1
|
Montero F, Parra-López M, Rodríguez-Martínez A, Murciano-Calles J, Buzon P, Han Z, Lin LY, Ramos MC, Ruiz-Sanz J, Martinez JC, Radi M, Moog C, Diederich S, Harty RN, Pérez-Sánchez H, Vicente F, Castillo F, Luque I. Exploring the druggability of the UEV domain of human TSG101 in search for broad-spectrum antivirals. Protein Sci 2025; 34:e70005. [PMID: 39724449 DOI: 10.1002/pro.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
The ubiquitin E2 variant domain of TSG101 (TSG101-UEV) plays a pivotal role in protein sorting and virus budding by recognizing PTAP motifs within ubiquitinated proteins. Disruption of TSG101-UEV/PTAP interactions has emerged as a promising strategy for the development of host-oriented broad-spectrum antivirals with low susceptibility to resistance. TSG101 is a challenging target characterized by an extended and flat binding interface, low affinity for PTAP ligands, and complex binding energetics. Here, we assess the druggability of the TSG101-UEV/PTAP binding interface by searching for drug-like inhibitors and evaluating their ability to block PTAP recognition, impair budding, and inhibit viral proliferation. A discovery workflow was established by combining in vitro miniaturized HTS assays and a set of cell-based activity assays including high-content bimolecular complementation, virus-like particle release measurement, and antiviral testing in live virus infection. This approach has allowed us to identify a set of chemically diverse molecules that block TSG101-UEV/PTAP binding with IC50s in the low μM range and are able to disrupt the interaction between full-length TSG101 and viral proteins in human cells and inhibit viral replication. State-of-the-art molecular docking studies reveal that the active compounds exploit binding hotspots at the PTAP binding site, unlocking the full binding potential of the TSG101-UEV binding pockets. These inhibitors represent promising hits for the development of novel broad-spectrum antivirals through targeted optimization and are also valuable tools for investigating the involvement of ESCRT in the proliferation of different virus families and study the secondary effects induced by the disruption of ESCRT/virus interactions.
Collapse
Affiliation(s)
- Fernando Montero
- Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain
| | - Marisa Parra-López
- Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain
| | - Alejandro Rodríguez-Martínez
- Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain
- Structural Bioinformatics and High-Performance Computing (BIO-HPC) Research Group, Universidad Católica de Murcia (UCAM), Guadalupe, Spain
| | - Javier Murciano-Calles
- Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain
| | - Pedro Buzon
- Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain
| | - Ziying Han
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - L-Y Lin
- Laboratoire d'ImmunoRhumatologie Moléculaire, UMR_S 1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | | | - Javier Ruiz-Sanz
- Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain
| | - Jose C Martinez
- Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain
| | - Marco Radi
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma, Italy
| | - Christiane Moog
- Laboratoire d'ImmunoRhumatologie Moléculaire, UMR_S 1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Sandra Diederich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Greifswald, Germany
| | - Ronald N Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High-Performance Computing (BIO-HPC) Research Group, Universidad Católica de Murcia (UCAM), Guadalupe, Spain
| | | | | | - Irene Luque
- Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain
| |
Collapse
|
2
|
Suthar SK, Monga J, Sharma M, Lee SY. Synthesis, biological evaluation, and in silico studies of lantadene-derived pentacyclic triterpenoids as anticancer agents targeting IKK-β. J Biomol Struct Dyn 2024:1-17. [PMID: 39632748 DOI: 10.1080/07391102.2024.2424993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/25/2024] [Indexed: 12/07/2024]
Abstract
We report the anticancer activity, structure-activity relationships (SAR), molecular mechanism, and in silico docking studies of nine pentacyclic triterpenoids derived from lantadene A. The NCI-60 cytotoxicity screening of synthesized compounds on 60 human tumor cell lines, representing nine different cancers revealed that compound 6, bearing dual C-3 and C-22 butyryloxy substitutions at the pentacyclic triterpenoid scaffold, displays remarkable potency with mean growth inhibition of 98.7% at 10 μM. The SRB five-dose assay of compound 6 exhibited that it suppresses the growth of all NCI-60 cell lines with a GI50 value in the single-digit micromolar range, except for one. The Western blot analysis revealed that compound 6 inhibits the expression of IKK-β and its down-stream effector NF-κB (p65). Molecular docking analysis of compound 6 with IKK-β showed hydrogen bond interactions with GLN425 and ARG427 and hydrophobic contact with PHE424 residues as the prominent interactions. Molecular dynamics simulation of the docked complex suggested that the complex was fairly stable. Compound 7, possessing the isobutyryloxy groups at the analogous positions of compound 6 was the second-favorable anticancer agent. Conversely, the substitution of the hydroxy group in compounds emerged as the least favorable substitution at both the C-3 and C-22 positions of the pharmacophore. The presence of the 22β-angeloyloxy side-chain, akin to the natural product lantadene A, exhibited moderate favorability for enhanced activity. As a whole, the cytotoxicity data of compounds underscores the preference for linear and extended substitutions at both the C-3 and C-22 positions of the pharmacophore for heightened activity.
Collapse
Affiliation(s)
- Sharad Kumar Suthar
- Neuroscience Research Institute, Gachon University, Incheon, South Korea
- Epichi Pharmaceuticals LLP, Pune, India
| | | | - Manu Sharma
- Department of Chemistry, National Forensic Sciences University Delhi Campus, New Delhi, India
| | - Sang-Yoon Lee
- Neuroscience Research Institute, Gachon University, Incheon, South Korea
- Department of Neuroscience, College of Medicine, Gachon University, Incheon, South Korea
| |
Collapse
|
3
|
Dudey AP, Rigby JM, Hughes GR, Stephenson GR, Storr TE, Chantry A, Hemmings AM. Expanding the inhibitor space of the WWP1 and WWP2 HECT E3 ligases. J Enzyme Inhib Med Chem 2024; 39:2394895. [PMID: 39223706 PMCID: PMC11373361 DOI: 10.1080/14756366.2024.2394895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
The HECT E3 ubiquitin ligases 1 (WWP1) and 2 (WWP2) are responsible for the ubiquitin-mediated degradation of key tumour suppressor proteins and are dysregulated in various cancers and diseases. Here we expand their limited inhibitor space by identification of NSC-217913 displaying a WWP1 IC50 of 158.3 µM (95% CI = 128.7, 195.1 µM). A structure-activity relationship by synthesis approach aided by molecular docking led to compound 11 which displayed increased potency with an IC50 of 32.7 µM (95% CI = 24.6, 44.3 µM) for WWP1 and 269.2 µM (95% CI = 209.4, 347.9 µM) for WWP2. Molecular docking yielded active site-bound poses suggesting that the heterocyclic imidazo[4,5-b]pyrazine scaffold undertakes a π-stacking interaction with the phenolic group of tyrosine, and the ethyl ester enables strong ion-dipole interactions. Given the therapeutic potential of WWP1 and WWP2, we propose that compound 11 may provide a basis for future lead compound development.
Collapse
Affiliation(s)
- Ashley P Dudey
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Jake M Rigby
- School of Chemistry, Pharmacy & Pharmacology, University of East Anglia, Norwich, UK
| | - Gregory R Hughes
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - G Richard Stephenson
- School of Chemistry, Pharmacy & Pharmacology, University of East Anglia, Norwich, UK
| | - Thomas E Storr
- School of Chemistry, Pharmacy & Pharmacology, University of East Anglia, Norwich, UK
| | - Andrew Chantry
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Andrew M Hemmings
- School of Biological Sciences, University of East Anglia, Norwich, UK
- School of Chemistry, Pharmacy & Pharmacology, University of East Anglia, Norwich, UK
- International Research Center for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
4
|
Tsedilin A, Schmidtke M, Monakhova N, Leneva I, Falynskova I, Khrenova M, Lane TR, Ekins S, Makarov V. Indole-core inhibitors of influenza a neuraminidase: iterative medicinal chemistry and molecular modeling. Eur J Med Chem 2024; 277:116768. [PMID: 39163780 DOI: 10.1016/j.ejmech.2024.116768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024]
Abstract
Influenza viruses that cause seasonal and pandemic flu are a permanent health threat. The surface glycoprotein, neuraminidase, is crucial for the infectivity of the virus and therefore an attractive target for flu drug discovery campaigns. We have designed and synthesized more than 40 3-indolinone derivatives. We mainly investigated the role of substituents at the 2 position of the core as well as the introduction of substituents or a nitrogen atom in the fused phenyl ring of the core for inhibition of influenza virus neuraminidase activity and replication in vitro and in vivo. After evaluating the compounds for their ability to inhibit the viral neuraminidase, six potent inhibitors 3c, 3e, 7c, 12o, 12v, 18d were progressed to evaluate for cytotoxicity and inhibition of influenza virus A/PR/8/34 replication in in MDCK cells. Two hit compounds 3e and 12o were tested in an animal model of influenza virus infection. Molecular mechanism of the 3-indolinone derivatives interactions with the neuraminidase was revealed in molecular dynamic simulations. Proposed inhibitors bind to the 430-cavity that is different from the conventional binding site of commercial compounds. The most promising 3-indolinone inhibitors demonstrate stronger interactions with the neuraminidase in molecular models that supports proposed binding site.
Collapse
Affiliation(s)
- Andrey Tsedilin
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), Leninsky prospect, 33, build. 2, 119071, Moscow, Russia
| | - Michaela Schmidtke
- Institute of Medical Microbiology, Section of Experimental Virology, Jena University Hospital, Hans-Knöll-Straße 2, 07745, Jena, Germany
| | - Natalia Monakhova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), Leninsky prospect, 33, build. 2, 119071, Moscow, Russia
| | - Irina Leneva
- Mechnikov Research Institute of Vaccines and Sera, Department of Virology, 105064, Moscow, Russia
| | - Irina Falynskova
- Mechnikov Research Institute of Vaccines and Sera, Department of Virology, 105064, Moscow, Russia
| | - Maria Khrenova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), Leninsky prospect, 33, build. 2, 119071, Moscow, Russia; Chemistry Department, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Thomas R Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC27606, USA
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC27606, USA
| | - Vadim Makarov
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), Leninsky prospect, 33, build. 2, 119071, Moscow, Russia.
| |
Collapse
|
5
|
Grzelczyk J, Pérez-Sánchez H, Carmena-Bargueño M, Rodríguez-Martínez A, Budryn G. Assessment of the Interaction of Acetylcholinesterase Binding with Bioactive Compounds from Coffee and Coffee Fractions Digested In Vitro in the Gastrointestinal Tract. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72. [PMID: 39365899 PMCID: PMC11487712 DOI: 10.1021/acs.jafc.4c05435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
The aim of the study was to evaluate the degree of acetylcholinesterase (AChE) inhibition by green and light- and dark-roasted coffee extracts and their fractions after digestion in a simulated gastrointestinal tract. The analysis was carried out using isothermal titration calorimetry, molecular docking, and dynamics simulations. The results showed that 3-O-caffeoylquinic acid binds strongly to AChE through hydrogen interactions with the amino acids ARG289A, HIS440A, and PHE288A and hydrophobic interactions with TYR121A in the active site of the enzyme. The Robusta green coffee extract (ΔG = -35.87 kJ/mol) and dichlorogenic acid fraction (ΔG = -19-29 kJ/mol) showed the highest affinity. Dichlorogenic acids (3,4-O-dicaffeoylquinic acid, 4,5-O-dicaffeoylquinic acid, and 3,4-O-dicaffeoylquinic acid) have high affinity for AChE as single compounds (ΔG(ITC) = -48.99-55.36 kJ/mol, ΔG(LF/AD) = -43.38-45.38 kJ/mol). The concentration necessary to reduce AChE activity by 50% amounted to 0.22 μmol/μmol chlorogenic acids to the enzyme.
Collapse
Affiliation(s)
- Joanna Grzelczyk
- Institute
of Food Technology and Analysis, Faculty of Biotechnology and Food
Sciences, Lodz University of Technology, Lodz 90-537, Poland
| | - Horacio Pérez-Sánchez
- Structural
Bioinformatics and High-Performance Computing Research Group (BIO-HPC),
Computer Engineering Department, Universidad
Católica de Murcia (UCAM), Guadalupe, Murcia 30107, Spain
| | - Miguel Carmena-Bargueño
- Structural
Bioinformatics and High-Performance Computing Research Group (BIO-HPC),
Computer Engineering Department, Universidad
Católica de Murcia (UCAM), Guadalupe, Murcia 30107, Spain
| | - Alejandro Rodríguez-Martínez
- Structural
Bioinformatics and High-Performance Computing Research Group (BIO-HPC),
Computer Engineering Department, Universidad
Católica de Murcia (UCAM), Guadalupe, Murcia 30107, Spain
| | - Grażyna Budryn
- Institute
of Food Technology and Analysis, Faculty of Biotechnology and Food
Sciences, Lodz University of Technology, Lodz 90-537, Poland
| |
Collapse
|
6
|
Gil MV, Fernández-Rivera N, Gutiérrez-Díaz G, Parrón-Ballesteros J, Pastor-Vargas C, Betancor D, Nieto C, Cintas P. Antioxidant Activity and Hypoallergenicity of Egg Protein Matrices Containing Polyphenols from Citrus Waste. Antioxidants (Basel) 2024; 13:1154. [PMID: 39456407 PMCID: PMC11504875 DOI: 10.3390/antiox13101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
This study reports on the interactions of egg proteins, which represent a major health concern in food allergy, with polyphenols obtained from orange and lemon peels. The antioxidant properties of such citrus peel extracts prior to protein binding were evaluated. The resulting edible, and therefore inherently safe, matrices exhibit reduced IgE binding compared to pure proteins in indirect immunological assays (ELISA) using individual sera from patients allergic to ovalbumin and lysozyme. The reduced allergenicity could arise from the interactions with polyphenols, which alter the structure and functionality of the native proteins. It is hypothesized that the anti-inflammatory and antioxidant properties of the polyphenols, described as inhibitors of the allergic response, could add immunomodulatory features to the hypoallergenic complexes. A docking analysis using lysozyme was conducted to scrutinize the nature of the protein-polyphenol interactions. An in silico study unravelled the complexity of binding modes depending on the isoforms considered. Altogether, the presented results validate the antioxidant properties and reduced allergenicity of polyphenol-fortified proteins. Lastly, this study highlights the upgrading of vegetable wastes as a source of natural antioxidants, thus showing the benefits of a circular economy in agri-food science.
