1
|
O'Neill N, Schran C, Cox SJ, Michaelides A. Crumbling crystals: on the dissolution mechanism of NaCl in water. Phys Chem Chem Phys 2024; 26:26933-26942. [PMID: 39417378 PMCID: PMC11483817 DOI: 10.1039/d4cp03115f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Dissolution of ionic salts in water is ubiquitous, particularly for NaCl. However, an atomistic scale understanding of the process remains elusive. Simulations lend themselves conveniently to studying dissolution since they provide the spatio-temporal resolution that can be difficult to obtain experimentally. Nevertheless, the complexity of various inter- and intra-molecular interactions require careful treatment and long time scale simulations, both of which are typically hindered by computational expense. Here, we use advances in machine learning potential methodology to resolve at an ab initio level of theory the dissolution mechanism of NaCl in water. The picture that emerges is that of a steady ion-wise unwrapping of the crystal preceding its rapid disintegration, reminiscent of crumbling. The onset of crumbling can be explained by a strong increase in the ratio of the surface area to volume of the crystal. Overall, dissolution comprises a series of highly dynamical microscopic sub-processes, resulting in an inherently stochastic mechanism. These atomistic level insights contribute to the general understanding of dissolution mechanisms in other crystals, and the methodology is primed for more complex systems of recent interest such as water/salt interfaces under flow and salt crystals under confinement.
Collapse
Affiliation(s)
- Niamh O'Neill
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK.
- Lennard-Jones Centre, University of Cambridge, Trinity Ln, Cambridge, CB2 1TN, UK
| | - Christoph Schran
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK.
- Lennard-Jones Centre, University of Cambridge, Trinity Ln, Cambridge, CB2 1TN, UK
| | - Stephen J Cox
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Lennard-Jones Centre, University of Cambridge, Trinity Ln, Cambridge, CB2 1TN, UK
| | - Angelos Michaelides
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Lennard-Jones Centre, University of Cambridge, Trinity Ln, Cambridge, CB2 1TN, UK
| |
Collapse
|
2
|
Li Z, Jiang Z, Luo Y, Ge C, Wang X, Hu C. Study on the role of alkali halides on the mutarotation and dehydration of d-xylose in aqueous solution. Carbohydr Res 2024; 545:109258. [PMID: 39278155 DOI: 10.1016/j.carres.2024.109258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
Although the xylose mutarotation and transformation have been investigated largely separately, their relationship has been rarely systematically elaborated. The effect of several factors such as xylose concentration, temperature, and salt concentration, affecting the mutarotation of xylose are discussed. Nine alkali halides (LiCl, NaCl, KCl, LiBr, NaBr, KBr, LiI, NaI, and KI) are used to test salt effects. The relationship between xylose rotation rate constant (kM), specific optical rotation at equilibrium ([α]eqm), α/β ratio, H chemical shift difference (ΔΔδ), Gibbs free energy difference (ΔG), hydrogen ion or hydroxide ion concentration ([H+] or [OH-]), and xylose conversion is discussed. Different salts dissolved in water result in different pH of the solutions, which affect the mutarotation of xylose, with the nature of both cation and anion. Shortly, the smaller the cation radius is and the larger the anion radius is, the greater the mutarotation rate is. In the dehydration of xylose to furfural in salty solutions, xylose conversion is positively correlated to mutarotation rate, H+ or OH- concentration, and the energy difference between α-xylopyranose and β-xylopyranose. Although the [α]eqm of xylose is positively correlated with α/β configuration ratio, there is no obvious correlation with xylose dehydration. The conversion to furfural in chlorides is superior to that in bromines and iodides, which is due to the fact that the pH of chloride salts is smaller than that of the corresponding bromide and iodized salts. Higher H+ concentration prefers to accelerate the formation of furfural. In basic salt solutions, the xylulose selectivity is higher than that of furfural at the initial stage of reaction. The furfural selectivity and carbon balance are better in acidic condition rather than in basic condition. In H2O-MTHF (2-Methyltetrahydrofuran) biphasic system, the optimal furfural selectivity of 81.0 % is achieved at 190 °C in 1 h with the assistance of LiI and a little HCl (0.2 mmol, 8 mmol/L in aqueous phase). A high mutarotation rate represents rapid xylose conversion, but a high furfural selectivity prefers in acidic solutions, which would be perfect if organic solvents were available to form biphasic systems.
Collapse
Affiliation(s)
- Zheng Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Zhicheng Jiang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, PR China
| | - Yiping Luo
- Key Laboratory of Environmental and Applied Microbiology, CAS, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, PR China
| | - Chenyu Ge
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Xiaoyan Wang
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China.
| |
Collapse
|
3
|
Tang B, Bai Q, Fang YG, Francisco JS, Zhu C, Fang WH. Mechanistic Insights into N 2O 5-Halide Ions Chemistry at the Air-Water Interface. J Am Chem Soc 2024; 146:21742-21751. [PMID: 39074151 DOI: 10.1021/jacs.4c05850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The activation of halogens (X = Cl, Br, I) by N2O5 is linked to NOx sources, ozone concentrations, NO3 reactivity, and the chemistry of halide-containing aerosol particles. However, a detailed chemical mechanism is still lacking. Herein, we explored the chemistry of the N2O5···X- systems at the air-water interface. Two different reaction pathways were identified for the reaction of N2O5 with X- at the air-water interface: the formation of XNO2 or XONO, along with NO3-. In the case of the Cl- system, the ClNO2 generation pathway is more favorable, while for the Br- and I- systems, the formation of BrONO and IONO is barrierless, making them the predominant products. Furthermore, the mechanisms of formation of X2 from XNO2 and XONO were also investigated. The high energy barriers of reactions and the high free energies of the products compared to those of the reactants indicate that ClNO2 is stable at the air-water interface. Contrary to the widely held belief regarding X2 producing from the reaction of XNO2 with X-, our calculations demonstrate that BrONO and IONO initially form stable BrONO···Br- and IONO···I- complexes, which then subsequently react with Br- and I- to form Br3- and I3-, respectively. Finally, Br3- and I3- decompose to form Br2 and I2. These findings have significant implications for experimental interpretation and offer new insights into halogen cycling in the atmosphere.
Collapse
Affiliation(s)
- Bo Tang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qi Bai
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ye-Guang Fang
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Joseph S Francisco
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Chongqin Zhu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Wang Y, Zhan S, Hu Y, Chen X, Yin S. Understanding the Formation and Growth of New Atmospheric Particles at the Molecular Level through Laboratory Molecular Beam Experiments. Chempluschem 2024; 89:e202400108. [PMID: 38497136 DOI: 10.1002/cplu.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
Atmospheric new particle formation (NPF), which exerts comprehensive implications for climate, air quality and human health, has received extensive attention. From molecule to cluster is the initial and most important stage of the nucleation process of atmospheric new particles. However, due to the complexity of the nucleation process and limitations of experimental characterization techniques, there is still a great uncertainty in understanding the nucleation mechanism at the molecular level. Laboratory-based molecular beam methods can experimentally implement the generation and growth of typical atmospheric gas-phase nucleation precursors to nanoscale clusters, characterize the key physical and chemical properties of clusters such as structure and composition, and obtain a series of their physicochemical parameters, including association rate coefficients, electron binding energy, pickup cross section and pickup probability and so on. These parameters can quantitatively illustrate the physicochemical properties of the cluster, and evaluate the effect of different gas phase nucleation precursors on the formation and growth of atmospheric new particles. We review the present literatures on atmospheric cluster formation and reaction employing the experimental method of laboratory molecular beam. The experimental apparatuses were classified and summarized from three aspects of cluster generation, growth and detection processes. Focus of this review is on the properties of nucleation clusters involving different precursor molecules of water, sulfuric acid, nitric acid and NxOy, respectively. We hope this review will provide a deep insight for effects of cluster physicochemical properties on nucleation, and reveal the formation and growth mechanism of atmospheric new particle at the molecular level.
Collapse
Affiliation(s)
- Yadong Wang
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Shiyu Zhan
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Yongjun Hu
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Xi Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, P. R. China
| | - Shi Yin
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| |
Collapse
|
5
|
Li X, Wang Y, Lu J, Li P, Huang Z, Liang G, He H, Zhi C. Constructing static two-electron lithium-bromide battery. SCIENCE ADVANCES 2024; 10:eadl0587. [PMID: 38875345 PMCID: PMC11177945 DOI: 10.1126/sciadv.adl0587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 05/09/2024] [Indexed: 06/16/2024]
Abstract
Despite their potential as conversion-type energy storage technologies, the performance of static lithium-bromide (SLB) batteries has remained stagnant for decades. Progress has been hindered by the intrinsic liquid-liquid redox mode and single-electron transfer of these batteries. Here, we developed a high-performance SLB battery based on the active bromine salt cathode and the two-electron transfer chemistry with a Br-/Br+ redox couple by electrolyte tailoring. The introduction of NO3- improved the reversible single-electron transition of Br-, and more impressively, the coordinated Cl- anions activated the Br+ conversion to provide an additional electron transfer. A voltage plateau was observed at 3.8 V, and the discharge capacity and energy density were increased by 142 and 159% compared to the one-electron reaction benchmark. This two-step conversion mechanism exhibited excellent stability, with the battery functioning for 1000 cycles. These performances already approach the state of the art of currently established Li-halogen batteries. We consider the established two-electron redox mechanism highly exemplary for diversified halogen batteries.
Collapse
Affiliation(s)
- Xinliang Li
- School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450052, China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Yanlei Wang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Junfeng Lu
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Pei Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Zhaodong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, Hong Kong SAR, China
| | - Guojin Liang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Hongyan He
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, Hong Kong SAR, China
| |
Collapse
|
6
|
Ma Q, Chu B, He H. Revealing the Contribution of Interfacial Processes to Atmospheric Oxidizing Capacity in Haze Chemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6071-6076. [PMID: 38551192 DOI: 10.1021/acs.est.3c08698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The atmospheric oxidizing capacity is the most important driving force for the chemical transformation of pollutants in the atmosphere. Traditionally, the atmospheric oxidizing capacity mainly depends on the concentration of O3 and other gaseous oxidants. However, the atmospheric oxidizing capacity based on gas-phase oxidation cannot accurately describe the explosive growth of secondary particulate matter under complex air pollution. From the chemical perspective, the atmospheric oxidizing capacity mainly comes from the activation of O2, which can be achieved in both gas-phase and interfacial processes. In the heterogeneous or multiphase formation pathways of secondary particulate matter, the enhancement of oxidizing capacity ascribed to the O2/H2O-involved interfacial oxidation and hydrolysis processes is an unrecognized source of atmospheric oxidizing capacity. Revealing the enhanced oxidizing capacity due to interfacial processes in high-concentration particulate matter environments and its contribution to the formation of secondary pollution are critical in understanding haze chemistry. The accurate evaluation of atmospheric oxidizing capacity ascribed to interfacial processes is also an important scientific basis for the implementation of PM2.5 and O3 collaborative control in China and around the world.
