1
|
Huang MH, Cheng CM, Hsu JW, Bai YM, Su TP, Li CT, Tsai SJ, Chan YLE, Chen MH. Risk of subsequent Parkinson's disease among patients with bipolar disorder or major depression: A nationwide longitudinal study in Taiwan. Psychiatry Clin Neurosci 2024. [PMID: 39484734 DOI: 10.1111/pcn.13759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024]
Abstract
AIM Bipolar disorder (BD) and major depression have been associated with an increased risk of developing Parkinson's disease (PD); however, few studies have directly compared the risk of PD development between patients with BD and major depression while considering relevant risk factors and psychotropic medications. METHODS Using the Taiwan National Health Insurance Research Database, 21,186 patients with BD, 21,188 patients with major depression, and 42,374 controls were enrolled between 2001 and 2009, and followed until the end of 2011. Individuals who developed PD during the follow-up period were identified. Cox regression models were used to analyze the hazard ratio (HR) of developing PD, adjusting for demographic factors, comorbidities, and psychotropic medication usage. RESULTS Both patients with BD [HR 8.63, 95% confidence interval (CI) 6.35-11.72] and those with major depression (HR 5.68, 95% CI 4.15-7.78) had an elevated risk of subsequent PD compared to the controls. Patients with BD were associated with a 51% increased risk of subsequent PD compared with patients with major depression. Long-term treatment with antiepileptic mood stabilizers was associated with increased PD risk among patients with late-onset BD and high Charlson comorbidity index scores. Lithium was not associated with an increased PD risk. CONCLUSIONS The study highlights an elevated PD risk in patients with BD and major depression compared to the controls, with BD patients at highest risk. Further research is needed to elucidate the complex interplay between psychotropic medications and neurodegenerative processes in BD, aiming to optimize therapeutic strategies and improve patient outcomes.
Collapse
Grants
- V103E10-001 Taipei Veterans General Hospital
- V104E10-002 Taipei Veterans General Hospital
- V105E10-001-MY2-1 Taipei Veterans General Hospital
- V105A-049 Taipei Veterans General Hospital
- V106B020 Taipei Veterans General Hospital
- V107C-181 Taipei Veterans General Hospital
- V113C-039 Taipei Veterans General Hospital
- V113C-011 Taipei Veterans General Hospital
- V113C-010 Taipei Veterans General Hospital
- 107-2314-B-075-063-MY3 Hsinchu Science Park Bureau, Ministry of Science and Technology, Taiwan
- 112-2314-B-A19-001 - Hsinchu Science Park Bureau, Ministry of Science and Technology, Taiwan
- 113-2314-B-A19-001 - Hsinchu Science Park Bureau, Ministry of Science and Technology, Taiwan
- CI-113-32, CI-113-30 Yen Tjing Ling Medical Foundation
- MOST110-2314-B-075-026 Ministry of Science and Technology, Taiwan
- MOST110-2314-B-075-024-MY3 Ministry of Science and Technology, Taiwan
- MOST 109-2314-B-010-050-MY3 Ministry of Science and Technology, Taiwan
- MOST111-2314-B-075-014-MY2 Ministry of Science and Technology, Taiwan
- MOST 111-2314-B-075-013 Ministry of Science and Technology, Taiwan
- NSTC111-2314-B-A49-089-MY2 Ministry of Science and Technology, Taiwan
- NSTC 113-2314-B-075-042 Ministry of Science and Technology, Taiwan
- VTA112-V1-6-1 Kaohsiung Veterans General Hospital, Tri-Service General Hospital, Academia Sinica Joint Research Program
- VTA113-V1-5-1 Kaohsiung Veterans General Hospital, Tri-Service General Hospital, Academia Sinica Joint Research Program
- VGHUST112-G1-8-1 Veterans General Hospitals and University System of Taiwan Joint Research Program
- VGHUST113-G1-8-1 Veterans General Hospitals and University System of Taiwan Joint Research Program
Collapse
Affiliation(s)
- Mao-Hsuan Huang
- Department of Psychiatry, Taipei Veterans General Hospital, Yuanshan and Suao Branch, Ilan, Taiwan
- Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, General Cheng Hsin Hospital, Taipei, Taiwan
| | - Chih-Ming Cheng
- Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ju-Wei Hsu
- Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ya-Mei Bai
- Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tung-Ping Su
- Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, General Cheng Hsin Hospital, Taipei, Taiwan
| | - Cheng-Ta Li
- Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Jen Tsai
- Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yee-Lam E Chan
- Department of Psychiatry, General Cheng Hsin Hospital, Taipei, Taiwan
| | - Mu-Hong Chen
- Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
2
|
Bhuiyan P, Zhang W, Liang G, Jiang B, Vera R, Chae R, Kim K, Louis LS, Wang Y, Liu J, Wei H. Intranasal Lithium Chloride Nanoparticles Inhibit Inflammatory Pyroptosis in Brains and Ameliorate Memory Loss and Depression Behavior in 5xFAD mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613794. [PMID: 39345574 PMCID: PMC11430220 DOI: 10.1101/2024.09.18.613794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
This study compares the changes in lithium concentrations in the brain and blood following the administration of intranasal or oral lithium chloride (LiCl) dissolved in either Ryanodex Formulation Vehicle (RFV) or water, as well as the therapeutic effectiveness and side effects of intranasal versus oral lithium chloride (LiCl) in RFV, and their mechanisms for inhibiting inflammation and pyroptosis in 5xFAD Alzheimer's Disease (AD) mice brains. In comparison to oral LiCl in RFV, intranasal LiCl in RFV decreased lithium blood concentrations but increased brain concentrations and duration, resulting in a significantly higher brain/blood lithium concentration ratio than intranasal LiCl in water or oral LiCl in RFV in young adult mice. Intranasal LiCl in RFV robustly protects both memory loss and depressive behavior in both young and old 5xFAD mice, with no side effects or thyroid/kidney toxicity. In fact, intranasal LiCl in RFV protects against age-dependent kidney function impairment in 5xFAD mice. This lithium mediated neuroprotection was associated with its potent effects on the inhibition of InsP3R-1 Ca 2+ channel receptor increase, ameliorating pathological inflammation and activation of the pyroptosis pathway, and the associated loss of synapse proteins. Intranasal LiCl in RFV could become an effective and potent inhibitor of pathological inflammation/pyroptosis in the CNS and treat both dementia and depression with no or minimal side effects/organ toxicity, particular in AD.
Collapse
|
3
|
Sofía-Avendaño-Lopez S, Rodríguez-Marín AJ, Lara-Castillo M, Agresott-Carrillo J, Lara-Cortés LE, Sánchez-Almanzar JF, Villamil-Cruz S, Rojas-Rodríguez LC, Ariza-Salamanca DF, Gaviria-Carrillo M, Calderon-Ospina CA, Rodríguez-Quintana J. Molecular, Pathophysiological, and Clinical Aspects of Corticosteroid-Induced Neuropsychiatric Effects: From Bench to Bedside. Biomedicines 2024; 12:2131. [PMID: 39335644 PMCID: PMC11429036 DOI: 10.3390/biomedicines12092131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Corticosteroids are frequently prescribed across medical disciplines, yet they are associated with various adverse effects, including neuropsychiatric symptoms, documented since their introduction over 60 years ago. The cellular mechanisms underlying neuropsychiatric symptoms are complex and somewhat obscure, involving multiple pathways. Notably, they include changes in excitability, cellular death of hippocampal and striatal neurons, and increased inflammation and oxidative stress. Clinical presentation varies, encompassing affective disorders (anxiety, euphoria, depression), psychotic episodes, and cognitive deficits. It is crucial to note that these manifestations often go unnoticed by treating physicians, leading to delayed detection of severe symptoms, complications, and underreporting. Discontinuation of corticosteroids constitutes the cornerstone of treatment, resolving symptoms in up to 80% of cases. Although the literature on this topic is scant, isolated cases and limited studies have explored the efficacy of psychotropic medications for symptomatic control and prophylaxis. Pharmacological intervention may be warranted in situations where corticosteroid reduction or withdrawal is not feasible or beneficial for the patient.
Collapse
Affiliation(s)
- Sara Sofía-Avendaño-Lopez
- Social Epidemiology Research Team, Institut Pierre Louis d'Epidémiologie et de Santé Publique, INSERM, Sorbonne Université, F 75012 Paris, France
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Angela Johanna Rodríguez-Marín
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Mateo Lara-Castillo
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Juanita Agresott-Carrillo
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Luna Estefanía Lara-Cortés
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Juan Felipe Sánchez-Almanzar
- Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Sophya Villamil-Cruz
- Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
- Research Group in Applied Biomedical Sciences (UR Biomed), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Luis Carlos Rojas-Rodríguez
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Daniel Felipe Ariza-Salamanca
- Department of Pharmacobiology, Center for Research and Advanced Studies (Cinvestav), National Polytechnic Institute, Mexico City 14300, Mexico
| | - Mariana Gaviria-Carrillo
- Neuroscience Research Group (NeURos), NeuroVitae Center for Neuroscience, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Carlos Alberto Calderon-Ospina
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
- Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
- Research Group in Applied Biomedical Sciences (UR Biomed), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Jesús Rodríguez-Quintana
- Fundacion CardioInfantil-Instituto de Cardiología, Bogotá 111156, Colombia
- Hospital Universitario Mayor Mederi, Bogotá 111411, Colombia
| |
Collapse
|
4
|
de Miranda AS, Macedo DS, Sanders LLO, Monte AS, Soares MVR, Teixeira AL. Unraveling the role of the renin-angiotensin system in severe mental illnesses: An insight into psychopathology and cognitive deficits. Cell Signal 2024; 124:111429. [PMID: 39306262 DOI: 10.1016/j.cellsig.2024.111429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Severe mental illnesses (SMI), especially schizophrenia and bipolar disorder (BD), are associated with significant distress to patients, reduced life expectancy and a higher cost of care. There is growing evidence that SMI may increase the risk of dementia in later life, posing an additional challenge in the management of these patients. SMI present a complex and highly heterogeneous pathophysiology, which has hampered the understanding of its underlying pathological mechanisms and limited the success of the available therapies. Despite the advances in therapeutic approaches in psychiatry over the past decades, treatment resistance is still a common problem in clinical practice, highlighting the urgent need for novel therapeutic targets for SMI. The discovery that renin-angiotensin system (RAS) components are expressed in the central nervous system opened new possibilities for investigating a potential role for this system in the neurobiology of SMI. The safety and efficacy of AT1 receptor blockers and angiotensin-converting enzyme inhibitors in cardiovascular and metabolic diseases, common medical comorbidities among SMI patients and well-known risk factors for dementia, suggest the potential scalability of these strategies for the management of SMI outcomes including the risk of subsequent dementia. This review aimed to discuss the available evidence from animal models and human studies of the potential involvement of RAS in the pathophysiology of SMI. We also provided a reflection on drawbacks and perspectives that can foster the development of new related therapeutic strategies.
Collapse
Affiliation(s)
- Aline Silva de Miranda
- Laboratory of Neurobiology, Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Danielle S Macedo
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, CE, Fortaleza, Brazil
| | - Lia Lira O Sanders
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, CE, Fortaleza, Brazil; Centro Universitário Christus-Unichristus, Fortaleza, Brazil
| | - Aline S Monte
- Health Science Institute, University of International Integration of Afro-Brazilian Lusophony - UNILAB, Redenção, Brazil
| | - Michelle Verde Ramo Soares
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, CE, Fortaleza, Brazil
| | - Antonio Lucio Teixeira
- The Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
5
|
Sai Varshini M, Aishwarya Reddy R, Thaggikuppe Krishnamurthy P. Unlocking hope: GSK-3 inhibitors and Wnt pathway activation in Alzheimer's therapy. J Drug Target 2024; 32:909-917. [PMID: 38838023 DOI: 10.1080/1061186x.2024.2365263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterised by progressive cognitive decline and the accumulation of amyloid-β plaques and tau tangles. The Wnt signalling pathway known for its crucial role in neurodevelopment and adult neurogenesis has emerged as a potential target for therapeutic intervention in AD. Glycogen synthase kinase-3 beta (GSK-3β), a key regulator of the Wnt pathway, plays a pivotal role in AD pathogenesis by promoting tau hyperphosphorylation and neuroinflammation. Several preclinical studies have demonstrated that inhibiting GSK-3β leads to the activation of Wnt pathway thereby promoting neuroprotective effects, and mitigating cognitive deficits in AD animal models. The modulation of Wnt signalling appears to have multifaceted benefits including the reduction of amyloid-β production, tau hyperphosphorylation, enhancement of synaptic plasticity, and inhibition of neuroinflammation. These findings suggest that targeting GSK-3β to activate Wnt pathway may represent a novel approach for slowing or halting the progression of AD. This hypothesis reviews the current state of research exploring the activation of Wnt pathway through the inhibition of GSK-3β as a promising therapeutic strategy in AD.