Collapse
Affiliation(s)
- María Victoria Gil
- Department of Organic and Inorganic Chemistry, IACYS-Green Chemistry and Sustainable Development Unit, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain; (N.F.-R.); (P.C.)
| | - Nuria Fernández-Rivera
- Department of Organic and Inorganic Chemistry, IACYS-Green Chemistry and Sustainable Development Unit, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain; (N.F.-R.); (P.C.)
| | - Gloria Gutiérrez-Díaz
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain; (G.G.-D.); (J.P.-B.); (C.P.-V.)
| | - Jorge Parrón-Ballesteros
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain; (G.G.-D.); (J.P.-B.); (C.P.-V.)
| | - Carlos Pastor-Vargas
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain; (G.G.-D.); (J.P.-B.); (C.P.-V.)
| | - Diana Betancor
- Department of Allergy and Immunology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Carlos Nieto
- Department of Organic Chemistry, Faculty of Chemical Sciences, University of Salamanca, Pl. Caídos s/n, 37008 Salamanca, Spain;
| | - Pedro Cintas
- Department of Organic and Inorganic Chemistry, IACYS-Green Chemistry and Sustainable Development Unit, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain; (N.F.-R.); (P.C.)
| |
Collapse
|
7
|
Shram SI, Shcherbakova TA, Abramova TV, Smirnovskaya MS, Balandina AI, Kulikov AV, Švedas VK, Silnikov VN, Myasoedov NF, Nilov DK. A New Approach for Studying Poly(ADP-Ribose) Polymerase Inhibitors Using Permeabilized Adherent Cells. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1619-1630. [PMID: 39418520 DOI: 10.1134/s0006297924090086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/03/2024] [Accepted: 06/10/2024] [Indexed: 10/19/2024]
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors have been proposed as pharmacological agents in the treatment of various diseases. Recently, factors and mechanisms responsible for regulating PARP catalytic activity have been identified, some of which can significantly influence the effectiveness of inhibitors of this enzyme. In this regard, it is important to develop new models and methods that would reflect the cellular context in which PARP functions. We proposed to use digitonin-permeabilized adherent cells to study poly(ADP-ribosyl)ation reaction (PARylation) in order to maintain the nuclear localization of PARP and to control the concentrations of its substrate (NAD+) and tested compounds in the cell. A specific feature of the approach is that before permeabilization, cellular PARP is converted to the DNA-bound state under conditions preventing premature initiation of the PARylation reaction. Experiments were carried out in rat H9c2 cardiomyoblasts. The activity of PARP in permeabilized cells was analyzed by measuring the immunofluorescence of the reaction product poly(ADP-ribose). The method was verified in the studies of PARP inhibition by the classic inhibitor 3-aminobenzamide and a number of new 7-methylguanine derivatives. One of them, 7,8-dimethylguanine, was found to be a stronger inhibitor compared to 7-methylguanine, due to a formation of additional hydrophobic contact with the protein. The proposed approach opens up new prospects for studying the mechanisms of PARP activity regulation in cells and can be used in high-throughput screening of PARP inhibitors.
Collapse
Affiliation(s)
- Stanislav I Shram
- National Research Centre "Kurchatov Institute", Moscow, 123182, Russia.
| | - Tatyana A Shcherbakova
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Tatyana V Abramova
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russia
| | | | - Anastasia I Balandina
- National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
- Faculty of Biotechnology and Industrial Ecology, Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russia
| | - Andrey V Kulikov
- Medical Institute, Peoples' Friendship University of Russia, Moscow, 117198, Russia
| | - Vytas K Švedas
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Vladimir N Silnikov
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russia
| | | | - Dmitry K Nilov
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
8
|
Chan CCY, Guo Q, Chan JFW, Tang K, Cai JP, Chik KKH, Huang Y, Dai M, Qin B, Ong CP, Chu AWH, Chan WM, Ip JD, Wen L, Tsang JOL, Wang TY, Xie Y, Qin Z, Cao J, Ye ZW, Chu H, To KKW, Ge XY, Ni T, Jin DY, Cui S, Yuen KY, Yuan S. Identification of novel small-molecule inhibitors of SARS-CoV-2 by chemical genetics. Acta Pharm Sin B 2024; 14:4028-4044. [PMID: 39309487 PMCID: PMC11413674 DOI: 10.1016/j.apsb.2024.05.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/24/2024] [Accepted: 05/16/2024] [Indexed: 09/25/2024] Open
Abstract
There are only eight approved small molecule antiviral drugs for treating COVID-19. Among them, four are nucleotide analogues (remdesivir, JT001, molnupiravir, and azvudine), while the other four are protease inhibitors (nirmatrelvir, ensitrelvir, leritrelvir, and simnotrelvir-ritonavir). Antiviral resistance, unfavourable drug‒drug interaction, and toxicity have been reported in previous studies. Thus there is a dearth of new treatment options for SARS-CoV-2. In this work, a three-tier cell-based screening was employed to identify novel compounds with anti-SARS-CoV-2 activity. One compound, designated 172, demonstrated broad-spectrum antiviral activity against multiple human pathogenic coronaviruses and different SARS-CoV-2 variants of concern. Mechanistic studies validated by reverse genetics showed that compound 172 inhibits the 3-chymotrypsin-like protease (3CLpro) by binding to an allosteric site and reduces 3CLpro dimerization. A drug synergistic checkerboard assay demonstrated that compound 172 can achieve drug synergy with nirmatrelvir in vitro. In vivo studies confirmed the antiviral activity of compound 172 in both Golden Syrian Hamsters and K18 humanized ACE2 mice. Overall, this study identified an alternative druggable site on the SARS-CoV-2 3CLpro, proposed a potential combination therapy with nirmatrelvir to reduce the risk of antiviral resistance and shed light on the development of allosteric protease inhibitors for treating a range of coronavirus diseases.
Collapse
Affiliation(s)
- Chris Chun-Yiu Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Qian Guo
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
- Department of Infectious Diseases and Microbiology, the University of Hong Kong-Shenzhen Hospital, Shenzhen 518000, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR 999077, China
- Academician Workstation of Hainan Province, Hainan Medical University-the University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Haikou 571100, China
| | - Kaiming Tang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Jian-Piao Cai
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Kenn Ka-Heng Chik
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR 999077, China
| | - Yixin Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Mei Dai
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Bo Qin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Chon Phin Ong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Allen Wing-Ho Chu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR 999077, China
| | - Wan-Mui Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Jonathan Daniel Ip
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Lei Wen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR 999077, China
| | - Jessica Oi-Ling Tsang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR 999077, China
| | - Tong-Yun Wang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Yubin Xie
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Zhenzhi Qin
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Jianli Cao
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR 999077, China
| | - Zi-Wei Ye
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
- Department of Infectious Diseases and Microbiology, the University of Hong Kong-Shenzhen Hospital, Shenzhen 518000, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR 999077, China
| | - Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
- Department of Infectious Diseases and Microbiology, the University of Hong Kong-Shenzhen Hospital, Shenzhen 518000, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR 999077, China
| | - Xing-Yi Ge
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha 410082, China
| | - Tao Ni
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Dong-Yan Jin
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR 999077, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Sheng Cui
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
- Department of Infectious Diseases and Microbiology, the University of Hong Kong-Shenzhen Hospital, Shenzhen 518000, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR 999077, China
- Academician Workstation of Hainan Province, Hainan Medical University-the University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Haikou 571100, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
- Department of Infectious Diseases and Microbiology, the University of Hong Kong-Shenzhen Hospital, Shenzhen 518000, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR 999077, China
| |
Collapse
|
9
|
Singh M, Verma H, Gera N, Baddipadige R, Choudhary S, Bhandu P, Silakari O. Evaluation of Cordyceps militaris steroids as anti-inflammatory agents to combat the Covid-19 cytokine storm: a bioinformatics and structure-based drug designing approach. J Biomol Struct Dyn 2024; 42:5159-5177. [PMID: 37551029 DOI: 10.1080/07391102.2023.2245039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/08/2023] [Indexed: 08/09/2023]
Abstract
Since the SARS-CoV-2 epidemic, researchers have been working on figuring out ways to tackle multi-organ failure and hyperinflation, which are brought on by a cytokine storm. Angiotensin-converting enzyme 2 (ACE2), a SARS-CoV-2 spike glycoprotein's cellular receptor, is involved in complicated molecular processes that result in hyperinflammation. Cordyceps militaris is one of the traditional Chinese medicines that is used as an immune booster, and it has exhibited efficacy in lowering blood glucose levels, seminal emissions, and infertility. In the current study, we explored the potential of Cordyceps militaris steroids as key agents in managing the anger of cytokine storm in Covid-19 using network ethnopharmacological techniques and structure-based drug designing approaches. The steroids present in Cordyceps militaris were initially screened against the targets involved in inflammatory pathways. The results revealed that out of 16 steroids, 5 may be effective against 17 inflammatory pathways by targeting 11 pathological proteins. Among the five steroids, beta-sitosterol, Cholest-5-en-3β-ol, 3β, and 7α-Dihydroxycholest-5-ene were found to interact with thrombin (F2), an important protein reported to reduce the severity of inflammatory mediators and Cholest-4-en-3-one was found to target Glucocorticoid receptor (NR3C1). The top docked steroid displayed key interactions with both targets, which retained key interactions throughout the 100 ns simulation period. These compounds were also shown high binding free energy scores in water swap studies. Based on obtained results the current study suggests the use of Cordyceps militaris as an add-on therapy that may reduce the progression of inflammatory co-morbidities among patients infected with SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manmeet Singh
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Himanshu Verma
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Narendra Gera
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Raju Baddipadige
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Shalki Choudhary
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Priyanka Bhandu
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Om Silakari
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| |
Collapse
|
10
|
Alburquerque-González B, Montoro-García S, Bernabé-García Á, Bernabé-García M, Campioni-Rodrigues P, Rodríguez-Martínez A, Luque I, Salo T, Pérez-Garrido A, Pérez-Sánchez H, Cayuela ML, Luengo-Gil G, Luchinat E, Postigo-Corrales F, Staderini T, Nicolás FJ, Conesa-Zamora P. Monastrol suppresses invasion and metastasis in human colorectal cancer cells by targeting fascin independent of kinesin-Eg5 pathway. Biomed Pharmacother 2024; 175:116785. [PMID: 38781869 DOI: 10.1016/j.biopha.2024.116785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Rearrangement of the actin cytoskeleton is a prerequisite for carcinoma cells to develop cellular protrusions, which are required for migration, invasion, and metastasis. Fascin is a key protein involved in actin bundling and is expressed in aggressive and invasive carcinomas. Additionally, fascin appears to be involved in tubulin-binding and microtubule rearrangement. Pharmacophoric-based in silico screening was performed to identify compounds with better fascin inhibitory properties than migrastatin, a gold-standard fascin inhibitor. We hypothesized that monastrol displays anti-migratory and anti-invasive properties via fascin blocking in colorectal cancer cell lines. Biophysical (thermofluor and ligand titration followed by fluorescence spectroscopy), biochemical (NMR), and cellular assays (MTT, invasion of human tissue), as well as animal model studies (zebrafish invasion) were performed to characterize the inhibitory effect of monastrol on fascin activity. In silico analysis revealed that monastrol is a potential fascin-binding compound. Biophysical and biochemical assays demonstrated that monastrol binds to fascin and interferes with its actin-bundling activity. Cell culture studies, including a 3D human myoma disc model, showed that monastrol inhibited fascin-driven cytoplasmic protrusions as well as invasion. In silico, confocal microscopy, and immunoprecipitation assays demonstrated that monastrol disrupted fascin-tubulin interactions. These anti-invasive effects were confirmed in vivo. In silico confocal microscopy and immunoprecipitation assays were carried out to test whether monastrol disrupted the fascin-tubulin interaction. This study reports, for the first time, the in vitro and in vivo anti-invasive properties of monastrol in colorectal tumor cells. The number and types of interactions suggest potential binding of monastrol across actin and tubulin sites on fascin, which could be valuable for the development of antitumor therapies.