Collapse
Affiliation(s)
- Qingxin Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
7
|
Hartmann JC, Madlener SJ, van der Linde C, Ončák M, Beyer MK. Magic cluster sizes of cationic and anionic sodium chloride clusters explained by statistical modeling of the complete phase space. Phys Chem Chem Phys 2024; 26:10904-10918. [PMID: 38525830 PMCID: PMC10989714 DOI: 10.1039/d4cp00357h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
As one of the main components of sea salt aerosols, sodium chloride is involved in numerous atmospheric processes. Gas-phase clusters are ideal models to study fundamental physical and chemical properties of sodium chloride, which are significantly affected by the cluster size. Of particular interest are magic cluster sizes, which exhibit high intensities in mass spectra. In order to understand the origin of these magic cluster sizes, quantum chemical calculations at the CCSD(T)//DFT level are performed, yielding structures and binding energies of neutral (NaCl)x, anionic (NaCl)xCl- and cationic (NaCl)xNa+ clusters up to x = 8. Our calculations show that the clusters can easily isomerize, enabling dissociation into the lowest-energy isomers of the fragments. Energetics can explain the special stability of (NaCl)4Cl-, but (NaCl)4Na+ actually offers low-lying dissociation channels, despite being a magic cluster size. Collision-induced dissociation experiments reveal that the loss of neutral clusters (NaCl)x, x = 2, 4, is in most cases more favorable than the loss of NaCl or the atomic ion, i.e. sodium chloride clusters actually fragment via the cleavage of the entire cluster, not by evaporating small cluster building blocks. This is rationalized by the calculated high stability of even-numbered neutral clusters (NaCl)x, especially x = 2, 4. Analysis of the density of states and rate constants calculated with a modified Rice-Ramsperger-Kassel-Marcus (RRKM) equation called AWATAR - considering all energetically accessible isomers of reactants and fragments - shows that entropic effects are responsible for the magic cluster character of (NaCl)4Na+. In particular, low-lying vibrational modes provide a high density of states of the near-planar cluster. Together with the small contribution of an atomic ion to the sum of states in a loose transition state for dissociation, this leads to a very small unimolecular rate constant for dissociation into (NaCl)4 and Na+, which is the lowest energy fragmentation pathway. Thus, entropic effects may override energetics for certain magic cluster sizes.
Collapse
Affiliation(s)
- Jessica C Hartmann
- Universität Innsbruck, Institut für Ionenphysik und Angewandte Physik, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Sarah J Madlener
- Universität Innsbruck, Institut für Ionenphysik und Angewandte Physik, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Christian van der Linde
- Universität Innsbruck, Institut für Ionenphysik und Angewandte Physik, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Milan Ončák
- Universität Innsbruck, Institut für Ionenphysik und Angewandte Physik, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Martin K Beyer
- Universität Innsbruck, Institut für Ionenphysik und Angewandte Physik, Technikerstraße 25, 6020 Innsbruck, Austria.
| |
Collapse
|
8
|
Angelaki M, Carreira Mendes Da Silva Y, Perrier S, George C. Quantification and Mechanistic Investigation of the Spontaneous H 2O 2 Generation at the Interfaces of Salt-Containing Aqueous Droplets. J Am Chem Soc 2024; 146:8327-8334. [PMID: 38488457 PMCID: PMC10979748 DOI: 10.1021/jacs.3c14040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
There is now much evidence that OH radicals and H2O2 are spontaneously generated at the air-water interface of atmospheric aerosols. Here, we investigated the effect of halide anions (Cl-, Br-, I-), which are abundant in marine aerosols, on this H2O2 production. Droplets were generated via nebulization of water solutions containing Na2SO4, NaCl, NaBr, and NaI containing solutions, and H2O2 was monitored as a function of the salt concentration under atmospheric relevant conditions. The interfacial OH radical formation was also investigated by adding terephthalic acid (TA) to our salt solutions, and the product of its reaction with OH, hydroxy terephthalic acid (TAOH), was monitored. Finally, a mechanistic investigation was performed to examine the reactions participating in H2O2 production, and their respective contributions were quantified. Our results showed that only Br- contributes to the interfacial H2O2 formation, promoting the production by acting as an electron donor, while Na2SO4 and NaCl stabilized the droplets by only reducing their evaporation. TAOH was observed in the collected droplets and, for the first time, directly in the particle phase by means of online fluorescence spectroscopy, confirming the interfacial OH production. A mechanistic study suggests that H2O2 is formed by both OH and HO2 self-recombination, as well as HO2 reaction with H atoms. This work is expected to enhance our understanding of interfacial processes and assess their impact on climate, air quality, and health.
Collapse
Affiliation(s)
- Maria Angelaki
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, UMR 5256, F-69626, Villeurbanne, France
| | | | - Sébastien Perrier
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, UMR 5256, F-69626, Villeurbanne, France
| | - Christian George
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, UMR 5256, F-69626, Villeurbanne, France
| |
Collapse
|
9
|
Jorga SD, Liu T, Wang Y, Hassan S, Huynh H, Abbatt JPD. Kinetics of hypochlorous acid reactions with organic and chloride-containing tropospheric aerosol. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1645-1656. [PMID: 37721367 DOI: 10.1039/d3em00292f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Chlorine plays an important role in tropospheric oxidation processes, in both marine and continental environments. Although modeling studies have explored the importance of halogen chemistry, uncertainty remains in associated chemical mechanisms and fundamental kinetics parameters. Prior kinetics measurements of multiphase halogen recycling reactions have been largely performed with dilute, bulk solutions, leaving unexplored more realistic chemical systems which have high solute concentrations and are internally mixed with both halide and organic components. Here, we address the multiphase kinetics of gaseous HOCl using an aerosol flow tube and aerosol mass spectrometer to study its reactions with particulate chloride, using atmospherically relevant particle acidity, solute concentrations, and ionic strength. We also investigate the chemistry that results when biomass burning (BB) aerosol components and chloride are internally mixed. Using pH-buffered deliquesced particles, we show that the rate constant for reaction of dissolved HOCl with H+ and Cl- at high relative humidity (RH) (80-85%) is within a factor of two of the literature value for bulk phase conditions. However, at lower RH values (60-70%) where the particles are considerably more concentrated, the rate constant for chloride loss from the particles is an order of magnitude higher. For pure organic compounds commonly found in biomass burning (BB) aerosol, such as coniferaldehyde, salicylic acid and furfural, an increase in the aerosol chlorine content occurs with HOCl exposure, indicating the formation of organochlorine species. Together, these independent findings explain results for internally mixed aerosol particles with both chloride and BB components present where we observed behavior consistent with both chloride loss and organochlorine formation occurring simultaneously upon HOCl exposure. Our results indicate that chlorine recycling via HOCl uptake by chloride-containing particles will occur in the atmosphere efficiently over a wide range of RH conditions, even when reactive organic compounds are present in the same particles as chloride. Simultaneously, formation of organochlorine compounds, which are commonly toxic, is likely occurring when reactive organic components are present.
Collapse
Affiliation(s)
- Spiro D Jorga
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6, ON, Canada.
| | - Tengyu Liu
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
| | - Yutong Wang
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6, ON, Canada.
| | - Sumaiya Hassan
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6, ON, Canada.
| | - Han Huynh
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6, ON, Canada.
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6, ON, Canada.
| |
Collapse
|
10
|
Masoud C, Modi M, Bhattacharyya N, Jahn LG, McPherson KN, Abue P, Patel K, Allen DT, Hildebrandt Ruiz L. High Chlorine Concentrations in an Unconventional Oil and Gas Development Region and Impacts on Atmospheric Chemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15454-15464. [PMID: 37783466 PMCID: PMC10586373 DOI: 10.1021/acs.est.3c04005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/20/2023] [Accepted: 09/14/2023] [Indexed: 10/04/2023]
Abstract
Growth in unconventional oil and gas development (UOGD) in the United States has increased airborne emissions, raising environmental and human health concerns. To assess the potential impacts on air quality, we deployed instrumentation in Karnes City, Texas, a rural area in the middle of the Eagle Ford Shale. We measured several episodes of elevated Cl2 levels, reaching maximum hourly averages of 800 ppt, the highest inland Cl2 concentration reported to date. Concentrations peak during the day, suggesting a strong local source (given the short photolysis lifetime of Cl2) and/or a photoinitiated production mechanism. Well preproduction activity near the measurement site is a plausible source of these high Cl2 levels via direct emission and photoactive chemistry. ClNO2 is also observed, but it peaks overnight, consistent with well-known nocturnal formation processes. Observations of organochlorines in the gas and particle phases reflect the contribution of chlorine chemistry to the formation of secondary pollutants in the area. Box modeling results suggest that the formation of ozone at this location is influenced by chlorine chemistry. These results suggest that UOGD can be an important source of reactive chlorine in the atmosphere, impacting radical budgets and the formation of secondary pollutants in these regions.
Collapse
Affiliation(s)
- Catherine
G. Masoud
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Mrinali Modi
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Nirvan Bhattacharyya
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Leif G. Jahn
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Kristi N. McPherson
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Pearl Abue
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Kanan Patel
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - David T. Allen
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Lea Hildebrandt Ruiz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
11
|
Ma W, Chen X, Xia M, Liu Y, Wang Y, Zhang Y, Zheng F, Zhan J, Hua C, Wang Z, Wang W, Fu P, Kulmala M, Liu Y. Reactive Chlorine Species Advancing the Atmospheric Oxidation Capacities of Inland Urban Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14638-14647. [PMID: 37738177 DOI: 10.1021/acs.est.3c05169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Chlorine (Cl) radicals from photolabile chlorine species are highly reactive and can affect the fate of air pollutants in the atmosphere. Although several campaigns have been conducted, typically in coastal environments, long-term observations of reactive chlorine species and their impacts on atmospheric oxidation capacities (AOCs) are lacking. Here, we report nearly full-year observations of Cl2 and ClNO2 levels in Beijing and evaluate their impacts on the AOC with a box model coupled with Cl chemistry. Cl radicals promote the circulation of OH-HO2-RO2 by accelerating the OH chain lengths by up to 12.6% on average, hence boosting the AOC, especially in the winter or spring. This promotion effect is nonlinearly dependent on the VOC and NOx concentrations, thus leading to a slight shift in ozone formation from a VOC-sensitive regime to a transition regime with seasonal differences. Given the ubiquitous reactive chlorines in polluted inland urban regions, the AOCs and the formation of secondary pollutants will be underestimated if the reactive chlorine species are neglected.