Collapse
Affiliation(s)
- Magham Sai Varshini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, India
| | - Ramakkamma Aishwarya Reddy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, India
| | | |
Collapse
|
6
|
Kang J, Lee H, Park J, Kim HJ, Kwon R, Kim S, Fond G, Boyer L, Rahmati M, Smith L, Nehs CJ, Son Y, Kim S, Lee H, Lee J, Kim MS, Kim T, Yon DK. Comorbid physical health outcomes in patients with bipolar disorder: An umbrella review of systematic reviews and meta-analyses. Asian J Psychiatr 2024; 99:104138. [PMID: 38991375 DOI: 10.1016/j.ajp.2024.104138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/06/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Although several meta-analyses have examined the association between bipolar disorder (BD) and its comorbid health outcomes, this evidence has not been comprehensively assembled. OBJECTIVE We aimed to systematically review existing meta-analyses based on multiple physical outcomes and validate the evidence level by examining the existing certainty of evidence. METHODS We systematically searched databases, including PubMed/MEDLINE, Embase, Google Scholar, and CINAHL, for articles published up to July 2023. We included meta-analyses of cohort, case-control, and/or cross-sectional studies investigating any comorbid health outcomes in patients with BD. We conducted quality assessments of the included meta-analysis using AMSTAR2. The credibility of findings was categorized into five levels of class and quality of evidence (CE), including convincing, highly suggestive, suggestive, weak, or not significant. RESULTS We analyzed 12 meta-analyses, including 145 original articles, covering 14 unique health outcomes with over 60 million participants across 29 countries and five continents. Among 14 health outcomes, BD was significantly associated with eight comorbid health outcomes, including dementia (equivalent odds ratio [eOR], 2.96 [95 % confidence intervals {CI}, 1.69-5.17]; CE=suggestive), Parkinson's disease (3.35 [1.72-6.53]; CE=suggestive), asthma (1.86 [1.42-2.42]; CE=weak), toxoplasmosis (1.69 [1.21-2.37]; CE=weak), hypertension (1.28 [1.02-1.60]; CE=convincing), breast cancer (1.33 [1.15-1.55]; CE=weak), obesity (1.64 [1.30-1.99]; CE=suggestive), and type 2 diabetes mellitus (1.98 [1.55-2.52]; CE=weak). CONCLUSION Individuals with BD are predisposed to numerous comorbid physical conditions, though these links are supported by various evidence levels and necessitate further studies. It is imperative that physicians be aware of these potential comorbidities in patients with BD and take proactive measures to manage them.
Collapse
Affiliation(s)
- Jiseung Kang
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hyeri Lee
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea; Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Jaeyu Park
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea; Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Hyeon Jin Kim
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea; Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Rosie Kwon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea; Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Sunyoung Kim
- Department of Family Medicine, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Guillaume Fond
- Research Centre on Health Services and Quality of Life, Assistance Publique-Hôpitaux de Marseille, Aix Marseille University, Marseille, France
| | - Laurent Boyer
- Research Centre on Health Services and Quality of Life, Assistance Publique-Hôpitaux de Marseille, Aix Marseille University, Marseille, France
| | - Masoud Rahmati
- Research Centre on Health Services and Quality of Life, Assistance Publique-Hôpitaux de Marseille, Aix Marseille University, Marseille, France; Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran; Department of Physical Education and Sport Sciences, Faculty of Literature and Humanities, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Lee Smith
- Centre for Health, Performance and Wellbeing, Anglia Ruskin University, Cambridge, UK
| | - Christa J Nehs
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yejun Son
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea; Department of Precision Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Soeun Kim
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea; Department of Precision Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Hayeon Lee
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea; Department of Biomedical Engineering, Kyung Hee University, Yongin, South Korea
| | - Jinseok Lee
- Department of Biomedical Engineering, Kyung Hee University, Yongin, South Korea
| | - Min Seo Kim
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea.
| | - Dong Keon Yon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea; Department of Regulatory Science, Kyung Hee University, Seoul, South Korea; Department of Precision Medicine, Kyung Hee University College of Medicine, Seoul, South Korea; Department of Pediatrics, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, South Korea.
| |
Collapse
|
7
|
Thapa R, Ahmad Bhat A, Shahwan M, Ali H, PadmaPriya G, Bansal P, Rajotiya S, Barwal A, Siva Prasad GV, Pramanik A, Khan A, Hing Goh B, Dureja H, Kumar Singh S, Dua K, Gupta G. Proteostasis disruption and senescence in Alzheimer's disease pathways to neurodegeneration. Brain Res 2024; 1845:149202. [PMID: 39216694 DOI: 10.1016/j.brainres.2024.149202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/29/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's Disease (AD) is a progressive neurological disease associated with behavioral abnormalities, memory loss, and cognitive impairment that cause major causes of dementia in the elderly. The pathogenetic processes cause complex effects on brain function and AD progression. The proper protein homeostasis, or proteostasis, is critical for cell health. AD causes the buildup of misfolded proteins, particularly tau and amyloid-beta, to break down proteostasis, such aggregates are toxic to neurons and play a critical role in AD pathogenesis. The rise of cellular senescence is accompanied by aging, marked by irreversible cell cycle arrest and the release of pro-inflammatory proteins. Senescent cell build-up in the brains of AD patients exacerbates neuroinflammation and neuronal degeneration. These cells senescence-associated secretory phenotype (SASP) also disturbs the brain environment. When proteostasis failure and cellular senescence coalesce, a cycle is generated that compounds each other. While senescent cells contribute to proteostasis breakdown through inflammatory and degradative processes, misfolded proteins induce cellular stress and senescence. The principal aspects of the neurodegenerative processes in AD are the interaction of cellular senescence and proteostasis failure. This review explores the interconnected roles of proteostasis disruption and cellular senescence in the pathways leading to neurodegeneration in AD.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - G PadmaPriya
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan-303012, India
| | - Sumit Rajotiya
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Amit Barwal
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali - 140307, Punjab, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh-531162, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Abida Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia; Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE; Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
8
|
Godoy JA, Mira RG, Inestrosa NC. Intracellular effects of lithium in aging neurons. Ageing Res Rev 2024; 99:102396. [PMID: 38942199 DOI: 10.1016/j.arr.2024.102396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Lithium therapy received approval during the 1970s, and it has been used for its antidepressant, antimanic, and anti-suicidal effects for acute and long-term prophylaxis and treatment of bipolar disorder (BPD). These properties have been well established; however, the molecular and cellular mechanisms remain controversial. In the past few years, many studies demonstrated that at the cellular level, lithium acts as a regulator of neurogenesis, aging, and Ca2+ homeostasis. At the molecular level, lithium modulates aging by inhibiting glycogen synthase kinase-3β (GSK-3β), and the phosphatidylinositol (PI) cycle; latter, lithium specifically inhibits inositol production, acting as a non-competitive inhibitor of inositol monophosphatase (IMPase). Mitochondria and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) have been related to lithium activity, and its regulation is mediated by GSK-3β degradation and inhibition. Lithium also impacts Ca2+ homeostasis in the mitochondria modulating the function of the lithium-permeable mitochondrial Na+-Ca2+exchanger (NCLX), affecting Ca2+ efflux from the mitochondrial matrix to the endoplasmic reticulum (ER). A close relationship between the protease Omi, GSK-3β, and PGC-1α has also been established. The purpose of this review is to summarize some of the intracellular mechanisms related to lithium activity and how, through them, neuronal aging could be controlled.
Collapse
Affiliation(s)
- Juan A Godoy
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo G Mira
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | - Nibaldo C Inestrosa
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile; Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
9
|
Shen Y, Zhao M, Zhao P, Meng L, Zhang Y, Zhang G, Taishi Y, Sun L. Molecular mechanisms and therapeutic potential of lithium in Alzheimer's disease: repurposing an old class of drugs. Front Pharmacol 2024; 15:1408462. [PMID: 39055498 PMCID: PMC11269163 DOI: 10.3389/fphar.2024.1408462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and memory loss. Despite advances in understanding the pathophysiological mechanisms of AD, effective treatments remain scarce. Lithium salts, recognized as mood stabilizers in bipolar disorder, have been extensively studied for their neuroprotective effects. Several studies indicate that lithium may be a disease-modifying agent in the treatment of AD. Lithium's neuroprotective properties in AD by acting on multiple neuropathological targets, such as reducing amyloid deposition and tau phosphorylation, enhancing autophagy, neurogenesis, and synaptic plasticity, regulating cholinergic and glucose metabolism, inhibiting neuroinflammation, oxidative stress, and apoptosis, while preserving mitochondrial function. Clinical trials have demonstrated that lithium therapy can improve cognitive function in patients with AD. In particular, meta-analyses have shown that lithium may be a more effective and safer treatment than the recently FDA-approved aducanumab for improving cognitive function in patients with AD. The affordability and therapeutic efficacy of lithium have prompted a reassessment of its use. However, the use of lithium may lead to potential side effects and safety issues, which may limit its clinical application. Currently, several new lithium formulations are undergoing clinical trials to improve safety and efficacy. This review focuses on lithium's mechanism of action in treating AD, highlighting the latest advances in preclinical studies and clinical trials. It also explores the side effects of lithium therapy and coping strategies, offering a potential therapeutic strategy for patients with AD.
Collapse
Affiliation(s)
- Yanxin Shen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Meng Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Panpan Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Lingjie Meng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Yan Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Guimei Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Yezi Taishi
- Department of Cadre Ward, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
10
|
Wang Q, Gu X, Yang L, Jiang Y, Zhang J, He J. Emerging perspectives on precision therapy for Parkinson's disease: multidimensional evidence leading to a new breakthrough in personalized medicine. Front Aging Neurosci 2024; 16:1417515. [PMID: 39026991 PMCID: PMC11254646 DOI: 10.3389/fnagi.2024.1417515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
PD is a prevalent and progressive neurodegenerative disorder characterized by both motor and non-motor symptoms. Genes play a significant role in the onset and progression of the disease. While the complexity and pleiotropy of gene expression networks have posed challenges for gene-targeted therapies, numerous pathways of gene variant expression show promise as therapeutic targets in preclinical studies, with some already in clinical trials. With the recognition of the numerous genes and complex pathways that can influence PD, it may be possible to take a novel approach to choose a treatment for the condition. This approach would be based on the symptoms, genomics, and underlying mechanisms of the disease. We discuss the utilization of emerging genetic and pathological knowledge of PD patients to categorize the disease into subgroups. Our long-term objective is to generate new insights for the therapeutic approach to the disease, aiming to delay and treat it more effectively, and ultimately reduce the burden on individuals and society.
Collapse
Affiliation(s)
- Qiaoli Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuan Gu
- Department of Trauma center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Le Yang
- Department of Endocrinology, The People’s Hospital of Jilin Province, Changchun, China
| | - Yan Jiang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiao Zhang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinting He
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Keskin-Erdogan Z, Mandakhbayar N, Jin GS, Li YM, Chau DYS, Day RM, Kim HW, Knowles JC. Lithium-loaded GelMA-Phosphate glass fibre constructs: Implications for astrocyte response. J Biomed Mater Res A 2024; 112:1070-1082. [PMID: 38400701 DOI: 10.1002/jbm.a.37686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024]
Abstract
Combinations of different biomaterials with their own advantages as well as functionalization with other components have long been implemented in tissue engineering to improve the performance of the overall material. Biomaterials, particularly hydrogel platforms, have shown great potential for delivering compounds such as drugs, growth factors, and neurotrophic factors, as well as cells, in neural tissue engineering applications. In central the nervous system, astrocyte reactivity and glial scar formation are significant and complex challenges to tackle for neural and functional recovery. GelMA hydrogel-based tissue constructs have been developed in this study and combined with two different formulations of phosphate glass fibers (PGFs) (with Fe3+ or Ti2+ oxide) to impose physical and mechanical cues for modulating astrocyte cell behavior. This study was also aimed at investigating the effects of lithium-loaded GelMA-PGFs hydrogels in alleviating astrocyte reactivity and glial scar formation offering novel perspectives for neural tissue engineering applications. The rationale behind introducing lithium is driven by its long-proven therapeutic benefits in mental disorders, and neuroprotective and pronounced anti-inflammatory properties. The optimal concentrations of lithium and LPS were determined in vitro on primary rat astrocytes. Furthermore, qPCR was conducted for gene expression analysis of GFAP and IL-6 markers on primary astrocytes cultured 3D into GelMA and GelMA-PGFs hydrogels with and without lithium and in vitro stimulated with LPS for astrocyte reactivity. The results suggest that the combination of bioactive phosphate-based glass fibers and lithium loading into GelMA structures may impact GFAP expression and early IL-6 expression. Furthermore, GelMA-PGFs (Fe) constructs have shown improved performance in modulating glial scarring over GFAP regulation.
Collapse
Affiliation(s)
- Zalike Keskin-Erdogan
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, London, UK
- Chemical Engineering Department, Imperial College London, London, UK
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
| | - Gang Shi Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
| | - Yu-Meng Li
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
| | - David Y S Chau
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, London, UK
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
| | - Richard M Day
- Centre for Precision Healthcare, UCL Division of Medicine, University College London, London, UK
| | - Hae-Won Kim
- Chemical Engineering Department, Imperial College London, London, UK
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, London, UK
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
12
|
Venkatesan D, Muthukumar S, Iyer M, Babu HWS, Gopalakrishnan AV, Yadav MK, Vellingiri B. Heavy metals toxicity on epigenetic modifications in the pathogenesis of Alzheimer's disease (AD). J Biochem Mol Toxicol 2024; 38:e23741. [PMID: 38816991 DOI: 10.1002/jbt.23741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/09/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
Alzheimer's disease (AD) is a progressive decline in cognitive ability and behavior which eventually disrupts daily activities. AD has no cure and the progression rate varies unlikely. Among various causative factors, heavy metals are reported to be a significant hazard in AD pathogenesis. Metal-induced neurodegeneration has been focused globally with thorough research to unravel the mechanistic insights in AD. Recently, heavy metals suggested to play an important role in epigenetic alterations which might provide evidential results on AD pathology. Epigenetic modifications are known to play towards novel therapeutic approaches in treating AD. Though many studies focus on epigenetics and heavy metal implications in AD, there is a lack of research on heavy metal influence on epigenetic toxicity in neurological disorders. The current review aims to elucidate the plausible role of cadmium (Cd), iron (Fe), arsenic (As), copper (Cu), and lithium (Li) metals on epigenetic factors and the increase in amyloid beta and tau phosphorylation in AD. Also, the review discusses the common methods of heavy metal detection to implicate in AD pathogenesis. Hence, from this review, we can extend the need for future research on identifying the mechanistic behavior of heavy metals on epigenetic toxicity and to develop diagnostic and therapeutic markers in AD.
