1
|
McClain KR, Vincent AH, Rajabi A, Ngo DX, Meihaus KR, Furche F, Harvey BG, Long JR. Linear Inverse Sandwich Complexes of Tetraanionic Benzene Stabilized by Covalent δ-Bonding with Late Lanthanides. J Am Chem Soc 2024. [PMID: 39535120 DOI: 10.1021/jacs.4c12278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A series of dilanthanide benzene inverse sandwich complexes of the type (CpiPr5Ln)2(μ-η6:η6-C6H6) (1-Ln) (Ln = Y, Gd, Tb, Dy, Tm) are reported. These compounds are synthesized by reduction of the respective trivalent dimers CpiPr52Ln2I4 (Ln = Y, Gd, Tb, Dy, Tm) in diethyl ether with potassium graphite in the presence of benzene, and they feature an unusual linear coordination geometry with a highly planar benzene bridge as verified by single-crystal X-ray diffraction. The Ln-Bzcentroid distances of 1-Ln are the shortest distances observed to date, ranging from 1.943(1) Å for 1-Tm to 2.039(6) Å for 1-Gd. Structural, spectroscopic, and magnetic analyses together with density functional theory calculations support the presence of a rare, unsubstituted tetraanionic benzene in each compound, which is stabilized by strong covalent δ bonding interactions involving the filled π* orbitals of (C6H6)4- and vacant dxy and dx2-y2 orbitals of the Ln3+ ions. Notably, 1-Ln are the first examples of compounds of the later lanthanides to feature an unsubstituted tetraanionic benzene.
Collapse
Affiliation(s)
- K Randall McClain
- US Navy, Naval Air Warfare Center, Weapons Division, Research Department, Chemistry Division, China Lake, California 93555, United States
| | | | - Ahmadreza Rajabi
- Department of Chemistry, University of California Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | | | | | - Filipp Furche
- Department of Chemistry, University of California Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Benjamin G Harvey
- US Navy, Naval Air Warfare Center, Weapons Division, Research Department, Chemistry Division, China Lake, California 93555, United States
| | - Jeffrey R Long
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Thakur SK, Roig N, Monreal-Corona R, Langer J, Alonso M, Harder S. Similarities and Differences in Benzene Reduction with Ca, Sr, Yb and Sm: Strong Evidence for Tetra-Anionic Benzene. Angew Chem Int Ed Engl 2024; 63:e202405229. [PMID: 38613386 DOI: 10.1002/anie.202405229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
Inverse sandwich complexes of Yb and Sm stabilized by a bulky β-diketiminate (BDI) ligand have been prepared: (BDI)Ln(η6,η6-C6H6)Ln(BDI); Ln=lanthanide. Coordinated benzene ligands can be neutral, di-anionic or, often controversially discussed, even tetra-anionic. The formal charge on benzene is correlated to assignment of the metal oxidation state which generally poses a problem. Herein, we take advantage of the structural similarities found when comparing CaII with YbII, and SrII with SmII complexes. In this work, we found an excellent overlap of the Ca/Yb inverse sandwich structures but a striking difference for the Sr/Sm pair. The much shorter Sm-N and Sm-C6H6 distances are strong evidence for a SmIII-benzene-4-SmIII assignment. This was further supported by NMR spectroscopy, magnetic susceptibility, reactivity and comprehensive computational investigation.
Collapse
Affiliation(s)
- Sandeep Kumar Thakur
- Inorganic and Organometallic Chemistry, Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058, Erlangen, Germany
| | - Nil Roig
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), 1050, Brussels, Belgium
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Roger Monreal-Corona
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), 1050, Brussels, Belgium
- Institut de Química Computacional i Catàlisi, Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Jens Langer
- Inorganic and Organometallic Chemistry, Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058, Erlangen, Germany
| | - Mercedes Alonso
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), 1050, Brussels, Belgium
| | - Sjoerd Harder
- Inorganic and Organometallic Chemistry, Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058, Erlangen, Germany
| |
Collapse
|
3
|
Wang Y, Zhang Y, Liang J, Tan B, Deng C, Huang W. Neutral inverse-sandwich rare-earth metal complexes of the benzene tetraanion. Chem Sci 2024; 15:8740-8749. [PMID: 38899277 PMCID: PMC11185217 DOI: 10.1039/d4sc02491e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/11/2024] [Indexed: 06/21/2024] Open
Abstract
Rare-earth metal complexes of the parent benzene tetraanion and neutral inverse-sandwich rare-earth metal arene complexes have remained elusive. Here, we report the first neutral inverse-sandwich rare-earth metal complexes of the parent benzene tetraanion supported by a monoanionic β-diketiminate (BDI) ligand. Reduction of the trivalent rare-earth metal diiodide precursors (BDI)MI2(THF) (BDI = HC(C(Me)N[C6H3-(3-pentyl)2-2,6])2; M = Y, 1-Y; M = Sm, 1-Sm) in benzene or para-xylene by potassium graphite yielded the neutral inverse-sandwich rare-earth metal arene complexes [(BDI)M(THF) n ]2(μ-η6,η6-arene) (M = Y, Sm; arene = benzene, 2-M; arene = para-xylene, 3-M). Single crystal X-ray diffraction, spectroscopic and magnetic characterization studies, together with density functional theory (DFT) calculations confirm that these neutral rare-earth metal arene complexes possess an [M3+-(arene)4--M3+] electronic structure with strong metal-arene δ interactions. The arene exchange reactivity shows that 2-Sm has higher stability than 3-Sm. Furthermore, 2-Sm can behave as a four-electron reductant to reduce unsaturated organic substrates. Particularly, while the reaction of 2-Sm with 1,3,5,7-cyclooctatetraene (COT) yielded (BDI)Sm(η8-COT) (4-Sm), 2-Sm reacted with 1,4-diphenylbutadiyne to afford (BDI)Sm(η4-C4Ph2) (5-Sm), the first rare-earth metallacyclopentatriene complex.
Collapse
Affiliation(s)
- Yi Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Yurou Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Jiefeng Liang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Bowen Tan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Chong Deng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Wenliang Huang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| |
Collapse
|
4
|
Hsueh FC, Chen D, Rajeshkumar T, Scopelliti R, Maron L, Mazzanti M. Two-Electron Redox Reactivity of Thorium Supported by Redox-Active Tripodal Frameworks. Angew Chem Int Ed Engl 2024; 63:e202317346. [PMID: 38100190 DOI: 10.1002/anie.202317346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 12/31/2023]
Abstract
The high stability of the + IVoxidation state limits thorium redox reactivity. Here we report the synthesis and the redox reactivity of two Th(IV) complexes supported by the arene-tethered tris(siloxide) tripodal ligands [(KOSiR2 Ar)3 -arene)]. The two-electron reduction of these Th(IV) complexes generates the doubly reduced [KTh((OSi(Ot Bu)2 Ar)3 -arene)(THF)2 ] (2OtBu ) and [K(2.2.2-cryptand)][Th((OSiPh2 Ar)3 -arene)(THF)2 ](2Ph -crypt) where the formal oxidation state of Th is +II. Structural and computational studies indicate that the reduction occurred at the arene anchor of the ligand. The robust tripodal frameworks store in the arene anchor two electrons that become available at the metal center for the two-electron reduction of a broad range of substrates (N2 O, COT, CHT, Ph2 N2 , Ph3 PS and O2 ) while retaining the ligand framework. This work shows that arene-tethered tris(siloxide) tripodal ligands allow implementation of two-electron redox chemistry at the thorium center while retaining the ligand framework unchanged.
