1
|
Todorov J, Calhoun SE, McCarty GS, Sombers LA. Electrochemical Quantification of Enkephalin Peptides Using Fast-Scan Cyclic Voltammetry. Anal Chem 2024. [PMID: 39138126 DOI: 10.1021/acs.analchem.4c02418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Endogenous opioid neuropeptides serve as important chemical signaling molecules in both the central and peripheral nervous systems, but there are few analytical tools for directly monitoring these molecules in situ. The opioid peptides share the amino acid motif, Tyr-Gly-Gly-Phe-, at the N-terminus. Met-enkephalin is a small opioid peptide comprised of only five amino acids with methionine (Met) incorporated at the C-terminus. Tyrosine (Tyr) and Met are electroactive, and their distinct electrochemical signatures can be utilized for quantitative molecular monitoring. This work encompasses a thorough voltammetric characterization of Tyr and Met redox chemistry as individual amino acids and when incorporated into small peptide fragments containing the shared Tyr-Gly-Gly-Phe- motif. NMR spectroscopy was used to determine the structure and conformation at near-physiological conditions. Voltammetric data demonstrate how the peak oxidation potential and the rate of electron transfer are dependent on the local chemical environment. Both the proximity of the electroactive residue to the C- or N-terminus and the hydrophobicity of the additional nonelectroactive amino acids profoundly affect sensitivity. Finally, the work uses the electrochemical signal for individual amino acids in a "training set", with a combination of principal component analysis and least-squares regression to accurately predict the voltammetric signal for short peptides comprising different combinations of those amino acids. Overall, this study demonstrates how fast-scan cyclic voltammetry can be utilized to discriminate between peptides with small differences in the chemical structure, thus establishing a framework for reliable quantification of small peptides in a complex signal, broadly speaking.
Collapse
|
2
|
Denison JD, De Alwis AC, Shah R, McCarty GS, Sombers LA. Untapped Potential: Real-Time Measurements of Opioid Exocytosis at Single Cells. J Am Chem Soc 2023; 145:24071-24080. [PMID: 37857375 PMCID: PMC10637323 DOI: 10.1021/jacs.3c07487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Indexed: 10/21/2023]
Abstract
The endogenous opioid system is commonly targeted in pain treatment, but the fundamental nature of neuropeptide release remains poorly understood due to a lack of methods for direct detection of specific opioid neuropeptides in situ. These peptides are concentrated in, and released from, large dense-core vesicles in chromaffin cells. Although catecholamine release from these neuroendocrine cells is well characterized, the direct quantification of opioid peptide exocytosis events has not previously been achieved. In this work, a planar carbon-fiber microelectrode served as a "postsynaptic" sensor for probing catecholamine and neuropeptide release dynamics via amperometric monitoring. A constant potential of 500 mV was employed for quantification of catecholamine release, and a higher potential of 1000 mV was used to drive oxidation of tyrosine, the N-terminal amino acid in the opioid neuropeptides released from chromaffin cells. By discriminating the results collected at the two potentials, the data reveal unique kinetics for these two neurochemical classes at the single-vesicle level. The amplitude of the peptidergic signals decreased with repeat stimulation, as the halfwidth of these signals simultaneously increased. By contrast, the amplitude of catecholamine release events increased with repeat stimulation, but the halfwidth of each event did not vary. The chromogranin dense core was identified as an important mechanistic handle by which separate classes of transmitter can be kinetically modulated when released from the same population of vesicles. Overall, the data provide unprecedented insight into key differences between catecholamine and opioid neuropeptide release from isolated chromaffin cells.
Collapse
Affiliation(s)
- J. Dylan Denison
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Comparative
Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - A. Chathuri De Alwis
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ruby Shah
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Gregory S. McCarty
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Leslie A. Sombers
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Comparative
Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
3
|
Rerick MT, Chen J, Weber SG. Electroosmotic Perfusion, External Microdialysis: Simulation and Experiment. ACS Chem Neurosci 2023. [PMID: 37379416 PMCID: PMC10360060 DOI: 10.1021/acschemneuro.3c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023] Open
Abstract
Information about the rates of hydrolysis of neuropeptides by extracellular peptidases can lead to a quantitative understanding of how the steady-state and transient concentrations of neuropeptides are controlled. We have created a small microfluidic device that electroosmotically infuses peptides into, through, and out of the tissue to a microdialysis probe outside the head. The device is created by two-photon polymerization (Nanoscribe). Inferring quantitative estimates of a rate process from the change in concentration of a substrate that has passed through tissue is challenging for two reasons. One is that diffusion is significant, so there is a distribution of peptide substrate residence times in the tissue. This affects the product yield. The other is that there are multiple paths taken by the substrate as it passes through tissue, so there is a distribution of residence times and thus reaction times. Simulation of the process is essential. The simulations presented here imply that a range of first order rate constants of more than 3 orders of magnitude is measurable and that 5-10 min is required to reach a steady state value of product concentration following initiation of substrate infusion. Experiments using a peptidase-resistant d-amino acid pentapeptide, yaGfl, agree with simulations.