Collapse
Affiliation(s)
- Dhivya Venkatesan
- Centre for Neuroscience, Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, India
| | - Sindduja Muthukumar
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Mahalaxmi Iyer
- Centre for Neuroscience, Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, India
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Harysh Winster Suresh Babu
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Mukesh Kumar Yadav
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
13
|
Mandlik DS, Mandlik SK, S A. Therapeutic implications of glycogen synthase kinase-3β in Alzheimer's disease: a novel therapeutic target. Int J Neurosci 2024; 134:603-619. [PMID: 36178363 DOI: 10.1080/00207454.2022.2130297] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 09/03/2022] [Accepted: 09/10/2022] [Indexed: 10/17/2022]
Abstract
Alzheimer's disease (AD) is an extremely popular neurodegenerative condition associated with dementia, responsible for around 70% of the cases. There are presently 50 million people living with dementia in the world, but this number is anticipated to increase to 152 million by 2050, posing a substantial socioeconomic encumbrance. Despite extensive research, the precise mechanisms that cause AD remain unidentified, and currently, no therapy is available. Numerous signalling paths related to AD neuropathology, including glycogen synthase kinase 3-β (GSK-3β), have been investigated as potential targets for the treatment of AD in current years.GSK-3β is a proline-directed serine/threonine kinase that is linked to a variety of biological activities, comprising glycogen metabolism to gene transcription. GSK-3β is also involved in the pathophysiology of sporadic as well as familial types of AD, which has led to the development of the GSK3 theory of AD. GSK-3β is a critical performer in the pathology of AD because dysregulation of this kinase affects all the main symbols of the disease such as amyloid formation, tau phosphorylation, neurogenesis and synaptic and memory function. The current review highlights present-day knowledge of GSK-3β-related neurobiology, focusing on its role in AD pathogenesis signalling pathways. It also explores the possibility of targeting GSK-3β for the management of AD and offers an overview of the present research work in preclinical and clinical studies to produce GSK-3β inhibitors.
Collapse
Affiliation(s)
- Deepa S Mandlik
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Erandawane, Pune, India
| | - Satish K Mandlik
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Erandawane, Pune, India
| | - Arulmozhi S
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Erandawane, Pune, India
| |
Collapse
|
14
|
Bortolozzi A, Fico G, Berk M, Solmi M, Fornaro M, Quevedo J, Zarate CA, Kessing LV, Vieta E, Carvalho AF. New Advances in the Pharmacology and Toxicology of Lithium: A Neurobiologically Oriented Overview. Pharmacol Rev 2024; 76:323-357. [PMID: 38697859 PMCID: PMC11068842 DOI: 10.1124/pharmrev.120.000007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 05/05/2024] Open
Abstract
Over the last six decades, lithium has been considered the gold standard treatment for the long-term management of bipolar disorder due to its efficacy in preventing both manic and depressive episodes as well as suicidal behaviors. Nevertheless, despite numerous observed effects on various cellular pathways and biologic systems, the precise mechanism through which lithium stabilizes mood remains elusive. Furthermore, there is recent support for the therapeutic potential of lithium in other brain diseases. This review offers a comprehensive examination of contemporary understanding and predominant theories concerning the diverse mechanisms underlying lithium's effects. These findings are based on investigations utilizing cellular and animal models of neurodegenerative and psychiatric disorders. Recent studies have provided additional support for the significance of glycogen synthase kinase-3 (GSK3) inhibition as a crucial mechanism. Furthermore, research has shed more light on the interconnections between GSK3-mediated neuroprotective, antioxidant, and neuroplasticity processes. Moreover, recent advancements in animal and human models have provided valuable insights into how lithium-induced modifications at the homeostatic synaptic plasticity level may play a pivotal role in its clinical effectiveness. We focused on findings from translational studies suggesting that lithium may interface with microRNA expression. Finally, we are exploring the repurposing potential of lithium beyond bipolar disorder. These recent findings on the therapeutic mechanisms of lithium have provided important clues toward developing predictive models of response to lithium treatment and identifying new biologic targets. SIGNIFICANCE STATEMENT: Lithium is the drug of choice for the treatment of bipolar disorder, but its mechanism of action in stabilizing mood remains elusive. This review presents the latest evidence on lithium's various mechanisms of action. Recent evidence has strengthened glycogen synthase kinase-3 (GSK3) inhibition, changes at the level of homeostatic synaptic plasticity, and regulation of microRNA expression as key mechanisms, providing an intriguing perspective that may help bridge the mechanistic gap between molecular functions and its clinical efficacy as a mood stabilizer.
Collapse
Affiliation(s)
- Analia Bortolozzi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Giovanna Fico
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Michael Berk
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Marco Solmi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Michele Fornaro
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Joao Quevedo
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Carlos A Zarate
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Lars V Kessing
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Andre F Carvalho
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| |
Collapse
|
15
|
Madanlal D, Guinard C, Nuñez VP, Becker S, Garnham J, Khayachi A, Léger S, O'Donovan C, Singh S, Stern S, Slaney C, Trappenberg T, Alda M, Nunes A. A pilot study examining the impact of lithium treatment and responsiveness on mnemonic discrimination in bipolar disorder. J Affect Disord 2024; 351:49-57. [PMID: 38280568 DOI: 10.1016/j.jad.2024.01.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/29/2024]
Abstract
INTRODUCTION Mnemonic discrimination (MD), the ability to discriminate new stimuli from similar memories, putatively involves dentate gyrus pattern separation. Since lithium may normalize dentate gyrus functioning in lithium-responsive bipolar disorder (BD), we hypothesized that lithium treatment would be associated with better MD in lithium-responsive BD patients. METHODS BD patients (N = 69; NResponders = 16 [23 %]) performed the Continuous Visual Memory Test (CVMT), which requires discriminating between novel and previously seen images. Before testing, all patients had prophylactic lithium responsiveness assessed over ≥1 year of therapy (with the Alda Score), although only thirty-eight patients were actively prescribed lithium at time of testing (55 %; 12/16 responders, 26/53 nonresponders). We then used computational modelling to extract patient-specific MD indices. Linear models were used to test how (A) lithium treatment, (B) lithium responsiveness via the continuous Alda score, and (C) their interaction, affected MD. RESULTS Superior MD performance was associated with lithium treatment exclusively in lithium-responsive patients (Lithium x AldaScore β = 0.257 [SE 0.078], p = 0.002). Consistent with prior literature, increased age was associated with worse MD (β = -0.03 [SE 0.01], p = 0.005). LIMITATIONS Secondary pilot analysis of retrospectively collected data in a cross-sectional design limits generalizability. CONCLUSION Our study is the first to examine MD performance in BD. Lithium is associated with better MD performance only in lithium responders, potentially due to lithium's effects on dentate gyrus granule cell excitability. Our results may influence the development of behavioural probes for dentate gyrus neuronal hyperexcitability in BD.
Collapse
Affiliation(s)
- Dhanyaasri Madanlal
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Christian Guinard
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada; Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Vanessa Pardo Nuñez
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Suzanna Becker
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Julie Garnham
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Anouar Khayachi
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Simon Léger
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Claire O'Donovan
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Selena Singh
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Israel
| | - Claire Slaney
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Thomas Trappenberg
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Abraham Nunes
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada; Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
16
|
Bhat K, Schlotterose L, Hanke L, Helmholz H, Quandt E, Hattermann K, Willumeit-Römer R. Magnesium-lithium thin films for neurological applications-An in vitro investigation of glial cytocompatibility and neuroinflammatory response. Acta Biomater 2024; 178:307-319. [PMID: 38382831 DOI: 10.1016/j.actbio.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
Lithium (Li), a widely used drug for bipolar disorder management, is associated with many side effects due to systemic exposure. The localized delivery of lithium through implants could be an approach to overcome this challenge, for which biodegradable magnesium (Mg)-based materials are a promising choice. In this study, we focus on Mg-Li thin film alloys as potential Li-releasing implants. Therefore, we investigated the in vitro short-term corrosion behavior and cytocompatibility of two alloys, Mg-1.6wt%Li and Mg-9.5wt%Li. As glial cells are the key players of foreign body responses to implants, we used human glial cell lines for cytocompatibility studies, and a murine brain slice model for a more holistic view at the neuroinflammatory response. We found that Mg-1.6wt%Li corrodes approximately six times slower than Mg-9.5wt%Li. Microscopic analysis showed that the material surface (Mg-1.6wt%Li) is suitable for cell adhesion. The cytocompatibility test with Mg-1.6wt%Li and Mg-9.5wt%Li alloy extracts revealed that both cell types proliferated well up to 10 mM Mg concentration, irrespective of the Li concentration. In the murine brain slice model, Mg-1.6wt%Li and Mg-9.5wt%Li alloy extracts did not provoke a significant upregulation of glial inflammatory/ reactivity markers (IL-1β, IL-6, FN1, TNC) after 24 h of exposure. Furthermore, the gene expression of IL-1β (up to 3-fold) and IL-6 (up to 16-fold) were significantly downregulated after 96 h, and IL-6 downregulation showed a Li concentration dependency. Together, these results indicate the acute cytocompatibility of two Mg-Li thin film alloys and provide basis for future studies to explore promising applications of the material. STATEMENT OF SIGNIFICANCE: We propose the idea of lithium delivery to the brain via biodegradable implants to reduce systemic side effects of lithium for bipolar disorder therapy and other neurological applications. This is the first in vitro study investigating Mg-xLi thin film degradation under physiological conditions and its influence on cellular responses such as proliferation, viability, morphology and inflammation. Utilizing human brain-derived cell lines, we showed that the material surface of such a thin film alloy is suitable for normal cell attachment. Using murine brain slices, which comprise a multicellular network, we demonstrated that the material extracts did not elicit a pro-inflammatory response. These results substantiate that degradable Mg-Li materials are biocompatible and support the further investigation of their potential as neurological implants.
Collapse
Affiliation(s)
- Krathika Bhat
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany.
| | - Luise Schlotterose
- Institute of Anatomy, Kiel University, Otto-Hahn-Platz 8, 24118 Kiel, Germany
| | - Lisa Hanke
- Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Heike Helmholz
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Eckhard Quandt
- Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Kirsten Hattermann
- Institute of Anatomy, Kiel University, Otto-Hahn-Platz 8, 24118 Kiel, Germany
| | - Regine Willumeit-Römer
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany.
| |
Collapse
|
17
|
Singulani MP, Ferreira AFF, Figueroa PS, Cuyul-Vásquez I, Talib LL, Britto LR, Forlenza OV. Lithium and disease modification: A systematic review and meta-analysis in Alzheimer's and Parkinson's disease. Ageing Res Rev 2024; 95:102231. [PMID: 38364914 DOI: 10.1016/j.arr.2024.102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
The role of lithium as a possible therapeutic strategy for neurodegenerative diseases has generated scientific interest. We systematically reviewed and meta-analyzed pre-clinical and clinical studies that evidenced the neuroprotective effects of lithium in Alzheimer's (AD) and Parkinson's disease (PD). We followed the PRISMA guidelines and performed the systematic literature search using PubMed, EMBASE, Web of Science, and Cochrane Library. A total of 32 articles were identified. Twenty-nine studies were performed in animal models and 3 studies were performed on human samples of AD. A total of 17 preclinical studies were included in the meta-analysis. Our analysis showed that lithium treatment has neuroprotective effects in diseases. Lithium treatment reduced amyloid-β and tau levels and significantly improved cognitive behavior in animal models of AD. Lithium increased the tyrosine hydroxylase levels and improved motor behavior in the PD model. Despite fewer clinical studies on these aspects, we evidenced the positive effects of lithium in AD patients. This study lends further support to the idea of lithium's therapeutic potential in neurodegenerative diseases.