Collapse
Affiliation(s)
- Fang-Che Hsueh
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Damien Chen
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Thayalan Rajeshkumar
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077, Toulouse Cedex 4, France
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077, Toulouse Cedex 4, France
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
5
|
Murillo J, Goodwin CAP, Stevens L, Fortier S, Gaunt AJ, Scott BL. Synthesis and comparison of iso-structural f-block metal complexes (Ce, U, Np, Pu) featuring η6-arene interactions. Chem Sci 2023; 14:7438-7446. [PMID: 37449075 PMCID: PMC10337748 DOI: 10.1039/d3sc02194g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/10/2023] [Indexed: 07/18/2023] Open
Abstract
Reaction of the terphenyl bis(anilide) ligand [{K(DME)2}2LAr] (LAr = {C6H4[(2,6-iPr2C6H3)NC6H4]2}2-) with trivalent chloride "MCl3" salts (M = Ce, U, Np) yields two distinct products; neutral LArM(Cl)(THF) (1M) (M = Np, Ce), and the "-ate" complexes [K(DME)2][(LAr)Np(Cl)2] (2Np) or ([LArM(Cl)2(μ-K(X)2)])∞ (2Ce, 2U) (M = Ce, U) (X = DME or Et2O) (2M). Alternatively, analogous reactions with the iodide [MI3(THF)4] salts provide access to the neutral compounds LArM(I)(THF) (3M) (M = Ce, U, Np, Pu). All complexes exhibit close arene contacts suggestive of η6-interactions with the central arene ring of the terphenyl backbone, with 3M comprising the first structurally characterized Pu η6-arene moiety. Notably, the metal-arene bond metrics diverge from the predicted trends of metal-carbon interactions based on ionic radii, with the uranium complexes exhibiting the shortest M-Ccentroid distance in all cases. Overall, the data presents a systematic study of f-element M-η6-arene complexes across the early actinides U, Np, Pu, and comparison to cerium congeners.
Collapse
Affiliation(s)
- Jesse Murillo
- Department of Chemistry and Biochemistry, University of Texas at El Paso El Paso Texas 79968 USA
- Chemistry Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - Conrad A P Goodwin
- Chemistry Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - Lauren Stevens
- Chemistry Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
- Materials Physics and Applications Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - Skye Fortier
- Department of Chemistry and Biochemistry, University of Texas at El Paso El Paso Texas 79968 USA
| | - Andrew J Gaunt
- Chemistry Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - Brian L Scott
- Materials Physics and Applications Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| |
Collapse
|
6
|
Merriles DM, London A, Tieu E, Nielson C, Morse MD. Probing the Chemical Bond between Lanthanides and Carbon: CeC, PrC, NdC, LuC, and TmC 2. Inorg Chem 2023. [PMID: 37285469 DOI: 10.1021/acs.inorgchem.3c01042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Resonant two-photon ionization experiments have been conducted to probe the bond dissociation energy (BDE) of the lanthanide-carbon bond, allowing the BDEs of CeC, PrC, NdC, LuC, and Tm-C2 to be measured to high precision. Values of D0(CeC) = 4.893(3) eV, D0(PrC) = 4.052(3) eV, D0(NdC) = 3.596(3) eV, D0(LuC) = 3.685(4) eV, and D0(Tm-C2) = 4.797(6) eV are obtained. Additionally, the adiabatic ionization energy of LuC was measured, giving IE(LuC) = 7.05(3) eV. The electronic structure of these species, along with the previously measured LaC, has been further investigated using quantum chemical calculations. Despite LaC, CeC, PrC, and NdC having ground electronic configurations that differ only in the number of 4f electrons present and have virtually identical bond orders, bond lengths, fundamental stretching frequencies, and metallic oxidation states, a peculiar 1.30 eV range in bond dissociation energies exists for these molecules. A natural bond orbital analysis shows that the metal atoms in these molecules have a natural charge of +1 with a 5d2 4fn 6s0 configuration while the carbon atom has a natural charge of -1 and a 2p3 configuration. The diabatic bond dissociation energies, calculated with respect to the lowest energy level of this separated ion configuration, show a greatly reduced energy range of 0.32 eV, with the diabatic BDE decreasing as the amount of 4f character in the σ-bond increases. Thus, the wide range of measured BDEs for these molecules is a consequence of the variation in atomic promotion energies at the separated ion limit. TmC2 has a smaller BDE than the other LnC2 molecules, due to the tiny amount of 5d participation in the valence molecular orbitals.
Collapse
Affiliation(s)
- Dakota M Merriles
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Anthony London
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Erick Tieu
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Christopher Nielson
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Michael D Morse
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
7
|
Balashova TV, Polyakova SK, Rumyantsev RV, Fukin GK, Bochkarev MN. Unusual Coordination of Naphthalene in the Polynuclear Heteroligand Ytterbium–Erbium Complex. RUSS J COORD CHEM+ 2022. [DOI: 10.1134/s107032842211001x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Yamamoto K, Sugawa T, Murahashi T. Multinuclear coordination of fused benzene ring hydrocarbons. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Elius Hossain M, Guo Z, Wang J, Deacon GB, Junk PC. Synthesis and characterisation of η6-arene(halogenidoaluminato)lanthanoid(II) and alkaline earth(II) complexes. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Reactivity of a Sterical Flexible Pentabenzylcyclopentadienyl Samarocene. INORGANICS 2022. [DOI: 10.3390/inorganics10020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Reactivity studies of the classical divalent lanthanide compound [CpBz52Sm] (CpBz5 = pentabenzylcyclopentadienyl-anion) towards diphenyl dichalcogenides and d-element carbonyl complexes led to remarkable results. In the compounds obtained, a different number of Sm-C(phenyl) interactions and differently oriented benzyl groups were observed, suggesting—despite the preference of these interactions in [CpBz52Sm] described in previous studies—a flexible orientation of the benzyl groups and thus a variable steric shielding of the metal center by the ligand. The obtained compounds are either present as monometallic complexes (reduction of the dichalcogenides) or tetrametallic bridged compounds in the case of the d/f-element carbonyl complexes.
Collapse
|
11
|
Hossain ME, Guo Z, Wang J, Deacon G, Junk PC, Diether D, Anwander R. h6 ‐Arene(halogenidoaluminato)lanthanoid(III) complexes: Synthesis, characterization and catalytic activity for isoprene polymerization. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - Jun Wang
- James Cook University Chemistry AUSTRALIA
| | | | - Peter Courtney Junk
- James Cook University Dept. of Chemistry James Cook Drive 4811 Townsville AUSTRALIA
| | - Dominic Diether
- University of Tübingen: Eberhard Karls Universitat Tubingen Chemistry GERMANY
| | - Reiner Anwander
- Eberhard Karls Universität Tübingen: Eberhard Karls Universitat Tubingen Chemistry GERMANY
| |
Collapse
|
12
|
Balashova TV, Polyakova SK, Ilichev VA, Kukinov AA, Rumyantcev RV, Fukin GK, Yablonskiy AN, Bochkarev MN. Synthesis and luminescent properties of heteroleptic lanthanide complexes with oxybenzo[h]quinoline. Aust J Chem 2022. [DOI: 10.1071/ch21279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Straub MD, Ouellette ET, Boreen MA, Britt RD, Chakarawet K, Douair I, Gould CA, Maron L, Del Rosal I, Villarreal D, Minasian SG, Arnold J. A Uranium(II) Arene Complex That Acts as a Uranium(I) Synthon. J Am Chem Soc 2021; 143:19748-19760. [PMID: 34787416 DOI: 10.1021/jacs.1c07854] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two-electron reduction of the amidate-supported U(III) mono(arene) complex U(TDA)3 (2) with KC8 yields the anionic bis(arene) complex [K[2.2.2]cryptand][U(TDA)2] (3) (TDA = N-(2,6-di-isopropylphenyl)pivalamido). EPR spectroscopy, magnetic susceptibility measurements, and calculations using DFT as well as multireference CASSCF methods all provide strong evidence that the electronic structure of 3 is best represented as a 5f4 U(II) metal center bound to a monoreduced arene ligand. Reactivity studies show 3 reacts as a U(I) synthon by behaving as a two-electron reductant toward I2 to form the dinuclear U(III)-U(III) triiodide species [K[2.2.2]cryptand][(UI(TDA)2)2(μ-I)] (6) and as a three-electron reductant toward cycloheptatriene (CHT) to form the U(IV) complex [K[2.2.2]cryptand][U(η7-C7H7)(TDA)2(THF)] (7). The reaction of 3 with cyclooctatetraene (COT) generates a mixture of the U(III) anion [K[2.2.2]cryptand][U(TDA)4] (1-crypt) and U(COT)2, while the addition of COT to complex 2 instead yields the dinuclear U(IV)-U(IV) inverse sandwich complex [U(TDA)3]2(μ-η8:η3-C8H8) (8). Two-electron reduction of the homoleptic Th(IV) amidate complex Th(TDA)4 (4) with KC8 gives the mono(arene) complex [K[2.2.2]cryptand][Th(TDA)3(THF)] (5). The C-C bond lengths and torsion angles in the bound arene of 5 suggest a direduced arene bound to a Th(IV) metal center; this conclusion is supported by DFT calculations.
