provided that the conformational part is estimated by means of a set of discretization and expansion techniques that are able to capture the significant correlation effects among the torsional motions. To ensure a reliable entropy estimation, we rely on extensive sampling as that produced by classical molecular dynamics simulations on the microsecond time scale, which is currently affordable for small- and medium-sized molecules. According to test calculations, the gas-phase entropy of simple organic molecules is predicted with a mean unsigned error of 0.9 cal/(mol K) when the RRHO entropies are computed at the B3LYP-D3/cc-pVTZ level. Remarkably, the same protocol gives small errors [<1 cal/(mol K)] for the extremely flexible linear alkane molecules (CnH2n+2, n = 14, 16, and 18). Similarly, we obtain well-converged entropies for a more challenging test of drug molecules, which exhibit more pronounced correlation effects. We also perform equivalent entropy calculations on a 76 amino acid protein, ubiquitin, by taking advantage of the cutoff-dependent formulation of an expansion technique (correlation-consistent multibody local approximation, CC-MLA), which incorporates genuine correlation effects among the neighboring dihedral angles. Moreover, we show that insightful descriptors of the coupled torsional motions can be obtained with the CC-MLA approach.
Collapse
Affiliation(s)
- Natalia Díaz
- Departamento de Química Física y Analítica, Universidad de Oviedo, Avda. Julián Clavería 8, Oviedo33006, SPAIN
| | - Dimas Suárez
- Departamento de Química Física y Analítica, Universidad de Oviedo, Avda. Julián Clavería 8, Oviedo33006, SPAIN
| |
Collapse
|
49
|
In Vitro Study of Cytotoxic Mechanisms of Alkylphospholipids and Alkyltriazoles in Acute Lymphoblastic Leukemia Models. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238633. [PMID: 36500726 PMCID: PMC9737184 DOI: 10.3390/molecules27238633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 12/12/2022]
Abstract
This study investigates the efficacy of miltefosine, alkylphospholipid, and alkyltriazolederivative compounds against leukemia lineages. The cytotoxic effects and cellular and molecular mechanisms of the compounds were investigated. The inhibitory potential and mechanism of inhibition of cathepsins B and L, molecular docking simulation, molecular dynamics and binding free energy evaluation were performed to determine the interaction of cathepsins and compounds. Among the 21 compounds tested, C9 and C21 mainly showed cytotoxic effects in Jurkat and CCRF-CEM cells, two human acute lymphoblastic leukemia (ALL) lineages. Activation of induced cell death by C9 and C21 with apoptotic and necrosis-like characteristics was observed, including an increase in annexin-V+propidium iodide-, annexin-V+propidium iodide+, cleaved caspase 3 and PARP, cytochrome c release, and nuclear alterations. Bax inhibitor, Z-VAD-FMK, pepstatin, and necrostatin partially reduced cell death, suggesting that involvement of the caspase-dependent and -independent mechanisms is related to cell type. Compounds C9 and C21 inhibited cathepsin L by a noncompetitive mechanism, and cathepsin B by a competitive and noncompetitive mechanism, respectively. Complexes cathepsin-C9 and cathepsin-C21 exhibited significant hydrophobic interactions, water bridges, and hydrogen bonds. In conclusion, alkyltriazoles present cytotoxic activity against acute lymphoblastic lineages and represent a promising scaffold for the development of molecules for this application.
Collapse
|
50
|
Sanusi ZK, Lobb KA. Insights into the Dynamics and Binding of Two Polyprotein Substrate Cleavage Points in the Context of the SARS-CoV-2 Main and Papain-like Proteases. Molecules 2022; 27:8251. [PMID: 36500348 PMCID: PMC9740519 DOI: 10.3390/molecules27238251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022] Open
Abstract
It is well known that vital enzymes in the replication process of the coronavirus are the SARS-CoV-2 PLpro and SARS-CoV-2 3CLpro, both of which are important targets in the search for anti-coronavirus agents. These two enzymes are responsible for cleavage at various polyprotein sites in the SARS-CoV-2 lifecycle. Herein, the dynamics of the polyprotein cleavage sequences for the boundary between non-structural proteins Nsp1 and Nsp2 (CS1) and between Nsp2 and Nsp3 (CS2) in complex with both the papain-like protein PLpro and the main protease 3CLpro were explored using computational methods. The post dynamics analysis reveals that CS1 and CS2 both have greater stability when complexed with PLpro. Of these two, greater stability is observed for the CS1-PLpro complex, while destabilization resulting in loss of CS2 from the PLpro active site is observed for CS2-PLpro, suggesting the rate of exchange by the papain-like protease is faster for CS2 compared to CS1. On the other hand, the 3CLpro main protease also reveals stability for CS1 suggesting that the main protease could also play a potential role in the cleavage at point CS1. However, destabilization occurs early in the simulation for the complex CLpro-CS2 suggesting a poor interaction and non-plausible protease cleavage of the polyprotein at CS2 by the main protease. These findings could be used as a guide in the development and design of potent COVID-19 antiviral inhibitors that mimic the CS1 cleavage site.
Collapse
Affiliation(s)
| | - Kevin Alan Lobb
- Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
- Research Unit in Bioinformatics (RUBi), Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|