Collapse
Affiliation(s)
- Wei Ma
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Chen
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Men Xia
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Yafei Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yuzheng Wang
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yusheng Zhang
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Feixue Zheng
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junlei Zhan
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chenjie Hua
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zongcheng Wang
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Wang
- Asicotech Company Limited, Shanghai 200241, China
| | - Peng Fu
- Hebei Sailhero Environmental Protection Hi-tech, Ltd, Shijiazhuang 050035, China
| | - Markku Kulmala
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Yongchun Liu
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
12
|
Khramchenkova A, Pysanenko A, Ďurana J, Kocábková B, Fárník M, Lengyel J. Does HNO 3 dissociate on gas-phase ice nanoparticles? Phys Chem Chem Phys 2023; 25:21154-21161. [PMID: 37458324 DOI: 10.1039/d3cp02757k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
We investigated the dissociation of nitric acid on large water clusters (H2O)N, N̄ ≈ 30-500, i.e., ice nanoparticles with diameters of 1-3 nm, in a molecular beam. The (H2O)N clusters were doped with single HNO3 molecules in a pickup cell and probed by mass spectrometry after a low-energy (1.5-15 eV) electron attachment. The negative ion mass spectra provided direct evidence for HNO3 dissociation with the formation of NO3-⋯H3O+ ion pairs, but over half of the observed cluster ions originated from non-dissociated HNO3 molecules. This behavior is in contrast with the complete dissociation of nitric acid on amorphous ice surfaces above 100 K. Thus, the proton transfer is significantly suppressed on nanometer-sized particles compared to macroscopic ice surfaces. This can have considerable implications for heterogeneous processes on atmospheric ice particles.
Collapse
Affiliation(s)
- Anastasiya Khramchenkova
- Lehrstuhl für Physikalische Chemie, TUM School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany.
| | - Andriy Pysanenko
- J. Heyrovský Institute of Physical Chemistry v.v.i., Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic.
| | - Jozef Ďurana
- J. Heyrovský Institute of Physical Chemistry v.v.i., Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic.
| | - Barbora Kocábková
- J. Heyrovský Institute of Physical Chemistry v.v.i., Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic.
| | - Michal Fárník
- J. Heyrovský Institute of Physical Chemistry v.v.i., Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic.
| | - Jozef Lengyel
- Lehrstuhl für Physikalische Chemie, TUM School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany.
| |
Collapse
|
13
|
Schio L, Alagia M, Richter R, Zhaunerchyk V, Stranges S, Pirani F, Vecchiocattivi F, Parriani M, Falcinelli S. Double Photoionization of Nitrosyl Chloride by Synchrotron Radiation in the 24-70 eV Photon Energy Range. Molecules 2023; 28:5218. [PMID: 37446880 DOI: 10.3390/molecules28135218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/15/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
The behavior of nitrosyl chloride (ClNO) exposed to ionizing radiation was studied by direct probing valence-shell electrons in temporal coincidence with ions originating from the fragmentation process of the transient ClNO2+. Such a molecular dication was produced by double photoionization with synchrotron radiation in the 24-70 eV photon energy range. The experiment has been conducted at the Elettra Synchrotron Facility of Basovizza (Trieste, Italy) using a light beam linearly polarized with the direction of the polarization vector parallel to the ClNO molecular beam axis. ClNO molecules crossing the photon beam at right angles in the scattering region are generated by effusive expansion and randomly oriented. The threshold energy for the double ionization of ClNO (30.1 ± 0.1 eV) and six dissociation channels producing NO+/Cl+, N+/Cl+, N+/O+, O+/Cl+, ClN+/O+, NO+/Cl2+ ion pairs, with their relative abundance and threshold energies, have been measured.
Collapse
Affiliation(s)
- Luca Schio
- IOM CNR Laboratorio TASC, 34012 Trieste, Italy
| | | | - Robert Richter
- Sincrotrone Trieste, Area Science Park, 34149 Trieste, Italy
| | - Vitali Zhaunerchyk
- Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden
| | - Stefano Stranges
- IOM CNR Laboratorio TASC, 34012 Trieste, Italy
- Department of Chemistry and Drug Technology, University of Rome Sapienza, 00185 Rome, Italy
| | - Fernando Pirani
- Department of Civil and Environmental Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Franco Vecchiocattivi
- Department of Civil and Environmental Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy
| | - Marco Parriani
- Department of Civil and Environmental Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy
| | - Stefano Falcinelli
- Department of Civil and Environmental Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy
| |
Collapse
|
14
|
Lu QB. Formulation of the cosmic ray-driven electron-induced reaction mechanism for quantitative understanding of global ozone depletion. Proc Natl Acad Sci U S A 2023; 120:e2303048120. [PMID: 37364123 PMCID: PMC10319005 DOI: 10.1073/pnas.2303048120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
This paper formulates the cosmic ray-driven electron-induced reaction as a universal mechanism to provide a quantitative understanding of global ozone depletion. Based on a proposed electrostatic bonding mechanism for charge-induced adsorption of molecules on surfaces and on the measured dissociative electron transfer (DET) cross sections of ozone-depleting substances (ODSs) adsorbed on ice, an analytical equation is derived to give atmospheric chlorine atom concentration: [Formula: see text] where Φe is the prehydrated electron (epre-) flux produced by cosmic ray ionization on atmospheric particle surfaces, [Formula: see text] is the surface coverage of an ODS, and ki is the ODS's effective DET coefficient that is the product of the DET cross section, the lifetimes of surface-trapped epre- and Cl-, and the particle surface area density. With concentrations of ODSs as the sole variable, our calculated results of time-series ozone depletion rates in global regions in the 1960s, 1980s, and 2000s show generally good agreement with observations, particularly with ground-based ozonesonde data and satellite-measured data over Antarctica and with satellite data in a narrow altitude band at 13 to 20 km of the tropics. Good agreements with satellite data in the Arctic and midlatitudes are also found. A previously unreported effect of denitrification on ozone loss is found and expressed quantitatively. But this equation overestimates tropospheric ozone loss at northern midlatitudes and the Arctic, likely due to increased ozone production by the halogen chemistry in polluted regions. The results render confidence in applying the equation to achieve a quantitative understanding of global ozone depletion.
Collapse
Affiliation(s)
- Qing-Bin Lu
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ONN2L 3G1, Canada
- Department of Biology, University of Waterloo, Waterloo, ONN2L 3G1, Canada
- Department of Chemistry, University of Waterloo, Waterloo, ONN2L 3G1, Canada
| |
Collapse
|
15
|
Wei Z, Xu H, Xu X, Feng G, Zheng W, Li T. Solvation of magnesium chloride dimer in water: The case of anionic and neutral clusters. J Chem Phys 2023; 158:2888211. [PMID: 37140000 DOI: 10.1063/5.0146319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023] Open
Abstract
The structures of magnesium chloride dimer-water clusters, (MgCl2)2(H2O)n-/0, were investigated with size-selected anion photoelectron spectroscopy and theoretical calculations to understand the dissolution of magnesium chloride in water. The most stable structures were confirmed by comparing vertical detachment energies (VDEs) with the experimental measurements. A dramatic drop of VDE at n = 3 has been observed in the experiment, which is in accordance with the structural change of (MgCl2)2(H2O)n-. Compared to the neutral clusters, the excess electron induces two significant phenomena in (MgCl2)2(H2O)n-. First, the planar D2h geometry can be converted into a C3v structure at n = 0, making the Mg-Cl bonds easier to be broken by water molecules. More importantly, a negative charge-transfer-to-solvent process occurs after adding three water molecules (i.e., at n = 3), which leads to an obvious deviation in the evolution of the clusters. Such electron transfer behavior was noticed at n = 1 in monomer MgCl2(H2O)n-, indicating that the dimerization between two MgCl2 molecules can make the cluster more capable of binding electron. In neutral (MgCl2)2(H2O)n, this dimerization provides more sites for the added water molecules, which can stabilize the entire cluster and maintain its initial structure. Specifically, filling the coordination number to be 6 for Mg atoms can be seen as a link between structural preferences in the dissolution of the monomers, dimers, and extended bulk-state of MgCl2. This work represents an important step forward into fully understanding the solvation of MgCl2 crystals and other multivalent salt oligomers.
Collapse
Affiliation(s)
- Zhiyou Wei
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongguang Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiling Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Feng
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Weijun Zheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China
| |
Collapse
|
16
|
Chakraborty A, Brumme T, Schmahl S, Weiske H, Baldauf C, Asmis KR. Impact of anion polarizability on ion pairing in microhydrated salt clusters. Chem Sci 2022; 13:13187-13200. [PMID: 36425505 PMCID: PMC9668056 DOI: 10.1039/d2sc03431j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/28/2022] [Indexed: 09/08/2024] Open
Abstract
Despite longstanding interest in the mechanism of salt dissolution in aqueous media, a molecular level understanding remains incomplete. Here, cryogenic ion trap vibrational action spectroscopy is combined with electronic structure calculations to track salt hydration in a gas phase model system one water molecule at a time. The infrared photodissociation spectra of microhydrated lithium dihalide anions [LiXX'(H2O) n ]- (XX' = I2, ClI and Cl2; n = 1-3) in the OH stretching region (3800-2800 cm-1) provide a detailed picture of how anion polarizability influences the competition among ion-ion, ion-water and water-water interactions. While exclusively contact ion pairs are observed for n = 1, the formation of solvent-shared ion pairs, identified by markedly red-shifted OH stretching bands (<3200 cm-1), originating from the bridging water molecules, is favored already for n = 2. For n = 3, Li+ reaches its maximum coordination number of four only in [LiI2(H2O)3]-, in accordance with the hard and soft Lewis acid and base principle. Water-water hydrogen bond formation leads to a different solvent-shared ion pair motif in [LiI2(H2O)3]- and network formation even restabilizes the contact ion pair motif in [LiCl2(H2O)3]-. Structural assignments are exclusively possible after the consideration of anharmonic effects. Molecular dynamics simulations confirm that the significance of large amplitude motion (of the water molecules) increases with increasing anion polarizability and that needs to be considered already at cryogenic temperatures.