Collapse
Affiliation(s)
- Michael T Rerick
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jun Chen
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen G Weber
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
4
|
Wilson RE, Jaquins-Gerstl A, Chen J, Rerick M, Weber SG. Electroosmotic Perfusion-Microdialysis Probe Created by Direct Laser Writing for Quantitative Assessment of Leucine Enkephalin Hydrolysis by Insulin-Regulated Aminopeptidase in Vivo. Anal Chem 2020; 92:14558-14567. [PMID: 32961052 PMCID: PMC11027065 DOI: 10.1021/acs.analchem.0c02799] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There are many processes that actively alter the concentrations of solutes in the extracellular space. Enzymatic reactions, either by soluble enzymes or membrane-bound ectoenzymes, and uptake or clearance are two such processes. Investigations of ectoenzymatic reactions in vivo is challenging, particularly in the brain. Studies using microdialysis have revealed some qualitative information about what enzymes may be present, but microdialysis is a sampling technique so it is not designed to control conditions such as a substrate concentration outside the probe. Micropush-pull perfusion has been used to determine which nitric oxide synthase enzymes are active in discrete regions of the rat retina. Ectopeptidases are a particularly important class of ectoenzymes. As far as it is known, the extracellular activity of active peptides in the brain is controlled by ectopeptidases. To understand ectopeptidase activity, we developed a physical probe and an accompanying method. The probe has a two-channel source that supplies substrate or substrate plus inhibitor using electroosmotic perfusion (EOP). It also has a microdialysis probe to collect products and unreacted substrate. The method provides quantitative estimates of substrate-to-product conversion and the influence of inhibitors on this process. The quantitative estimates are made possible by including a d-amino acid-containing peptide analog of the substrate in the substrate-containing solution infused. Quantitative analysis of substrate, substrate analog, and products is carried out by quantitative, online capillary liquid chromatography-tandem mass spectrometry. The electroosmotic perfusion-microdialysis probe and associated method were used to determine the effect of the selective inhibitor HFI-419 on insulin-regulated aminopeptidase (EC 3.4.11.3) in the rat neocortex.
Collapse
Affiliation(s)
- Rachael E Wilson
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260, United States
| | - Andrea Jaquins-Gerstl
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260, United States
| | - Jun Chen
- Department of Electrical and Computer Engineering, and Petersen Institute of NanoScience and Engineering University of Pittsburgh Pittsburgh Pennsylvania 15260, United States
| | - Michael Rerick
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260, United States
| | - Stephen G Weber
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260, United States
| |
Collapse
|
5
|
Ma J, Gao Y, Sun Y, Ding D, Zhang Q, Sun B, Wang M, Sun J, He Z. Tissue distribution and dermal drug determination of indomethacin transdermal-absorption patches. Drug Deliv Transl Res 2018; 7:617-624. [PMID: 28534130 DOI: 10.1007/s13346-017-0392-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The tissue distribution and percutaneous drug absorption of indomethacin (IND) patches were studied using commercial IND as a comparison. The concentration of IND in skin, plasma, and muscle in mice was measured by LC-MS/MS, and the IND concentration in the dermis of rats was also monitored by microdialysis. After percutaneous administration, the "double-peak" phenomenon occurred in different tissues, and the IND concentration was ranked as skin first, followed by plasma and then muscle. In particular, skin acted as a reservoir for drug release, and the "secondary hump" in tissue distribution was attributed to the subsequent release of lipophilic IND in skin. It was concluded that examination of the tissue distribution and application of a microdialysis technique provided an effective means of evaluating indomethacin pharmacokinetics.
Collapse
Affiliation(s)
- Jingjing Ma
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Ying Gao
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Yinghua Sun
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China.