Collapse
Affiliation(s)
- Mark D Straub
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Erik T Ouellette
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Michael A Boreen
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - R David Britt
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Khetpakorn Chakarawet
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Iskander Douair
- Université de Toulouse et CNRS, INSA, UPS, UMR 5215, LPCNO 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Colin A Gould
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Laurent Maron
- Université de Toulouse et CNRS, INSA, UPS, UMR 5215, LPCNO 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Iker Del Rosal
- Université de Toulouse et CNRS, INSA, UPS, UMR 5215, LPCNO 135 Avenue de Rangueil, 31077 Toulouse, France
| | - David Villarreal
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Stefan G Minasian
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
14
|
Murillo J, Bhowmick R, Harriman KLM, Gomez-Torres A, Wright J, Meulenberg RW, Miró P, Metta-Magaña A, Murugesu M, Vlaisavljevich B, Fortier S. Actinide arene-metalates: ion pairing effects on the electronic structure of unsupported uranium-arenide sandwich complexes. Chem Sci 2021; 12:13360-13372. [PMID: 34777754 PMCID: PMC8528047 DOI: 10.1039/d1sc03275e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/09/2021] [Indexed: 11/21/2022] Open
Abstract
Addition of [UI2(THF)3(μ-OMe)]2·THF (2·THF) to THF solutions containing 6 equiv. of K[C14H10] generates the heteroleptic dimeric complexes [K(18-crown-6)(THF)2]2[U(η6-C14H10)(η4-C14H10)(μ-OMe)]2·4THF (118C6·4THF) and {[K(THF)3][U(η6-C14H10)(η4-C14H10)(μ-OMe)]}2 (1THF) upon crystallization of the products in THF in the presence or absence of 18-crown-6, respectively. Both 118C6·4THF and 1THF are thermally stable in the solid-state at room temperature; however, after crystallization, they become insoluble in THF or DME solutions and instead gradually decompose upon standing. X-ray diffraction analysis reveals 118C6·4THF and 1THF to be structurally similar, possessing uranium centres sandwiched between bent anthracenide ligands of mixed tetrahapto and hexahapto ligation modes. Yet, the two complexes are distinguished by the close contact potassium-arenide ion pairing that is seen in 1THF but absent in 118C6·4THF, which is observed to have a significant effect on the electronic characteristics of the two complexes. Structural analysis, SQUID magnetometry data, XANES spectral characterization, and computational analyses are generally consistent with U(iv) formal assignments for the metal centres in both 118C6·4THF and 1THF, though noticeable differences are detected between the two species. For instance, the effective magnetic moment of 1THF (3.74 μB) is significantly lower than that of 118C6·4THF (4.40 μB) at 300 K. Furthermore, the XANES data shows the U LIII-edge absorption energy for 1THF to be 0.9 eV higher than that of 118C6·4THF, suggestive of more oxidized metal centres in the former. Of note, CASSCF calculations on the model complex {[U(η6-C14H10)(η4-C14H10)(μ-OMe)]2}2− (1*) shows highly polarized uranium–arenide interactions defined by π-type bonds where the metal contributions are primarily comprised by the 6d-orbitals (7.3 ± 0.6%) with minor participation from the 5f-orbitals (1.5 ± 0.5%). These unique complexes provide new insights into actinide–arenide bonding interactions and show the sensitivity of the electronic structures of the uranium atoms to coordination sphere effects. Use of Chatt metal-arene protocols with uranium leads to the synthesis of the first well-characterized, unsupported actinide–arenide sandwich complexes. The electronic structures of the actinide centres show a key sensitivity to ion pairing effects.![]()
Collapse
Affiliation(s)
- Jesse Murillo
- Department of Chemistry and Biochemistry, University of Texas at El Paso El Paso Texas 79968 USA
| | - Rina Bhowmick
- Department of Chemistry, University of South Dakota Vermillion South Dakota 57069 USA
| | - Katie L M Harriman
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Alejandra Gomez-Torres
- Department of Chemistry and Biochemistry, University of Texas at El Paso El Paso Texas 79968 USA
| | - Joshua Wright
- Department of Physics, Illinois Institute of Technology Chicago Illinois 60616 USA
| | - Robert W Meulenberg
- Department of Physics and Astronomy and Frontier Institute for Research in Sensor Technologies, University of Maine Orono Maine 04469 USA
| | - Pere Miró
- Department of Chemistry, University of South Dakota Vermillion South Dakota 57069 USA
| | - Alejandro Metta-Magaña
- Department of Chemistry and Biochemistry, University of Texas at El Paso El Paso Texas 79968 USA
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Bess Vlaisavljevich
- Department of Chemistry, University of South Dakota Vermillion South Dakota 57069 USA
| | - Skye Fortier
- Department of Chemistry and Biochemistry, University of Texas at El Paso El Paso Texas 79968 USA
| |
Collapse
|
15
|
Xin T, Wang X, Yang K, Liang J, Huang W. Rare Earth Metal Complexes Supported by a Tripodal Tris(amido) Ligand System Featuring an Arene Anchor. Inorg Chem 2021; 60:15321-15329. [PMID: 34569797 DOI: 10.1021/acs.inorgchem.1c01922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new tripodal tris(amido) ligand system featuring an arene anchor was developed and applied to the coordination chemistry of rare earth metals. Two tris(amido) ligands with a 1,3,5-triphenylbenzene backbone were prepared in two steps from commercially available reagents on a gram scale. Salt metathesis and alkane elimination reactions were exploited to prepare mononuclear rare earth metal complexes in moderate to good yields. For salt metathesis reactions, while metal tribromides yielded neutral metal tris(amido) complexes, metal trichlorides led to the formation of ate complexes with an additional chloride bound to the metal center. The new compounds were characterized by X-ray crystallography, elemental analysis, and 1H and 13C nuclear magnetic resonance spectroscopy. The rare earth metal complexes exhibit a trigonal planar coordination geometry for the [MN3] fragment in the solid state rather than a trigonal pyramidal geometry, commonly observed for rare earth metal tris(amido) complexes such as M[N(SiMe3)2]3. Moreover, the arene anchor of the tripodal ligands is engaged in a nonnegligible interaction with the rare earth metal ions. Density functional theory calculations were performed to gain insight into the bonding interactions between the tripodal ligands and the rare earth metal ions. While LUMOs of these rare earth metal complexes are mainly π* orbitals of the arene with a minor component of metal-based orbitals, HOMO-15 and HOMO-16 of a lanthanum complex show that the arene anchor serves as a π donor to the trivalent lanthanum ion.