Collapse
Affiliation(s)
- Arghya Chakraborty
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig Linnéstrasse 2 D-04103 Leipzig Germany
| | - Thomas Brumme
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig Linnéstrasse 2 D-04103 Leipzig Germany
- Theoretische Chemie, Technische Universität Dresden Dresden Germany
| | - Sonja Schmahl
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig Linnéstrasse 2 D-04103 Leipzig Germany
| | - Hendrik Weiske
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig Linnéstrasse 2 D-04103 Leipzig Germany
| | - Carsten Baldauf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin Germany
| | - Knut R Asmis
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig Linnéstrasse 2 D-04103 Leipzig Germany
| |
Collapse
|
17
|
Abou-Ghanem M, Nodeh-Farahani D, McGrath DT, VandenBoer TC, Styler SA. Emerging investigator series: ozone uptake by urban road dust and first evidence for chlorine activation during ozone uptake by agro-based anti-icer: implications for wintertime air quality in high-latitude urban environments. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2070-2084. [PMID: 36044235 DOI: 10.1039/d1em00393c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-latitude urban regions provide a unique and complex range of environmental surfaces for uptake of trace pollutant gases, including winter road maintenance materials (e.g., gravel, rock salts, and anti-icer, a saline solution applied to roads during winter). In an effort to reduce the negative environmental and economic impacts of road salts, many municipalities have turned to agro-based anti-icing materials that are rich in organic material. To date, the reactivity of both anti-icer and saline road dust with pollutant gases remain unexplored, which limits our ability to assess the potential impacts of these materials on air quality in high-latitude regions. Here, we used a coated-wall flow tube to investigate the uptake of ozone, an important air pollutant, by road dust collected in Edmonton, Canada. At 25% relative humidity (RH) and 50 ppb ozone, γBET for ozone uptake by this sample is (8.0 ± 0.7) × 10-8 under dark conditions and (2.1 ± 0.1) × 10-7 under illuminated conditions. These values are 2-4× higher than those previously obtained by our group for natural mineral dusts, but are not large enough for suspended road dust to influence local ozone mixing ratios. In a separate set of experiments, we also investigated the uptake of ozone by calcium chloride (i.e., road salt) and commercial anti-icer solution. Although ozone uptake by pure calcium chloride was negligible, ozone uptake by anti-icer was significant, which implies that the reactivity of anti-icer is conferred by its organic content. Importantly, ozone uptake by anti-icer-and, to a lesser extent, road dust doped with anti-icer-leads to the release of inorganic chlorine gas, which we collected using inline reductive trapping and quantified using ion chromatography. To explain these results, we propose a novel pathway for chlorine activation: here, ozone oxidation of the anti-icer organic fraction (in this case, molasses) yields reactive OH radicals that can oxidize chloride. In summary, this study demonstrates the ability of road dust and anti-icer to influence atmospheric oxidant mixing ratios in cold-climate urban areas, and highlights previously unidentified air quality impacts of winter road maintenance decisions.
Collapse
Affiliation(s)
- Maya Abou-Ghanem
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Devon T McGrath
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | | | - Sarah A Styler
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
18
|
Li P, Pang H, Wang Y, Deng H, Liu J, Loisel G, Jin B, Li X, Vione D, Gligorovski S. Inorganic Ions Enhance the Number of Product Compounds through Heterogeneous Processing of Gaseous NO 2 on an Aqueous Layer of Acetosyringone. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5398-5408. [PMID: 35420794 DOI: 10.1021/acs.est.1c08283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Methoxyphenols represent important pollutants that can participate in the formation of secondary organic aerosols (SOAs) through chemical reactions with atmospheric oxidants. In this study, we determine the influence of ionic strength, pH, and temperature on the heterogeneous reaction of NO2 with an aqueous film consisting of acetosyringone (ACS), as a proxy for methoxyphenols. The uptake coefficient of NO2 (50 ppb) on ACS (1 × 10-5 mol L-1) is γ = (9.3 ± 0.09) × 10-8 at pH 5, and increases by one order of magnitude to γ = (8.6 ± 0.5) × 10-7 at pH 11. The lifetime of ACS due to its reaction with NO2 is largely affected by the presence of nitrate ions and sulfate ions encountered in aqueous aerosols. The analysis performed by membrane inlet single-photon ionization-time-of-flight mass spectrometry (MI-SPI-TOFMS) reveals an increase in the number of product compounds and a change of their chemical composition upon addition of nitrate ions and sulfate ions to the aqueous thin layer consisting of ACS. These outcomes indicate that inorganic ions can play an important role during the heterogeneous oxidation processes in aqueous aerosol particles.
Collapse
Affiliation(s)
- Pan Li
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongwei Pang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Yiqun Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huifan Deng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiangping Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gwendal Loisel
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Biao Jin
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Davide Vione
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 5, Torino 10125, Italy
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
19
|
Chen Z, Liu P, Liu Y, Zhang YH. Strong Acids or Bases Displaced by Weak Acids or Bases in Aerosols: Reactions Driven by the Continuous Partitioning of Volatile Products into the Gas Phase. Acc Chem Res 2021; 54:3667-3678. [PMID: 34569236 DOI: 10.1021/acs.accounts.1c00318] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aerosols are ubiquitous in the atmosphere and profoundly affect climate systems and human health. To gain more insights on their broad impacts, we need to comprehensively understand the fundamental properties of atmospheric aerosols. Since aerosols are multiphase, a dispersion of condensed matter (solid particles or liquid droplets, hereafter particles) in gas, partitioning of volatile matter between the condensed and the gas phases is one defining characteristic of aerosols. For example, water content partitioning under different relative humidity conditions, known as aerosol hygroscopicity, has been extensively investigated in the past decades. Meanwhile, partitioning of volatile organic or inorganic components, which is referred to as aerosol volatility, remains understudied. Commonly, a bulk solution system is treated as a single phase, with volatility mainly determined by the nature of its components, and the composition partitioning between solution and gas phase is limited. Aerosols, however, comprise an extensive gas phase, and their volatility can also be induced by component reactions. These reactions occurring within aerosols are driven by the formation of volatile products and their continuous partitioning into the gas phase. As a consequence, the overall aerosol systems exhibit prominent volatility. Noteworthily, such volatility induced by reactions is a phenomenon exclusively observed in the multiphase aerosol systems, and it is trivial in bulk solutions due to the limited extent of liquid-gas partitioning. Take the chloride depletion in sea salt particles as an example. Recent findings have revealed that chloride depletion can be caused by reactions between NaCl and weak organic acids, which release HCl into the gas phase. Such a reaction can be described as a strong acid displaced by a weak acid, which is hardly observed in bulk phase. Generally, this unique partitioning behavior of aerosol systems and its potential to alter aerosol composition, size, reactivity, and other physicochemical properties merits more attention by atmospheric community.This Account focuses on the recent advancements in the research of component reactions that induce aerosol volatility. These reactions can be categorized into four types: chloride depletion, nitrate depletion, ammonium depletion, and salt hydrolysis. The depletion of chloride or nitrate can be regarded as a displacement reaction, in which a strong acid is displaced by a weak acid. Such a reaction releases highly volatile HCl or HNO3 into the gas phase and leads to a loss of chloride or nitrate within the particles. Likewise, ammonium depletion is a displacement reaction in which a strong base is displaced by a weak base, resulting in release of ammonia and substantial changes in aerosol hygroscopicity. In addition, aerosol volatility can also be induced by salt hydrolysis in a specific case, which is sustained by the coexistence of proton acceptor and hydroxide ion acceptor within particles. Furthermore, we quantitatively discuss these displacement reactions from both thermodynamic and kinetic perspectives, by using the extended aerosol inorganic model (E-AIM) and Maxwell steady-state diffusive mass transfer equation, respectively. Given the ubiquity of component partitioning in aerosol systems, our discussion may provide a new perspective on the underlying mechanisms of aerosol aging and relevant climate effects.
Collapse
Affiliation(s)
- Zhe Chen
- Key Laboratory of Cluster Science, Ministry of Education of China, The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Pai Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Yong Liu
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217, United States
| | - Yun-Hong Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| |
Collapse
|
20
|
Wang Y, Lin Z, Zhang W. Interaction between high humidity and hygroscopic aerosol on the filtration performance of electret media. PARTICULATE SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1080/02726351.2020.1799125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yongxiang Wang
- School of Mechanical Engineering, Tongji University, Shanghai, China
| | - Zhongping Lin
- School of Mechanical Engineering, Tongji University, Shanghai, China
| | - Wanyi Zhang
- School of Mechanical Engineering, Tongji University, Shanghai, China
- Department of Building Service Engineering, Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
21
|
Jahn LG, Wang DS, Dhulipala SV, Ruiz LH. Gas-Phase Chlorine Radical Oxidation of Alkanes: Effects of Structural Branching, NO x, and Relative Humidity Observed during Environmental Chamber Experiments. J Phys Chem A 2021; 125:7303-7317. [PMID: 34383508 DOI: 10.1021/acs.jpca.1c03516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chlorine-initiated oxidation of alkanes has been shown to rapidly form secondary organic aerosol (SOA) at higher yields than OH-alkane reactions. However, the effects of alkane volatile organic compound precursor structure and the reasons for the differences in SOA yield from OH-alkane reactions remain unclear. In this work, we investigated the effects of alkane molecular structure on oxidation by chlorine radical (Cl) and resulting formation of SOA through a series of laboratory chamber experiments, utilizing data from an iodide chemical ionization mass spectrometer and an aerosol chemical speciation monitor. Experiments were conducted with linear, branched, and branched cyclic C10 alkane precursors under different NOx and RH conditions. Observed product fragmentation patterns during the oxidation of branched alkanes demonstrate the abstraction of primary hydrogens by Cl, confirming a key difference between OH- and Cl-initiated oxidation of alkanes and providing a possible explanation for higher SOA production from Cl-initiated oxidation. Low-NOx conditions led to higher SOA production. SOA formed from butylcyclohexane under low NOx conditions contained higher fractions of organic acids and lower volatility molecules that were less prone to oligomerization relative to decane SOA. Branched alkanes produced less SOA, and branched cycloalkanes produced more SOA than linear n-alkanes, consistent with past work on OH-initiated reactions. Overall, our work provides insights into the differences between Cl- and OH-initiated oxidation of alkanes of different structures and the potential significance of Cl as an atmospheric oxidant.