Collapse
Affiliation(s)
| | | | - Ángel Bernabé-García
- Regeneración, Oncología Molecular y TGF-ß. IMIB-Arrixaca, Carretera Madrid-Cartagena, El Palmar 30120, Spain
| | - Manuel Bernabé-García
- Research group "Telomerasa, Envejecimiento y Cáncer", CIBERER, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain
| | - Priscila Campioni-Rodrigues
- ECM and Hypoxia research unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7C, FI-90014, Oulu, Finland; Microelectronic Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, FI-90570, Oulu, Finland
| | - Alejandro Rodríguez-Martínez
- Department of Physical Chemistry, Institute of Biotechnology and Excellence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada 18071, Spain; Structural Bioinformatics and High-Performance Computing (BIO-HPC) Research Group, Universidad Católica de Murcia (UCAM), Guadalupe, Spain
| | - Irene Luque
- Department of Physical Chemistry, Institute of Biotechnology and Excellence Unit in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada 18071, Spain
| | - Tuula Salo
- Oral Medicine and Pathology, Research Unit of Population Health, University of Oulu, Finland; Medical Research Center and Oulu University Hospital, Aapistie 3, Oulu FI-90220, Finland; Department of Oral and Maxillofacial Diseases, University of Helsinki, Haartmaninkatu 8, Helsinki FI-0014, Finland; Translational Immunology Research Program (TRIMM) and iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Finland; Department of Pathology, Helsinki University Hospital, Helsinki, Finland
| | - Alfonso Pérez-Garrido
- Structural Bioinformatics and High-Performance Computing (BIO-HPC) Research Group, Universidad Católica de Murcia (UCAM), Guadalupe, Spain
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High-Performance Computing (BIO-HPC) Research Group, Universidad Católica de Murcia (UCAM), Guadalupe, Spain
| | - María Luisa Cayuela
- Research group "Telomerasa, Envejecimiento y Cáncer", CIBERER, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain
| | - Ginés Luengo-Gil
- Health Sciences Faculty, Universidad Católica de Murcia (UCAM), Guadalupe, Spain; Pathology and Clinical Analysis Department, Group of Molecular Pathology and Pharmacogenetics, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Universitario Santa Lucía, Cartagena, Spain
| | - Enrico Luchinat
- CERM - Magnetic Resonance Center and Dipartimento di Chimica, Università degli Studi di Firenze, Via Luigi Sacconi 6, Sesto Fiorentino 50019, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine - CIRMMP, Via Luigi Sacconi 6, Sesto Fiorentino 50019, Italy
| | | | - Tommaso Staderini
- CERM - Magnetic Resonance Center and Dipartimento di Chimica, Università degli Studi di Firenze, Via Luigi Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Francisco José Nicolás
- Regeneración, Oncología Molecular y TGF-ß. IMIB-Arrixaca, Carretera Madrid-Cartagena, El Palmar 30120, Spain
| | - Pablo Conesa-Zamora
- Health Sciences Faculty, Universidad Católica de Murcia (UCAM), Guadalupe, Spain; Pathology and Clinical Analysis Department, Group of Molecular Pathology and Pharmacogenetics, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Universitario Santa Lucía, Cartagena, Spain.
| |
Collapse
|
11
|
Akabane T, Suzuki N, Ikeda K, Yonezawa T, Nagatoishi S, Matsumura H, Yoshizawa T, Tsuchiya W, Kamino S, Tsumoto K, Ishimaru K, Katoh E, Hirotsu N. THOUSAND-GRAIN WEIGHT 6, which is an IAA-glucose hydrolase, preferentially recognizes the structure of the indole ring. Sci Rep 2024; 14:6778. [PMID: 38514802 PMCID: PMC10958001 DOI: 10.1038/s41598-024-57506-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024] Open
Abstract
An indole-3-acetic acid (IAA)-glucose hydrolase, THOUSAND-GRAIN WEIGHT 6 (TGW6), negatively regulates the grain weight in rice. TGW6 has been used as a target for breeding increased rice yield. Moreover, the activity of TGW6 has been thought to involve auxin homeostasis, yet the details of this putative TGW6 activity remain unclear. Here, we show the three-dimensional structure and substrate preference of TGW6 using X-ray crystallography, thermal shift assays and fluorine nuclear magnetic resonance (19F NMR). The crystal structure of TGW6 was determined at 2.6 Å resolution and exhibited a six-bladed β-propeller structure. Thermal shift assays revealed that TGW6 preferably interacted with indole compounds among the tested substrates, enzyme products and their analogs. Further analysis using 19F NMR with 1,134 fluorinated fragments emphasized the importance of indole fragments in recognition by TGW6. Finally, docking simulation analyses of the substrate and related fragments in the presence of TGW6 supported the interaction specificity for indole compounds. Herein, we describe the structure and substrate preference of TGW6 for interacting with indole fragments during substrate recognition. Uncovering the molecular details of TGW6 activity will stimulate the use of this enzyme for increasing crop yields and contributes to functional studies of IAA glycoconjugate hydrolases in auxin homeostasis.
Collapse
Affiliation(s)
- Tatsuki Akabane
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Oura, Gunma, 374-0193, Japan
| | - Nobuhiro Suzuki
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Kazuyoshi Ikeda
- Medicinal Chemistry Data Intelligence Unit, Drug Development Data Intelligence Platform Group, Medical Sciences Innovation Hub Program (MIH), RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- Division of Physics for Life Functions, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen Minato-ku, Tokyo, 105-8512, Japan
| | - Tomoki Yonezawa
- Division of Physics for Life Functions, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen Minato-ku, Tokyo, 105-8512, Japan
| | - Satoru Nagatoishi
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroyoshi Matsumura
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Takuya Yoshizawa
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Wataru Tsuchiya
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Satoshi Kamino
- CRYO SHIP Incorporated, 1-266-3, Sakuragi-cho, Omiya-ku, Saitama, Saitama, 330-0854, Japan
| | - Kouhei Tsumoto
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Ken Ishimaru
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Etsuko Katoh
- Department of Food and Nutritional Sciences, Toyo University, 1-1-1 Izumino, Itakura, Oura, Gunma, 374-0193, Japan.
| | - Naoki Hirotsu
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Oura, Gunma, 374-0193, Japan.
| |
Collapse
|
12
|
Czestkowski W, Krzemiński Ł, Piotrowicz MC, Mazur M, Pluta E, Andryianau G, Koralewski R, Matyszewski K, Olejniczak S, Kowalski M, Lisiecka K, Kozieł R, Piwowar K, Papiernik D, Nowotny M, Napiórkowska-Gromadzka A, Nowak E, Niedziałek D, Wieczorek G, Siwińska A, Rejczak T, Jędrzejczak K, Mulewski K, Olczak J, Zasłona Z, Gołębiowski A, Drzewicka K, Bartoszewicz A. Structure-Based Discovery of High-Affinity Small Molecule Ligands and Development of Tool Probes to Study the Role of Chitinase-3-Like Protein 1. J Med Chem 2024; 67:3959-3985. [PMID: 38427954 DOI: 10.1021/acs.jmedchem.3c02255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Chitinase-3-like-1 (CHI3L1), also known as YKL-40, is a glycoprotein linked to inflammation, fibrosis, and cancer. This study explored CHI3L1's interactions with various oligosaccharides using microscale thermophoresis (MST) and AlphaScreen (AS). These investigations guided the development of high-throughput screening assays to assess interference of small molecules in binding between CHI3L1 and biotinylated small molecules or heparan sulfate-based probes. Small molecule binders of YKL-40 were identified in our chitotriosidase inhibitors library with MST and confirmed through X-ray crystallography. Based on cocrystal structures of potent hit compounds with CHI3L1, small molecule probes 19 and 20 were designed for an AS assay. Structure-based optimization led to compounds 30 and 31 with nanomolar activities and drug-like properties. Additionally, an orthogonal AS assay using biotinylated heparan sulfate as a probe was developed. The compounds' affinity showed a significant correlation in both assays. These screening tools and compounds offer novel avenues for investigating the role of CHI3L1.
Collapse
Affiliation(s)
| | | | | | - Marzena Mazur
- Molecure S.A., Żwirki I Wigury 101, Warsaw 02-089, Poland
| | - Elżbieta Pluta
- Molecure S.A., Żwirki I Wigury 101, Warsaw 02-089, Poland
| | | | | | | | | | | | | | - Rafał Kozieł
- Molecure S.A., Żwirki I Wigury 101, Warsaw 02-089, Poland
| | | | | | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, Warsaw 02-109, Poland
| | - Agnieszka Napiórkowska-Gromadzka
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, Warsaw 02-109, Poland
| | - Elżbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, Warsaw 02-109, Poland
| | | | | | - Anna Siwińska
- Molecure S.A., Żwirki I Wigury 101, Warsaw 02-089, Poland
| | - Tomasz Rejczak
- Molecure S.A., Żwirki I Wigury 101, Warsaw 02-089, Poland
| | | | | | - Jacek Olczak
- Molecure S.A., Żwirki I Wigury 101, Warsaw 02-089, Poland
| | | | | | | | | |
Collapse
|
13
|
Nelen J, Carmena-Bargueño M, Martínez-Cortés C, Rodríguez-Martínez A, Villalgordo-Soto JM, Pérez-Sánchez H. ESSENCE-Dock: A Consensus-Based Approach to Enhance Virtual Screening Enrichment in Drug Discovery. J Chem Inf Model 2024; 64:1605-1614. [PMID: 38416513 DOI: 10.1021/acs.jcim.3c01982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Drug development is a complex, costly, and time-consuming endeavor. While high-throughput screening (HTS) plays a critical role in the discovery stage, it is one of many factors contributing to these challenges. In certain contexts, virtual screening can complement the HTS, potentially offering a more streamlined approach in the initial stages of drug discovery. Molecular docking is an example of a popular virtual screening technique that is often used for this purpose; however, its effectiveness can vary greatly. This has led to the use of consensus docking approaches that combine results from different docking methods to improve the identification of active compounds and reduce the occurrence of false positives. However, many of these methods do not fully leverage the latest advancements in molecular docking. In response, we present ESSENCE-Dock (Effective Structural Screening ENrichment ConsEnsus Dock), a new consensus docking workflow aimed at decreasing false positives and increasing the discovery of active compounds. By utilizing a combination of novel docking algorithms, we improve the selection process for potential active compounds. ESSENCE-Dock has been made to be user-friendly, requiring only a few simple commands to perform a complete screening while also being designed for use in high-performance computing (HPC) environments.
Collapse
Affiliation(s)
- Jochem Nelen
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), HiTech Innovation Hub, UCAM Universidad Católica de Murcia, Murcia 30107, Spain
- Health Sciences PhD Program, Universidad Católica de Murcia UCAM, Campus de los Jerónimos n°135, Guadalupe, Murcia 30107, Spain
| | - Miguel Carmena-Bargueño
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), HiTech Innovation Hub, UCAM Universidad Católica de Murcia, Murcia 30107, Spain
- Health Sciences PhD Program, Universidad Católica de Murcia UCAM, Campus de los Jerónimos n°135, Guadalupe, Murcia 30107, Spain
| | - Carlos Martínez-Cortés
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), HiTech Innovation Hub, UCAM Universidad Católica de Murcia, Murcia 30107, Spain
| | - Alejandro Rodríguez-Martínez
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), HiTech Innovation Hub, UCAM Universidad Católica de Murcia, Murcia 30107, Spain
- Health Sciences PhD Program, Universidad Católica de Murcia UCAM, Campus de los Jerónimos n°135, Guadalupe, Murcia 30107, Spain
| | | | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), HiTech Innovation Hub, UCAM Universidad Católica de Murcia, Murcia 30107, Spain
| |
Collapse
|
14
|
Hassam M, Khan K, Jalal K, Tariq M, Tarique Moin S, Uddin R. Lead identification against Mycobacterium tuberculosis using highly enriched active molecules against pantothenate synthetase. J Biomol Struct Dyn 2023; 42:11080-11097. [PMID: 37747063 DOI: 10.1080/07391102.2023.2260483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
The Pantothenate synthetase (PS) from the Mycobacterium tuberculosis (Mtb) holds a crucial role in the survival and robust proliferation of bacteria through its catalysis of coenzyme A and acyl carrier protein synthesis. The present study undertook the PS drug target in complex with a co-crystallized ligand and subjected it to docking and virtual screening approaches. The experimental design encompassed three discrete datasets: an active dataset featuring 136 compounds, an inactive dataset comprising 56 compounds, and a decoys dataset curated from the zinc library, comprising an extensive compilation of approximately 53,000 compounds. The compounds' binding energies were observed to be in the range of -5 to ∼-14 kcal/mol. Additionally, binding energy results were further refined through Enrichment Factor analysis (EF). EF is a new statistical approach which uses the scores obtained from docking-based virtual screening and predicts the precision of the scoring function. Remarkably, the Enrichment Factor (EF) analysis produced exceptionally favorable outcomes, attaining an EF of approximately 49% within the uppermost 1% fraction of the compound distribution. Finally, a total of eight compounds, evenly distributed between the active dataset and the decoys dataset, emerged as potent inhibitors of the Pantothenate synthetase (PS) enzyme. The analysis of inhibition constants and binding energy revealed a notable correlation, with an r-squared value (r2) of 0.912 between the two parameters. Furthermore, the shortlisted compounds were subjected to 100 ns MD simulation to determine their stability and dynamics behavior. The decoy compounds that have been identified, exhibiting properties comparable to the active compounds, are postulated as potential candidates for targeting the Pantothenate synthetase (PS) enzyme to treat Mtb infection. Nevertheless, in the pursuit of a comprehensive investigation, it is advisable to undertake additional experimental validation as a component of the subsequent study.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad Hassam
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Khurshid Jalal
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Tariq
- Third Word Center for Science and Technology, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Syed Tarique Moin
- Third Word Center for Science and Technology, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Reaz Uddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
15
|
Wang X, Zhao W, Zhang X, Wang Z, Han C, Xu J, Yang G, Peng J, Li Z. An integrative analysis to predict the active compounds and explore polypharmacological mechanisms of Orthosiphon stamineus Benth. Comput Biol Med 2023; 163:107160. [PMID: 37321099 DOI: 10.1016/j.compbiomed.2023.107160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Orthosiphon stamineus Benth is a dietary supplement and traditional Chinese herb with widespread clinical applications, but a comprehensive understanding of its active compounds and polypharmacological mechanisms is lacking. This study aimed to systematically investigate the natural compounds and molecular mechanisms of O. stamineus via network pharmacology. METHODS Information on compounds from O. stamineus was collected via literature retrieval, while physicochemical properties and drug-likeness were evaluated using SwissADME. Protein targets were screened using SwissTargetPrediction, while the compound-target networks were constructed and analyzed via Cytoscape with CytoHubba for seed compounds and core targets. Enrichment analysis and disease ontology analysis were then carried out, generating target-function and compound-target-disease networks to intuitively explore potential pharmacological mechanisms. Lastly, the relationship between active compounds and targets was confirmed via molecular docking and dynamics simulation. RESULTS A total of 22 key active compounds and 65 targets were identified and the main polypharmacological mechanisms of O. stamineus were addressed. The molecular docking results suggested that nearly all core compounds and their targets possess good binding affinity. In addition, the separation of receptor and ligands was not observed in all dynamics simulation processes, whereas complexes of orthosiphol Z-AR and Y-AR performed best in simulations of molecular dynamics. CONCLUSION This study successfully identified the polypharmacological mechanisms of the main compounds in O. stamineus, and predicted five seed compounds along with 10 core targets. Moreover, orthosiphol Z, orthosiphol Y, and their derivatives can be utilized as lead compounds for further research and development. The findings here provide improved guidance for subsequent experiments, and we identified potential active compounds for drug discovery or health promotion.