| | - Dawei Ding
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Qi Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Bingjun Sun
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Menglin Wang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Jin Sun
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Zhonggui He
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| |
Collapse
|
6
|
Wilson RE, Jaquins-Gerstl A, Weber SG. On-Column Dimethylation with Capillary Liquid Chromatography-Tandem Mass Spectrometry for Online Determination of Neuropeptides in Rat Brain Microdialysate. Anal Chem 2018; 90:4561-4568. [PMID: 29504751 PMCID: PMC6236683 DOI: 10.1021/acs.analchem.7b04965] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We have developed a method for online collection and quantitation of neuropeptides in rat brain microdialysates using on-column dimethylation with capillary liquid chromatography-tandem mass spectrometry (cLC-MS2). This method addresses a number of the challenges of quantifying neuropeptides with cLC-MS. It is also a completely automated and robust method for the preparation of stable isotope labeled-peptide internal standards to correct for matrix effects and thus ensure accurate quantitation. Originally developed for tissue-derived proteomics samples ( Raijmakers et al. Mol. Cell. Proteomics 2008 , 7 , 1755 - 1762 ), the efficacy of on-column dimethylation for native peptides in microdialysate has not been demonstrated until now. We have modified the process to make it more amenable to the time scale of microdialysis sampling and to reduce the accumulation of nonvolatile contaminants on the column and, thus, loss of sensitivity. By decreasing labeling time, we have a temporal resolution of 1 h from sample loading to elution and our peptide detection limits are in the low pM range for 5 μL injections of microdialysate. We have demonstrated the effectiveness of this method by quantifying basal and potassium stimulated concentrations of the neuropeptides leu-enkephalin and met-enkephalin in the rat hippocampus. To our knowledge, this is the first report of quantitation of these peptides in the hippocampus using MS.
Collapse
Affiliation(s)
- Rachael E Wilson
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Andrea Jaquins-Gerstl
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Stephen G Weber
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| |
Collapse
|
7
|
Affiliation(s)
- James G. Roberts
- North Carolina State University, Department of Chemistry, Raleigh, NC 27695, United States
| | - Leslie A. Sombers
- North Carolina State University, Department of Chemistry, Raleigh, NC 27695, United States
| |
Collapse
|
8
|
Capurso NA, Ross DA. As Hopes Have Flown Before: Toward the Rational Design of Treatments for Alcohol Use Disorder. Biol Psychiatry 2017; 81:e79-e81. [PMID: 28502393 PMCID: PMC5712898 DOI: 10.1016/j.biopsych.2017.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Noah A Capurso
- Yale University Department of Psychiatry, New Haven, Connecticut.
| | - David A Ross
- Yale University Department of Psychiatry, New Haven, Connecticut
| |
Collapse
|
9
|
Mendez IA, Maidment NT, Murphy NP. Parsing the hedonic and motivational influences of nociceptin on feeding using licking microstructure analysis in mice. Behav Pharmacol 2016; 27:516-27. [PMID: 27100061 PMCID: PMC4965319 DOI: 10.1097/fbp.0000000000000240] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Opioid peptides are implicated in processes related to reward and aversion; however, how specific opioid peptides are involved remains unclear. We investigated the role of nociceptin (NOC) in voluntary licking for palatable and aversive tastants by studying the effect of intracerebroventricularly administered NOC on licking microstructure in wild-type and NOC receptor knockout (NOP KO) mice. Compared with the wild-type mice, NOP KO mice emitted fewer bouts of licking when training to lick for a 20% sucrose solution. Correspondingly, intracerebroventricular administration of NOC increased the number of licking bouts for sucrose and sucralose in wild-type, but not in NOP KO mice. The ability of NOC to initiate new bouts of licking for sweet solutions suggests that NOC may drive motivational aspects of feeding behavior. Conversely, adulterating a sucrose solution with the aversive tastant quinine reduced licking bout lengths in wild-type and NOP KOs, suggesting that NOC signaling is not involved in driving voluntary consumption of semiaversive tastants. Interestingly, when consuming sucrose following 20 h of food deprivation, NOP KO mice emitted longer bouts of licking than wild types, suggesting that under hungry conditions, NOC may also contribute toward hedonic aspects of feeding. Together, these results suggest differential roles for NOC in the motivational and hedonic aspects of feeding.
Collapse
Affiliation(s)
- Ian A Mendez
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, California, USA
| | | | | |
Collapse
|
10
|
Abstract
Advances in neuroscience identified addiction as a chronic brain disease with strong genetic, neurodevelopmental, and sociocultural components. We here discuss the circuit- and cell-level mechanisms of this condition and its co-option of pathways regulating reward, self-control, and affect. Drugs of abuse exert their initial reinforcing effects by triggering supraphysiologic surges of dopamine in the nucleus accumbens that activate the direct striatal pathway via D1 receptors and inhibit the indirect striato-cortical pathway via D2 receptors. Repeated drug administration triggers neuroplastic changes in glutamatergic inputs to the striatum and midbrain dopamine neurons, enhancing the brain's reactivity to drug cues, reducing the sensitivity to non-drug rewards, weakening self-regulation, and increasing the sensitivity to stressful stimuli and dysphoria. Drug-induced impairments are long lasting; thus, interventions designed to mitigate or even reverse them would be beneficial for the treatment of addiction.