Collapse
Affiliation(s)
- Leif G Jahn
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 78712 Texas, United States
| | - Dongyu S Wang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 78712 Texas, United States.,Now at Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Surya Venkatesh Dhulipala
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 78712 Texas, United States.,Now at Department of Mechanical Engineering, The University of British Columbia, V6T 1Z4 Vancouver, Canada
| | - Lea Hildebrandt Ruiz
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 78712 Texas, United States
| |
Collapse
|
22
|
Paul SK, Herbert JM. Probing Interfacial Effects on Ionization Energies: The Surprising Banality of Anion-Water Hydrogen Bonding at the Air/Water Interface. J Am Chem Soc 2021; 143:10189-10202. [PMID: 34184532 DOI: 10.1021/jacs.1c03131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Liquid microjet photoelectron spectroscopy is an increasingly common technique to measure vertical ionization energies (VIEs) of aqueous solutes, but the interpretation of these experiments is subject to questions regarding sensitivity to bulk versus interfacial solvation environments. We have computed aqueous-phase VIEs for a set of inorganic anions, using a combination of molecular dynamics simulations and electronic structure calculations, with results that are in excellent agreement with experiment regardless of whether the simulation data are restricted to ions at the air/water interface or to those in bulk aqueous solution. Although the computed VIEs are sensitive to ion-water hydrogen bonding, we find that the short-range solvation structure is sufficiently similar in both environments that it proves impossible to discriminate between the two on the basis of the VIE, a conclusion that has important implications for the interpretation of liquid-phase photoelectron spectroscopy. More generally, analysis of the simulation data suggests that the surface activity of soft anions is largely a second or third solvation shell effect, arising from disruption of water-water hydrogen bonds and not from significant changes in first-shell anion-water hydrogen bonding.
Collapse
Affiliation(s)
- Suranjan K Paul
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
23
|
Wei ZY, Yang LJ, Gong SY, Xu HG, Xu XL, Gao YQ, Zheng WJ. Comparison of the Microsolvation of CaX 2 (X = F, Cl, Br, I) in Water: Size-Selected Anion Photoelectron Spectroscopy and Theoretical Calculations. J Phys Chem A 2021; 125:3288-3306. [PMID: 33872010 DOI: 10.1021/acs.jpca.1c00573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To understand the microsolvation of alkaline-earth dihalides in water and provide information about the dependence of solvation processes on different halides, we investigated CaBr2(H2O)n-, CaI2(H2O)n-, and CaF2(H2O)n- (n = 0-6) clusters using size-selected anion photoelectron spectroscopy and conducted theoretical calculations on these clusters and their neutrals. The results are compared with those of CaCl2(H2O)n-/0 clusters reported previously. It is found that the vertical detachment energies (VDEs) of CaCl2(H2O)n-, CaBr2(H2O)n-, and CaI2(H2O)n- show a similar trend with increasing cluster size, while the VDEs of CaF2(H2O)n- show a different trend. The VDEs of CaF2(H2O)n- are much lower than those of CaCl2(H2O)n-, CaBr2(H2O)n-, and CaI2(H2O)n-. A detailed probing of the structures shows that a significant increase of the Ca-X distance (separation of Ca2+-X- ion pair) in CaCl2(H2O)n-/0, CaBr2(H2O)n-/0, and CaI2(H2O)n-/0 clusters occurred at about n = 5. However, for CaF2(H2O)n-/0, no abrupt change of the Ca-F distance with the increasing cluster size has been observed. In CaCl2(H2O)6-/0, CaBr2(H2O)6-/0, and CaI2(H2O)6-/0, the Ca atom coordinates directly with 5 H2O molecules. However, in CaF2(H2O)n-/0, the Ca atom coordinates directly with only 2 or 3 H2O molecules. The similarity or differences in the structures and coordination numbers are consistent with the fact that CaCl2, CaBr2, and CaI2 have similar solubility, while CaF2 has much lower solubility.
Collapse
Affiliation(s)
- Zhi-You Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Jiang Yang
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shi-Yan Gong
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Guang Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi-Ling Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Qin Gao
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
| | - Wei-Jun Zheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Su B, Zhuo Z, Fu Y, Sun W, Chen Y, Du X, Yang Y, Wu S, Xie Q, Huang F, Chen D, Li L, Zhang G, Bi X, Zhou Z. Individual particle investigation on the chloride depletion of inland transported sea spray aerosols during East Asian summer monsoon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:144290. [PMID: 33401057 DOI: 10.1016/j.scitotenv.2020.144290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Inland transported sea spray aerosol (SSA) particles along with multiphase reactions are essential to drive the regional circulation of nitrogen, sulfur and halogen species in the atmosphere. Specially, the physicochemical properties of SSA will be significantly affected by the displacement reaction of chloride. However, the role of organic species and the mixing state on the chloride depletion of SSA during long-range inland transport remains unclear. Hence, a single particle aerosol mass spectrometer (SPAMS) was employed to investigate the particle size and chemical composition of individual SSA particles over inland southern China during the East Asian summer monsoon. Based on the variation of chemical composition, SSA particles were clustered into SSA-Aged, SSA-Bio and SSA-Ca. SSA-Aged was regarded as the aged Na-rich SSA particles. In comparison to the SSA-Aged, SSA-Bio involved some extra organic species associated with biological origin (i.e., organic nitrogen and phosphate). Each type occupies for approximately 50% of total detected SSA particles. Besides, SSA-Ca may relate to organic shell of Na-rich SSA particles, which is negligible (~3%). Tight correlation between Na and diverse organic acids was exhibited for the SSA-Aged (r2 = 0.52, p < 0.01) and SSA-Bio (r2 = 0.61, p < 0.01), reflecting the impact of organic acids to the chloride displacement during inland transport SSA particles. The chloride depletion occupied by organic acids is estimated to be up to 34%. It is noted that distinctly different degree of chloride depletion was observed between SSA-Aged and SSA-Bio. It is more likely to be attributed to the associated organic coatings for the SSA-Bio particles, which inhibits the displacement reactions between acids and chloride. As revealed from the mixing state of SSA-Bio, defined hourly mean peak area ratio of Cl / Na increases with the increasing phosphate and organic nitrogen. This finding provides additional basis for the improvement of modeling simulations in chlorine circulation and a comprehensive understanding of the effects of organics on chloride depletion of SSA particles.
Collapse
Affiliation(s)
- Bojiang Su
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, PR China
| | - Zeming Zhuo
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, PR China
| | - Yuzhen Fu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Wei Sun
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Ying Chen
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, PR China
| | - Xubing Du
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, PR China
| | - Yuxiang Yang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Si Wu
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, PR China
| | - Qinhui Xie
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, PR China
| | - Fugui Huang
- Guangzhou Hexin Analytical Instrument Limited Company, Guangzhou 510530, PR China
| | - Duohong Chen
- State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangdong Environmental Monitoring Center, Guangzhou 510308, PR China
| | - Lei Li
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, PR China.
| | - Guohua Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Xinhui Bi
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Zhen Zhou
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, PR China
| |
Collapse
|
25
|
Pirsa S, Asadzadeh F. Synthesis of Fe3O4/SiO2/Polypyrrole magnetic nanocomposite polymer powder: Investigation of structural properties and ability to purify of edible sea salts. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.02.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Gonçalves SJ, Weis J, China S, Evangelista H, Harder TH, Müller S, Sampaio M, Laskin A, Gilles MK, Godoi RHM. Photochemical reactions on aerosols at West Antarctica: A molecular case-study of nitrate formation among sea salt aerosols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143586. [PMID: 33218800 DOI: 10.1016/j.scitotenv.2020.143586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/09/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Environmental implications of climate change are complex and exhibit regional variations both within and between the polar regions. The increase of solar UV radiation flux over Antarctica due to stratospheric ozone depletion creates the optimal conditions for photochemical reactions on the snow. Modeling, laboratory, and indirect field studies suggest that snowpack process release gases to the atmosphere that can react on sea salt particles in remote regions such as Antarctica, modifying aerosol composition and physical properties of aerosols. Here, we present evidence of photochemical processing in West Antarctica aerosols using microscopic and chemical speciation of individual atmospheric particles. Individual aerosol particles collected at the Brazilian module Criosfera 1 were analyzed by scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) combined with computer-controlled scanning electron microscopy (CCSEM) with energy-dispersive X-ray (EDX) microanalysis. The displacement of chlorine relative to sodium was observed over most of the sea salt particles. Particles with a chemical composition consistent with NaCl-NO3 contributed up to 30% of atmospheric particles investigated. Overall, this study provides evidence that the snowpack and particulate nitrate photolysis should be considered in dynamic partition equilibrium in the troposphere. These findings may assist in reducing modeling uncertainties and present new insights into the aerosol chemical composition in the polar environment.
Collapse
Affiliation(s)
- Sérgio J Gonçalves
- Environmental Engineering Department, Federal University of Paraná, Curitiba, PR, Brazil; LARAMG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Johannes Weis
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, CA 94720, USA; Physikalisches Institüt, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Swarup China
- William R. Wiley Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Heitor Evangelista
- LARAMG, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Tristan H Harder
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, CA 94720, USA; Physikalisches Institüt, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Simon Müller
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Marcelo Sampaio
- Brazilian National Space Institute - INPE, São José dos Campos, SP, Brazil
| | - Alexander Laskin
- William R. Wiley Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA; Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Mary K Gilles
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ricardo H M Godoi
- Environmental Engineering Department, Federal University of Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
27
|
Li Z, Chen Z, Hu J, Li H, Tian SX. A new experimental method for investigations on microstructure of liquid-vapor interface. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2101002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Ziyuan Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ziwei Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jie Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Hao Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Shan Xi Tian
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
28
|
Schneider SR, Lakey PSJ, Shiraiwa M, Abbatt JPD. Reactive Uptake of Ozone to Simulated Seawater: Evidence for Iodide Depletion. J Phys Chem A 2020; 124:9844-9853. [PMID: 33196200 DOI: 10.1021/acs.jpca.0c08917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reaction of ozone with iodide in the ocean is a major ozone dry deposition pathway, as well as an important source of reactive iodine to the marine troposphere. Few prior laboratory experiments have been conducted with environmentally relevant ozone mixing ratios and iodide concentrations, leading to uncertainties in the rate of the reaction under marine boundary layer conditions. As well, there remains disagreement in the literature assessment of the relative contributions of an interfacial reaction via ozone adsorbed to the ocean surface versus a bulk reaction with dissolved ozone. In this study, we measure the uptake coefficient of ozone over a buffered, pH 8 salt solution replicating the concentrations of iodide, bromide, and chloride in the ocean over an ozone mixing ratio of 60-500 ppb. Due to iodide depletion in the solution, the measured ozone uptake coefficient is dependent on the exposure time of the solution to ozone and its mixing ratio. A kinetic multilayer model confirms that iodide depletion is occurring not only within ozone's reactodiffusive depth, which is on the order of microns for environmental conditions, but also deeper into the solution as well. Best model-measurement agreement arises when some degree of nondiffusive mixing is occurring in the solution, transporting iodide from deeper in the solution to a thin, diffusively mixed upper layer. If such mixing occurs rapidly in the environment, iodide depletion is unlikely to reduce ozone dry deposition rates. Unrealistically high bulk-to-interface partitioning of iodide is required for the model to predict a substantial interfacial component to the reaction, indicating that the Langmuir-Hinshelwood mechanism is not dominant under environmental conditions.