Collapse
Affiliation(s)
- Xingqiang Wang
- Department of Rheumatology, The No.1 Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, 650021, PR China; Yunnan Provincial Clinical Medicine Research Center of Rheumatism in TCM, Yunnan Provincial Hospital of Traditional Chinese Medicine, Yunnan, 650021, PR China.
| | - Weiqing Zhao
- Department of Rheumatology and Immunology, The First People's Hospital of Yunnan Province and The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650034, PR China
| | - Xiaoyu Zhang
- Department of Rheumatology, The No.1 Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, 650021, PR China
| | - Zongqing Wang
- Department of Rheumatology, The No.1 Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, 650021, PR China
| | - Chang Han
- Department of Rheumatology, The No.1 Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, 650021, PR China
| | - Jiapeng Xu
- Department of Yi Medicine, Traditional Chinese Medicine Hospital of Chuxiong Yi Autonomous Prefecture (Traditional Yi Medicine Hospital of Yunnan Province), Chuxiong, Yunnan, 675000, PR China
| | - Guohui Yang
- Department of Medical Research Information, Traditional Chinese Medicine Hospital of Chuxiong Yi Autonomous Prefecture (Traditional Yi Medicine Hospital of Yunnan Province), Chuxiong, Yunnan, 675000, PR China
| | - Jiangyun Peng
- Department of Rheumatology, The No.1 Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, 650021, PR China; Yunnan Provincial Clinical Medicine Research Center of Rheumatism in TCM, Yunnan Provincial Hospital of Traditional Chinese Medicine, Yunnan, 650021, PR China.
| | - Zhaofu Li
- Department of Rheumatology, The No.1 Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, 650021, PR China; Yunnan Provincial Clinical Medicine Research Center of Rheumatism in TCM, Yunnan Provincial Hospital of Traditional Chinese Medicine, Yunnan, 650021, PR China.
| |
Collapse
|
16
|
Boulebd H, Carmena-Bargueño M, Pérez-Sánchez H. Exploring the Antioxidant Properties of Caffeoylquinic and Feruloylquinic Acids: A Computational Study on Hydroperoxyl Radical Scavenging and Xanthine Oxidase Inhibition. Antioxidants (Basel) 2023; 12:1669. [PMID: 37759973 PMCID: PMC10526077 DOI: 10.3390/antiox12091669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 09/29/2023] Open
Abstract
Caffeoylquinic (5-CQA) and feruloylquinic (5-FQA) acids, found in coffee and other plant sources, are known to exhibit diverse biological activities, including potential antioxidant effects. However, the underlying mechanisms of these phenolic compounds remain elusive. This paper investigates the capacity and mode of action of 5-CQA and 5-FQA as natural antioxidants acting as hydroperoxyl radical scavengers and xanthine oxidase (XO) inhibitors. The hydroperoxyl radical scavenging potential was investigated using thermodynamic and kinetic calculations based on the DFT method, taking into account the influence of physiological conditions. Blind docking and molecular dynamics simulations were used to investigate the inhibition capacity toward the XO enzyme. The results showed that 5-CQA and 5-FQA exhibit potent hydroperoxyl radical scavenging capacity in both polar and lipidic physiological media, with rate constants higher than those of common antioxidants, such as Trolox and BHT. 5-CQA carrying catechol moiety was found to be more potent than 5-FQA in both physiological environments. Furthermore, both compounds show good affinity with the active site of the XO enzyme and form stable complexes. The hydrogen atom transfer (HAT) mechanism was found to be exclusive in lipid media, while both HAT and SET (single electron transfer) mechanisms are possible in water. 5-CQA and 5-FQA may, therefore, be considered potent natural antioxidants with potential health benefits.
Collapse
Affiliation(s)
- Houssem Boulebd
- Department of Chemistry, Faculty of Exact Science, University of Constantine 1, Constantine 25000, Algeria
| | - Miguel Carmena-Bargueño
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, 30107 Guadalupe, Spain; (M.C.-B.); (H.P.-S.)
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, 30107 Guadalupe, Spain; (M.C.-B.); (H.P.-S.)
| |
Collapse
|
17
|
Arokia Rajan MS, Thirunavukkarasu R, Joseph J, Palliyath GK, Somarathinam K, Kothandan G, Subaramaniyan K, Ullah R, Rajesh RP. Identification of the Seaweed Metabolites as Potential Anti-tubercular Agents Against Human Pantothenate synthetase: An In Silico Approach. Curr Microbiol 2023; 80:318. [PMID: 37578562 DOI: 10.1007/s00284-023-03422-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023]
Abstract
Tuberculosis is the disease which is caused due to the contagion of Mycobacterium tuberculosis. The multidrug resistance Mycobacterium tuberculosis is the main hassle in the treatment of this worldwide health threats. Pantothenate synthase is a legitimate goal for rational drug designing against Mycobacterium tuberculosis. The enzyme is most active in the presence of magnesium or manganese. Marine algal cell wall is rich in sulfated polysaccharides such as fucoidans (brown algae), κ-carrageenans (red algae), and ulvan (green algae) with various favorable biological activities such as anticoagulant, antiviral, antioxidative, anticancer, and immunomodulating activities. In this study, we have modeled binding modes of selected known anti-tubercular compounds and different solvent extract against pantothenate synthase using advanced docking program AutoDock 4.2 tool. In our current study, in silico experiments were carried out to determine if fucoidan, κ-carrageenan, and ulvan sulfated polysaccharides could be a potential target against PANc (pantothenate synthetase), with the goal of identifying potential inhibitors as anti-TB leads targeting PANc for further wet lab validation. Two bioactive compounds were docked to the Mtb pantothenate synthetase protein binding site, with docking scores ranging from - 5.57 to - 2.73. κ-carrageenan had the best pose and docking score, with a Ligand fit score of - 5.815. Ulvan did not dock with the protein. The molecular dynamics simulations were conducted with substrate and ligand bounded fucoidan and κ-carrageenan for 150 ns and the protein Mtb pantothenate synthetase showed a stable conformation in the simulation, with tight amino acid contributions binding to the ligand molecule. RMSD characterizes the conformation and stability of protein ligand complexes, with higher fluctuations indicating low stability and minimal low-level fluctuations indicating equilibration and stability. The graph for RMSF shows significant peaks due to fluctuations in active site regions and other peaks indicating the adaptation of the ligand molecule to the protein binding pocket. From the molecular dynamics study, it is clear that the compounds are having good binding affinity in the active site. The root mean square deviation, root mean square fluctuations, and radius of gyration are supportive evidences which helped us to conclude that the compounds κ-carrageenan and fucoidan are suitable lead molecules for inhibiting pantothenate synthetase. Based on these evidences, the natural compounds from seaweeds can be tested clinically either alone or in combinations against the protein, which could facilitate the designing or the synthesis of new lead molecules as drugs against the tuberculosis.
Collapse
Affiliation(s)
- Mary Shamya Arokia Rajan
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Road, Chennai, 600119, India
| | - Rajasekar Thirunavukkarasu
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Road, Chennai, 600119, India.
| | - Jerrine Joseph
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Road, Chennai, 600119, India
| | - Gangaraj Karyath Palliyath
- ICAR-Central Institute of Brackishwater Aquaculture, Indian Council of Agricultural Research, Chennai, 600028, India
| | - Kanagasabai Somarathinam
- Biopolymer Modelling and Protein Chemistry Laboratory, Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, 600025, India
| | - Gugan Kothandan
- Biopolymer Modelling and Protein Chemistry Laboratory, Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, 600025, India
| | - Kumaran Subaramaniyan
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Road, Chennai, 600119, India
- PG and Research Department of Microbiology, Sri Sankara Arts and Science College (Autonomous), Kanchipuram, 631501, India
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, 12371, Riyadh, Saudi Arabia
| | | |
Collapse
|
18
|
Rusina P, Gandalipov E, Abdusheva Y, Panova M, Burdenkova A, Chaliy V, Brachs M, Stroganov O, Guzeeva K, Svitanko I, Shtil A, Novikov F. Imidazole-4-N-acetamide Derivatives as a Novel Scaffold for Selective Targeting of Cyclin Dependent Kinases. Cancers (Basel) 2023; 15:3766. [PMID: 37568583 PMCID: PMC10417023 DOI: 10.3390/cancers15153766] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/16/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
The rational design of cyclin-dependent protein kinase (CDK) inhibitors presumes the development of approaches for accurate prediction of selectivity and the activity of small molecular weight anticancer drug candidates. Aiming at attenuation of general toxicity of low selectivity compounds, we herein explored the new chemotype of imidazole-4-N-acetamide substituted derivatives of the pan-CDK inhibitor PHA-793887. Newly synthesized compounds 1-4 containing an aliphatic methyl group or aromatic radicals at the periphery of the scaffold were analyzed for the prediction of relative free energies of binding to CDK1, -2, -5, and -9 using a protocol based on non-equilibrium (NEQ) thermodynamics. This methodology allows for the demonstration of a good correlation between the calculated parameters of interaction of 1-4 with individual targets and the values of inhibitory potencies in in vitro kinase assays. We provide evidence in support of NEQ thermodynamics as a time sparing, precise, and productive approach for generating chemical inhibitors of clinically relevant anticancer targets.