Collapse
Affiliation(s)
- Monique Patricio Singulani
- Laboratory of Neuroscience LIM27, Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil; Centro de Neurociências Translacionais (CNT), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil; Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Ana Flávia Fernandes Ferreira
- Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, Instituto de Ciências Biomédicas da Universidade de São Paulo (USP), São Paulo, Brazil
| | | | - Iván Cuyul-Vásquez
- Departamento de Procesos Terapéuticos, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco, Chile; Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Chile
| | - Leda Leme Talib
- Laboratory of Neuroscience LIM27, Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil; Centro de Neurociências Translacionais (CNT), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil; Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Luiz Roberto Britto
- Laboratory of Cellular Neurobiology, Department of Physiology and Biophysics, Instituto de Ciências Biomédicas da Universidade de São Paulo (USP), São Paulo, Brazil
| | - Orestes Vicente Forlenza
- Laboratory of Neuroscience LIM27, Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil; Centro de Neurociências Translacionais (CNT), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil; Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil.
| |
Collapse
|
18
|
Liu S, Xu L, Shen Y, Wang L, Lai X, Hu H. Qingxin Kaiqiao Fang decreases Tau hyperphosphorylation in Alzheimer's disease via the PI3K/Akt/GSK3β pathway in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117031. [PMID: 37579924 DOI: 10.1016/j.jep.2023.117031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alzheimer's disease (AD) belongs to the category of "senile dementia" in traditional Chinese medicine. AD is associated with brain emptiness or collaterals blocked by phlegm-heat. "Fumanjian" from Jingyue Quanshu treats dementia by promoting qi circulation, alleviating depression, eliminating turbidity, cultivating positivity, and dispelling evil spirits. Qingxin Kaiqiao Fang (QKF), derived from Fumanjian, is effective in treating AD owing to previously mentioned clinical effects. Elucidating the mechanism(s) of action of QKF on AD associated with phlegm-heat may be beneficial for therapeutic management; however, further research is needed. AIM OF THE STUDY This study aimed to determine the role of the PI3K/Akt pathway in AD, especially the specific effector protein involved, and explore the efficacy of QKF in treating AD by modulating the PI3K/Akt signal. MATERIALS AND METHODS High-performance liquid chromatography-Q-orbitrap-mass spectrometry was used to analyze the chemical components of QKF. Subsequently, APP/PS1 double-transgenic mice were used for behavioral tests, and hematoxylin-eosin and Nissl staining were used to assess the neuroprotective and cognitive effects of QKF. Cerebrospinal fluid pharmacology was used in in vitro validation, and Aβ25-35 was used to induce PC12 cells to establish the AD cell model. Various methods, including immunohistochemistry, Western blotting, quantitative real-time polymerase chain reaction, morphological assay, cell counting kit-8(CCK-8) assay, and terminal deoxynucleotide transferase (TdT)-mediated dUTP nick-end labeling (TUNEL)staining, were used to evaluate the effect of QKF on Tau hyperphosphorylation and anti-apoptosis. These methods also assessed the influence of QKF on the PI3K/Akt/GSK3β pathway involving the mRNA and protein expressions. Finally, the inhibitor - LY294002 was used for reverse validation. RESULTS We identified 295 chemical components in the water extract of QKF.QKF improved spatial cognition and learning memory in APP/PS1 mice, protected PC12 cell morphology, improved cell survival, reduced Aβ25-35-induced apoptosis, and inhibited the hyperphosphorylation of Tau protein via the PI3k/Akt/GSK3β signaling pathway. Furthermore, this protective effect of QKF was reduced by LY294002 in vitro. CONCLUSIONS QKF can improve spatial cognition, learning, and memory abilities in APP/PS1 mice and protect PC12 cells. Decreasing the Tau hyperphosphorylation in AD exhibits curative efficacy on AD via the PI3K/Akt/GSK3β pathway in vitro and in vivo.
Collapse
Affiliation(s)
- Shuo Liu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Lu Cheng District, Wenzhou, 325000, China; The Second Clinical College, Wenzhou Medical University, Wenzhou, 325003, China
| | - Luting Xu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Lu Cheng District, Wenzhou, 325000, China; The Second Clinical College, Wenzhou Medical University, Wenzhou, 325003, China
| | - Yan Shen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Lu Cheng District, Wenzhou, 325000, China; The Second Clinical College, Wenzhou Medical University, Wenzhou, 325003, China
| | - Liuying Wang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Lu Cheng District, Wenzhou, 325000, China; The Second Clinical College, Wenzhou Medical University, Wenzhou, 325003, China
| | - Xiaoxiao Lai
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Lu Cheng District, Wenzhou, 325000, China; The Second Clinical College, Wenzhou Medical University, Wenzhou, 325003, China
| | - Haiyan Hu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Lu Cheng District, Wenzhou, 325000, China; The Second Clinical College, Wenzhou Medical University, Wenzhou, 325003, China.
| |
Collapse
|
19
|
Ariafar S, Makhdoomi S, Mohammadi M. Arsenic and Tau Phosphorylation: a Mechanistic Review. Biol Trace Elem Res 2023; 201:5708-5720. [PMID: 37211576 DOI: 10.1007/s12011-023-03634-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/14/2023] [Indexed: 05/23/2023]
Abstract
Arsenic poisoning can affect the peripheral nervous system and cause peripheral neuropathy. Despite different studies on the mechanism of intoxication, the complete process is not explained yet, which can prevent further intoxication and produce effective treatment. In the following paper, we would like to consider the idea that arsenic might cause some diseases via inflammation induction, and tauopathy in neurons. Tau protein, one of the microtubule-associated proteins expressed in neurons, contributes to neuronal microtubules structure. Arsenic may be involved in cellular cascades involved in modulating tau function or hyperphosphorylation of tau protein, which ultimately leads to nerve destruction. For proof of this assumption, some investigations have been planned to measure the association between arsenic and quantities of phosphorylation of tau protein. Additionally, some researchers have investigated the association between microtubule trafficking in neurons and the levels of tau protein phosphorylation. It should be noticed that changing tau phosphorylation in arsenic toxicity may add a new feature to understanding the mechanism of poisonousness and aid in discovering novel therapeutic candidates such as tau phosphorylation inhibitors for drug development.
Collapse
Affiliation(s)
- Saba Ariafar
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sajjad Makhdoomi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
20
|
Tortolini C, Gigli V, Rizzo F, Lenzi A, Bizzarri M, Angeloni A, Antiochia R. Stereoselective Voltammetric Biosensor for Myo-Inositol and D-Chiro-Inositol Recognition. SENSORS (BASEL, SWITZERLAND) 2023; 23:9211. [PMID: 38005597 PMCID: PMC10674735 DOI: 10.3390/s23229211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
This paper describes the development of a simple voltammetric biosensor for the stereoselective discrimination of myo-inositol (myo-Ins) and D-chiro-inositol (D-chiro-Ins) by means of bovine serum albumin (BSA) adsorption onto a multi-walled carbon nanotube (MWCNT) graphite screen-printed electrode (MWCNT-GSPE), previously functionalized by the electropolymerization of methylene blue (MB). After a morphological characterization, the enantioselective biosensor platform was electrochemically characterized after each modification step by differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The results show that the binding affinity between myo-Ins and BSA was higher than that between D-chiro-Ins and BSA, confirming the different interactions exhibited by the novel BSA/MB/MWCNT/GSPE platform towards the two diastereoisomers. The biosensor showed a linear response towards both stereoisomers in the range of 2-100 μM, with LODs of 0.5 and 1 μM for myo-Ins and D-chiro-Ins, respectively. Moreover, a stereoselectivity coefficient α of 1.6 was found, with association constants of 0.90 and 0.79, for the two stereoisomers, respectively. Lastly, the proposed biosensor allowed for the determination of the stereoisomeric composition of myo-/D-chiro-Ins mixtures in commercial pharmaceutical preparations, and thus, it is expected to be successfully applied in the chiral analysis of pharmaceuticals and illicit drugs of forensic interest.
Collapse
Affiliation(s)
- Cristina Tortolini
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (C.T.); (V.G.); (F.R.); (A.L.); (M.B.); (A.A.)
| | - Valeria Gigli
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (C.T.); (V.G.); (F.R.); (A.L.); (M.B.); (A.A.)
| | - Flavio Rizzo
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (C.T.); (V.G.); (F.R.); (A.L.); (M.B.); (A.A.)
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (C.T.); (V.G.); (F.R.); (A.L.); (M.B.); (A.A.)
| | - Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (C.T.); (V.G.); (F.R.); (A.L.); (M.B.); (A.A.)
| | - Antonio Angeloni
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (C.T.); (V.G.); (F.R.); (A.L.); (M.B.); (A.A.)
| | - Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
21
|
Ossani GP, Riudavets MA, D'Annunzio V, Uceda AM, Ponzo O, Lago NR, Martino DJ. Effect of lithium in pyramidal neurons of Cornu Ammonis in an animal model. J Psychiatr Res 2023; 167:33-36. [PMID: 37826875 DOI: 10.1016/j.jpsychires.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/05/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
Bipolar disorder has been associated with a decrease in hippocampal size, and lithium appears to reverse this neuroanatomical abnormality. The objective of this work was to evaluate, at a cellular level, the size of both cell body and nucleus of pyramidal neurons located throughout the Cornu Ammonis (CA1 to CA4 regions). To perform this duty, we used 16 rats that were randomized into two groups: control and dietary lithium-treated. After one month, they were sacrificed and their brains removed for histopathological analysis. Serial photos of the entire Cornu Ammonis were taken and, after dividing them into 4 regions of interest, we measured the cell body and nucleus on each pyramidal neuron belonging to the first 5 photos of each region of interest. As a result of this histological analysis, cell body area and nuclear area were significantly larger in the experimental group in a specific area of the Cornu Ammonis that could correspond to CA2 or the transition between CA1 and CA2. These results suggest that the effect of lithium is not homogeneous throughout the hippocampus and allows directing future studies to a specific area of this structure.
Collapse
Affiliation(s)
- G P Ossani
- Centre of Experimental and Applied Pathology, Department of Pathology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina; Laboratory of Experimental Medicine, Hospital Alemán, Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), Argentina.
| | - M A Riudavets
- Office of the Chief Medical Examiner, Supreme Court of Justice. Buenos Aires, Argentina
| | - V D'Annunzio
- National Council of Scientific and Technical Research (CONICET), Argentina; Institute of Cardiovascular Physiopathology, Department of Pathology and Institute of Biochemistry and Molecular Medicine (IBIMOL UBA-CONICET), School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - A M Uceda
- Centre of Experimental and Applied Pathology, Department of Pathology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina; Laboratory of Experimental Medicine, Hospital Alemán, Buenos Aires, Argentina
| | - O Ponzo
- Department of Physiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - N R Lago
- Centre of Experimental and Applied Pathology, Department of Pathology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - D J Martino
- National Council of Scientific and Technical Research (CONICET), Argentina; Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| |
Collapse
|
22
|
Gaffke L, Firyn N, Rintz E, Pierzynowska K, Piotrowska E, Mazur-Marzec H, Węgrzyn G. Therapeutic potential of lithium chloride and valproic acid against neuronopathic types of mucopolysaccharidoses through induction of the autophagy process. Arch Biochem Biophys 2023; 747:109754. [PMID: 37708928 DOI: 10.1016/j.abb.2023.109754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/17/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Mucopolysaccharidoses (MPS) are a group of inherited disorders, caused by mutations in the genes coding for proteins involved (directly or indirectly) in glycosaminoglycan (GAG) degradation. A lack or drastically decreased residual activity of a GAG-degrading enzyme leads to the storage of these compounds, thus damaging proper functions of different cells, including neurons. The disease leads to serious psycho-motor dysfunctions and death before reaching the adulthood. Until now, induction of the autophagy process was considered as one of the therapeutic strategies for treatment of diseases caused by protein aggregation (Alzheimer's, Parkinson's, and Huntington's diseases). However, this strategy has only been recently suggested as a potential therapy for MPS. In this work, we show that the pharmacological stimulation of autophagy, by using valproic acid and lithium chloride, led to accelerated degradation of accumulated GAGs. Cytotoxicity tests indicated the safety of the use of the investigated compounds. We observed an increased number of lysosomes and enhanced degradation of heparan sulfate (one of GAGs). Induction of the autophagy process was confirmed by measuring abundance of the marker proteins, including LC3-II. Moreover, inhibition of this process resulted in abolition of the valproic acid- and LiCl-mediated reduction in GAG levels. This is the first report on the possibility of using valproic acid and lithium chloride for reducing levels of GAGs in neuronopathic forms of MPS.
Collapse
Affiliation(s)
- Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Natalia Firyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Ewa Piotrowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Hanna Mazur-Marzec
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|
23
|
Deliyannides DA, Graff JA, Niño I, Lee S, Husain MM, Forester BP, Crocco E, Vahia IV, Devanand DP. Effects of lithium on serum Brain-Derived Neurotrophic Factor in Alzheimer's patients with agitation. Int J Geriatr Psychiatry 2023; 38:e6002. [PMID: 37732619 DOI: 10.1002/gps.6002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND There is ample evidence in animal models that lithium increases Brain-Derived Neurotrophic Factor (BDNF) with supporting evidence in human studies. Little is known, however, about the effects of lithium on BDNF in Alzheimer's Dementia (AD). In one study of patients with Mild Cognitive Impairment, serum BDNF increased after treatment with lithium. These patients also showed mild improvement in cognitive function. OBJECTIVES To evaluate low-dose lithium treatment of agitation in Alzheimer's disease (AD). METHOD We measured levels of BDNF in patients treated with lithium prior to and after a 12-week randomized placebo-controlled trial. RESULTS BDNF levels did not change significantly and were not associated with improvement in overall neuropsychiatric symptoms or in cognitive function. CONCLUSIONS More research is needed to understand the potential effects of lithium on BDNF in AD including whether its use might be dependent on the stage of cognitive decline and dementia.