Collapse
Affiliation(s)
- Stephanie R Schneider
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON Canada
| | - Pascale S J Lakey
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON Canada
| |
Collapse
|
29
|
Wei ZY, Yang LJ, Xu HG, Farooq U, Xu XL, Gao YQ, Zheng WJ. Hydration processes of barium chloride: Size-selected anion photoelectron spectroscopy and theoretical calculations of BaCl 2-water clusters. J Chem Phys 2020; 153:134301. [PMID: 33032412 DOI: 10.1063/5.0021991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In order to understand the hydration processes of BaCl2, we investigated BaCl2(H2O)n - (n = 0-5) clusters using size-selected anion photoelectron spectroscopy and theoretical calculations. The structures of neutral BaCl2(H2O)n clusters up to n = 8 were also investigated by theoretical calculations. It is found that in BaCl2(H2O)n -/0, the Ba-Cl distances increase very slowly with the cluster size. The hydration process is not able to induce the breaking of a Ba-Cl bond in the cluster size range (n = 0-8) studied in this work. In small BaCl2(H2O)n clusters with n ≤ 5, the Ba atom has a coordination number of n + 2; however, in BaCl2(H2O)6-8 clusters, the Ba atom coordinates with two Cl atoms and (n - 1) water molecules, and it has a coordination number of n + 1. Unlike the previously studied MgCl2(H2O)n - and CaCl2(H2O)n -, negative charge-transfer-to-solvent behavior has not been observed for BaCl2(H2O)n -, and the excess electron of BaCl2(H2O)n - is mainly localized on the Ba atom rather on the water molecules. No observation of Ba2+-Cl- separation in current work is consistent with the lower solubility of BaCl2 compared to MgCl2 and CaCl2. Considering the BaCl2/H2O mole ratio in the saturated solution, one would expect that about 20-30 H2O molecules are needed to break the first Ba-Cl bond in BaCl2.
Collapse
Affiliation(s)
- Zhi-You Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Li-Jiang Yang
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hong-Guang Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Umar Farooq
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xi-Ling Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yi-Qin Gao
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wei-Jun Zheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
30
|
Hong Y, Liu Y, Chen X, Fan Q, Chen C, Chen X, Wang M. The role of anthropogenic chlorine emission in surface ozone formation during different seasons over eastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:137697. [PMID: 32392687 DOI: 10.1016/j.scitotenv.2020.137697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
Anthropogenic chlorine emission is an important source of Cl radicals, which plays an important role in the oxidative chemistry of the troposphere. However, its seasonal impacts on surface ozone levels in China have yet been comprehensively explored. In this study, we conducted numerical simulations for January, April, July and October 2015 by using the Community Multiscale Air Quality (CMAQ) modeling system with updated heterogeneous reactions of nitrogen oxides with particulate chlorine and updated Anthropogenic Chlorine Emission Inventory for China (ACEIC). Two experiments with and without ACEIC in the model were established, and their results were compared with each other. The model can faithfully reproduce the magnitudes and variations of meteorological parameters and air pollutant concentrations. Cl radicals were generated by the photolysis of ClNO2, ClNO and Cl2, HCl oxidation by OH radicals, and the heterogeneous reactions of NO3 with particulate Cl-. ClNO2 and ClNO were mainly produced from the heterogeneous reactions of N2O5 and NO2 with particulate Cl-, respectively. The spatial and seasonal variations ofz these chlorinated species and their responses to the implementation of ACEIC were revealed in this study. Our results suggested that besides N2O5, the heterogeneous reactions of NO2 and NO3 with particulate Cl- could be important sources of Cl radicals. Anthropogenic chlorine emission increased the Cl radical concentration through enhancing the photolysis of ClNO, Cl2, and ClNO2. The implementation of ACEIC in the model increased the degradation of Volatile Organic Compounds (VOCs) not only by Cl radicals but also by OH radicals. Although the seasonal variation of AECIE was insignificant, the larger formation of Cl radicals caused by higher levels of NOx in January was counteracted by the larger loss of them due to more VOCs degradations, resulting in a lower increase in Cl radicals due to the implementation of ACEIC compared with other months. The anthropogenic chlorine emissions increased the monthly mean maximum daily 8-hour average (MDA8) O3 mixing ratio by up to 4.9 ppbv, and increased the 1-hour O3 mixing ratio by up to 34.3 ppbv. The impact of ACEIC was the most significant in January and the least in July due to the high emissions of NOx and VOCs and adverse meteorological conditions in winter. It indicated that although the ozone concentration was low, the anthropogenic chlorine emission significantly contributed to the atmospheric oxidation capacity and increase ozone concentrations in winter.
Collapse
Affiliation(s)
- Yingying Hong
- Guangdong Ecological Meteorology Center, Guangzhou 510640, China
| | - Yiming Liu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.
| | - Xiaoyang Chen
- Department of Civil and Environmental Engineering, Northeastern University, Boston 02115, USA
| | - Qi Fan
- School of Atmospheric Sciences, Sun Yat-sen University/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| | - Chen Chen
- Foshan Meteorological Bureau, Foshan 528000, China
| | - Xunlai Chen
- Shenzhen Key Laboratory of Severe Weather in South China, Shenzhen 518040, China
| | - Mingjie Wang
- Shenzhen Key Laboratory of Severe Weather in South China, Shenzhen 518040, China
| |
Collapse
|
31
|
Cvitešić Kušan A, Kroflič A, Grgić I, Ciglenečki I, Frka S. Chemical characterization of fine aerosols in respect to water-soluble ions at the eastern Middle Adriatic coast. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10249-10264. [PMID: 31933087 DOI: 10.1007/s11356-020-07617-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Fine particulate matter (PM2.5) concentrations at the Middle Adriatic coastal site of Croatia were affected by different air-mass inflows and/or local sources and meteorological conditions, and peaked in summer. More polluted continental air-mass inflows mostly affected the area in the winter period, while southern marine pathways had higher impact in spring and summer. Chemical characterization of the water-soluble inorganic and organic ionic constituents is discussed with respect to seasonal trends, possible sources, and air-mass inputs. The largest contributors to the PM2.5 mass were sea salts modified by the presence of secondary sulfate-rich aerosols indicated also by principal component analysis. SO42- was the prevailing anion, while the anthropogenic SO42- (anth-nssSO42-) dominantly constituted the major non-sea-salt SO42- (nssSO42-) fraction. Being influenced by the marine origin, its biogenic fraction (bio-nssSO42-) increased particularly in the spring. During the investigated period, aerosols were generally acidic. High Cl- deficit was observed at Middle Adriatic location for which the acid displacement is primarily responsible. With nssSO42- being dominant in Cl- depletion, sulfur-containing species from anthropogenic pollution emissions may have profound impact on atmospheric composition through altering chlorine chemistry in this region. However, when accounting for the neutralization of H2SO4 by NH3, the potential of HNO3 and organic acids to considerably influence Cl- depletion is shown to increase. Intensive open-fire events substantially increased the PM2.5 concentrations and changed the water-soluble ion composition and aerosol acidity in summer of 2015. To our knowledge, this work presents the first time-resolved data evaluating the seasonal composition of water-soluble ions and their possible sources in PM2.5 at the Middle Adriatic area. This study contributes towards a better understanding of atmospheric composition in the coastal Adriatic area and serves as a basis for the comparison with future studies related to the air quality at the coastal Adriatic and/or Mediterranean regions.
Collapse
Affiliation(s)
- Ana Cvitešić Kušan
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ana Kroflič
- Department of Analytical Chemistry, National Institute of Chemistry, Ljubljana, Slovenia
| | - Irena Grgić
- Department of Analytical Chemistry, National Institute of Chemistry, Ljubljana, Slovenia
| | - Irena Ciglenečki
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia
| | - Sanja Frka
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
32
|
Wang X, Lei H, Berger R, Zhang Y, Su H, Cheng Y. Hygroscopic properties of NaCl nanoparticles on the surface: a scanning force microscopy study. Phys Chem Chem Phys 2020; 22:9967-9973. [DOI: 10.1039/d0cp00155d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We investigated the hygroscopic growth of sodium chloride (NaCl) nanoparticles with curvature related diameters ranging from 10 nm to 200 nm, at different relative humidities using scanning force microscopy.
Collapse
Affiliation(s)
- Xiaoxiang Wang
- Max Planck Institute for Chemistry
- Multiphase Chemistry Department
- 55128 Mainz
- Germany
| | - Haozhi Lei
- Key Laboratory of Interfacial Physics and Technology
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai 201800
- China
| | - Rüdiger Berger
- Max Planck Institute for Polymer Research
- Mainz 55128
- Germany
| | - Yi Zhang
- Key Laboratory of Interfacial Physics and Technology
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai 201800
- China
| | - Hang Su
- Max Planck Institute for Chemistry
- Multiphase Chemistry Department
- 55128 Mainz
- Germany
| | - Yafang Cheng
- Max Planck Institute for Chemistry
- Multiphase Chemistry Department
- 55128 Mainz
- Germany
| |
Collapse
|
33
|
Varade SR, Ghosh P. Foaming in aqueous solutions of zwitterionic surfactant in presence of monovalent salts: The specific ion effect. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1647178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Shailesh R. Varade
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Pallab Ghosh
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
34
|
Blanco YS, Topel Ö, Bajnóczi ÉG, Werner J, Björneholm O, Persson I. Chemical equilibria of aqueous ammonium-carboxylate systems in aqueous bulk, close to and at the water-air interface. Phys Chem Chem Phys 2019; 21:12434-12445. [PMID: 31143906 DOI: 10.1039/c9cp02449b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Previous studies have shown that the water-air interface and a number of water molecule layers just below it, the surface region, have significantly different physico-chemical properties, such as lower relative permittivity and density, than bulk water. The properties in the surface region of water favor weakly hydrated species as neutral molecules, while ions requiring strong hydration and shielding of their charge are disfavored. In this study the equilibria NH4+(aq) + RCOO-(aq) ⇌ NH3(aq) + RCOOH(aq) are investigated for R = CnH2n+1, n = 0-8, as open systems, where ammonia and small carboxylic acids in the gas phase above the water surface are removed from the system by a gentle controlled flow of nitrogen to mimic the transport of volatile compounds from water droplets into air. It is shown that this non-equilibrium transport of chemicals can be sufficiently large to cause a change of the chemical content of the aqueous bulk. Furthermore, X-ray photoelectron spectroscopy (XPS) has been used to determine the relative concentration of alkyl carboxylic acids and their conjugated alkyl carboxylates in aqueous surfaces using a micro-jet. These studies confirm that neutral alkyl carboxylic acids are accumulated in the surface region, while charged species, as alkyl carboxylates, are depleted. The XPS studies show also that the hydrophobic alkyl chains are oriented upwards into regions with lower relative permittivity and density, thus perpendicular to the aqueous surface. These combined results show that there are several chemical equilibria between the aqueous bulk and the surface region. The analytical studies show that the release of mainly ammonia is dependent on its concentration in the surface region, as long as the solubility of the carboxylic acid in the surface region is sufficiently high to avoid a precipitation in/on the water-air interface. However, for n-octyl- and n-nonylcarboxylic acid the solubility is sufficiently low to cause precipitation. The combined analytical and surface speciation studies in this work show that the equilibria involving the surface region are fast. The results from this study increase the knowledge about the distribution of chemical species in the surface region at and close to the water-air interface, and the transport of chemicals from water to air in open systems.