Collapse
Affiliation(s)
- Tiansi Xin
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Material Chemistry and Application, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xinrui Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Material Chemistry and Application, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Kexin Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Material Chemistry and Application, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Jiefeng Liang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Material Chemistry and Application, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Wenliang Huang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Material Chemistry and Application, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
16
|
Wang Y, Del Rosal I, Qin G, Zhao L, Maron L, Shi X, Cheng J. Scandium and lanthanum hydride complexes stabilized by super-bulky penta-arylcyclopentadienyl ligands. Chem Commun (Camb) 2021; 57:7766-7769. [PMID: 34259679 DOI: 10.1039/d1cc01841h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogenolysis of the half-sandwich penta-arylcycopentadienyl-supported rare-earth metal dibenzyl complexes [(CpAr5)Ln(p-CH2-C6H4-Me)2(THF)] (CpAr5 = C5Ar5, Ar = 3,5-iPr2-C6H3; Ln = Sc, La) afforded a bimetallic scandium complex [(CpAr5)Sc(H)(μ-OC4H9)]2 (2) with two terminal hydrido ligands, and a double-sandwich bimetallic lanthanum hydride complex [(CpAr5)La(μ-H)]2 (4) bearing the reduced CpAr5 ligand. DFT calculations were conducted to elucidate the reaction profiles.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun 130022, China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Zhu D, Wang M, Guo L, Shi W, Li J, Cui C. Synthesis, Structure, and Magnetic Properties of Rare-Earth Benzoborole Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dezhao Zhu
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Mengmeng Wang
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Lulu Guo
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Wei Shi
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Jianfeng Li
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
18
|
Fetrow TV, Daly SR. Mechanochemical synthesis and structural analysis of trivalent lanthanide and uranium diphenylphosphinodiboranates. Dalton Trans 2021; 50:11472-11484. [PMID: 34346459 DOI: 10.1039/d1dt01932e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphinodiboranates (H3BPR2BH3-) are a class of borohydrides that have merited a reputation as weakly coordinating anions, which is attributed in part to the dearth of coordination complexes known with transition metals, lanthanides, and actinides. We recently reported how K(H3BPtBu2BH3) exhibits sluggish salt elimination reactivity with f-metal halides in organic solvents such as Et2O and THF. Here we report how this reactivity appears to be further attenuated in solution when the tBu groups attached to phosphorus are exchanged for R = Ph or H, and we describe how mechanochemistry was used to overcome limited solution reactivity with K(H3BPPh2BH3). Grinding three equivalents of K(H3BPPh2BH3) with UI3(THF)4 or LnI3 (Ln = Ce, Pr, Nd) allowed homoleptic complexes with the empirical formulas U(H3BPPh2BH3)3 (1), Ce(H3BPPh2BH3)3 (2), Pr(H3BPPh2BH3)3 (3), and Nd(H3BPPh2BH3)3 (4) to be prepared and subsequently crystallized in good yields (50-80%). Single-crystal XRD studies revealed that all four complexes exist as dimers or coordination polymers in the solid-state, whereas 1H and 11B NMR spectra showed that they exist as a mixture of monomers and dimers in solution. Treating 4 with THF breaks up the dimer to yield the monomeric complex Nd(H3BPPh2BH3)3(THF)3 (4-THF). XRD studies revealed that 4-THF has one chelating and two dangling H3BPPh2BH3- ligands bound to the metal to accommodate binding of THF. In contrast to the results with K(H3BPPh2BH3), attempting the same mechanochemical reactions with Na(H3BPH2BH3) containing the simplest phosphinodiboranate were unsuccessful; only the partial metathesis product U(H3BPH2BH3)I2(THF)3 (5) was isolated in poor yields. Despite these limitations, our results offer new examples showing how mechanochemistry can be used to rapidly synthesize molecular coordination complexes that are otherwise difficult to prepare using more traditional solution methods.
Collapse
Affiliation(s)
- Taylor V Fetrow
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
19
|
Yu C, Liang J, Deng C, Lefèvre G, Cantat T, Diaconescu PL, Huang W. Arene-Bridged Dithorium Complexes: Inverse Sandwiches Supported by a δ Bonding Interaction. J Am Chem Soc 2020; 142:21292-21297. [DOI: 10.1021/jacs.0c11215] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chao Yu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Material Chemistry and Application, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Jiefeng Liang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Material Chemistry and Application, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Chong Deng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Material Chemistry and Application, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Guillaume Lefèvre
- i-CLeHS CSB2D, CNRS/Chimie ParisTech, 11 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Thibault Cantat
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, Cedex, France
| | - Paula L. Diaconescu
- Department of Chemistry & Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Wenliang Huang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Material Chemistry and Application, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
20
|
Xiao Y, Zhao XK, Wu T, Miller JT, Hu HS, Li J, Huang W, Diaconescu PL. Distinct electronic structures and bonding interactions in inverse-sandwich samarium and ytterbium biphenyl complexes. Chem Sci 2020; 12:227-238. [PMID: 34168742 PMCID: PMC8179684 DOI: 10.1039/d0sc03555f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Inverse-sandwich samarium and ytterbium biphenyl complexes were synthesized by the reduction of their trivalent halide precursors with potassium graphite in the presence of biphenyl. While the samarium complex had a similar structure as previously reported rare earth metal biphenyl complexes, with the two samarium ions bound to the same phenyl ring, the ytterbium counterpart adopted a different structure, with the two ytterbium ions bound to different phenyl rings. Upon the addition of crown ether to encapsulate the potassium ions, the inverse-sandwich samarium biphenyl structure remained intact; however, the ytterbium biphenyl structure fell apart with the concomitant formation of a divalent ytterbium crown ether complex and potassium biphenylide. Spectroscopic and computational studies were performed to gain insight into the electronic structures and bonding interactions of these samarium and ytterbium biphenyl complexes. While the ytterbium ions were found to be divalent with a 4f14 electron configuration and form a primarily ionic bonding interaction with biphenyl dianion, the samarium ions were in the trivalent state with a 4f5 electron configuration and mainly utilized the 5d orbitals to form a δ-type bonding interaction with the π* orbitals of the biphenyl tetraanion, showing covalent character. Inverse-sandwich samarium and ytterbium biphenyl complexes were synthesized and characterized by X-ray crystallography. Combined experimental and computational studies indicated that they have distinct electronic structures and bonding interactions.![]()
Collapse
Affiliation(s)
- Yuyuan Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Material Chemistry and Application, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Xiao-Kun Zhao
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University Beijing 100084 P. R. China
| | - Tianpin Wu
- Chemical Sciences and Engineering Division, Argonne National Laboratory Argonne Illinois 60439 USA
| | - Jeffrey T Miller
- Chemical Sciences and Engineering Division, Argonne National Laboratory Argonne Illinois 60439 USA
| | - Han-Shi Hu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University Beijing 100084 P. R. China
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University Beijing 100084 P. R. China
| | - Wenliang Huang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Material Chemistry and Application, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Paula L Diaconescu
- Department of Chemistry and Biochemistry, University of California Los Angeles California 90095 USA
| |
Collapse
|
21
|
Réant BLL, Liddle ST, Mills DP. f-Element silicon and heavy tetrel chemistry. Chem Sci 2020; 11:10871-10886. [PMID: 34123189 PMCID: PMC8162282 DOI: 10.1039/d0sc04655h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022] Open
Abstract
The last three decades have seen a significant increase in the number of reports of f-element carbon chemistry, whilst the f-element chemistry of silicon, germanium, tin, and lead remain underdeveloped in comparison. Here, in this perspective we review complexes that contain chemical bonds between f-elements and silicon or the heavier tetrels since the birth of this field in 1985 to present day, with the intention of inspiring researchers to contribute to its development and explore the opportunities that it presents. For the purposes of this perspective, f-elements include lanthanides, actinides and group 3 metals. We focus on complexes that have been structurally authenticated by single-crystal X-ray diffraction, and horizon-scan for future opportunities and targets in the area.