Collapse
Affiliation(s)
- Polina Rusina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Avenue, 119991 Moscow, Russia
| | - Erik Gandalipov
- Laboratory of Solution Chemistry and Advanced Materials Technologies, ITMO University, 9 Lomonosov Street, 191002 Saint Petersburg, Russia
- PHARMENTERPRISES LLC, Skolkovo Innovation Center, 42 (1) Bolshoi Blvd., 143026 Moscow, Russia
| | - Yana Abdusheva
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Avenue, 119991 Moscow, Russia
- PHARMENTERPRISES LLC, Skolkovo Innovation Center, 42 (1) Bolshoi Blvd., 143026 Moscow, Russia
- Higher School of Economics, National Research University, 20 Myasnitskaya Street, 101000 Moscow, Russia
| | - Maria Panova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Avenue, 119991 Moscow, Russia
- PHARMENTERPRISES LLC, Skolkovo Innovation Center, 42 (1) Bolshoi Blvd., 143026 Moscow, Russia
| | - Alexandra Burdenkova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Avenue, 119991 Moscow, Russia
- Higher School of Economics, National Research University, 20 Myasnitskaya Street, 101000 Moscow, Russia
| | - Vasiliy Chaliy
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Avenue, 119991 Moscow, Russia
| | - Maria Brachs
- Treamid Therapeutics GmbH, c/o CoLaborator (Bayer), Building S141, Muellerstraβe 178, 13353 Berlin, Germany
| | | | - Ksenia Guzeeva
- Higher School of Economics, National Research University, 20 Myasnitskaya Street, 101000 Moscow, Russia
| | - Igor Svitanko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Avenue, 119991 Moscow, Russia
- Higher School of Economics, National Research University, 20 Myasnitskaya Street, 101000 Moscow, Russia
| | - Alexander Shtil
- Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, 115522 Moscow, Russia
- Institute of Cyber Intelligence Systems, National Research Nuclear University MEPhI, 31 Kashirskoye Shosse, 115409 Moscow, Russia
| | - Fedor Novikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Avenue, 119991 Moscow, Russia
- PHARMENTERPRISES LLC, Skolkovo Innovation Center, 42 (1) Bolshoi Blvd., 143026 Moscow, Russia
- Higher School of Economics, National Research University, 20 Myasnitskaya Street, 101000 Moscow, Russia
| |
Collapse
|
19
|
Carollo PS, Tutone M, Culletta G, Fiduccia I, Corrao F, Pibiri I, Di Leonardo A, Zizzo MG, Melfi R, Pace A, Almerico AM, Lentini L. Investigating the Inhibition of FTSJ1, a Tryptophan tRNA-Specific 2'-O-Methyltransferase by NV TRIDs, as a Mechanism of Readthrough in Nonsense Mutated CFTR. Int J Mol Sci 2023; 24:9609. [PMID: 37298560 PMCID: PMC10253411 DOI: 10.3390/ijms24119609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Cystic Fibrosis (CF) is an autosomal recessive genetic disease caused by mutations in the CFTR gene, coding for the CFTR chloride channel. About 10% of the CFTR gene mutations are "stop" mutations that generate a premature termination codon (PTC), thus synthesizing a truncated CFTR protein. A way to bypass PTC relies on ribosome readthrough, which is the ribosome's capacity to skip a PTC, thus generating a full-length protein. "TRIDs" are molecules exerting ribosome readthrough; for some, the mechanism of action is still under debate. We investigate a possible mechanism of action (MOA) by which our recently synthesized TRIDs, namely NV848, NV914, and NV930, could exert their readthrough activity by in silico analysis and in vitro studies. Our results suggest a likely inhibition of FTSJ1, a tryptophan tRNA-specific 2'-O-methyltransferase.
Collapse
Affiliation(s)
| | - Marco Tutone
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (P.S.C.); (G.C.); (I.F.); (F.C.); (I.P.); (A.D.L.); (M.G.Z.); (R.M.); (A.P.); (A.M.A.)
| | | | | | | | | | | | | | | | | | | | - Laura Lentini
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (P.S.C.); (G.C.); (I.F.); (F.C.); (I.P.); (A.D.L.); (M.G.Z.); (R.M.); (A.P.); (A.M.A.)
| |
Collapse
|
20
|
Grzelczyk J, Szwajgier D, Baranowska-Wójcik E, Pérez-Sánchez H, Carmena-Bargueño M, Sosnowska B, Budryn G. Effect of Inhibiting Butyrylcholinesterase Activity Using Fractionated Coffee Extracts Digested In Vitro in Gastrointestinal Tract: Docking Simulation and Calorimetric and Studies. Nutrients 2023; 15:nu15102366. [PMID: 37242249 DOI: 10.3390/nu15102366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Butyrylcholinesterase (BChE) is a major enzyme from the alpha-glycoprotein family that catalyzes the hydrolysis of neurotransmitter acetylcholine (ACh), lowering the concentration of ACh in the nervous system, which could cause aggravation of Alzheimer's disease (AD). In select pathological conditions, it is beneficial to reduce the activity of this enzyme. The aim of this study was to evaluate the degree of BChE inhibition by coffee extracts fractionated into mono- and diesters of caffeic acid/caffeine, digested in vitro in the gastrointestinal tract. The bioactive compounds from coffee showed high affinity for BchE, -30.23--15.28 kJ/mol, and was the highest for the caffeine fraction from the green Arabica extract. The isolated fractions were highly effective in inhibiting BChE activity at all in vitro digestion phases. It has been shown that the fractionation of coffee extracts could be potentially used to obtain high prophylactic or even therapeutic effectiveness against AD.
Collapse
Affiliation(s)
- Joanna Grzelczyk
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-537 Lodz, Poland
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), Guadalupe, 30107 Murcia, Spain
| | - Miguel Carmena-Bargueño
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), Guadalupe, 30107 Murcia, Spain
| | - Bożena Sosnowska
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Grażyna Budryn
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-537 Lodz, Poland
| |
Collapse
|
21
|
Gushchina IV, Nilov DK, Shcherbakova TA, Baldin SM, Švedas VK. Search for Inhibitors of Mycobacterium tuberculosis Transketolase in a Series of Sulfo-Substituted Compounds. Acta Naturae 2023; 15:81-83. [PMID: 37538800 PMCID: PMC10395774 DOI: 10.32607/actanaturae.15709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/12/2023] [Indexed: 08/05/2023] Open
Abstract
As a result of the computer screening of a library of sulfo-substituted compounds, molecules capable of binding to the active site of transketolase from Mycobacterium tuberculosis were identified. An experimental verification of the inhibitory activity of the most promising compound, STK045765, against a highly purified recombinant enzyme preparation was carried out. It was shown that the STK045765 molecule competes for the binding site of the pyrophosphate group of the thiamine diphosphate cofactor and, at a micromolar concentrations, is able to suppress the activity of mycobacterial transketolase. The discovered furansulfonate scaffold may serve as the basis for the creation of anti-tuberculosis drugs.
Collapse
Affiliation(s)
- I. V. Gushchina
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119234 Russian Federation
| | - D. K. Nilov
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology, Moscow, 119234 Russian Federation
| | - T. A. Shcherbakova
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology, Moscow, 119234 Russian Federation
| | - S. M. Baldin
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology, Moscow, 119234 Russian Federation
| | - V. K. Švedas
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119234 Russian Federation
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology, Moscow, 119234 Russian Federation
| |
Collapse
|
22
|
Del Rosario García-Lozano M, Dragoni F, Gallego P, Mazzotta S, López-Gómez A, Boccuto A, Martínez-Cortés C, Rodríguez-Martínez A, Pérez-Sánchez H, Manuel Vega-Pérez J, Antonio Del Campo J, Vicenti I, Vega-Holm M, Iglesias-Guerra F. Piperazine-derived small molecules as potential Flaviviridae NS3 protease inhibitors. In vitro antiviral activity evaluation against Zika and Dengue viruses. Bioorg Chem 2023; 133:106408. [PMID: 36801791 DOI: 10.1016/j.bioorg.2023.106408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Since 2011 Direct Acting antivirals (DAAs) drugs targeting different non-structural (NS) viral proteins (NS3, NS5A or NS5B inhibitors) have been approved for clinical use in HCV therapies. However, currently there are not licensed therapeutics to treat Flavivirus infections and the only licensed DENV vaccine, Dengvaxia, is restricted to patients with preexisting DENV immunity. Similarly to NS5 polymerase, the NS3 catalytic region is evolutionarily conserved among the Flaviviridae family sharing strong structural similarity with other proteases belonging to this family and therefore is an attractive target for the development of pan-flavivirus therapeutics. In this work we present a library of 34 piperazine-derived small molecules as potential Flaviviridae NS3 protease inhibitors. The library was developed through a privileged structures-based design and then biologically screened using a live virus phenotypic assay to determine the half-maximal inhibitor concentration (IC50) of each compound against ZIKV and DENV. Two lead compounds, 42 and 44, with promising broad-spectrum activity against ZIKV (IC50 6.6 µM and 1.9 µM respectively) and DENV (IC50 6.7 µM and 1.4 µM respectively) and a good security profile were identified. Besides, molecular docking calculations were performed to provide insights about key interactions with residues in NS3 proteases' active sites.
Collapse
Affiliation(s)
- María Del Rosario García-Lozano
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071 Seville, Spain; SeLiver Group at the Institute of Biomedicine of Seville (IBIS), Virgen del Rocío University Hospital CSIC University of Seville, Seville, Spain
| | - Filippo Dragoni
- Department of Medical Biotechnologies, Siena University Hospital, Policlinico Le Scotte, Viale Bracci 16, 53100 Siena, Italy
| | - Paloma Gallego
- Unit for Clinical Management of Digestive Diseases and CIBERehd, Valme University Hospital, 41014 Seville, Spain
| | - Sarah Mazzotta
- Department of Chemistry, University of Milan, 20133 Milan, Italy
| | - Alejandro López-Gómez
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071 Seville, Spain
| | - Adele Boccuto
- Department of Medical Biotechnologies, Siena University Hospital, Policlinico Le Scotte, Viale Bracci 16, 53100 Siena, Italy; VisMederi Research srl, Siena, Italy
| | - Carlos Martínez-Cortés
- Structural Bioinformatics and High Performance Computing (BIO-HPC) Research Group, UCAM Universidad Católica de Murcia, 30107 Murcia, Spain
| | - Alejandro Rodríguez-Martínez
- Department of Physical Chemistry and Institute of Biotechnology, University of Granada, Campus Fuentenueva sn, 18071 Granada, Spain
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing (BIO-HPC) Research Group, UCAM Universidad Católica de Murcia, 30107 Murcia, Spain
| | - José Manuel Vega-Pérez
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071 Seville, Spain
| | | | - Ilaria Vicenti
- Department of Medical Biotechnologies, Siena University Hospital, Policlinico Le Scotte, Viale Bracci 16, 53100 Siena, Italy.
| | - Margarita Vega-Holm
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071 Seville, Spain.
| | - Fernando Iglesias-Guerra
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071 Seville, Spain
| |
Collapse
|
23
|
Barrier ML, Myszor IT, Sahariah P, Sigurdsson S, Carmena-Bargueño M, Pérez-Sánchez H, Gudmundsson GH. Aroylated phenylenediamine HO53 modulates innate immunity, histone acetylation and metabolism. Mol Immunol 2023; 155:153-164. [PMID: 36812763 DOI: 10.1016/j.molimm.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/18/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023]
Abstract
In the current context of antibiotic resistance, the need to find alternative treatment strategies is urgent. Our research aimed to use synthetized aroylated phenylenediamines (APDs) to induce the expression of cathelicidin antimicrobial peptide gene (CAMP) to minimize the necessity of antibiotic use during infection. One of these compounds, HO53, showed promising results in inducing CAMP expression in bronchial epithelium cells (BCi-NS1.1 hereafter BCi). Thus, to decipher the cellular effects of HO53 on BCi cells, we performed RNA sequencing (RNAseq) analysis after 4, 8 and 24 h treatment of HO53. The number of differentially expressed transcripts pointed out an epigenetic modulation. Yet, the chemical structure and in silico modeling indicated HO53 as a histone deacetylase (HDAC) inhibitor. When exposed to a histone acetyl transferase (HAT) inhibitor, BCi cells showed a decreased expression of CAMP. Inversely, when treated with a specific HDAC3 inhibitor (RGFP996), BCi cells showed an increased expression of CAMP, indicating acetylation status in cells as determinant for the induction of the expression of the gene CAMP expression. Interestingly, a combination treatment with both HO53 and HDAC3 inhibitor RGFP966 leads to a further increase of CAMP expression. Moreover, HDAC3 inhibition by RGFP966 leads to increased expression of STAT3 and HIF1A, both previously demonstrated to be involved in pathways regulating CAMP expression. Importantly, HIF1α is considered as a master regulator in metabolism. A significant number of genes of metabolic enzymes were detected in our RNAseq data with enhanced expression conveying a shift toward enhanced glycolysis. Overall, we are demonstrating that HO53 might have a translational value against infections in the future through a mechanism leading to innate immunity strengthening involving HDAC inhibition and shifting the cells towards an immunometabolism, which further favors innate immunity activation.
Collapse
Affiliation(s)
- Marjorie Laurence Barrier
- Department of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Iwona Teresa Myszor
- Department of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Priyanka Sahariah
- Department of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Snaevar Sigurdsson
- Department of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Miguel Carmena-Bargueño
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), UCAM Universidad Católica de Murcia, Guadalupe, Spain
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), UCAM Universidad Católica de Murcia, Guadalupe, Spain
| | - Gudmundur Hrafn Gudmundsson
- Department of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
24
|
Losev TV, Gerasimov IS, Panova MV, Lisov AA, Abdyusheva YR, Rusina PV, Zaletskaya E, Stroganov OV, Medvedev MG, Novikov FN. Quantum Mechanical-Cluster Approach to Solve the Bioisosteric Replacement Problem in Drug Design. J Chem Inf Model 2023; 63:1239-1248. [PMID: 36763797 DOI: 10.1021/acs.jcim.2c01212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Bioisosteres are molecules that differ in substituents but still have very similar shapes. Bioisosteric replacements are ubiquitous in modern drug design, where they are used to alter metabolism, change bioavailability, or modify activity of the lead compound. Prediction of relative affinities of bioisosteres with computational methods is a long-standing task; however, the very shape closeness makes bioisosteric substitutions almost intractable for computational methods, which use standard force fields. Here, we design a quantum mechanical (QM)-cluster approach based on the GFN2-xTB semi-empirical quantum-chemical method and apply it to a set of H → F bioisosteric replacements. The proposed methodology enables advanced prediction of biological activity change upon bioisosteric substitution of -H with -F, with the standard deviation of 0.60 kcal/mol, surpassing the ChemPLP scoring function (0.83 kcal/mol), and making QM-based ΔΔG estimation comparable to ∼0.42 kcal/mol standard deviation of in vitro experiment. The speed of the method and lack of tunable parameters makes it affordable in current drug research.