Collapse
Affiliation(s)
- Deborah A Deliyannides
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, New York, USA
- Department of Psychiatry, Columbia University Medical Center, New York, New York, USA
| | - Jamie A Graff
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, New York, USA
| | - Izael Niño
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, New York, USA
| | - Seonjoo Lee
- Department of Psychiatry, Columbia University Medical Center, New York, New York, USA
- Department of Biostatistics, Columbia University Medical Center, New York, New York, USA
- Mental Health Data Science, New York State Psychiatric Institute, New York, New York, USA
| | - Mustafa M Husain
- Departments of Psychiatry and Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Brent P Forester
- Division of Geriatric Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Elizabeth Crocco
- Center for Cognitive Neuroscience and Aging, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ipsit V Vahia
- Division of Geriatric Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Davangere P Devanand
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, New York, USA
- Department of Psychiatry, Columbia University Medical Center, New York, New York, USA
- Department of Neurology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
24
|
Willemse SW, Harley P, van Eijk RPA, Demaegd KC, Zelina P, Pasterkamp RJ, van Damme P, Ingre C, van Rheenen W, Veldink JH, Kiernan MC, Al-Chalabi A, van den Berg LH, Fratta P, van Es MA. UNC13A in amyotrophic lateral sclerosis: from genetic association to therapeutic target. J Neurol Neurosurg Psychiatry 2023; 94:649-656. [PMID: 36737245 PMCID: PMC10359588 DOI: 10.1136/jnnp-2022-330504] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with limited treatment options and an incompletely understood pathophysiology. Although genomewide association studies (GWAS) have advanced our understanding of the disease, the precise manner in which risk polymorphisms contribute to disease pathogenesis remains unclear. Of relevance, GWAS have shown that a polymorphism (rs12608932) in the UNC13A gene is associated with risk for both ALS and frontotemporal dementia (FTD). Homozygosity for the C-allele at rs12608932 modifies the ALS phenotype, as these patients are more likely to have bulbar-onset disease, cognitive impairment and FTD at baseline as well as shorter survival. UNC13A is expressed in neuronal tissue and is involved in maintaining synaptic active zones, by enabling the priming and docking of synaptic vesicles. In the absence of functional TDP-43, risk variants in UNC13A lead to the inclusion of a cryptic exon in UNC13A messenger RNA, subsequently leading to nonsense mediated decay, with loss of functional protein. Depletion of UNC13A leads to impaired neurotransmission. Recent discoveries have identified UNC13A as a potential target for therapy development in ALS, with a confirmatory trial with lithium carbonate in UNC13A cases now underway and future approaches with antisense oligonucleotides currently under consideration. Considering UNC13A is a potent phenotypic modifier, it may also impact clinical trial outcomes. This present review describes the path from the initial discovery of UNC13A as a risk gene in ALS to the current therapeutic options being explored and how knowledge of its distinct phenotype needs to be taken into account in future trials.
Collapse
Affiliation(s)
- Sean W Willemse
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Peter Harley
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Ruben P A van Eijk
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
- Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care, UMC Utrecht, Utrecht, The Netherlands
| | - Koen C Demaegd
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Pavol Zelina
- Department of Translational Neuroscience, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Philip van Damme
- Department of Neurology, KU Leuven Hospital, Leuven, Belgium
- Laboratory of Neurobiology, VIB KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Caroline Ingre
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Wouter van Rheenen
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Jan H Veldink
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Matthew C Kiernan
- Bushell Chair of Neurology, Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Neurology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | | | - Leonard H van den Berg
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Pietro Fratta
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Michael A van Es
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| |
Collapse
|
25
|
Choi JE, Carpena NT, Lee JH, Chang SY, Lee MY, Jung JY, Chung WH. Round-window delivery of lithium chloride regenerates cochlear synapses damaged by noise-induced excitotoxic trauma via inhibition of the NMDA receptor in the rat. PLoS One 2023; 18:e0284626. [PMID: 37216352 DOI: 10.1371/journal.pone.0284626] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/04/2023] [Indexed: 05/24/2023] Open
Abstract
Noise exposure can destroy the synaptic connections between hair cells and auditory nerve fibers without damaging the hair cells, and this synaptic loss could contribute to difficult hearing in noisy environments. In this study, we investigated whether delivering lithium chloride to the round-window can regenerate synaptic loss of cochlea after acoustic overexposure. Our rat animal model of noise-induced cochlear synaptopathy caused about 50% loss of synapses in the cochlear basal region without damaging hair cells. We locally delivered a single treatment of poloxamer 407 (vehicle) containing lithium chloride (either 1 mM or 2 mM) to the round-window niche 24 hours after noise exposure. Controls included animals exposed to noise who received only the vehicle. Auditory brainstem responses were measured 3 days, 1 week, and 2 weeks post-exposure treatment, and cochleas were harvested 1 week and 2 weeks post-exposure treatment for histological analysis. As documented by confocal microscopy of immunostained ribbon synapses, local delivery of 2 mM lithium chloride produced synaptic regeneration coupled with corresponding functional recovery, as seen in the suprathreshold amplitude of auditory brainstem response wave 1. Western blot analyses revealed that 2 mM lithium chloride suppressed N-methyl-D-aspartate (NMDA) receptor expression 7 days after noise-exposure. Thus, round-window delivery of lithium chloride using poloxamer 407 reduces cochlear synaptic loss after acoustic overexposure by inhibiting NMDA receptor activity in rat model.
Collapse
Affiliation(s)
- Ji Eun Choi
- Department of Otolaryngology Head and Neck Surgery, Dankook University Hospital, College of Medicine, Dankook University, Cheonan, South Korea
- Multi-modality Treatment Research Center for Auditory/Vestibular Disease, College of Medicine, Dankook University, Cheonan, South Korea
| | - Nathaniel T Carpena
- Multi-modality Treatment Research Center for Auditory/Vestibular Disease, College of Medicine, Dankook University, Cheonan, South Korea
| | - Jae-Hun Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - So-Young Chang
- Multi-modality Treatment Research Center for Auditory/Vestibular Disease, College of Medicine, Dankook University, Cheonan, South Korea
| | - Min Young Lee
- Department of Otolaryngology Head and Neck Surgery, Dankook University Hospital, College of Medicine, Dankook University, Cheonan, South Korea
- Multi-modality Treatment Research Center for Auditory/Vestibular Disease, College of Medicine, Dankook University, Cheonan, South Korea
| | - Jae Yun Jung
- Department of Otolaryngology Head and Neck Surgery, Dankook University Hospital, College of Medicine, Dankook University, Cheonan, South Korea
- Multi-modality Treatment Research Center for Auditory/Vestibular Disease, College of Medicine, Dankook University, Cheonan, South Korea
| | - Won-Ho Chung
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
26
|
Calabrese EJ, Pressman P, Hayes AW, Dhawan G, Kapoor R, Agathokleous E, Calabrese V. Lithium and hormesis: Enhancement of adaptive responses and biological performance via hormetic mechanisms. J Trace Elem Med Biol 2023; 78:127156. [PMID: 36958112 DOI: 10.1016/j.jtemb.2023.127156] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Biomedical and consumer interest in the health-promoting properties of pure single entities of known or unknown chemical constituents and mixtures has never been greater. Since its "rediscovery" in the 1950s, lithium is an example of such a constituent that represents an array of scientific and public health challenges and medical potentials that may now be understood best when seen through the lens of the dose-response paradigm known as hormesis. The present paper represents the first review of the capacity of lithium to induce hormetic dose responses in a broad range of biological models, organ systems, and endpoints. Of significance is that the numerous hormetic findings occur with extensive concentration/dose response evaluations with the optimal dosing being similar across multiple organ systems. The particular focus of these hormetic dose-response findings was targeted to research with a broad spectrum of stem cell types and neuroprotective effects. These findings suggest that lithium may have critically valuable systemic effects with respect to those therapeutically treated with lithium as well as for exposures that may be achieved via dietary intervention.
Collapse
Affiliation(s)
- Edward J Calabrese
- Environmental Health Sciences Division, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA.
| | - Peter Pressman
- Saba University School of Medicine, Caribbean, the Netherlands
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management College of Public Health, University of South Florida, Tampa, FL, USA
| | | | - Rachna Kapoor
- Saint Francis Hospital and Medical Center; Hartford, CT, USA
| | - Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences; School of Medicine University of Catania, Via Santa Sofia 97, Catania 95123, Italy
| |
Collapse
|
27
|
Magnolol improves Alzheimer's disease-like pathologies and cognitive decline by promoting autophagy through activation of the AMPK/mTOR/ULK1 pathway. Biomed Pharmacother 2023; 161:114473. [PMID: 36889111 DOI: 10.1016/j.biopha.2023.114473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease. Amyloid-β (Aβ) plaque deposition and apoptosis are main pathological features of AD. Autophagy plays an important role in clearing abnormal protein accumulation and inhibiting apoptosis; however, autophagy defects often occur from the early stages of AD. The serine/threonine AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)/unc-51-like kinase 1/2 (ULK1/2) pathway serves as an energy sensor and is involved in autophagy activation. Furthermore, magnolol is an autophagy regulator, and has potential for AD therapy. We propose that magnolol can ameliorate AD pathologies and inhibit apoptosis by regulating autophagy through the AMPK/mTOR/ULK1 pathway. We examined cognitive function and AD-related pathologies in AD transgenic mice and the protective mechanism of magnolol by western blotting, flow cytometry, and a tandem mRFP-GFP-LC3 adenovirus assay in Aβ oligomer (AβO)-induced N2a and BV2 cell models. In our study, magnolol decreased amyloid pathology and ameliorated cognitive impairment in APP/PS1 mice. Moreover, magnolol inhibited apoptosis by downregulating cleaved-caspase-9 and Bax and upregulating Bcl-2 in APP/PS1 mice and AβO-induced cell models. Magnolol promoted autophagy by degrading p62/SQSTM1, and upregulating LC3II and Beclin-1 expression. Magnolol activated the AMPK/mTOR/ULK1 pathway by increasing phosphorylation of AMPK and ULK1 and decreasing mTOR phosphorylation in in vivo and in vitro AD models. AMPK inhibitor weakened the effects of magnolol in promoting autophagy and inhibiting apoptosis, and ULK1 knockdown weakened the effect of magnolol on AβO-induced apoptosis. These results indicate that magnolol inhibits apoptosis and improves AD-related pathologies by promoting autophagy through activation of the AMPK/mTOR/ULK1 pathway.
Collapse
|
28
|
Themoteo RM, De Paula VJR, Rocha NKR, Brentani H, Forlenza OV. Lithium Prevents Telomere Shortening in Cortical Neurons in Amyloid-Beta Induced Toxicity. NEUROSCI 2023; 4:1-8. [PMID: 39484296 PMCID: PMC11523687 DOI: 10.3390/neurosci4010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND There is consistent evidence of the potential benefits of lithium attenuating mechanisms of neurodegeneration, including those related to the pathophysiology of Alzheimer's disease (AD), and facilitating neurotrophic and protective responses, including maintenance of telomere length. The aim was to investigate the protective effect of the pre-treatment with lithium on amyloid-beta (Aβ)-induced toxicity and telomere length in neurons. METHODS Cortical neurons were treated with lithium chloride at therapeutic and subtherapeutic concentrations (2 mM, 0.2 mM and 0.02 mM) for seven days. Amyloid toxicity was induced 24 h before the end of lithium treatment. RESULTS Lithium resulted in 120% (2 mM), 180% (0.2 mM) and 140% (0.02 mM) increments in telomere length as compared to untreated controls. Incubation with Aβ1-42 was associated with significant reductions in MTT uptake (33%) and telomere length (83%) as compared to controls. CONCLUSIONS Lithium prevented loss of culture viability and telomere shortening in neuronal cultures challenged with Aβ fibrils.
Collapse
Affiliation(s)
- Rafael M. Themoteo
- Laboratory of Neuroscience (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05508-090, SP, Brazil
| | - Vanessa J. R. De Paula
- Laboratory of Neuroscience (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05508-090, SP, Brazil
- Laboratory of Psychobiology (LIM-23), Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05508-090, SP, Brazil
| | - Nicole K. R. Rocha
- Laboratory of Neuroscience (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05508-090, SP, Brazil
- Laboratory of Psychobiology (LIM-23), Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05508-090, SP, Brazil
| | - Helena Brentani
- Laboratory of Psychobiology (LIM-23), Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05508-090, SP, Brazil
| | - Orestes V. Forlenza
- Laboratory of Neuroscience (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05508-090, SP, Brazil
| |
Collapse
|
29
|
Puglisi-Allegra S, Lazzeri G, Busceti CL, Giorgi FS, Biagioni F, Fornai F. Lithium engages autophagy for neuroprotection and neuroplasticity: translational evidence for therapy. Neurosci Biobehav Rev 2023; 148:105148. [PMID: 36996994 DOI: 10.1016/j.neubiorev.2023.105148] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023]
Abstract
Here an overview is provided on therapeutic/neuroprotective effects of Lithium (Li+) in neurodegenerative and psychiatric disorders focusing on the conspicuous action of Li+ through autophagy. The effects on the autophagy machinery remain the key molecular mechanisms to explain the protective effects of Li+ for neurodegenerative diseases, offering potential therapeutic strategies for the treatment of neuropsychiatric disorders and emphasizes a crossroad linking autophagy, neurodegenerative disorders, and mood stabilization. Sensitization by psychostimulants points to several mechanisms involved in psychopathology, most also crucial in neurodegenerative disorders. Evidence shows the involvement of autophagy and metabotropic Glutamate receptors-5 (mGluR5) in neurodegeneration due to methamphetamine neurotoxicity as well as in neuroprotection, both in vitro and in vivo models. More recently, Li+ was shown to modulate autophagy through its action on mGluR5, thus pointing to an additional way of autophagy engagement by Li+ and to a substantial role of mGluR5 in neuroprotection related to neural e neuropsychiatry diseases. We propose Li+ engagement of autophagy through the canonical mechanisms of autophagy machinery and through the intermediary of mGluR5.