Collapse
Affiliation(s)
- Benjamin L L Réant
- Department of Chemistry, School of Natural Sciences, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen T Liddle
- Department of Chemistry, School of Natural Sciences, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - David P Mills
- Department of Chemistry, School of Natural Sciences, The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
22
|
Abstract
Alkali metal naphthalenide or anthracenide reacted with scandium(III) anilides [Sc(X){N(tBu)Xy}2 (thf)] (X=N(tBu)Xy (1); X=Cl (2); Xy=C6 H3 -3,5-Me2 ) to give scandium complexes [M(thf)n ][Sc{N(tBu)Xy}2 (RA)] (M=Li-K; n=1-6; RA=C10 H8 2- (3-Naph-K) and C14 H10 2- (3-Anth-M)) containing a reduced arene ligand. Single-crystal X-ray diffraction revealed the scandium(III) center bonded to the naphthalene dianion in a σ2 :π-coordination mode, whereas the anthracene dianion is symmetrically attached to the scandium(III) center in a σ2 -fashion. All compounds have been characterized by multinuclear, including 45 Sc NMR spectroscopy. Quantum chemical calculations of these intensely colored arene complexes confirm scandium to be in the oxidation state +3. The intense absorptions observed in the UV/Vis spectra are due to ligand-to-metal charge transfers. Whereas nitriles underwent C-C coupling reaction with the reduced arene ligand, the reaction with one equivalent of [NEt3 H][BPh4 ] led to the mono-protonation of the reduced arene ligand.
Collapse
Affiliation(s)
- Priyabrata Ghana
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152056AachenGermany
| | - Alexander Hoffmann
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152056AachenGermany
| | - Thomas P. Spaniol
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152056AachenGermany
| | - Jun Okuda
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152056AachenGermany
| |
Collapse
|
23
|
Affiliation(s)
- Josef T. Boronski
- Department of Chemistry; The University of Manchester; Oxford Road M13 9PL Manchester UK
| | - Stephen T. Liddle
- Department of Chemistry; The University of Manchester; Oxford Road M13 9PL Manchester UK
| |
Collapse
|
24
|
Boronski JT, Wooles AJ, Liddle ST. Heteroleptic actinocenes: a thorium(iv)-cyclobutadienyl-cyclooctatetraenyl-di-potassium-cyclooctatetraenyl complex. Chem Sci 2020; 11:6789-6794. [PMID: 34094128 PMCID: PMC8159314 DOI: 10.1039/d0sc02479a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/10/2020] [Indexed: 11/21/2022] Open
Abstract
Despite the vast array of η n -carbocyclic C5-8 complexes reported for actinides, cyclobutadienyl (C4) remain exceedingly rare, being restricted to six uranium examples. Here, overcoming the inherent challenges of installing highly reducing C4-ligands onto actinides when using polar starting materials such as halides, we report that reaction of [Th(η8-C8H8)2] with [K2{C4(SiMe3)4}] gives [{Th(η4-C4[SiMe3]4)(μ-η8-C8H8)(μ-η2-C8H8)(K[C6H5Me]2)}2{K(C6H5Me)}{K}] (1), a new type of heteroleptic actinocene. Quantum chemical calculations suggest that the thorium ion engages in π- and δ-bonding to the η4-cyclobutadienyl and η8-cyclooctatetraenyl ligands, respectively. Furthermore, the coordination sphere of this bent thorocene analogue is supplemented by an η2-cyclooctatetraenyl interaction, which calculations suggest is composed of σ- and π-symmetry donations from in-plane in- and out-of-phase C[double bond, length as m-dash]C 2p-orbital combinations to vacant thorium 6d orbitals. The characterisation data are consistent with this being a metal-alkene-type interaction that is integral to the bent structure and stability of this complex.
Collapse
Affiliation(s)
- Josef T Boronski
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ashley J Wooles
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen T Liddle
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
25
|
Boronski JT, Doyle LR, Wooles AJ, Seed JA, Liddle ST. Synthesis and Characterization of an Oxo-Centered Homotrimetallic Uranium(IV)–Cyclobutadienyl Dianion Complex. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Josef T. Boronski
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Laurence R. Doyle
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Ashley J. Wooles
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - John A. Seed
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Stephen T. Liddle
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
26
|
Moehring SA, Evans WJ. Evaluating Electron‐Transfer Reactivity of Complexes of Actinides in +2 and +3 Oxidation States by using EPR Spectroscopy. Chemistry 2020; 26:1530-1534. [DOI: 10.1002/chem.201905581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Samuel A. Moehring
- Department of Chemistry University of California, Irvine 1102 Natural Sciences II Irvine CA 92697-2025 USA
| | - William J. Evans
- Department of Chemistry University of California, Irvine 1102 Natural Sciences II Irvine CA 92697-2025 USA
| |
Collapse
|
27
|
Manikandan P, Karunakaran J, Varathan E, Schreckenbach G, Mohanakrishnan AK. Diels–Alder reaction of tetraarylcyclopentadienones with benzo[b]thiophene S,S-dioxides: an unprecedented de-oxygenation vs. sulfur dioxide extrusion. Chem Commun (Camb) 2020; 56:15317-15320. [DOI: 10.1039/d0cc05842d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Diels–Alder adduct, dihydrodibenzothiophene S,S-dioxides underwent aromatization either through de-oxygenation or extrusion of sulfur dioxide to furnish substituted dibenzothiophenes or benzenes.
Collapse
Affiliation(s)
- Palani Manikandan
- Department of Organic Chemistry
- School of Chemical Sciences
- University of Madras Guindy Campus
- Chennai 600 025
- India
| | - Jayachandran Karunakaran
- Department of Organic Chemistry
- School of Chemical Sciences
- University of Madras Guindy Campus
- Chennai 600 025
- India
| | | | | | - Arasambattu K Mohanakrishnan
- Department of Organic Chemistry
- School of Chemical Sciences
- University of Madras Guindy Campus
- Chennai 600 025
- India
| |
Collapse
|
28
|
Parvin N, Hossain J, George A, Parameswaran P, Khan S. N-heterocyclic silylene stabilized monocordinated copper(i)–arene cationic complexes and their application in click chemistry. Chem Commun (Camb) 2020; 56:273-276. [DOI: 10.1039/c9cc09115g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein, we report N-heterocyclic silylene and N-heterocyclic carbene supported monocoordinated cationic Cu(i) complexes with unsymmetrical arenes (toluene and m-xylene], their reactivity and catalytic application in CuAAC reactions.
Collapse
Affiliation(s)
- Nasrina Parvin
- Department of Chemistry
- Indian Institute of Science Education and Research Pune
- Pune-411008
- India
| | - Jabed Hossain
- Department of Chemistry
- Indian Institute of Science Education and Research Pune
- Pune-411008
- India
| | - Anjana George
- Department of Chemistry
- National Institute of Technology Calicut
- Calicut – 673601
- India
| | - Pattiyil Parameswaran
- Department of Chemistry
- National Institute of Technology Calicut
- Calicut – 673601
- India
| | - Shabana Khan
- Department of Chemistry
- Indian Institute of Science Education and Research Pune
- Pune-411008
- India
| |
Collapse
|
29
|
Boronski JT, Doyle LR, Seed JA, Wooles AJ, Liddle ST. f-Element Half-Sandwich Complexes: A Tetrasilylcyclobutadienyl-Uranium(IV)-Tris(tetrahydroborate) Anion Pianostool Complex. Angew Chem Int Ed Engl 2019; 59:295-299. [PMID: 31724808 DOI: 10.1002/anie.201913640] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/11/2019] [Indexed: 12/26/2022]
Abstract
Despite there being numerous examples of f-element compounds supported by cyclopentadienyl, arene, cycloheptatrienyl, and cyclooctatetraenyl ligands (C5-8 ), cyclobutadienyl (C4 ) complexes remain exceedingly rare. Here, we report that reaction of [Li2 {C4 (SiMe3 )4 }(THF)2 ] (1) with [U(BH4 )3 (THF)2 ] (2) gives the pianostool complex [U{C4 (SiMe3 )4 }(BH4 )3 ][Li(THF)4 ] (3), where use of a borohydride and preformed C4 -unit circumvents difficulties in product isolation and closing a C4 -ring at uranium. Complex 3 is an unprecedented example of an f-element half-sandwich cyclobutadienyl complex, and it is only the second example of an actinide-cyclobutadienyl complex, the other being an inverse-sandwich. The U-C distances are short (av. 2.513 Å), reflecting the formal 2- charge of the C4 -unit, and the SiMe3 groups are displaced from the C4 -plane, which we propose maximises U-C4 orbital overlap. DFT calculations identify two quasi-degenerate U-C4 π-bonds utilising the ψ2 and ψ3 molecular orbitals of the C4 -unit, but the potential δ-bond using the ψ4 orbital is vacant.