Collapse
Affiliation(s)
- Timofey V Losev
- N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation.,Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russian Federation.,A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Igor S Gerasimov
- N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation.,Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| | - Maria V Panova
- N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation
| | - Alexey A Lisov
- N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation
| | - Yana R Abdyusheva
- N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation.,National Research University Higher School of Economics, Myasnitskaya Street 20, 101000 Moscow, Russian Federation
| | - Polina V Rusina
- N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation
| | - Eugenia Zaletskaya
- N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation.,National Research University Higher School of Economics, Myasnitskaya Street 20, 101000 Moscow, Russian Federation
| | - Oleg V Stroganov
- BioMolTech Corp., 226 York Mills Rd, Toronto, Ontario M2L 1L1, Canada
| | - Michael G Medvedev
- N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation
| | - Fedor N Novikov
- N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation.,National Research University Higher School of Economics, Myasnitskaya Street 20, 101000 Moscow, Russian Federation
| |
Collapse
|
25
|
A Phytoprostane from Gracilaria longissima Increases Platelet Activation, Platelet Adhesion to Leukocytes and Endothelial Cell Migration by Potential Binding to EP3 Prostaglandin Receptor. Int J Mol Sci 2023; 24:ijms24032730. [PMID: 36769052 PMCID: PMC9916792 DOI: 10.3390/ijms24032730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Plant phytoprostanes (PhytoPs) are lipid oxidative stress mediators that share structural similarities with mammal prostaglandins (PGs). They have been demonstrated to modulate inflammatory processes mediated by prostaglandins. The present study aims to test the effects of the most abundant oxylipin from Gracilaria longissima, ent-9-D1t-Phytoprostane (9-D1t-PhytoP), on platelet activation and vascular cells as well as clarify possible interactions with platelets and the endothelial EP3 receptor Platelet and monocyte activation was assessed by flow cytometry in the presence of purified 9-D1t-PhytoP. Cell migration was studied using the human Ea.hy926 cell line by performing a scratch wound healing assay. The RNA expression of inflammatory markers was evaluated by RT-PCR under inflammatory conditions. Blind docking consensus was applied to the study of the interactions of selected ligands against the EP3 receptor protein. The 9D1t-PhytoP exerts several pharmacological effects; these include prothrombotic and wound-healing properties. In endothelial cells, 9D1t-PhytP mimics the migration stimulus of PGE2. Computational analysis revealed that 9D1t-PhytP forms a stable complex with the hydrophobic pocket of the EP3 receptor by interaction with the same residues as misoprostol and prostaglandin E2 (PGE2), thus supporting its potential as an EP3 agonist. The potential to form procoagulant platelets and the higher endothelial migration rate of the 9-D1t-PhytoP, together with its capability to interact with PGE2 main target receptor in platelets suggest herein that this oxylipin could be a strong candidate for pharmaceutical research from a multitarget perspective.
Collapse
|
26
|
Rasool N, Razzaq Z, Gul Khan S, Javaid S, Akhtar N, Mahmood S, Christensen JB, Ali Altaf A, Muhammad Muneeb Anjum S, Alqahtani F, AlAsmari AF, Imran I. A facile synthesis of 1,3,4-oxadiazole-based carbamothioate molecules: antiseizure potential, EEG evaluation and in-silico docking studies. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
27
|
Odoemelam CS, Hunter E, Ahmad Z, Kamerlin CL, White S, Wilson PB. Computational Investigation of Ligand Binding of Flavonoids in Cytochrome P450 Receptors. Curr Pharm Des 2022; 28:3637-3648. [PMID: 36411579 DOI: 10.2174/1381612829666221121151713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/23/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022]
Abstract
AIM The cytochrome P450 enzymes play a significant role in regulating cellular and physiological processes by activating endogenous compounds. They also play an essential role in the detoxification process of xenobiotics. Flavonoids belong to a class of polyphenols found in food, such as vegetables, red wine, beer, and fruits, which modulate biological functions in the body. METHODS The inhibition of CYP1A1 and CYP1B1 using nutritional sources has been reported as a strategy for cancer prevention. This study investigated the interactions of selected flavonoids binding to the cytochrome P450 enzymes (CYP1A1 and CYP1B1) and their ADMET properties in silico. From docking studies, our findings showed flavonoids, isorhamnetin and pedalitin, to have the strongest binding energies in the crystal structures 6DWM and 6IQ5. RESULTS The amino acid residues Asp 313 and Phe 224 in 6DWM interacted with all the ligands investigated, and Ala 330 in 6IQ5 interacted with all the ligands examined. The ligands did not violate any drug-likeness parameters. CONCLUSION These data suggest roles for isorhamnetin and pedalitin as potential precursors for natural product- derived therapies.
Collapse
Affiliation(s)
- Chiemela S Odoemelam
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, 50 Shakespeare St, Nottingham NG1 4FQ, UK
| | - Elena Hunter
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, 50 Shakespeare St, Nottingham NG1 4FQ, UK
| | - Zeeshan Ahmad
- School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - Caroline Lynn Kamerlin
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Samuel White
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, 50 Shakespeare St, Nottingham NG1 4FQ,UK
| | - Philippe B Wilson
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, 50 Shakespeare St, Nottingham NG1 4FQ,UK
| |
Collapse
|
28
|
Hernández-Silva D, Alcaraz-Pérez F, Pérez-Sánchez H, Cayuela ML. Virtual screening and zebrafish models in tandem, for drug discovery and development. Expert Opin Drug Discov 2022:1-13. [DOI: 10.1080/17460441.2022.2147503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- David Hernández-Silva
- Telomerase, Cancer and Aging Group (TCAG), Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca (IMIB-Arrixaca), 30120 Murcia, Spain
- Structural Bioinformatics and High-Performance Computing Research Group (BIOHPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), Guadalupe, 30107 Murcia, Spain
| | - Francisca Alcaraz-Pérez
- Telomerase, Cancer and Aging Group (TCAG), Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca (IMIB-Arrixaca), 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 30100 Murcia, Spain
| | - Horacio Pérez-Sánchez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 30100 Murcia, Spain
| | - Maria Luisa Cayuela
- Telomerase, Cancer and Aging Group (TCAG), Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca (IMIB-Arrixaca), 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 30100 Murcia, Spain
| |
Collapse
|
29
|
Jackson V, Jordan L, Burgin RN, McGaw OJS, Muir CW, Ceban V. Application of Molecular-Modeling, Scaffold-Hopping, and Bioisosteric Approaches to the Discovery of New Heterocyclic Picolinamides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11031-11041. [PMID: 35852973 DOI: 10.1021/acs.jafc.2c03755] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Macrocyclic natural products and their derivatives are a valuable source for biologically active crop protection products and have had significant impact on the development of conventional agrochemicals. However, they can be challenging starting points for lead-generation efforts because of their size, structural complexity, and developability. Using molecular modeling and electrostatic analysis, alternative bicyclic isosteres were identified as replacements for the antifungal nine-membered macrocycle UK-2A. By application of a structure-based conformational approach, a series of heterocyclic replacements were derivatized to deliver promising fungicidal activity and scaffold bioisosteres were further diversified to investigate structure-activity relationships.
Collapse
Affiliation(s)
- Victoria Jackson
- Globachem Discovery, Mereside, Alderley Park, Macclesfield SK10 4TG, United Kingdom
| | - Linda Jordan
- Globachem Discovery, Mereside, Alderley Park, Macclesfield SK10 4TG, United Kingdom
| | - Ryan N Burgin
- Globachem Discovery, Mereside, Alderley Park, Macclesfield SK10 4TG, United Kingdom
| | - Oliver J S McGaw
- Globachem Discovery, Mereside, Alderley Park, Macclesfield SK10 4TG, United Kingdom
| | - Calum W Muir
- Globachem Discovery, Mereside, Alderley Park, Macclesfield SK10 4TG, United Kingdom
| | - Victor Ceban
- Globachem Discovery, Mereside, Alderley Park, Macclesfield SK10 4TG, United Kingdom
| |
Collapse
|
30
|
Jaśkiewicz A, Budryn G, Carmena-Bargueño M, Pérez-Sánchez H. Evaluation of Activity of Sesquiterpene Lactones and Chicory Extracts as Acetylcholinesterase Inhibitors Assayed in Calorimetric and Docking Simulation Studies. Nutrients 2022; 14:3633. [PMID: 36079888 PMCID: PMC9459812 DOI: 10.3390/nu14173633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/20/2022] [Accepted: 08/30/2022] [Indexed: 12/03/2022] Open
Abstract
The aim of the study was to explain the effects of sesquiterpene lactones (SLs) from chicory (Cichorium intybus L.) root extracts as inhibitors of acetylcholinesterase (AChE) at the molecular level and to determine the inhibition of AChE activity by specific SLs (lactucin and lactucopicrin) and different chicory extracts. The obtained SLs-rich extracts were purified by the countercurrent partition chromatography (CPC) technique. AChE inhibitors were analyzed using two models: isothermal titration calorimetry (ITC) and docking simulation. The results of ITC analysis of the enzyme and the ligands' complexation showed strong interactions of SLs as well as extracts from chicory with AChE. In a test of enzyme activity inhibition after introducing acetylcholine into the model system with SL, a stronger ability to inhibit the hydrolysis of the neurotransmitter was observed for lactucopicrin, which is one of the dominant SLs in chicory. The inhibition of enzyme activity was more efficient in the case of extracts, containing different enzyme ligands, exhibiting complementary patterns of binding the AChE active site. The study showed the high potential of using chicory to decrease the symptoms of Alzheimer's disease.
Collapse
Affiliation(s)
- Andrzej Jaśkiewicz
- Faculty of Biotechnology and Food Sciences, Institute of Food Technology and Analysis, Lodz University of Technology, 90-537 Lodz, Poland
| | - Grażyna Budryn
- Faculty of Biotechnology and Food Sciences, Institute of Food Technology and Analysis, Lodz University of Technology, 90-537 Lodz, Poland
| | - Miguel Carmena-Bargueño
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), Computer Science Department, Catholic University of Murcia (UCAM), Guadalupe, 30107 Murcia, Spain
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), Computer Science Department, Catholic University of Murcia (UCAM), Guadalupe, 30107 Murcia, Spain
| |
Collapse
|
31
|
Kurgina TA, Shram SI, Kutuzov MM, Abramova TV, Shcherbakova TA, Maltseva EA, Poroikov VV, Lavrik OI, Švedas VK, Nilov DK. Inhibitory Effects of 7-Methylguanine and Its Metabolite 8-Hydroxy-7-Methylguanine on Human Poly(ADP-Ribose) Polymerase 1. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:823-831. [PMID: 36171646 DOI: 10.1134/s0006297922080132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 06/16/2023]
Abstract
Previously, we have found that a nucleic acid metabolite, 7-methylguanine (7mGua), produced in the body can have an inhibitory effect on the poly(ADP-ribose) polymerase 1 (PARP1) enzyme, an important pharmacological target in anticancer therapy. In this work, using an original method of analysis of PARP1 activity based on monitoring fluorescence anisotropy, we studied inhibitory properties of 7mGua and its metabolite, 8-hydroxy-7-methylguanine (8h7mGua). Both compounds inhibited PARP1 enzymatic activity in a dose-dependent manner, however, 8h7mGua was shown to be a stronger inhibitor. The IC50 values for 8h7mGua at different concentrations of the NAD+ substrate were found to be 4 times lower, on average, than those for 7mGua. The more efficient binding of 8h7mGua in the PARP1 active site is explained by the presence of an additional hydrogen bond with the Glu988 catalytic residue. Experimental and computational studies did not reveal the effect of 7mGua and 8h7mGua on the activity of other DNA repair enzymes, indicating selectivity of their inhibitory action.
Collapse
Affiliation(s)
- Tatyana A Kurgina
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russia
| | - Stanislav I Shram
- Institute of Molecular Genetics of National Research Center "Kurchatov Institute", Moscow, 123182, Russia
| | - Mikhail M Kutuzov
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russia
| | - Tatyana V Abramova
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russia
| | - Tatyana A Shcherbakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Ekaterina A Maltseva
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russia
| | | | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Vytas K Švedas
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Research Computing Center, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Dmitry K Nilov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
32
|
Giménez-Bastida JA, Ávila-Gálvez MÁ, Carmena-Bargueño M, Pérez-Sánchez H, Espín JC, González-Sarrías A. Physiologically relevant curcuminoids inhibit angiogenesis via VEGFR2 in human aortic endothelial cells. Food Chem Toxicol 2022; 166:113254. [PMID: 35752269 DOI: 10.1016/j.fct.2022.113254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/02/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
Angiogenesis is a complex process encompassing endothelial cell proliferation, migration, and tube formation. While numerous studies describe that curcumin exerts antitumor properties (e.g., targeting angiogenesis), information regarding other dietary curcuminoids such as demethoxycurcumin (DMC) and bisdemethoxycurcumin (BisDMC) is scant. In this study, we evaluated the antiangiogenic activities of these three curcuminoids at physiological concentrations (0.1-5 μM) on endothelial cell migration and tubulogenesis and the underlying associated mechanisms on human aortic endothelial cells (HAECs). Results showed that the individual compounds and a representative mixture inhibited the tubulogenic and migration capacity of endothelial cells dose-dependently, while sparing cell viability. Notably, DMC and BisDMC at 0.1 and 1 μM showed higher capacity than curcumin inhibiting tubulogenesis. These compounds also reduced phosphorylation of the VEGFR2 and the downstream ERK and Akt pathways in VEGF165-stimulated cells. In silico analysis showed that curcuminoids could bind the VEGFR2 antagonizing the VEGF-mediated angiogenesis. These findings suggest that physiologically concentrations of curcuminoids might counteract pro-angiogenic stimuli relevant to tumorigenic processes.