Collapse
Affiliation(s)
- Yina Salamanca Blanco
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| | - Önder Topel
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| | - Éva G Bajnóczi
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| | - Josephina Werner
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden. and Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden
| | - Olle Björneholm
- Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden
| | - Ingmar Persson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| |
Collapse
|
35
|
Finlayson‐Pitts BJ. Multiphase chemistry in the troposphere: It all starts … and ends … with gases. INT J CHEM KINET 2019. [DOI: 10.1002/kin.21305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
36
|
Heller J, Ončák M, Bersenkowitsch NK, van der Linde C, Beyer MK. Infrared multiple photon dissociation of cesium iodide clusters doped with mono-, di- and triglycine. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2019; 25:122-132. [PMID: 30284923 PMCID: PMC7100558 DOI: 10.1177/1469066718803307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Charged cesium iodide clusters doped with mono-, di- and triglycine serve as a model system for sea salt aerosols containing biological molecules. Here, we investigate reactions of these complexes under infrared irradiation, with spectra obtained by infrared multiple photon dissociation. The cluster ions are generated via electrospray ionization and analyzed in the cell of a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer. Depending on the cluster size and peptide length, loss of HI or loss of a glycine unit is observed. The experimental measurements are supported by quantum chemical calculations. We show that N-H and O-H stretching modes dominate the spectrum, with large shifts depending on local interactions, namely due to interaction with iodide anions or intramolecular hydrogen bonding. Both experiment and theory indicate that several isomers are present in the experimental mixture, with different infrared fingerprints as well as dissociation pathways.
Collapse
Affiliation(s)
- Jakob Heller
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| | - Nina K Bersenkowitsch
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| | | | - Martin K Beyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
37
|
Anglada JM, Crehuet R, Solé A. The gas phase oxidation of HCOOH by Cl and NH2 radicals. Proton coupled electron transfer versus hydrogen atom transfer. Mol Phys 2019. [DOI: 10.1080/00268976.2018.1554829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Josep M. Anglada
- Departament de Química Biològica, (IQAC – CSIC), Barcelona, Spain
| | - Ramon Crehuet
- Departament de Química Biològica, (IQAC – CSIC), Barcelona, Spain
| | - Albert Solé
- Departament de Ciència de Materials i Química Física, i Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
38
|
Blackshaw KJ, Varmecky MG, Patterson JD. Interfacial Structure and Partitioning of Nitrate Ions in Reverse Micelles. J Phys Chem A 2018; 123:336-342. [DOI: 10.1021/acs.jpca.8b09751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- K. Jacob Blackshaw
- Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, Virginia 23606, United States
| | - Meredith G. Varmecky
- Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, Virginia 23606, United States
| | - Joshua D. Patterson
- Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, Virginia 23606, United States
| |
Collapse
|
39
|
Collins DB, Hems RF, Zhou S, Wang C, Grignon E, Alavy M, Siegel JA, Abbatt JPD. Evidence for Gas-Surface Equilibrium Control of Indoor Nitrous Acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12419-12427. [PMID: 30346749 DOI: 10.1021/acs.est.8b04512] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nitrous acid (HONO) is an important component of indoor air as a photolabile precursor to hydroxyl radicals and has direct health effects. HONO concentrations are typically higher indoors than outdoors, although indoor concentrations have proved challenging to predict using box models. In this study, time-resolved measurements of HONO and NO2 in a residence showed that [HONO] varied relatively weakly over contiguous periods of hours, while [NO2] fluctuated in association with changes in outdoor [NO2]. Perturbation experiments were performed in which indoor HONO was depleted or elevated and were interpreted using a two-compartment box model. To reproduce the measurements, [HONO] had to be predicted using persistent source and sink processes that do not directly involve NO2, suggesting that HONO was in equilibrium with indoor surfaces. Production of gas phase HONO directly from conversion of NO2 on surfaces had a weak influence on indoor [HONO] during the time of the perturbations. Highly similar temporal responses of HONO and semivolatile carboxylic acids to ventilation of the residence along with the detection of nitrite on indoor surfaces support the concept that indoor HONO mixing ratios are controlled strongly by gas-surface equilibrium.
Collapse
Affiliation(s)
- Douglas B Collins
- Department of Chemistry , University of Toronto , 80 Street George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Rachel F Hems
- Department of Chemistry , University of Toronto , 80 Street George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Shouming Zhou
- Department of Chemistry , University of Toronto , 80 Street George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Chen Wang
- Department of Chemistry , University of Toronto , 80 Street George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Eloi Grignon
- Department of Chemistry , University of Toronto , 80 Street George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Masih Alavy
- Department of Civil and Mineral Engineering , University of Toronto , 35 Street George Street , Toronto , Ontario M5S 1A4 , Canada
| | - Jeffrey A Siegel
- Department of Civil and Mineral Engineering , University of Toronto , 35 Street George Street , Toronto , Ontario M5S 1A4 , Canada
- Dalla Lana School of Public Health , University of Toronto , 223 College Street , Toronto , Ontario M5T 1R4 , Canada
| | - Jonathan P D Abbatt
- Department of Chemistry , University of Toronto , 80 Street George Street , Toronto , Ontario M5S 3H6 , Canada
| |
Collapse
|
40
|
Salén P, Schio L, Richter R, Alagia M, Stranges S, Zhaunerchyk V. Investigating core-excited states of nitrosyl chloride (ClNO) and their break-up dynamics following Auger decay. J Chem Phys 2018; 149:164305. [DOI: 10.1063/1.5047262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Peter Salén
- FREIA Laboratory, Department of Physics and Astronomy, Uppsala University, 751 20 Uppsala, Sweden
- Department of Physics, Stockholm University, 106 91 Stockholm, Sweden
| | - Luca Schio
- IOM-CNR Tasc, SS-14, Km 163.5 Area Science Park, Basovizza, I-34149 Trieste, Italy
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University, I-00185 Rome, Italy
| | - Robert Richter
- Elettra-Sincrotrone Trieste, Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Michele Alagia
- IOM-CNR Tasc, SS-14, Km 163.5 Area Science Park, Basovizza, I-34149 Trieste, Italy
| | - Stefano Stranges
- IOM-CNR Tasc, SS-14, Km 163.5 Area Science Park, Basovizza, I-34149 Trieste, Italy
- Dipartimento di Chimica e Tecnologie del Farmaco, Universitá Sapienza, Roma I-00185 Italy
| | - Vitali Zhaunerchyk
- Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden
| |
Collapse
|
41
|
Abiotic O2 Levels on Planets around F, G, K, and M Stars: Effects of Lightning-produced Catalysts in Eliminating Oxygen False Positives. ACTA ACUST UNITED AC 2018. [DOI: 10.3847/1538-4357/aadd9b] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
42
|
Darr JP, Gottuso S, Alfarra M, Birge D, Ferris K, Woods D, Morales P, Grove M, Mitts WK, Mendoza-Lopez E, Johnson A. The Hydropathy Scale as a Gauge of Hygroscopicity in Sub-Micron Sodium Chloride-Amino Acid Aerosols. J Phys Chem A 2018; 122:8062-8070. [PMID: 30272971 DOI: 10.1021/acs.jpca.8b07119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sodium chloride, NaCl, is commonly used as a proxy for sea spray aerosols. However, field work has demonstrated that sea spray aerosols also often contain a significant organic component. In this work, we examine the effect of amino acids on the hygroscopic properties of NaCl aerosols using a Fourier transform infrared spectrometer coupled to a flow-cell apparatus. It is found that the effect can be drastically different depending on the nature of the amino acid. More hydrophilic amino acids such as glycine lead to continuous hygroscopic growth of internally mixed NaCl-amino acid aerosols generated from an equimolar precursor solution. However, more hydrophobic amino acids such as alanine do not significantly alter the hygroscopicity of NaCl aerosols. The hydropathy scale is found to be a good qualitative diagnostic for the effect that an amino acid will have on the hygroscopicity of NaCl.