Collapse
Affiliation(s)
- Josef T Boronski
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Laurence R Doyle
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - John A Seed
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Ashley J Wooles
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Stephen T Liddle
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
30
|
Boronski JT, Doyle LR, Seed JA, Wooles AJ, Liddle ST. f‐Element Half‐Sandwich Complexes: A Tetrasilylcyclobutadienyl–Uranium(IV)–Tris(tetrahydroborate) Anion Pianostool Complex. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201913640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Josef T. Boronski
- Department of Chemistry and Centre for Radiochemistry Research The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Laurence R. Doyle
- Department of Chemistry and Centre for Radiochemistry Research The University of Manchester Oxford Road Manchester M13 9PL UK
| | - John A. Seed
- Department of Chemistry and Centre for Radiochemistry Research The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ashley J. Wooles
- Department of Chemistry and Centre for Radiochemistry Research The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen T. Liddle
- Department of Chemistry and Centre for Radiochemistry Research The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
31
|
Lv ZJ, Huang Z, Shen J, Zhang WX, Xi Z. Well-Defined Scandacyclopropenes: Synthesis, Structure, and Reactivity. J Am Chem Soc 2019; 141:20547-20555. [DOI: 10.1021/jacs.9b11631] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ze-Jie Lv
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhe Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Jinghang Shen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhenfeng Xi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
32
|
Tolpygin AO, Shavyrin AS, Cherkasov AV, Fukin GK, Del Rosal I, Maron L, Trifonov AA. Alternative (κ 1-N:η 6-arene vs.κ 2-N,N) coordination of a sterically demanding amidinate ligand: are size and electronic structure of the Ln ion decisive factors? Dalton Trans 2019; 48:8317-8326. [PMID: 31111858 DOI: 10.1039/c9dt01162e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The amine elimination reaction of equimolar amounts of ansa-bis(amidine) C6H4-1,2-{NC(tBu)NH(2,6-iPr2C6H3)}2 (L1H) and [(Me3Si)2N]2Yb(THF)2 affords a bis(amidinate) YbII complex [C6H4-1,2-{NC(tBu)N(2,6-iPr2C6H3)}2]Yb(THF) (1) in 68% yield. Complex 1 features a rather rare η1-amido:η6-arene coordination of both amidinate fragments to the YbII ion, resulting in the formation of a bent bis(arene) structure. Oxidation of 1 by I2 regardless of the molar ratio of reagents (2 : 1 or 1 : 1) leads to the formation of the YbIII species [{(2,6-iPr2C6H3)[double bond, length as m-dash]NC(tBu)NH}-C6H4-1,2-{NC(tBu)N(2,6-iPr2C6H3)}]YbI2(THF)2 (2) in which only one amidinate fragment is coordinated to the ytterbium ion in κ2-N,N'-chelating coordination mode, while the second NCN fragment is protonated in the course of the reaction and is not bound to the metal ion. The outcome of the salt metathesis reaction of LaCl3 with lithium amidinates [C6H4-1,2-{NC(tBu)N(2,6-R2C6H3)}2Li2] (R = Me, iPr) is proven to be strongly affected by the substituent 2,6-R2C6H3 on the amidinate nitrogens. When R = iPr, the salt metathesis reaction occurs smoothly and results in the formation of an ate-chloro-amidinate complex [C6H4-1,2-{NC(tBu)N(2,6-iPr2C6H3)}2]La(μ2-Cl)Li(THF)(μ2-Cl)2Li(THF)2 (3) in which the LaIII ion is coordinated by both amidinate fragments in a "classic"κ2-N,N'-chelating fashion. In the case of R = Me, the reaction requires prolonged heating for completion. Moreover, the salt metathesis reaction is accompanied by the fragmentation of the ligand and affords a trinuclear chloro-amidinate complex [C6H4-1,2-{NC(tBu)N(2,6-Me2C6H3)}2]La{[(tBu)C(N-2,6-Me2C6H3)2]La(THF)}2(μ2-Cl)4(μ3-Cl)2 (4) containing one dianionic ansa-bis(amidinate) and two monoanionic [(tBu)C(N-2,6-Me2C6H3)2] amidinate fragments. DFT calculations are conducted to determine the factor that governs this change in coordination mode and, in particular, the effect of the metal oxidation state.
Collapse
Affiliation(s)
- Aleksei O Tolpygin
- Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, GSP-445, 630950, Nizhny Novgorod, Russia
| | - Andrei S Shavyrin
- Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, GSP-445, 630950, Nizhny Novgorod, Russia
| | - Anton V Cherkasov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, GSP-445, 630950, Nizhny Novgorod, Russia
| | - Georgy K Fukin
- Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, GSP-445, 630950, Nizhny Novgorod, Russia
| | - Iker Del Rosal
- Université de Toulouse, INSA, UPS, CNRS-UMR5215, LPCNO, Avenue de Rangueil 135, 31077 Toulouse, France
| | - Laurent Maron
- Université de Toulouse, INSA, UPS, CNRS-UMR5215, LPCNO, Avenue de Rangueil 135, 31077 Toulouse, France
| | - Alexander A Trifonov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, GSP-445, 630950, Nizhny Novgorod, Russia and Institute of Organoelement compounds of Russian Academy of Sciences, Vavilova str. 28, 119334, Moscow, Russia.
| |
Collapse
|
33
|
Nguyen HN, Hultzsch KC. Rare-Earth-Metal-Catalyzed Kinetic Resolution of Chiral Aminoalkenes via Hydroamination: The Effect of the Silyl Substituent of the Binaphtholate Ligand on Resolution Efficiency. European J Org Chem 2019; 2019:2592-2601. [PMID: 31244549 PMCID: PMC6582503 DOI: 10.1002/ejoc.201900107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Indexed: 01/11/2023]
Abstract
The kinetic resolution of α-substituted aminopentenes via intramolecular hydroamination was investigated using various 3,3'-silyl-substituted binaphtholate yttrium catalysts. High efficiencies in the kinetic resolution were observed for methyl-, benzyl-, and phenyl-substituted substrates utilizing the cyclohexyldiphenylsilyl-substituted catalyst 2c with resolution factors reaching as high as 90(5) for hex-5-en-2-amine (3a). Kinetic analysis of the enantioenriched substrates with the matching and mismatching catalyst revealed that the efficiency of catalyst 2c benefits significantly from a favorable Curtin-Hammett pre-equilibrium and by a large kfast/kslow ratio. Other binaphtholate catalysts were less efficient due to a less favorable Curtin-Hammett pre-equilibrium, which often favored the mismatching substrate-catalyst combination. Cyclization of the matched substrate proceeds generally with large trans-selectivity, whereas the trans/cis-ratio for mismatched substrates is significantly diminished, favoring the cis-cyclization product isomer in some instances.