Collapse
Affiliation(s)
- Juan Antonio Giménez-Bastida
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Dept. Food Science and Technology, CEBAS-CSIC, P.O. Box 164, 30100. Campus de Espinardo, Murcia, Spain.
| | - María Ángeles Ávila-Gálvez
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Dept. Food Science and Technology, CEBAS-CSIC, P.O. Box 164, 30100. Campus de Espinardo, Murcia, Spain
| | - Miguel Carmena-Bargueño
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), HiTech Innovation Hub, UCAM Universidad Católica de Murcia, Campus de los Jerónimos, s/n, 30107, Guadalupe, Spain
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), HiTech Innovation Hub, UCAM Universidad Católica de Murcia, Campus de los Jerónimos, s/n, 30107, Guadalupe, Spain
| | - Juan Carlos Espín
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Dept. Food Science and Technology, CEBAS-CSIC, P.O. Box 164, 30100. Campus de Espinardo, Murcia, Spain
| | - Antonio González-Sarrías
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Dept. Food Science and Technology, CEBAS-CSIC, P.O. Box 164, 30100. Campus de Espinardo, Murcia, Spain
| |
Collapse
|
33
|
Gao Y, Wang H, Shen L, Xu H, Deng M, Cheng M, Wang J. Discovery of benzo[d]isothiazole derivatives as novel scaffold inhibitors targeting the programmed cell death-1/programmed cell death-ligand 1 (PD-1/PD-L1) interaction through “ring fusion” strategy. Bioorg Chem 2022; 123:105769. [DOI: 10.1016/j.bioorg.2022.105769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/26/2022] [Accepted: 03/27/2022] [Indexed: 11/30/2022]
|
34
|
Pushkarev SV, Vinnik VA, Shapovalova IV, Švedas VK, Nilov DK. Modeling the Structure of Human tRNA-Guanine Transglycosylase in Complex with 7-Methylguanine and Revealing the Factors that Determine the Enzyme Interaction with Inhibitors. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:443-449. [PMID: 35790378 DOI: 10.1134/s0006297922050054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
tRNA-guanine transglycosylase, an enzyme catalyzing replacement of guanine with queuine in human tRNA and participating in the translation mechanism, is involved in the development of cancer. However, information on the small-molecule inhibitors that can suppress activity of this enzyme is very limited. Molecular dynamics simulations were used to determine the amino acid residues that provide efficient binding of inhibitors in the active site of tRNA-guanine transglycosylase. It was demonstrated using 7-methylguanine molecule as a probe that the ability of the inhibitor to adopt a charged state in the environment of hydrogen bond acceptors Asp105 and Asp159 plays a key role in complex formation. Formation of the hydrogen bonds and hydrophobic contacts with Gln202, Gly229, Phe109, and Met259 residues are also important. It has been predicted that introduction of the substituents would have a different effect on the ability to inhibit tRNA-guanine transglycosylase, as well as the DNA repair protein poly(ADP-ribose) polymerase 1, which can contribute to the development of more efficient and selective compounds.
Collapse
Affiliation(s)
- Sergey V Pushkarev
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Valeriia A Vinnik
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Irina V Shapovalova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vytas K Švedas
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Dmitry K Nilov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
35
|
Chaudhary CL, Lim D, Chaudhary P, Guragain D, Awasthi BP, Park HD, Kim JA, Jeong BS. 6-Amino-2,4,5-trimethylpyridin-3-ol and 2-amino-4,6-dimethylpyrimidin-5-ol derivatives as selective fibroblast growth factor receptor 4 inhibitors: design, synthesis, molecular docking, and anti-hepatocellular carcinoma efficacy evaluation. J Enzyme Inhib Med Chem 2022; 37:844-856. [PMID: 35296193 PMCID: PMC8933034 DOI: 10.1080/14756366.2022.2048378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A novel series of aminotrimethylpyridinol and aminodimethylpyrimidinol derivatives were designed and synthesised for FGFR4 inhibitors. Structure-activity relationship on the FGFR4 inhibitory activity of the new compounds was clearly elucidated by an intensive molecular docking study. Anti-cancer activity of the compounds was evaluated using hepatocellular carcinoma (HCC) cell lines and a chick chorioallantoic membrane (CAM) tumour model. Compound 6O showed FGFR4 inhibitory activity over FGFR1 - 3. Compared to the positive control BLU9931, compound 6O exhibited at least 8 times higher FGFR4 selectivity. Strong anti-proliferative activity of compound 6O was observed against Hep3B, an HCC cell line which was a much more sensitive cell line to BLU9931. In vivo anti-tumour activity of compound 6O against Hep3B-xenografted CAM tumour model was almost similar to BLU9931. Overall, compound 6O, a novel derivative of aminodimethylpyrimidinol, was a selective FGFR4 kinase inhibitor blocking HCC tumour growth.
Collapse
Affiliation(s)
| | - Dongchul Lim
- Innovo Therapeutics Inc, Daejeon, Republic of Korea
| | - Prakash Chaudhary
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Diwakar Guragain
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | | | | | - Jung-Ae Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Byeong-Seon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
36
|
Yang X, Liu Y, Gan J, Xiao ZX, Cao Y. FitDock: protein-ligand docking by template fitting. Brief Bioinform 2022; 23:6548375. [PMID: 35289358 DOI: 10.1093/bib/bbac087] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/09/2022] [Accepted: 02/20/2022] [Indexed: 01/01/2023] Open
Abstract
Protein-ligand docking is an essential method in computer-aided drug design and structural bioinformatics. It can be used to identify active compounds and reveal molecular mechanisms of biological processes. A successful docking usually requires thorough conformation sampling and scoring, which are computationally expensive and difficult. Recent studies demonstrated that it can be beneficial to docking with the guidance of existing similar co-crystal structures. In this work, we developed a protein-ligand docking method, named FitDock, which fits initial conformation to the given template using a hierarchical multi-feature alignment approach, subsequently explores the possible conformations and finally outputs refined docking poses. In our comprehensive benchmark tests, FitDock showed 40%-60% improvement in terms of docking success rate and an order of magnitude faster over popular docking methods, if template structures exist (> 0.5 ligand similarity). FitDock has been implemented in a user-friendly program, which could serve as a convenient tool for drug design and molecular mechanism exploration. It is now freely available for academic users at http://cao.labshare.cn/fitdock/.
Collapse
Affiliation(s)
- Xiaocong Yang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang Liu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jianhong Gan
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhi-Xiong Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang Cao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
37
|
Identification of Kukoamine A, Zeaxanthin, and Clexane as New Furin Inhibitors. Int J Mol Sci 2022; 23:ijms23052796. [PMID: 35269938 PMCID: PMC8911046 DOI: 10.3390/ijms23052796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023] Open
Abstract
The endogenous protease furin is a key protein in many different diseases, such as cancer and infections. For this reason, a wide range of studies has focused on targeting furin from a therapeutic point of view. Our main objective consisted of identifying new compounds that could enlarge the furin inhibitor arsenal; secondarily, we assayed their adjuvant effect in combination with a known furin inhibitor, CMK, which avoids the SARS-CoV-2 S protein cleavage by means of that inhibition. Virtual screening was carried out to identify potential furin inhibitors. The inhibition of physiological and purified recombinant furin by screening selected compounds, Clexane, and these drugs in combination with CMK was assayed in fluorogenic tests by using a specific furin substrate. The effects of the selected inhibitors from virtual screening on cell viability (293T HEK cell line) were assayed by means of flow cytometry. Through virtual screening, Zeaxanthin and Kukoamine A were selected as the main potential furin inhibitors. In fluorogenic assays, these two compounds and Clexane inhibited both physiological and recombinant furin in a dose-dependent way. In addition, these compounds increased physiological furin inhibition by CMK, showing an adjuvant effect. In conclusion, we identified Kukoamine A, Zeaxanthin, and Clexane as new furin inhibitors. In addition, these drugs were able to increase furin inhibition by CMK, so they could also increase its efficiency when avoiding S protein proteolysis, which is essential for SARS-CoV-2 cell infection.
Collapse
|
38
|
|
39
|
Elinson MN, Ryzhkova YE, Ryzhkov FV, Fakhrutdinov AN. Kojic acid aldol adduct with isatin as inhibitors of pyruvate dehydrogenase kinase. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Michail N. Elinson
- Department Organic Chemistry N. D. Zelinsky Institute of Organic Chemistry Moscow Russia
| | - Yuliya E. Ryzhkova
- Department Organic Chemistry N. D. Zelinsky Institute of Organic Chemistry Moscow Russia
| | - Fedor V. Ryzhkov
- Department Organic Chemistry N. D. Zelinsky Institute of Organic Chemistry Moscow Russia
| | - Artem N. Fakhrutdinov
- Department Organic Chemistry N. D. Zelinsky Institute of Organic Chemistry Moscow Russia
| |
Collapse
|
40
|
Bifunctional Inhibitors of Influenza Virus Neuraminidase: Molecular Design of a Sulfonamide Linker. Int J Mol Sci 2021; 22:ijms222313112. [PMID: 34884917 PMCID: PMC8657994 DOI: 10.3390/ijms222313112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
The growing resistance of the influenza virus to widely used competitive neuraminidase inhibitors occupying the active site of the enzyme requires the development of bifunctional compounds that can simultaneously interact with other regulatory sites on the protein surface. When developing such an inhibitor and combining structural fragments that could be located in the sialic acid cavity of the active site and the adjacent 430-cavity, it is necessary to select a suitable linker not only for connecting the fragments, but also to ensure effective interactions with the unique arginine triad Arg118-Arg292-Arg371 of neuraminidase. Using molecular modeling, we have demonstrated the usefulness of the sulfonamide group in the linker design and the potential advantage of this functional group over other isosteric analogues.
Collapse
|
41
|
A New Class of Uracil-DNA Glycosylase Inhibitors Active against Human and Vaccinia Virus Enzyme. Molecules 2021; 26:molecules26216668. [PMID: 34771075 PMCID: PMC8587785 DOI: 10.3390/molecules26216668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/24/2021] [Accepted: 10/30/2021] [Indexed: 11/17/2022] Open
Abstract
Uracil-DNA glycosylases are enzymes that excise uracil bases appearing in DNA as a result of cytosine deamination or accidental dUMP incorporation from the dUTP pool. The activity of Family 1 uracil-DNA glycosylase (UNG) activity limits the efficiency of antimetabolite drugs and is essential for virulence in some bacterial and viral infections. Thus, UNG is regarded as a promising target for antitumor, antiviral, antibacterial, and antiprotozoal drugs. Most UNG inhibitors presently developed are based on the uracil base linked to various substituents, yet new pharmacophores are wanted to target a wide range of UNGs. We have conducted virtual screening of a 1,027,767-ligand library and biochemically screened the best hits for the inhibitory activity against human and vaccinia virus UNG enzymes. Although even the best inhibitors had IC50 ≥ 100 μM, they were highly enriched in a common fragment, tetrahydro-2,4,6-trioxopyrimidinylidene (PyO3). In silico, PyO3 preferably docked into the enzyme's active site, and in kinetic experiments, the inhibition was better consistent with the competitive mechanism. The toxicity of two best inhibitors for human cells was independent of the presence of methotrexate, which is consistent with the hypothesis that dUMP in genomic DNA is less toxic for the cell than strand breaks arising from the massive removal of uracil. We conclude that PyO3 may be a novel pharmacophore with the potential for development into UNG-targeting agents.
Collapse
|
42
|
Cao J, Lu G, Wen L, Luo P, Huang Y, Liang R, Tang K, Qin Z, Chan CCY, Chik KKH, Du J, Yin F, Ye ZW, Chu H, Jin DY, Yuen KY, Chan JFW, Yuan S. Severe fever with thrombocytopenia syndrome virus (SFTSV)-host interactome screen identifies viral nucleoprotein-associated host factors as potential antiviral targets. Comput Struct Biotechnol J 2021; 19:5568-5577. [PMID: 34712400 PMCID: PMC8523828 DOI: 10.1016/j.csbj.2021.09.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 11/08/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne virus that causes severe infection in humans characterized by an acute febrile illness with thrombocytopenia and hemorrhagic complications, and a mortality rate of up to 30%. Understanding on virus-host protein interactions may facilitate the identification of druggable antiviral targets. Herein, we utilized liquid chromatography-tandem mass spectrometry to characterize the SFTSV interactome in human embryonic kidney-derived permanent culture (HEK-293T) cells. We identified 445 host proteins that co-precipitated with the viral glycoprotein N, glycoprotein C, nucleoprotein, or nonstructural protein. A network of SFTSV-host protein interactions based on reduced viral fitness affected upon host factor down-regulation was then generated. Screening of the DrugBank database revealed numerous drug compounds that inhibited the prioritized host factors in this SFTSV interactome. Among these drug compounds, the clinically approved artenimol (an antimalarial) and omacetaxine mepesuccinate (a cephalotaxine) were found to exhibit anti-SFTSV activity in vitro. The higher selectivity of artenimol (71.83) than omacetaxine mepesuccinate (8.00) highlights artenimol’s potential for further antiviral development. Mechanistic evaluation showed that artenimol interfered with the interaction between the SFTSV nucleoprotein and the host glucose-6-phosphate isomerase (GPI), and that omacetaxine mepesuccinate interfered with the interaction between the viral nucleoprotein with the host ribosomal protein L3 (RPL3). In summary, the novel interactomic data in this study revealed the virus-host protein interactions in SFTSV infection and facilitated the discovery of potential anti-SFTSV treatments.