Collapse
|
30
|
Ghanaatfar F, Ghanaatfar A, Isapour P, Farokhi N, Bozorgniahosseini S, Javadi M, Gholami M, Ulloa L, Coleman-Fuller N, Motaghinejad M. Is lithium neuroprotective? An updated mechanistic illustrated review. Fundam Clin Pharmacol 2023; 37:4-30. [PMID: 35996185 DOI: 10.1111/fcp.12826] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/17/2022] [Accepted: 08/19/2022] [Indexed: 01/25/2023]
Abstract
Neurodegeneration is a pathological process characterized by progressive neuronal impairment, dysfunction, and loss due to mitochondrial dysfunction, oxidative stress, inflammation, and apoptosis. Many studies have shown that lithium protects against neurodegeneration. Herein, we summarize recent clinical and laboratory studies on the neuroprotective effects of lithium against neurodegeneration and its potential to modulate mitochondrial dysfunction, oxidative stress, inflammation, and apoptosis. Recent findings indicate that lithium regulates critical intracellular pathways such as phosphatidylinositol-3 (PI3)/protein kinase B (Akt)/glycogen synthase kinase-3 (GSK3β) and PI3/Akt/response element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF). We queried PubMed, Web of Science, Scopus, Elsevier, and other related databases using search terms related to lithium and its neuroprotective effect in various neurodegenerative diseases and events from January 2000 to May 2022. We reviewed the major findings and mechanisms proposed for the effects of lithium. Lithium's neuroprotective potential against neural cell degeneration is mediated by inducing anti-inflammatory factors, antioxidant enzymes, and free radical scavengers to prevent mitochondrial dysfunction. Lithium effects are regulated by two essential pathways: PI3/Akt/GSK3β and PI3/Akt/CREB/BDNF. Lithium acts as a neuroprotective agent against neurodegeneration by preventing inflammation, oxidative stress, apoptosis, and mitochondrial dysfunction using PI3/Akt/GSK3β and PI3/Akt/CREB/BDNF signaling pathways.
Collapse
Affiliation(s)
- Fateme Ghanaatfar
- Student Research Committee, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Ghanaatfar
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
| | - Parisa Isapour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Negin Farokhi
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University (IUAPS), Tehran, Iran
| | | | - Mahshid Javadi
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Gholami
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Luis Ulloa
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, North Carolina, USA
| | - Natalie Coleman-Fuller
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Fenech RK, Hamstra SI, Finch MS, Ryan CR, Marko DM, Roy BD, Fajardo VA, MacPherson REK. Low-Dose Lithium Supplementation Influences GSK3β Activity in a Brain Region Specific Manner in C57BL6 Male Mice. J Alzheimers Dis 2023; 91:615-626. [PMID: 36463453 DOI: 10.3233/jad-220813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
BACKGROUND Lithium, a commonly used treatment for bipolar disorder, has been shown to have neuroprotective effects for other conditions including Alzheimer's disease via the inhibition of the enzyme glycogen synthase kinase-3 (GSK3). However, dose-dependent adverse effects of lithium are well-documented, highlighting the need to determine if low doses of lithium can reliably reduce GSK3 activity. OBJECTIVE The purpose of this study was to evaluate the effects of a low-dose lithium supplementation on GSK3 activity in the brain of an early, diet-induced Alzheimer's disease model. METHODS Male C57BL/6J mice were divided into either a 6-week or 12-week study. In the 6-week study, mice were fed a chow diet or a chow diet with lithium-supplemented drinking water (10 mg/kg/day) for 6 weeks. Alternatively, in the 12-week study, mice were fed a chow diet, a high-fat diet (HFD), or a HFD with lithium-supplemented drinking water for 12 weeks. Prefrontal cortex and hippocampal tissues were collected for analysis. RESULTS Results demonstrated reduced GSK3 activity in the prefrontal cortex as early as 6 weeks of lithium supplementation, in the absence of inhibitory phosphorylation changes. Further, lithium supplementation in an obese model reduced prefrontal cortex GSK3 activity as well as improved insulin sensitivity. CONCLUSION Collectively, these data provide evidence for low-dose lithium supplementation to inhibit GSK3 activity in the brain. Moreover, these results indicate that GSK3 activity can be inhibited despite any changes in phosphorylation. These findings contribute to an overall greater understanding of low-dose lithium's ability to influence GSK3 activity in the brain and its potential as an Alzheimer's disease prophylactic.
Collapse
Affiliation(s)
- Rachel K Fenech
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Sophie I Hamstra
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Michael S Finch
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Chantal R Ryan
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Daniel M Marko
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Brian D Roy
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Val A Fajardo
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada.,Centre for Neuroscience, Brock University, St Catharines, ON, Canada
| |
Collapse
|
32
|
Luo H, Li J, Song B, Zhang B, Li Y, Zhou Z, Chang X. The binary combined toxicity of lithium, lead, and manganese on the proliferation of murine neural stem cells using two different models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5047-5058. [PMID: 35976582 DOI: 10.1007/s11356-022-22433-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
As persistent environmental pollutants, more than thirty metals impose a potential global threat to the environment and humans, which has raised scientific concerns. Although the toxic effects of metals had been extensively studied, there is a paucity of information on their mixture toxicity. In this study, we examined the individual and binary combined toxicity of three common metals such as lithium (Li), lead (Pb), and manganese (Mn) on the proliferation of murine neural stem cells (mNSCs), respectively. Li, Pb, and Mn reduced cell proliferation at the concentration of 5.00 mM, 2.50 μM, and 5.00 μM, respectively (all p < 0.050), in a dose-dependent manner of each metal solely on mNSCs with the cytotoxicity rank as Pb > Mn > Li. Furthermore, the interactions of metal mixtures on mNSCs were determined by using response-additivity and dose-additivity models. Pb + Mn mixtures showed a more than additive effect (synergistic) of toxicity in both two methods. In the dose-additivity method, Pb + Li and Li + Mn mixtures exhibited synergistic effects in the compound with a high ratio of Li (25.0% Pb/75.0% Li, 75.0% Li/25.0% Mn), whereas they are antagonistic in the lower or equal ratio of Li (such as 75.0% Pb/25.0% Li, 25.0% Li/75.0% Mn). Besides, the interactions of Li + Mn mixtures showed some discrepancies between different endpoints. In conclusion, our study highlights the complexity of the mixtures' interaction patterns and the possible neuroprotective effect of Li under certain conditions. In the future, more research on different levels of metal mixtures, especially Li metal, is necessary to evaluate their underlying interactions and contribute to establishing risk assessment systems.
Collapse
Affiliation(s)
- Huan Luo
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Room 233, Building 8, 130 Dongan Rd, 200032, Shanghai, People's Republic of China
| | - Jiayi Li
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Room 233, Building 8, 130 Dongan Rd, 200032, Shanghai, People's Republic of China
| | - Bo Song
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Room 233, Building 8, 130 Dongan Rd, 200032, Shanghai, People's Republic of China
| | - Bing Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Room 233, Building 8, 130 Dongan Rd, 200032, Shanghai, People's Republic of China
| | - Yixi Li
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Room 233, Building 8, 130 Dongan Rd, 200032, Shanghai, People's Republic of China
| | - Zhijun Zhou
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Room 233, Building 8, 130 Dongan Rd, 200032, Shanghai, People's Republic of China
| | - Xiuli Chang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Room 233, Building 8, 130 Dongan Rd, 200032, Shanghai, People's Republic of China.
| |
Collapse
|
33
|
Hamstra SI, Roy BD, Tiidus P, MacNeil AJ, Klentrou P, MacPherson RE, Fajardo VA. Beyond its Psychiatric Use: The Benefits of Low-dose Lithium Supplementation. Curr Neuropharmacol 2023; 21:891-910. [PMID: 35236261 PMCID: PMC10227915 DOI: 10.2174/1570159x20666220302151224] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/16/2022] [Accepted: 02/10/2022] [Indexed: 11/22/2022] Open
Abstract
Lithium is most well-known for its mood-stabilizing effects in the treatment of bipolar disorder. Due to its narrow therapeutic window (0.5-1.2 mM serum concentration), there is a stigma associated with lithium treatment and the adverse effects that can occur at therapeutic doses. However, several studies have indicated that doses of lithium under the predetermined therapeutic dose used in bipolar disorder treatment may have beneficial effects not only in the brain but across the body. Currently, literature shows that low-dose lithium (≤0.5 mM) may be beneficial for cardiovascular, musculoskeletal, metabolic, and cognitive function, as well as inflammatory and antioxidant processes of the aging body. There is also some evidence of low-dose lithium exerting a similar and sometimes synergistic effect on these systems. This review summarizes these findings with a focus on low-dose lithium's potential benefits on the aging process and age-related diseases of these systems, such as cardiovascular disease, osteoporosis, sarcopenia, obesity and type 2 diabetes, Alzheimer's disease, and the chronic low-grade inflammatory state known as inflammaging. Although lithium's actions have been widely studied in the brain, the study of the potential benefits of lithium, particularly at a low dose, is still relatively novel. Therefore, this review aims to provide possible mechanistic insights for future research in this field.
Collapse
Affiliation(s)
- Sophie I. Hamstra
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - Brian D. Roy
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - Peter Tiidus
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Adam J. MacNeil
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Panagiota Klentrou
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - Rebecca E.K. MacPherson
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
- Centre for Neurosciences, Brock University, St. Catharines, Ontario, Canada
| | - Val A. Fajardo
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
- Centre for Neurosciences, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
34
|
Guilliot S, Gauthier S, Touchon J, Soto ME. Lithium, a Treatment Option for Alzheimer's Disease? A Review of Existing Evidence and Discussion on Future Perspectives. J Alzheimers Dis 2023; 96:473-482. [PMID: 37781804 DOI: 10.3233/jad-230568] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
After over 50 years of use, lithium-salts remain the first-line therapy for the management of bipolar disorder. Throughout this period, the potential for lithium salts has been extensively studied and numerous data favor its use in the treatment of neurodegenerative disorders such as Alzheimer's disease (AD). We reviewed existing evidence gathered from clinical case reports and studies on the effect of lithium on neuropsychological symptoms of AD and as a disease-modifying treatment acting on cognitive symptoms. The review summarizes the molecular pathways, involving GSK-3β inhibition and neuroprotection, through which lithium is proposed to exert its effect. Limitations to its current use in AD are discussed and future perspectives as a potential treatment option for AD are considered in regard to ongoing clinical trials using different forms of lithium.
Collapse
Affiliation(s)
| | - Serge Gauthier
- Neurology and Psychiatry, McGill University, Montréal, Canada
| | | | - Maria E Soto
- Equipe AGING, axe MAINTAIN du CERPOP, UMR 1295, Research and Clinical Alzheimer's Disease Center, CMRR Gérontopôle, CHU Toulouse, Toulouse, France
| |
Collapse
|
35
|
Kawada T. Dementia risk in patients with bipolar disorder. Int J Geriatr Psychiatry 2023; 38:e5864. [PMID: 36495536 DOI: 10.1002/gps.5864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tomoyuki Kawada
- Department of Hygiene and Public Health, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
36
|
A Case of Lithium Encephalopathy with Therapeutic Lithium Levels: The Diagnostic Role of EEG. Case Rep Psychiatry 2022; 2022:8052471. [PMID: 36568329 PMCID: PMC9788879 DOI: 10.1155/2022/8052471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction. Lithium is considered a first-line therapy for both the acute phase and the maintenance of bipolar disorder. Many studies highlighted its neuroprotective and neuroplastic capacity suggesting a potential usefulness in the treatment of neurodegenerative diseases. Despite the undeniable efficacy, lithium clearly presents several adverse effects including neurotoxicity, also known as lithium encephalopathy, regarding both neurological, psychiatric, and cognitive side effects. In this case, adverse reactions are not always related to its serum levels, possibly appearing within the therapeutic range. Case Presentation. We analyzed the case of a bipolar patient who has been uncontinuosly treated with lithium salts since the onset of the psychopathological picture. Over the years, the average values of lithemia always remained around 0.60-0.70 mEq/L, but in 2019, the patient begun to manifest distal tremors and in the mandibular district accompanied, in the following months, by psychomotor slowdown, generalized tremors, reduced alertness, spatiotemporal disorientation, and aphasia. While alterations referable to neurodegenerative diseases were excluded, EEG maintained rhythm alteration 1 year after the probable intoxication. Discussion. This case confirms the central role of EEG for lithium neurotoxicity, while its dosages are in therapeutic range, being plasma levels are not always indicative of liquoral and neuronal lithium's levels. We highlight the importance of an early diagnosis of lithium encephalopathy proposing EEG as an indispensable tool for assessing lithium neurotoxicity both in acute and chronic intoxication.