Collapse
Affiliation(s)
- Hiep N Nguyen
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey 610 Taylor Road 8087 Piscataway, New Jersey 08854- USA
| | - Kai C Hultzsch
- Universität Wien Fakultät für Chemie Institut für Chemische Katalyse Währinger Straße 38 1090 Wien Austria
| |
Collapse
|
34
|
Greenough J, Zhou Z, Wei Z, Petrukhina MA. Versatility of cyclooctatetraenyl ligands in rare earth metal complexes of the [M 2(COT) 3(THF) 2] (M = Y and La) type. Dalton Trans 2019; 48:5614-5620. [PMID: 30958499 DOI: 10.1039/c9dt00868c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two new organometallic cyclooctatetraenyl complexes of the type [M2(COT)3(THF)2] (M = Y and La) have been prepared, using optimized synthetic procedures, and fully characterized by X-ray diffraction analysis, IR and 1H NMR spectroscopies. The structures can be represented as formed by the double-decker [M(COT)2]- anion with an asymmetrically bound cationic [M(COT)(THF)2]+ unit. The COT rings in the anionic sandwich are not equidistant from the metal with the M-COTcentroid distances measuring at 1.991(5) Å and 2.074(5) Å for [Y(COT)2]-vs. 2.045(4) Å and 2.154(5) Å for [La(COT)2]-. The sandwich fragments are η2-coordinated to the second metal center with the average M-C distances of 2.837(4) Å and 2.879(5) Å for yttrium and lanthanum complexes, respectively. The M-COTcentroid distances in the cationic unit are 1.962(4) Å for the former and 2.009(2) Å for the latter.
Collapse
Affiliation(s)
- Joshua Greenough
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.
| | | | | | | |
Collapse
|
35
|
Palumbo CT, Darago LE, Dumas MT, Ziller JW, Long JR, Evans WJ. Structure, Magnetism, and Multi-electron Reduction Reactivity of the Inverse Sandwich Reduced Arene La2+ Complex [{[C5H3(SiMe3)2]2La}2(μ-η6:η6-C6H6)]1–. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00523] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chad T. Palumbo
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Lucy E. Darago
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Megan T. Dumas
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Joseph W. Ziller
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Jeffrey R. Long
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - William J. Evans
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
36
|
Alessandri R, Zulfikri H, Autschbach J, Bolvin H. Crystal Field in Rare‐Earth Complexes: From Electrostatics to Bonding. Chemistry 2018; 24:5538-5550. [DOI: 10.1002/chem.201705748] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Riccardo Alessandri
- Laboratoire de Chimie et Physique Quantiques, CNRS Université Toulouse III 118 route de Narbonne 31062 Toulouse France
- Present address: Zernike Institute for Advanced Materials and Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Habiburrahman Zulfikri
- Laboratoire de Chimie et Physique Quantiques, CNRS Université Toulouse III 118 route de Narbonne 31062 Toulouse France
- Present address: MESA+ Institute for Nanotechnology University of Twente, P.O. Box 217 7500 AE Enschede The Netherlands
| | - Jochen Autschbach
- Department of Chemistry University at Buffalo, State University of New York Buffalo NY 14260-3000 USA
| | - Hélène Bolvin
- Laboratoire de Chimie et Physique Quantiques, CNRS Université Toulouse III 118 route de Narbonne 31062 Toulouse France
- Hylleraas Center for Quantum Molecular Sciences Department of Chemistry University of Oslo Oslo Norway
| |
Collapse
|
37
|
Kelly RP, Toniolo D, Tirani FF, Maron L, Mazzanti M. A tetranuclear samarium(ii) inverse sandwich from direct reduction of toluene by a samarium(ii) siloxide. Chem Commun (Camb) 2018; 54:10268-10271. [DOI: 10.1039/c8cc04169e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The dinuclear SmII complex [Sm2L4(dme)] (L = OSi(OtBu)3) reacts slowly with toluene, resulting in the isolation of the triple decker arene-bridged SmII complex [{Sm2L3}2(μ-η6:η6-C7H8)] in 44% yield. This reactivity provides the first example of an unambiguous arene reduction by an isolated SmII species.
Collapse
Affiliation(s)
- Rory P. Kelly
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| | - Davide Toniolo
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| | - Farzaneh Fadaei Tirani
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| | - Laurent Maron
- Université de Toulouse et CNRS INSA
- UPS
- CNRS
- UMR 5215
- LPCNO
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL)
- 1015 Lausanne
- Switzerland
| |
Collapse
|
38
|
Boreen MA, Parker BF, Hohloch S, Skeel BA, Arnold J. f-Block complexes of a m-terphenyl dithiocarboxylate ligand. Dalton Trans 2018; 47:96-104. [DOI: 10.1039/c7dt04073c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Homoleptic thorium(iv), uranium(iv), and lanthanum(iii) dithiocarboxylate complexes were prepared and studied electrochemically; the lanthanum complex was found to bind toluene.
Collapse
Affiliation(s)
| | - Bernard F. Parker
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| | - Stephan Hohloch
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| | | | - John Arnold
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| |
Collapse
|
39
|
Kelly RP, Maron L, Scopelliti R, Mazzanti M. Reduction of a Cerium(III) Siloxide Complex To Afford a Quadruple-Decker Arene-Bridged Cerium(II) Sandwich. Angew Chem Int Ed Engl 2017; 56:15663-15666. [PMID: 29034561 DOI: 10.1002/anie.201709769] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Indexed: 12/30/2022]
Abstract
Organometallic multi-decker sandwich complexes containing f-elements remain rare, despite their attractive magnetic and electronic properties. The reduction of the CeIII siloxide complex, [KCeL4 ] (1; L=OSi(OtBu)3 ), with excess potassium in a THF/toluene mixture afforded a quadruple-decker arene-bridged complex, [K(2.2.2-crypt)]2 [{(KL3 Ce)(μ-η6 :η6 -C7 H8 )}2 Ce] (3). The structure of 3 features a [Ce(C7 H8 )2 ] sandwich capped by [KL3 Ce] moieties with a linear arrangement of the Ce ions. Structural parameters, UV/Vis/NIR data, and DFT studies indicate the presence of CeII ions involved in δ bonding between the Ce cations and toluene dianions. Complex 3 is a rare lanthanide multi-decker complex and the first containing non-classical divalent lanthanide ions. Moreover, oxidation of 1 by AgOTf (OTf=O3 SCF3 ) yielded the CeIV complex, [CeL4 ] (2), showing that siloxide ligands can stabilize Ce in three oxidation states.
Collapse
Affiliation(s)
- Rory P Kelly
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077, Toulouse, Cedex 4, France
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
40
|
Kelly RP, Maron L, Scopelliti R, Mazzanti M. Reduction of a Cerium(III) Siloxide Complex To Afford a Quadruple-Decker Arene-Bridged Cerium(II) Sandwich. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rory P. Kelly
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne (EPFL); 1015 Lausanne Switzerland
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets; Institut National des Sciences Appliquées; 31077 Toulouse, Cedex 4 France
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne (EPFL); 1015 Lausanne Switzerland
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne (EPFL); 1015 Lausanne Switzerland
| |
Collapse
|
41
|
Brosmer JL, Huang W, Diaconescu PL. Reduction of Diphenylacetylene Mediated by Rare-Earth Ferrocene Diamide Complexes. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00541] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jonathan L. Brosmer
- Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Wenliang Huang
- Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Paula L. Diaconescu
- Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
42
|
Karslyan EE, Borissova AO, Perekalin DS. Ligand Design for Site-Selective Metal Coordination: Synthesis of Transition-Metal Complexes with η 6 -Coordination of the Central Ring of Anthracene. Angew Chem Int Ed Engl 2017; 56:5584-5587. [PMID: 28387443 DOI: 10.1002/anie.201700685] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/03/2017] [Indexed: 11/06/2022]
Abstract
A polycyclic aromatic ligand for site-selective metal coordination was designed by using DFT calculations. The computational prediction was confirmed by experiments: 2,3,6,7-tetramethoxy-9,10-dimethylanthracene initially reacts with [(C5 H5 )Ru(MeCN)3 ]BF4 to give the kinetic product with a [(C5 H5 )Ru]+ fragment coordinated at the terminal ring, which is then transformed into the thermodynamic product with coordination through the central ring. These isomeric complexes have markedly different UV/Vis spectra, which was explained by analysis of the frontier orbitals. At the same time, the calculations suggest that electrostatic interactions are mainly responsible for the site selectivity of the coordination.