Collapse
Affiliation(s)
- Jianli Cao
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Gang Lu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, China.,Academician Workstation of Hainan Province, Hainan Medical University, Haikou, Hainan 571199, China.,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Pathogen Biology, Hainan Medical University, Haikou, Hainan 571199, China
| | - Lei Wen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Peng Luo
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yaoqiang Huang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Ronghui Liang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kaiming Tang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Zhenzhi Qin
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Chris Chun-Yiu Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kenn Ka-Heng Chik
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jiang Du
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, China.,Academician Workstation of Hainan Province, Hainan Medical University, Haikou, Hainan 571199, China.,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Pathogen Biology, Hainan Medical University, Haikou, Hainan 571199, China
| | - Feifei Yin
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, China.,Academician Workstation of Hainan Province, Hainan Medical University, Haikou, Hainan 571199, China.,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Pathogen Biology, Hainan Medical University, Haikou, Hainan 571199, China
| | - Zi-Wei Ye
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Dong-Yan Jin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Academician Workstation of Hainan Province, Hainan Medical University, Haikou, Hainan 571199, China.,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Academician Workstation of Hainan Province, Hainan Medical University, Haikou, Hainan 571199, China.,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| |
Collapse
|
43
|
Systematic analysis of the mechanism of Xiaochaihu decoction in hepatitis B treatment via network pharmacology and molecular docking. Comput Biol Med 2021; 138:104894. [PMID: 34607274 DOI: 10.1016/j.compbiomed.2021.104894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/18/2022]
Abstract
Hepatitis B (HB) is a globally prevalent infectious disease caused by the HB virus. Xiaochaihu decoction (XCHD) is a classic herbal formula with a long history of clinical application in treating HB. Although the anti-HB activity of XCHD has been reported, systematic research on the exact mechanism of action is lacking. Here, a network pharmacology-based approach was used to predict the active components, important targets, and potential mechanism of XCHD in HB treatment. Investigation included drug-likeness evaluation; absorption, distribution, metabolism, and elimination (ADME) screening; protein-protein interaction (PPI) network construction and cluster analysis; Gene Ontology (GO) analysis; and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation. Molecular docking was adopted to investigate the interaction between important target proteins and active components. Eighty-seven active components of XCHD and 155 anti-HB targets were selected for further analysis. The GO enrichment and similarity analysis results indicated that XCHD might perform similar or the same GO functions. Glycyrrhizae Radix (GR), one of the seven XCHD herbs, likely exerts some unique GO functions such as the regulation of interleukin-12 production, positive regulation of interleukin-1 beta secretion, and regulation of the I-kappaB/NF-kappaB complex. The PPI network and KEGG pathway analysis results showed that XCHD affects HB mainly through modulating pathways related to viral infection, immunity, cancer, signal transduction, and metabolism. Additionally, molecular docking verified that the active compounds (quercetin, chrysin, and capsaicin) could bind with the key targets. This work systematically explored the anti-HB mechanism of XCHD and provides a novel perspective for future pharmacological research.
Collapse
|
44
|
Del Castillo-Santaella T, Hernández-Morante JJ, Suárez-Olmos J, Maldonado-Valderrama J, Peña-García J, Martínez-Cortés C, Pérez-Sánchez H. Identification of the thistle milk component Silibinin(A) and Glutathione-disulphide as potential inhibitors of the pancreatic lipase: Potential implications on weight loss. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
45
|
Computational Study on Temperature Driven Structure-Function Relationship of Polysaccharide Producing Bacterial Glycosyl Transferase Enzyme. Polymers (Basel) 2021; 13:polym13111771. [PMID: 34071348 PMCID: PMC8198650 DOI: 10.3390/polym13111771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
Glycosyltransferase (GTs) is a wide class of enzymes that transfer sugar moiety, playing a key role in the synthesis of bacterial exopolysaccharide (EPS) biopolymer. In recent years, increased demand for bacterial EPSs has been observed in pharmaceutical, food, and other industries. The application of the EPSs largely depends upon their thermal stability, as any industrial application is mainly reliant on slow thermal degradation. Keeping this in context, EPS producing GT enzymes from three different bacterial sources based on growth temperature (mesophile, thermophile, and hyperthermophile) are considered for in silico analysis of the structural–functional relationship. From the present study, it was observed that the structural integrity of GT increases significantly from mesophile to thermophile to hyperthermophile. In contrast, the structural plasticity runs in an opposite direction towards mesophile. This interesting temperature-dependent structural property has directed the GT–UDP-glucose interactions in a way that thermophile has finally demonstrated better binding affinity (−5.57 to −10.70) with an increased number of hydrogen bonds (355) and stabilizing amino acids (Phe, Ala, Glu, Tyr, and Ser). The results from this study may direct utilization of thermophile-origin GT as best for industrial-level bacterial polysaccharide production.
Collapse
|
46
|
Efficient Electrocatalytic Approach to Spiro[Furo[3,2-b]pyran-2,5′-pyrimidine] Scaffold as Inhibitor of Aldose Reductase. ELECTROCHEM 2021. [DOI: 10.3390/electrochem2020021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A continuously growing interest in convenient and ‘green’ reaction techniques encourages organic chemists to elaborate on new synthetic methodologies. Nowadays, organic electrochemistry is a new useful method with important synthetic and ecological advantages. The employment of an electrocatalytic methodology in cascade reactions is very promising because it provides the combination of the synthetic virtues of the cascade strategy with the ecological benefits and convenience of electrocatalytic procedures. In this research, a new type of the electrocatalytic cascade transformation was found: the electrochemical cyclization of 1,3-dimethyl-5-[[3-hydroxy-6-(hydroxymethyl)-4-oxo-4H-pyran-2-yl](aryl)methyl]pyrimidine-2,4,6(1H,3H,5H)-triones was carried out in alcohols in an undivided cell in the presence of sodium halides with the selective formation of spiro[furo[3,2-b]pyran-2,5′-pyrimidines] in 59-95% yields. This new electrocatalytic process is a selective, facile, and efficient way to create spiro[furo[3,2-b]pyran-2,5′-pyrimidines], which are pharmacologically active heterocyclic systems with different biomedical applications. Spiro[furo[3,2-b]pyran-2,5′-pyrimidines] were found to occupy the binding pocket of aldose reductase and inhibit it. The values of the binding energy and Lead Finder’s Virtual Screening scoring function showed that the formation of protein–ligand complexes was favorable. The synthesized compounds are promising for the inhibition of aldose reductase. This makes them interesting for study in the treatment of diabetes or similar diseases.
Collapse
|
47
|
Computational Design of Novel Allosteric Inhibitors for Plasmodium falciparum DegP. Molecules 2021; 26:molecules26092742. [PMID: 34066964 PMCID: PMC8141111 DOI: 10.3390/molecules26092742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 11/23/2022] Open
Abstract
The serine protease, DegP exhibits proteolytic and chaperone activities, essential for cellular protein quality control and normal cell development in eukaryotes. The P. falciparum DegP is essential for the parasite survival and required to combat the oscillating thermal stress conditions during the infection, protein quality checks and protein homeostasis in the extra-cytoplasmic compartments, thereby establishing it as a potential target for drug development against malaria. Previous studies have shown that diisopropyl fluorophosphate (DFP) and the peptide SPMFKGV inhibit E. coli DegP protease activity. To identify novel potential inhibitors specific to PfDegP allosteric and the catalytic binding sites, we performed a high throughput in silico screening using Malaria Box, Pathogen Box, Maybridge library, ChEMBL library and the library of FDA approved compounds. The screening helped identify five best binders that showed high affinity to PfDegP allosteric (T0873, T2823, T2801, RJC02337, CD00811) and the catalytic binding site (T0078L, T1524, T2328, BTB11534 and 552691). Further, molecular dynamics simulation analysis revealed RJC02337, BTB11534 as the best hits forming a stable complex. WaterMap and electrostatic complementarity were used to evaluate the novel bio-isosteric chemotypes of RJC02337, that led to the identification of 231 chemotypes that exhibited better binding affinity. Further analysis of the top 5 chemotypes, based on better binding affinity, revealed that the addition of electron donors like nitrogen and sulphur to the side chains of butanoate group are more favoured than the backbone of butanoate group. In a nutshell, the present study helps identify novel, potent and Plasmodium specific inhibitors, using high throughput in silico screening and bio-isosteric replacement, which may be experimentally validated.
Collapse
|
48
|
Design, Synthesis, and Molecular Docking Study of New Tyrosyl-DNA Phosphodiesterase 1 (TDP1) Inhibitors Combining Resin Acids and Adamantane Moieties. Pharmaceuticals (Basel) 2021; 14:ph14050422. [PMID: 34062881 PMCID: PMC8147275 DOI: 10.3390/ph14050422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/26/2023] Open
Abstract
In this paper, a series of novel abietyl and dehydroabietyl ureas, thioureas, amides, and thioamides bearing adamantane moieties were designed, synthesized, and evaluated for their inhibitory activities against tyrosil-DNA-phosphodiesterase 1 (TDP1). The synthesized compounds were able to inhibit TDP1 at micromolar concentrations (0.19–2.3 µM) and demonstrated low cytotoxicity in the T98G glioma cell line. The effect of the terpene fragment, the linker structure, and the adamantane residue on the biological properties of the new compounds was investigated. Based on molecular docking results, we suppose that adamantane derivatives of resin acids bind to the TDP1 covalent intermediate, forming a hydrogen bond with Ser463 and hydrophobic contacts with the Phe259 and Trp590 residues and the oligonucleotide fragment of the substrate.
Collapse
|
49
|
Cerón-Carrasco JP, Jacquemin D. Using Theory To Extend the Scope of Azobenzene Drugs in Chemotherapy: Novel Combinations for a Specific Delivery. ChemMedChem 2021; 16:1764-1774. [PMID: 33619857 DOI: 10.1002/cmdc.202100046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/18/2021] [Indexed: 12/12/2022]
Abstract
Gut microorganisms metabolize azobenzene compounds (Ph1 -N=N-Ph2 ) into free aniline products (Ph1 -NH2 +H2 N-Ph2 ), a process that has been largely investigated to reduce dyes residues in the textile industry. However, the action of bacterial core enzymes such as azoreductases (AzoR) might also help to deliver prodrugs that become active when they reach the colonic region, a mechanism with potential applications for the treatment of inflammatory bowel disease (IBD) and colorectal cancer. So far, three azo-bonded prodrugs of 5-aminosalicylic acid (5-ASA), for example, sulfasalazine, olsalazine and balsalazide, have been used for colon-targeted delivery. The present contribution describes the first rational design of a novel azobenzene prodrug thanks to a computational approach, with a focus on linking 5-ASA to another approved anti-inflammatory drug. The resulting prodrugs were assessed for their degradation upon AzoR action. Replacing the original carriers by irsogladine is found to improve action.
Collapse
Affiliation(s)
- José P Cerón-Carrasco
- Reconocimiento y Encapsulación Molecular, Universidad Católica San Antonio de Murcia (UCAM) Campus los Jerónimos, 30107, Murcia, Spain
| | - Denis Jacquemin
- CEISAM UMR CNRS 6230, Université de Nantes, 44000, Nantes, France
| |
Collapse
|
50
|
Bioinformatic Analysis of the Nicotinamide Binding Site in Poly(ADP-Ribose) Polymerase Family Proteins. Cancers (Basel) 2021; 13:cancers13061201. [PMID: 33801950 PMCID: PMC8002165 DOI: 10.3390/cancers13061201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary The PARP family consists of 17 proteins, and some of them are responsible for cancer cells’ viability. Much attention is therefore given to the search for chemical compounds with the ability to suppress distinct PARP family members (for example, PARP-5a and 5b). Here, we present the results of a family-wide bioinformatic analysis of an important functional region in the PARP structure and describe factors that can guide the design of highly selective compounds. Abstract The PARP family consists of 17 members with diverse functions, including those related to cancer cells’ viability. Several PARP inhibitors are of great interest as innovative anticancer drugs, but they have low selectivity towards distinct PARP family members and exert serious adverse effects. We describe a family-wide study of the nicotinamide (NA) binding site, an important functional region in the PARP structure, using comparative bioinformatic analysis and molecular modeling. Mutations in the NA site and D-loop mobility around the NA site were identified as factors that can guide the design of selective PARP inhibitors. Our findings are of particular importance for the development of novel tankyrase (PARPs 5a and 5b) inhibitors for cancer therapy.
Collapse
|