Collapse
|
37
|
Willemse SW, Roes KCB, Van Damme P, Hardiman O, Ingre C, Povedano M, Wray NR, Gijzen M, de Pagter MS, Demaegd KC, Janse AFC, Vink RG, Sleutjes BTHM, Chiò A, Corcia P, Reviers E, Al-Chalabi A, Kiernan MC, van den Berg LH, van Es MA, van Eijk RPA. Lithium carbonate in amyotrophic lateral sclerosis patients homozygous for the C-allele at SNP rs12608932 in UNC13A: protocol for a confirmatory, randomized, group-sequential, event-driven, double-blind, placebo-controlled trial. Trials 2022; 23:978. [PMID: 36471413 PMCID: PMC9721045 DOI: 10.1186/s13063-022-06906-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/03/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Given the large genetic heterogeneity in amyotrophic lateral sclerosis (ALS), it seems likely that genetic subgroups may benefit differently from treatment. An exploratory meta-analysis identified that patients homozygous for the C-allele at SNP rs12608932, a single nucleotide polymorphism in the gene UNC13A, had a statistically significant survival benefit when treated with lithium carbonate. We aim to confirm the efficacy of lithium carbonate on the time to death or respiratory insufficiency in patients with ALS homozygous for the C-allele at SNP rs12608932 in UNC13A. METHODS A randomized, group-sequential, event-driven, double-blind, placebo-controlled trial will be conducted in 15 sites across Europe and Australia. Patients will be genotyped for UNC13A; those homozygous for the C-allele at SNP rs12608932 will be eligible. Patients must have a diagnosis of ALS according to the revised El Escorial criteria, and a TRICALS risk-profile score between -6.0 and -2.0. An expected number of 1200 patients will be screened in order to enroll a target sample size of 171 patients. Patients will be randomly allocated in a 2:1 ratio to lithium carbonate or matching placebo, and treated for a maximum duration of 24 months. The primary endpoint is the time to death or respiratory insufficiency, whichever occurs first. Key secondary endpoints include functional decline, respiratory function, quality of life, tolerability, and safety. An interim analysis for futility and efficacy will be conducted after the occurrence of 41 events. DISCUSSION Lithium carbonate has been proven to be safe and well-tolerated in patients with ALS. Given the favorable safety profile, the potential benefits are considered to outweigh the burden and risks associated with study participation. This study may provide conclusive evidence about the life-prolonging potential of lithium carbonate in a genetic ALS subgroup. TRIAL REGISTRATION EudraCT number 2020-000579-19 . Registered on 29 March 2021.
Collapse
Affiliation(s)
- Sean W Willemse
- Department of Neurology, UMC Utrecht, Utrecht, The Netherlands
| | - Kit C B Roes
- Department of Health Evidence, Radboud UMC, Nijmegen, The Netherlands
| | - Philip Van Damme
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Orla Hardiman
- Department of Neurology, National Neuroscience Centre, Beaumont Hospital, Dublin, Ireland
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Caroline Ingre
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Monica Povedano
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology, Bellvitge University Hospital, Hospitalet de Llobregat, Spain
| | - Naomi R Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Marleen Gijzen
- Department of Genetics, UMC Utrecht, Utrecht, The Netherlands
| | | | - Koen C Demaegd
- Department of Neurology, UMC Utrecht, Utrecht, The Netherlands
| | | | | | | | - Adriano Chiò
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
- Neurology, AOU Città della Salute e della Scienza Hospital of Turin, Turin, Italy
| | - Philippe Corcia
- Centre Constitutif SLA, CHRU de Tours - Fédération des centres SLA Tours-Limoges, LitORALS, Tours, France
| | - Evy Reviers
- European Organization for Professionals and Patients with ALS (EUpALS) & ALS Liga Belgium, Leuven, Belgium
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
- Department of Neurology, King's College Hospital, London, UK
| | - Matthew C Kiernan
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | | | | | - Ruben P A van Eijk
- Department of Neurology, UMC Utrecht, Utrecht, The Netherlands.
- Biostatistics and Research Support, Julius Centre for Health Sciences and Primary Care, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
38
|
Yan N, Shi XL, Tang LQ, Wang DF, Li X, Liu C, Liu ZP. Synthesis and biological evaluation of thieno[3,2- c]pyrazol-3-amine derivatives as potent glycogen synthase kinase 3β inhibitors for Alzheimer's disease. J Enzyme Inhib Med Chem 2022; 37:1724-1736. [PMID: 35698879 PMCID: PMC9225722 DOI: 10.1080/14756366.2022.2086867] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Glycogen synthase kinase 3β (GSK-3β) catalyses the hyperphosphorylation of tau protein in the Alzheimer's disease (AD) pathology. A series of novel thieno[3,2-c]pyrazol-3-amine derivatives were designed and synthesised and evaluated as potential GSK-3β inhibitors by structure-guided drug rational design approach. The thieno[3,2-c]pyrazol-3-amine derivative 16b was identified as a potent GSK-3β inhibitor with an IC50 of 3.1 nM in vitro and showed accepted kinase selectivity. In cell levels, 16b showed no toxicity on the viability of SH-SY5Y cells at the concentration up to 50 μM and targeted GSK-3β with the increased phosphorylated GSK-3β at Ser9. Western blot analysis indicated that 16b decreased the phosphorylated tau at Ser396 in a dose-dependent way. Moreover, 16b effectively increased expressions of β-catenin as well as the GAP43, N-myc, and MAP-2, and promoted the differentiated neuronal neurite outgrowth. Therefore, the thieno[3,2-c]pyrazol-3-amine derivative 16b could serve as a promising GSK-3β inhibitor for the treatment of AD.
Collapse
Affiliation(s)
- Ning Yan
- Institute of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Xiao-Long Shi
- Institute of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Long-Qian Tang
- Institute of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - De-Feng Wang
- Institute of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Xun Li
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, PR China
| | - Chao Liu
- Institute of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Zhao-Peng Liu
- Institute of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| |
Collapse
|
39
|
Gao D, Li P, Gao F, Feng Y, Li X, Li D, Li Y, Xiao Y. Preparation and Multitarget Anti-AD Activity Study of Chondroitin Sulfate Lithium in AD Mice Induced by Combination of D-Gal/AlCl 3. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9466166. [PMID: 36411758 PMCID: PMC9675613 DOI: 10.1155/2022/9466166] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/25/2022] [Indexed: 09/26/2023]
Abstract
Previous studies have demonstrated that both CS and LiCl possess anti-Alzheimer's disease (AD) activities. We prepared chondroitin sulfate-Li (CS-Li) and investigated its effect on AD and explored the possible mechanisms both in vitro and in vivo. We found that CS-Li could inhibit amyloid β (Aβ) aggregation and protect SH-SY5Y cells from Aβ 1-42-induced cytotoxicity in vitro. In D-gal and AlCl3-induced AD mouse model, CS-Li improves the spatial learning and memory abilities of AD mice, reverses the nuclear pyknosis and cell edema, and increases the survival rate of neurons in hippocampus of mice. Moreover, CS-Li significantly increased the levels of GSH-Px, Na+/K+-ATPase, and ChAT and decreased the levels of MDA and AchE in AD mice. Western blot results demonstrated that CS-Li could decrease the hyperphosphorylation of tau (Ser396/Ser404) by regulating the expression of p-GSK-3β (Ser9) and PP2A and inhibit the expression of proinflammatory factors through inhibiting NF-κB nuclear translocation by activating the MAPK signaling pathways. In a word, CS-Li can delay AD development through multitarget processes, including Aβ aggregation inhibition, oxidative stress damage, tau hyperphosphorylation, and inflammatory response, thereby improves learning and memory abilities.
Collapse
Affiliation(s)
- Debo Gao
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000 Shandong, China
| | - Pingli Li
- Phase I Clinical Trial Center, Qilu Hospital of Shandong University, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, Shandong University, Jinan 25000, China
| | - Fei Gao
- Taibang Biologic Group Co., Ltd., Taian, 271000 Shandong, China
| | - Yangjun Feng
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000 Shandong, China
| | - Xiaolin Li
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000 Shandong, China
| | - Delong Li
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000 Shandong, China
| | - Yuqin Li
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000 Shandong, China
| | - Yuliang Xiao
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000 Shandong, China
| |
Collapse
|
40
|
Sampogna G, Janiri D, Albert U, Caraci F, Martinotti G, Serafini G, Tortorella A, Zuddas A, Sani G, Fiorillo A. Why lithium should be used in patients with bipolar disorder? A scoping review and an expert opinion paper. Expert Rev Neurother 2022; 22:923-934. [PMID: 36562412 DOI: 10.1080/14737175.2022.2161895] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Lithium treatment is considered the gold standard for the long-term management of bipolar disorder and recurrent unipolar depression. It is also extremely effective in other psychiatric conditions characterized by impulsivity and aggression, and for the prevention of suicidal behaviours. AREAS COVERED This paper provides a scoping review and an expert commentary regarding the use of lithium in adult patients. Available information about efficacy, tolerability, dosing, and switching is analyzed, and the strategies that may be most useful in real-world clinical settings are highlighted. EXPERT OPINION Lithium is effective on different domains of bipolar disorder, including the long-term prevention of recurrences of affective episodes, management of acute mania as well as in the prophylaxis of all affective episodes. Lithium has been defined a 'forgotten drug,' since its use in routine clinical practice has been declined over the last 20 or 30 years. Reasons for this trend include lack of adequate training on the management of lithium side effects. Considering its efficacy, use of lithium in ordinary clinical practice should be promoted. Several strategies, such as using slow-release formulations, can be easily implemented in order to minimize lithium side effects and improve its tolerability profile.
Collapse
Affiliation(s)
- Gaia Sampogna
- Department of Psychiatry, University of Campania "L. Vanvitelli", Naples, Italy
| | - Delfina Janiri
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Psychiatry and Neurology, Sapienza University of Rome, Rome, Italy
| | - Umberto Albert
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy. Azienda Sanitaria Integrata Giuliano-Isontina - ASUGI, UCO Clinica Psichiatrica, Trieste, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania, Italy; Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute - IRCCS, Troina, Italy
| | - Giovanni Martinotti
- Department of Neurosciences, Imaging and Clinical Sciences, Università degli Studi G. D'Annunzio, Chieti, Italy; Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Gianluca Serafini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Alessandro Zuddas
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Gabriele Sani
- Department of Geriatrics, Neuroscience and Orthopedics, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Andrea Fiorillo
- Department of Psychiatry, University of Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|
41
|
Kirchenwitz M, Stahnke S, Grunau K, Melcher L, van Ham M, Rottner K, Steffen A, Stradal TEB. The autophagy inducer SMER28 attenuates microtubule dynamics mediating neuroprotection. Sci Rep 2022; 12:17805. [PMID: 36284196 PMCID: PMC9596692 DOI: 10.1038/s41598-022-20563-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 09/15/2022] [Indexed: 01/19/2023] Open
Abstract
SMER28 originated from a screen for small molecules that act as modulators of autophagy. SMER28 enhanced the clearance of autophagic substrates such as mutant huntingtin, which was additive to rapamycin-induced autophagy. Thus, SMER28 was established as a positive regulator of autophagy acting independently of the mTOR pathway, increasing autophagosome biosynthesis and attenuating mutant huntingtin-fragment toxicity in cellular- and fruit fly disease models, suggesting therapeutic potential. Despite many previous studies, molecular mechanisms mediating SMER28 activities and its direct targets have remained elusive. Here we analyzed the effects of SMER28 on cells and found that aside from autophagy induction, it significantly stabilizes microtubules and decelerates microtubule dynamics. Moreover, we report that SMER28 displays neurotrophic and neuroprotective effects at the cellular level by inducing neurite outgrowth and protecting from excitotoxin-induced axon degeneration. Finally, we compare the effects of SMER28 with other autophagy-inducing or microtubule-stabilizing drugs: whereas SMER28 and rapamycin both induce autophagy, the latter does not stabilize microtubules, and whereas both SMER28 and epothilone B stabilize microtubules, epothilone B does not stimulate autophagy. Thus, the effect of SMER28 on cells in general and neurons in particular is based on its unique spectrum of bioactivities distinct from other known microtubule-stabilizing or autophagy-inducing drugs.
Collapse
Affiliation(s)
- Marco Kirchenwitz
- grid.7490.a0000 0001 2238 295XDepartment of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany ,grid.6738.a0000 0001 1090 0254Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Stephanie Stahnke
- grid.7490.a0000 0001 2238 295XDepartment of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Kyra Grunau
- grid.7490.a0000 0001 2238 295XDepartment of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany ,grid.6738.a0000 0001 1090 0254Division of Cellular and Molecular Neurobiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Lars Melcher
- grid.7490.a0000 0001 2238 295XDepartment of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Marco van Ham
- grid.7490.a0000 0001 2238 295XCellular Proteome Research, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Klemens Rottner
- grid.7490.a0000 0001 2238 295XDepartment of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany ,grid.6738.a0000 0001 1090 0254Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Anika Steffen
- grid.7490.a0000 0001 2238 295XDepartment of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Theresia E. B. Stradal
- grid.7490.a0000 0001 2238 295XDepartment of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| |
Collapse
|
42
|
Lithium Biological Action Mechanisms after Ischemic Stroke. Life (Basel) 2022; 12:life12111680. [DOI: 10.3390/life12111680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
Lithium is a source of great scientific interest because although it has such a simple structure, relatively easy-to-analyze chemistry, and well-established physical properties, the plethora of effects on biological systems—which influence numerous cellular and molecular processes through not entirely explained mechanisms of action—generate a mystery that modern science is still trying to decipher. Lithium has multiple effects on neurotransmitter-mediated receptor signaling, ion transport, signaling cascades, hormonal regulation, circadian rhythm, and gene expression. The biochemical mechanisms of lithium action appear to be multifactorial and interrelated with the functioning of several enzymes, hormones, vitamins, and growth and transformation factors. The widespread and chaotic marketing of lithium salts in potions and mineral waters, always at inadequate concentrations for various diseases, has contributed to the general disillusionment with empirical medical hypotheses about the therapeutic role of lithium. Lithium salts were first used therapeutically in 1850 to relieve the symptoms of gout, rheumatism, and kidney stones. In 1949, Cade was credited with discovering the sedative effect of lithium salts in the state of manic agitation, but frequent cases of intoxication accompanied the therapy. In the 1960s, lithium was shown to prevent manic and also depressive recurrences. This prophylactic effect was first demonstrated in an open-label study using the “mirror” method and was later (after 1970) confirmed by several placebo-controlled double-blind studies. Lithium prophylaxis was similarly effective in bipolar and also unipolar patients. In 1967, the therapeutic value of lithemia was determined, included in the range of 0.5–1.5 mEq/L. Recently, new therapeutic perspectives on lithium are connected with improved neurological outcomes after ischemic stroke. The effects of lithium on the development and maintenance of neuroprotection can be divided into two categories: short-term effects and long-term effects. Unfortunately, the existing studies do not fully explain the lithium biological action mechanisms after ischemic stroke.