Collapse
Affiliation(s)
- Eduard E Karslyan
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova str., 119991, Moscow, Russia
| | - Alexandra O Borissova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova str., 119991, Moscow, Russia
| | - Dmitry S Perekalin
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova str., 119991, Moscow, Russia
| |
Collapse
|
43
|
Karslyan EE, Borissova AO, Perekalin DS. Ligand Design for Site-Selective Metal Coordination: Synthesis of Transition-Metal Complexes with η6
-Coordination of the Central Ring of Anthracene. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Eduard E. Karslyan
- Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; 28 Vavilova str. 119991 Moscow Russia
| | - Alexandra O. Borissova
- Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; 28 Vavilova str. 119991 Moscow Russia
| | - Dmitry S. Perekalin
- Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; 28 Vavilova str. 119991 Moscow Russia
| |
Collapse
|
44
|
Nakajo E, Masuda T, Yabushita S. Theoretical Study on the Photoelectron Spectra of Ln(COT) 2-: Lanthanide Dependence of the Metal-Ligand Interaction. J Phys Chem A 2016; 120:9529-9544. [PMID: 27933909 DOI: 10.1021/acs.jpca.6b10930] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have performed a theoretical analysis of the recently reported photoelectron (PE) spectra of the series of sandwich complex anions Ln(COT)2- (Ln = La-Lu, COT = 1,3,5,7-cyclooctatetraene), focusing on the Ln dependence of the vertical detachment energies. For most Ln, the π molecular orbitals, largely localized on the COT ligands, have the energy order of e1g < e1u < e2g < e2u as in the actinide analogues, reflecting the substantial orbital interaction with the Ln 5d and 5p orbitals. Thus, it would be expected that the lanthanide contraction would increase the orbital interaction so that the overlaps between the COT π and Ln atomic orbitals tend to increase across the series. However, the PE spectra and theoretical calculations were not consistent with this expectation, and the details have been clarified in this study. Furthermore, the energy level splitting patterns of the anion and neutral complexes have been studied by multireference ab initio methods, and the X peak splittings observed in the PE spectra only for the middle-range Ln complexes were found to be due to the specific interaction between the Ln 4f and ligand π orbitals of the neutral complexes in e2u symmetry. Because the magnitude of this 4f-ligand interaction depends critically on the final state 4f electron configuration and the spin state, a significant Ln dependence in the PE spectra is explained.
Collapse
Affiliation(s)
- Erika Nakajo
- Department of Chemistry, Faculty of Science and Technology, Keio University , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Tomohide Masuda
- Department of Chemistry, Faculty of Science and Technology, Keio University , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Satoshi Yabushita
- Department of Chemistry, Faculty of Science and Technology, Keio University , 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
45
|
Cai G, Zhou Z, Wu W, Yao B, Zhang S, Li X. Pd-Catalyzed C(sp 3)-C(sp 2) cross-coupling of Y(CH 2SiMe 3) 3(THF) 2 with vinyl bromides and triflates. Org Biomol Chem 2016; 14:8702-8706. [PMID: 27722735 DOI: 10.1039/c6ob01765g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Pd-Catalyzed C(sp3)-C(sp2) cross-coupling of Y(CH2SiMe3)3(THF)2 with vinyl bromides and triflates has been developed for efficient synthesis of various allyltrimethylsilanes. The cross-coupling reaction was conducted at room temperature with low catalyst loading of either Pd(PPh3)4 or Pd(PPh3)2Cl2, and exhibited high efficiency and a broad substrate scope. In combination with the cross-coupling by the Lewis-acid catalyzed Hosomi-Sakurai reaction, a novel three-component one-pot cascade reaction was then accomplished to deliver homoallylic alcohols and ethers with high regioselectivity and diastereoselectivity. The three-component reaction defined the yttrium complex as a novel one-carbon synthon, which could either trigger bifunctionalization of alkenes or link two electrophiles and would find applications in organic synthesis.
Collapse
Affiliation(s)
- Guilong Cai
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China.
| | - Zhibing Zhou
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China.
| | - Wenchao Wu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China.
| | - Bo Yao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China.
| | - Shaowen Zhang
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China.
| | - Xiaofang Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China.
| |
Collapse
|
46
|
Pati K, dos Passos Gomes G, Alabugin IV. Combining Traceless Directing Groups with Hybridization Control of Radical Reactivity: From Skipped Enynes to Defect‐Free Hexagonal Frameworks. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | - Igor V. Alabugin
- Department of Chemistry Florida State University Tallahassee FL USA
| |
Collapse
|
47
|
Pati K, dos Passos Gomes G, Alabugin IV. Combining Traceless Directing Groups with Hybridization Control of Radical Reactivity: From Skipped Enynes to Defect‐Free Hexagonal Frameworks. Angew Chem Int Ed Engl 2016; 55:11633-7. [DOI: 10.1002/anie.201605799] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Indexed: 01/08/2023]
Affiliation(s)
| | | | - Igor V. Alabugin
- Department of Chemistry Florida State University Tallahassee FL USA
| |
Collapse
|
48
|
Huang W, Diaconescu PL. Reactivity and Properties of Metal Complexes Enabled by Flexible and Redox-Active Ligands with a Ferrocene Backbone. Inorg Chem 2016; 55:10013-10023. [DOI: 10.1021/acs.inorgchem.6b01118] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Wenliang Huang
- Department of Chemistry and
Biochemistry, University of California, Los Angeles, 607 Charles
E Young Drive East, Los Angeles, California 90095, United States
| | - Paula L. Diaconescu
- Department of Chemistry and
Biochemistry, University of California, Los Angeles, 607 Charles
E Young Drive East, Los Angeles, California 90095, United States
| |
Collapse
|
49
|
Selikhov AN, Mahrova TV, Cherkasov AV, Fukin GK, Kirillov E, Alvarez Lamsfus C, Maron L, Trifonov AA. Yb(II) Triple-Decker Complex with the μ-Bridging Naphthalene Dianion [CpBn5Yb(DME)]2(μ-η4:η4-C10H8). Oxidative Substitution of [C10H8]2– by 1,4-Diphenylbuta-1,3-diene and P4 and Protonolysis of the Yb–C10H8 Bond by PhPH2. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00428] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexander N. Selikhov
- Institute
of Organometallic Chemistry of Russian Academy of Sciences, Tropinina
49, GSP-445, 630950 Nizhny Novgorod, Russia
| | - Tatyana V. Mahrova
- Institute
of Organometallic Chemistry of Russian Academy of Sciences, Tropinina
49, GSP-445, 630950 Nizhny Novgorod, Russia
| | - Anton V. Cherkasov
- Institute
of Organometallic Chemistry of Russian Academy of Sciences, Tropinina
49, GSP-445, 630950 Nizhny Novgorod, Russia
| | - Georgy K. Fukin
- Institute
of Organometallic Chemistry of Russian Academy of Sciences, Tropinina
49, GSP-445, 630950 Nizhny Novgorod, Russia
| | - Evgueni Kirillov
- Organometallics:
Materials and Catalysis, Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes 1, Rennes, France
| | - Carlos Alvarez Lamsfus
- Université de Toulouse, INSA, UPS, CNRS-UMR5215, LPCNO, Avenue de Rangueil 135, 31077 Toulouse, France
| | - Laurent Maron
- Université de Toulouse, INSA, UPS, CNRS-UMR5215, LPCNO, Avenue de Rangueil 135, 31077 Toulouse, France
| | - Alexander A. Trifonov
- Institute
of Organometallic Chemistry of Russian Academy of Sciences, Tropinina
49, GSP-445, 630950 Nizhny Novgorod, Russia
- Institute
of Organoelement compounds of Russian Academy of Sciences, Vavilova
str. 28, 119334 Moscow, Russia
| |
Collapse
|
50
|
Guo Y, Li XM, Shi T, Li C, Chen YG, Wang HY. Double-linked chain in POM-based hybrids. Synthesis, crystal structure and properties of an inorganic–organic compound. INORG CHEM COMMUN 2016. [DOI: 10.1016/j.inoche.2016.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|