Collapse
Affiliation(s)
- Nora D Volkow
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Marisela Morales
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Navratilova E, Atcherley CW, Porreca F. Brain Circuits Encoding Reward from Pain Relief. Trends Neurosci 2015; 38:741-750. [PMID: 26603560 PMCID: PMC4752429 DOI: 10.1016/j.tins.2015.09.003] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 01/09/2023]
Abstract
Relief from pain in humans is rewarding and pleasurable. Primary rewards, or reward-predictive cues, are encoded in brain reward/motivational circuits. While considerable advances have been made in our understanding of reward circuits underlying positive reinforcement, less is known about the circuits underlying the hedonic and reinforcing actions of pain relief. We review findings from electrophysiological, neuroimaging, and behavioral studies supporting the concept that the rewarding effect of pain relief requires opioid signaling in the anterior cingulate cortex (ACC), activation of midbrain dopamine neurons, and the release of dopamine in the nucleus accumbens (NAc). Understanding of circuits that govern the reward of pain relief may allow the discovery of more effective and satisfying therapies for patients with acute or chronic pain.
Collapse
Affiliation(s)
- Edita Navratilova
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ 85724, USA.
| | | | - Frank Porreca
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ 85724, USA; Deparment of Research, Mayo Clinic, Scottsdale, AZ 85453, USA.
| |
Collapse
|
12
|
Involvement of Endogenous Enkephalins and β-Endorphin in Feeding and Diet-Induced Obesity. Neuropsychopharmacology 2015; 40:2103-12. [PMID: 25754760 PMCID: PMC4613613 DOI: 10.1038/npp.2015.67] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 12/11/2022]
Abstract
Studies implicate opioid transmission in hedonic and metabolic control of feeding, although roles for specific endogenous opioid peptides have barely been addressed. Here, we studied palatable liquid consumption in proenkephalin knockout (PENK KO) and β-endorphin-deficient (BEND KO) mice, and how the body weight of these mice changed during consumption of an energy-dense highly palatable 'cafeteria diet'. When given access to sucrose solution, PENK KOs exhibited fewer bouts of licking than wild types, even though the length of bouts was similar to that of wild types, a pattern that suggests diminished food motivation. Conversely, BEND KOs did not differ from wild types in the number of licking bouts, even though these bouts were shorter in length, suggesting that they experienced the sucrose as being less palatable. In addition, licking responses in BEND, but not PENK, KO mice were insensitive to shifts in sucrose concentration or hunger. PENK, but not BEND, KOs exhibited lower baseline body weights compared with wild types on chow diet and attenuated weight gain when fed cafeteria diet. Based on this and related findings, we suggest endogenous enkephalins primarily set a background motivational tone regulating feeding behavior, whereas β-endorphin underlies orosensory reward in high need states or when the stimulus is especially valuable. Overall, these studies emphasize complex interplays between endogenous opioid peptides targeting μ-receptors, such as enkephalins and endorphins, underlying the regulation of feeding and body weight that might explain the poor efficacy of drugs that generally target μ-opioid receptors in the long-term control of appetite and body weight.
Collapse
|
13
|
Mechanisms Underlying Motivational Deficits in Psychopathology: Similarities and Differences in Depression and Schizophrenia. Curr Top Behav Neurosci 2015; 27:411-49. [PMID: 26026289 DOI: 10.1007/7854_2015_376] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Motivational and hedonic impairments are core aspects of a variety of types of psychopathology. These impairments cut across diagnostic categories and may be critical to understanding major aspects of the functional impairments accompanying psychopathology. Given the centrality of motivational and hedonic systems to psychopathology, the Research Domain Criteria (RDoC) initiative includes a "positive valence" systems domain that outlines a number of constructs that may be key to understanding the nature and mechanisms of motivational and hedonic impairments in psychopathology. These component constructs include initial responsiveness to reward, reward anticipation or expectancy, incentive or reinforcement learning, effort valuation, and action selection. Here, we review behavioral and neuroimaging studies providing evidence for impairments in these constructs in individuals with psychosis versus in individuals with depressive pathology. There are important differences in the nature of reward-related and hedonic deficits associated with psychosis versus depression that have major implications for our understanding of etiology and treatment development. In particular, the literature strongly suggests the presence of impairments in in-the-moment hedonics or "liking" in individuals with depressive pathology, particularly among those who experience anhedonia. Such deficits may propagate forward and contribute to impairments in other constructs that are dependent on hedonic responses, such as anticipation, learning, effort, and action selection. Such hedonic impairments could reflect alterations in dopamine and/or opioid signaling in the striatum related to depression or specifically to anhedonia in depressed populations. In contrast, the literature points to relatively intact in-the-moment hedonic processing in psychosis, but provides much evidence for impairments in other components involved in translating reward to action selection. Particularly, individuals with schizophrenia exhibit altered reward prediction and associated striatal and prefrontal activation, impaired reward learning, and impaired reward-modulated action selection.
Collapse
|