Collapse
|
43
|
Ariza-Salamanca DF, Corrales-Hernández MG, Pachón-Londoño MJ, Hernández-Duarte I. Molecular and cellular mechanisms leading to catatonia: an integrative approach from clinical and preclinical evidence. Front Mol Neurosci 2022; 15:993671. [PMID: 36245923 PMCID: PMC9558725 DOI: 10.3389/fnmol.2022.993671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
This review aims to describe the clinical spectrum of catatonia, in order to carefully assess the involvement of astrocytes, neurons, oligodendrocytes, and microglia, and articulate the available preclinical and clinical evidence to achieve a translational understanding of the cellular and molecular mechanisms behind this disorder. Catatonia is highly common in psychiatric and acutely ill patients, with prevalence ranging from 7.6% to 38%. It is usually present in different psychiatric conditions such as mood and psychotic disorders; it is also a consequence of folate deficiency, autoimmunity, paraneoplastic disorders, and even autistic spectrum disorders. Few therapeutic options are available due to its complexity and poorly understood physiopathology. We briefly revisit the traditional treatments used in catatonia, such as antipsychotics, electroconvulsive therapy, and benzodiazepines, before assessing novel therapeutics which aim to modulate molecular pathways through different mechanisms, including NMDA antagonism and its allosteric modulation, and anti-inflammatory drugs to modulate microglia reaction and mitigate oxidative stress, such as lithium, vitamin B12, and NMDAr positive allosteric modulators.
Collapse
Affiliation(s)
- Daniel Felipe Ariza-Salamanca
- Medical and Health Sciences Education Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
- *Correspondence: Daniel Felipe Ariza-Salamanca
| | - María Gabriela Corrales-Hernández
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - María José Pachón-Londoño
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Isabella Hernández-Duarte
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
44
|
Kamal ZM, Dutta S, Rahman S, Etando A, Hasan E, Nahar SN, Wan Ahmad Fakuradzi WFS, Sinha S, Haque M, Ahmad R. Therapeutic Application of Lithium in Bipolar Disorders: A Brief Review. Cureus 2022; 14:e29332. [PMID: 36159362 PMCID: PMC9484534 DOI: 10.7759/cureus.29332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
|
45
|
Golic M, Aiff H, Attman PO, Ramsauer B, Schön S, Steingrimsson S, Svedlund J. The low risk for early renal damage during lithium treatment has not changed over time. J Psychopharmacol 2022; 37:318-324. [PMID: 36121029 PMCID: PMC10076338 DOI: 10.1177/02698811221123054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Modern lithium management guidelines were introduced to improve the renal prognosis of lithium patients. AIMS To examine whether prospects for severe renal impairment (defined as chronic kidney disease at least stage 4 (CKD4)), in long-term lithium patients, have changed over time after the introduction of lithium monitoring guidelines. METHODS The time to and hazard for CKD4 were compared between three patient cohorts who started long-term lithium in three consecutive decades: 1980s, 1990s and 2000s. The follow-up time was 10 years after completion of 1-year treatment. The data were collected from Sahlgrenska University Hospital's laboratory database. RESULTS In all, 2169 patients were included: 623 in Cohort 1 (started lithium during 1980s), 874 in Cohort 2 (1990s) and 672 in Cohort 3 (2000s). Compliance with lithium monitoring guidelines improved, and mean serum lithium decreased, through the cohorts. In all, 22 patients developed CKD4 during follow-up. The time to CKD4 was the same in all three cohorts (overall: 10.96 years, 95% confidence interval: 10.94-11 years). Age and serum creatinine concentration at start were significant risk factors, while sex had no prognostic value. After adjusting for the significant covariates, there was no statistically significant difference in the hazard for CKD4 between the three cohorts. CONCLUSION The risk for severe renal damage during the first decade of long-term lithium is low, but has not changed over time. Our data suggest that improved compliance with lithium guidelines is not reflected in less risk for severe renal damage.
Collapse
Affiliation(s)
- Mihaela Golic
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Harald Aiff
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Per-Ola Attman
- Department of Nephrology, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Bernd Ramsauer
- Department of Nephrology, Skaraborg Hospital, Skövde, Sweden
| | - Staffan Schön
- Swedish Renal Registry, Jönköping County Hospital, Jönköping, Sweden
| | - Steinn Steingrimsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Jan Svedlund
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
46
|
Coradduzza D, Garroni G, Congiargiu A, Balzano F, Cruciani S, Sedda S, Nivoli A, Maioli M. MicroRNAs, Stem Cells in Bipolar Disorder, and Lithium Therapeutic Approach. Int J Mol Sci 2022; 23:ijms231810489. [PMID: 36142403 PMCID: PMC9502703 DOI: 10.3390/ijms231810489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Bipolar disorder (BD) is a severe, chronic, and disabling neuropsychiatric disorder characterized by recurrent mood disturbances (mania/hypomania and depression, with or without mixed features) and a constellation of cognitive, psychomotor, autonomic, and endocrine abnormalities. The etiology of BD is multifactorial, including both biological and epigenetic factors. Recently, microRNAs (miRNAs), a class of epigenetic regulators of gene expression playing a central role in brain development and plasticity, have been related to several neuropsychiatric disorders, including BD. Moreover, an alteration in the number/distribution and differentiation potential of neural stem cells has also been described, significantly affecting brain homeostasis and neuroplasticity. This review aimed to evaluate the most reliable scientific evidence on miRNAs as biomarkers for the diagnosis of BD and assess their implications in response to mood stabilizers, such as lithium. Neural stem cell distribution, regulation, and dysfunction in the etiology of BD are also dissected.
Collapse
Affiliation(s)
| | - Giuseppe Garroni
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | | | - Francesca Balzano
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Stefania Sedda
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Alessandra Nivoli
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
- Correspondence: (A.N.); (M.M.); Tel.: +39-079-228-277 (A.N.); +39-079-255-406-228350 (M.M.)
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Center for Developmental Biology and Reprogramming (CEDEBIOR), Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
- Correspondence: (A.N.); (M.M.); Tel.: +39-079-228-277 (A.N.); +39-079-255-406-228350 (M.M.)
| |
Collapse
|
47
|
Bojja SL, Singh N, Kolathur KK, Rao CM. What is the Role of Lithium in Epilepsy? Curr Neuropharmacol 2022; 20:1850-1864. [PMID: 35410603 PMCID: PMC9886805 DOI: 10.2174/1570159x20666220411081728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/26/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022] Open
Abstract
Lithium is a well-known FDA-approved treatment for bipolar and mood disorders. Lithium has been an enigmatic drug with multifaceted actions involving various neurotransmitters and intricate cell signalling cascades. Recent studies highlight the neuroprotective and neurotrophic actions of lithium in amyotrophic lateral sclerosis, Alzheimer's disease, intracerebral hemorrhage, and epilepsy. Of note, lithium holds a significant interest in epilepsy, where the past reports expose its non-specific proconvulsant action, followed lately by numerous studies for anti-convulsant action. However, the exact mechanism of action of lithium for any of its effects is still largely unknown. The present review integrates findings from several reports and provides detailed possible mechanisms of how a single molecule exhibits marked pro-epileptogenic as well as anti-convulsant action. This review also provides clarity regarding the safety of lithium therapy in epileptic patients.
Collapse
Affiliation(s)
| | | | | | - Chamallamudi Mallikarjuna Rao
- Address correspondence to this author at the Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India; E-mails: ,
| |
Collapse
|
48
|
Gherardelli C, Cisternas P, Inestrosa NC. Lithium Enhances Hippocampal Glucose Metabolism in an In Vitro Mice Model of Alzheimer's Disease. Int J Mol Sci 2022; 23:8733. [PMID: 35955868 PMCID: PMC9368914 DOI: 10.3390/ijms23158733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Impaired cerebral glucose metabolism is an early event that contributes to the pathogenesis of Alzheimer's disease (AD). Importantly, restoring glucose availability by pharmacological agents or genetic manipulation has been shown to protect against Aβ toxicity, ameliorate AD pathology, and increase lifespan. Lithium, a therapeutic agent widely used as a treatment for mood disorders, has been shown to attenuate AD pathology and promote glucose metabolism in skeletal muscle. However, despite its widespread use in neuropsychiatric disorders, lithium's effects on the brain have been poorly characterized. Here we evaluated the effect of lithium on glucose metabolism in hippocampal neurons from wild-type (WT) and APPSwe/PS1ΔE9 (APP/PS1) mice. Our results showed that lithium significantly stimulates glucose uptake and replenishes ATP levels by preferential oxidation of glucose through glycolysis in neurons from WT mice. This increase was also accompanied by a strong increase in glucose transporter 3 (Glut3), the major carrier responsible for glucose uptake in neurons. Similarly, using hippocampal slices from APP-PS1 mice, we demonstrate that lithium increases glucose uptake, glycolytic rate, and the ATP:ADP ratio in a process that also involves the activation of AMPK. Together, our findings indicate that lithium stimulates glucose metabolism and can act as a potential therapeutic agent in AD.
Collapse
Affiliation(s)
- Camila Gherardelli
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Pedro Cisternas
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2820000, Chile
| | - Nibaldo C. Inestrosa
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6210427, Chile
| |
Collapse
|
49
|
Kakhki S, Ahmadi-Soleimani SM. Experimental data on lithium salts: From neuroprotection to multi-organ complications. Life Sci 2022; 306:120811. [PMID: 35850248 DOI: 10.1016/j.lfs.2022.120811] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/03/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
Lithium-salts stand on the first line of therapy for the management of specific psychiatric conditions, mainly bipolar mood disorder. It is also known to protect the brain against neurodegenerative processes such as Alzheimer's disease. Despite the mentioned merits, recent studies have revealed that high dose or prolonged lithium intake deteriorate the function of multiple key organs including heart, ovaries, thyroid gland and kidneys. Mechanistically, both positive and negative effects of lithium are mediated through methylation of β-catenin nuclear-binding proteins which is potentiated by lithium-induced inhibition of GSK-3 or inositol monophosphatase. The current study briefly reviews the recent experimental data on lithium therapy considering both positive (i.e., neuroprotective) and negative aspects. In this regard, the question is that whether doses of lithium administered in experimental research are comparable with the therapeutic doses, as currently prescribed in clinical practice. It should be noted that the experimental data on animal studies, as widely reviewed here, could not be directly generalized to clinic. This is mainly because lithium doses applied in animal models are usually higher than therapeutic doses, however, there are evidence indicating that even animal to human translated doses of lithium, cause serious complications and this has been reported by meta-analyses on human studies. Therefore, we suggest the clinicians to use lithium-salts with precaution particularly in pregnancy and precisely adjust lithium concentration considering the patient's general health status to avoid lithium toxicity. Indeed, alternative approaches are recommended when the subject is pregnant, prolonged therapy is required or specific organ dysfunction is diagnosed.
Collapse
Affiliation(s)
- Samaneh Kakhki
- Department of Clinical Biochemistry, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - S Mohammad Ahmadi-Soleimani
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
| |
Collapse
|
50
|
Sanii R, Andaloussi YH, Patyk-Kaźmierczak E, Zaworotko MJ. Polymorphism in Ionic Cocrystals Comprising Lithium Salts and l-Proline. CRYSTAL GROWTH & DESIGN 2022; 22:3786-3794. [PMID: 36160301 PMCID: PMC9490868 DOI: 10.1021/acs.cgd.2c00172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/20/2022] [Indexed: 06/16/2023]
Abstract
The occurrence of polymorphism in ionic cocrystals formed by two lithium salts, lithium salicylate (LIS) and lithium 4-methoxybenzoate (L4M), and l-proline (PRO) has been investigated. The previously reported monoclinic form of the 1:1 cocrystal of LIS and PRO, LISPRO(α), and a new thermodynamically stable orthorhombic polymorph, LISPRO(β), were prepared and characterized. The two polymorphs form square grid, sql, topology coordination networks and differ mainly in the conformation of the salicylate ions and positioning of the sql nets. LISPRO(α) was observed to transform to LISPRO(β) under slurry conditions. The 1:1 ionic cocrystal of L4M and PRO (L4MPRO) was found to form three polymorphs. Apart from the previously reported orthorhombic crystal form, L4MPRO(α), two new monoclinic crystal forms, L4MPRO(β) and L4MPRO(γ), were obtained by modifying crystallization conditions. The new polymorphs were found to be metastable, undergoing transformations to L4MPRO(α) upon exposure to humidity. Experimental conditions that induce transformations between the polymorphs of LISPRO and L4MPRO are detailed, and the structural differences between the polymorphs are discussed in the broader context of polymorphism.
Collapse
Affiliation(s)
- Rana Sanii
- Department
of Chemical Sciences and Bernal Institute, University of Limerick, Co., Limerick V94T9PX, Ireland
| | - Yassin H. Andaloussi
- Department
of Chemical Sciences and Bernal Institute, University of Limerick, Co., Limerick V94T9PX, Ireland
| | - Ewa Patyk-Kaźmierczak
- Department
of Materials Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Michael J. Zaworotko
- Department
of Chemical Sciences and Bernal Institute, University of Limerick, Co., Limerick V94T9PX, Ireland
| |
Collapse
|