Collapse
Affiliation(s)
- Joshua P Darr
- University of Nebraska at Omaha , Department of Chemistry , 6001 Dodge Street, DSC 337 , Omaha , Nebraska 68182 , United States
| | - Salvatore Gottuso
- University of Nebraska at Omaha , Department of Chemistry , 6001 Dodge Street, DSC 337 , Omaha , Nebraska 68182 , United States
| | - Mohammed Alfarra
- University of Nebraska at Omaha , Department of Chemistry , 6001 Dodge Street, DSC 337 , Omaha , Nebraska 68182 , United States
| | - David Birge
- University of Nebraska at Omaha , Department of Chemistry , 6001 Dodge Street, DSC 337 , Omaha , Nebraska 68182 , United States
| | - Kimberly Ferris
- University of Nebraska at Omaha , Department of Chemistry , 6001 Dodge Street, DSC 337 , Omaha , Nebraska 68182 , United States
| | - Dillon Woods
- University of Nebraska at Omaha , Department of Chemistry , 6001 Dodge Street, DSC 337 , Omaha , Nebraska 68182 , United States
| | - Paul Morales
- University of Nebraska at Omaha , Department of Chemistry , 6001 Dodge Street, DSC 337 , Omaha , Nebraska 68182 , United States
| | - Megan Grove
- University of Nebraska at Omaha , Department of Chemistry , 6001 Dodge Street, DSC 337 , Omaha , Nebraska 68182 , United States
| | - William K Mitts
- University of Nebraska at Omaha , Department of Chemistry , 6001 Dodge Street, DSC 337 , Omaha , Nebraska 68182 , United States
| | - Eduardo Mendoza-Lopez
- University of Nebraska at Omaha , Department of Chemistry , 6001 Dodge Street, DSC 337 , Omaha , Nebraska 68182 , United States
| | - Amissabah Johnson
- University of Nebraska at Omaha , Department of Chemistry , 6001 Dodge Street, DSC 337 , Omaha , Nebraska 68182 , United States
| |
Collapse
|
43
|
Xia K, Tong S, Zhang Y, Tan F, Chen Y, Zhang W, Guo Y, Jing B, Ge M, Zhao Y, Alamry KA, Marwani HM, Wang S. Heterogeneous Reaction of HCOOH on NaCl Particles at Different Relative Humidities. J Phys Chem A 2018; 122:7218-7226. [PMID: 30118231 DOI: 10.1021/acs.jpca.8b02790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The contribution of volatile organic acids to chloride depletion still remains unclear under ambient conditions in the coast and inland. In this work, the heterogeneous reaction of HCOOH on the NaCl surface at a series of relative humidities (RHs) was investigated using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The formate was found to be formed on NaCl surface under dry and wet conditions, accompanied by the corresponding chloride depletion. The adsorbed HCOOH and the formation of formate on NaCl surface decreased with increasing RH below 30% RH. The adsorbed HCOOH decreased, while the formation of formate increased with enhanced RH at 45-70% RH. The variation in the formation of formate with RH suggests that chloride depletion may undergo similar changes. Additionally, the mechanism and kinetics for uptake of HCOOH on NaCl surface at various RHs were discussed and analyzed. Our results highlight the role of heterogeneous chemistry of volatile organic acid in the chloride depletion of NaCl in the coast and inland.
Collapse
Affiliation(s)
- Kaihui Xia
- Institute of Intelligent Machines , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China.,University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China.,State Key Laboratory for Structural Chemistry of Unstale and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Shengrui Tong
- State Key Laboratory for Structural Chemistry of Unstale and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Ying Zhang
- State Key Laboratory for Structural Chemistry of Unstale and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Fang Tan
- State Key Laboratory for Structural Chemistry of Unstale and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Yi Chen
- State Key Laboratory for Structural Chemistry of Unstale and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Wenqian Zhang
- State Key Laboratory for Structural Chemistry of Unstale and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Yucong Guo
- State Key Laboratory for Structural Chemistry of Unstale and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Bo Jing
- State Key Laboratory for Structural Chemistry of Unstale and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstale and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Yao Zhao
- Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Khalid A Alamry
- Chemistry Department, Faculty of Science , King Abdulaziz University , Jeddah 21589 , Saudi Arabia
| | - Hadi M Marwani
- Chemistry Department, Faculty of Science , King Abdulaziz University , Jeddah 21589 , Saudi Arabia
| | - Suhua Wang
- Institute of Intelligent Machines , Chinese Academy of Sciences , Hefei , Anhui 230031 , P. R. China.,University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China.,Chemistry Department, Faculty of Science , King Abdulaziz University , Jeddah 21589 , Saudi Arabia.,School of Environment and Chemical Engineering , North China Electric Power University , Beijing 102206 , P. R. China
| |
Collapse
|
44
|
Zhang K, Parker KM. Halogen Radical Oxidants in Natural and Engineered Aquatic Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9579-9594. [PMID: 30080407 DOI: 10.1021/acs.est.8b02219] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Photochemical reactions contribute to the transformation of contaminants and biogeochemically important substrates in environmental aquatic systems. Recent research has demonstrated that halogen radicals (e.g., Cl•, Br•, Cl2•-, BrCl•-, Br2•-) impact photochemical processes in sunlit estuarine and coastal waters rich in halides (e.g., chloride, Cl-, and bromide, Br-). In addition, halogen radicals participate in contaminant degradation in some engineered processes, including chlorine photolysis for drinking water treatment and several radical-based processes for brine and wastewater treatment. Halogen radicals react selectively with substrates (with bimolecular rate constants spanning several orders of magnitude) and via several potential chemical mechanisms. Consequently, their role in photochemical processes remains challenging to assess. This review presents an integrative analysis of the chemistry of halogen radicals and their contribution to aquatic photochemistry in sunlit surface waters and engineered treatment systems. We evaluate existing data on the generation, speciation, and reactivity of halogen radicals, as well as experimental and computational approaches used to obtain this data. By evaluating existing data and identifying major uncertainties, this review provides a basis to assess the impact of halogen radicals on photochemical processes in both saline surface waters and engineered treatment systems.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Energy, Environmental & Chemical Engineering , Washington University in St. Louis , Brauer Hall, 1 Brookings Dr. , St Louis , Missouri 63130 , United States
| | - Kimberly M Parker
- Department of Energy, Environmental & Chemical Engineering , Washington University in St. Louis , Brauer Hall, 1 Brookings Dr. , St Louis , Missouri 63130 , United States
| |
Collapse
|
45
|
Cox SJ, Geissler PL. Interfacial ion solvation: Obtaining the thermodynamic limit from molecular simulations. J Chem Phys 2018; 148:222823. [DOI: 10.1063/1.5020563] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Stephen J. Cox
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Phillip L. Geissler
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
46
|
Shahir AA, Khristov K, Nguyen KT, Nguyen AV, Mileva E. Combined Sum Frequency Generation and Thin Liquid Film Study of the Specific Effect of Monovalent Cations on the Interfacial Water Structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6844-6855. [PMID: 29775317 DOI: 10.1021/acs.langmuir.8b00648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Some salts have been recently shown to decrease the sum frequency generation (SFG) intensity of the hydrogen-bonded water molecules, but a quantitative explanation is still awaited. Here, we report a similar trend for the chloride salts of monovalent cations, that is, LiCl, NaCl, and CsCl, at low concentrations. Specifically, we revealed not only the specific adsorption of cations at the water surface but also the concentration-dependent effect of ions on the SFG response of the interfacial water molecules. Our thin-film pressure balance (TFPB) measurements (stabilized by 10 mM of methyl isobutyl carbinol) enabled the determination of the surface potential that governs the surface electric field affecting interfacial water dipoles. The use of the special alcohol also enabled us to identify a remarkable specific screening effect of cations on the surface potential. We explained the concentration dependency by considering the direct ion-water interactions and water reorientation under the influence of surface electric field as the two main contributors to the overall SFG signal of the hydrogen-bonded water molecules. Although the former was dominant only at the low-concentration range, the effect of the latter intensified with increasing salt concentration, leading to the recovery of the band intensity at medium concentrations. We discussed the likelihood of a correlation between the effect of ions on reorientation dynamics of water molecules and the broad-band intensity drop in the SFG spectra of salt solutions. We proposed a mechanism for the cation-specific effect through the formation of an ionic capacitance at the solution surface. It explains how cations could impart the ion specificity while they are traditionally believed to be repelled from the interfacial region. The electrical potential of this capacitance varies with the charge separation and ion density at the interface. The charge separation being controlled by the polarizability difference between anions and cations was identified using the SFG response of the interfacial water molecules as an indirect probe. The ion density being affected by the absolute polarizability of ions was tracked through the measurement of the surface potentials and Debye-Hückel lengths using the TFPB technique.
Collapse
Affiliation(s)
- Afshin Asadzadeh Shahir
- School of Chemical Engineering , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Khristo Khristov
- Institute of Physical Chemistry , Bulgarian Academy of Sciences , Acad. G. Bonchev Str., Block 11 , Sofia 1113 , Bulgaria
| | - Khoi Tan Nguyen
- School of Chemical Engineering , The University of Queensland , Brisbane , Queensland 4072 , Australia
- School of Biotechnology, International University , Vietnam National University , Ho Chi Minh City 700000 , Vietnam
| | - Anh V Nguyen
- School of Chemical Engineering , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Elena Mileva
- Institute of Physical Chemistry , Bulgarian Academy of Sciences , Acad. G. Bonchev Str., Block 11 , Sofia 1113 , Bulgaria
| |
Collapse
|
47
|
Sakamoto Y, Goda M, Hirokawa J. Kinetics Study of Heterogeneous Bromine Release from the Reaction between Gaseous Ozone and Aqueous Bromide Solution. J Phys Chem A 2018; 122:2723-2731. [PMID: 29481755 DOI: 10.1021/acs.jpca.7b12819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The heterogeneous release of molecular bromine, Br2, from the reaction between gaseous ozone and aqueous bromide ion in seawater ice and sea salt aerosols is considered to be an initial source of reactive bromine species in the troposphere. Recent studies have demonstrated that the uptake of ozone by aqueous bromide solution is promoted by reactions at the gas-liquid interface. The present work investigated the heterogeneous reaction between gaseous ozone and aqueous bromide solution at atmospheric pressure and room temperature using a wetted wall flow reactor combined with a chemical ionization mass spectrometer. The emission rate of Br2 was measured as a function of gaseous ozone concentration, aqueous bromide concentration, and pH. In addition, we conducted a simple kinetics model simulation that included only bulk aqueous-phase reactions and compared the theoretical values with the experimentally determined values. The Br2 emission rates measured experimentally differ from the simulated rates at relatively high bromide concentration, as well as in the pH region of 6-9. These differences might be explained by different Br- concentration and/or deprotonation efficiency near the interface region and those in the bulk solution.
Collapse
|
48
|
Bersenkowitsch NK, Ončák M, van der Linde C, Herburger A, Beyer MK. Photochemistry of glyoxylate embedded in sodium chloride clusters, a laboratory model for tropospheric sea-salt aerosols. Phys Chem Chem Phys 2018; 20:8143-8151. [PMID: 29517776 PMCID: PMC5885371 DOI: 10.1039/c8cp00399h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although marine aerosols undergo extensive photochemical processing in the troposphere, a molecular level understanding of the elementary steps involved in these complex reaction sequences is still missing.
Although marine aerosols undergo extensive photochemical processing in the troposphere, a molecular level understanding of the elementary steps involved in these complex reaction sequences is still missing. As a defined laboratory model system, the photodissociation of sea salt clusters doped with glyoxylate, [NanCln–2(C2HO3)]+, n = 5–11, is studied by a combination of mass spectrometry, laser spectroscopy and ab initio calculations. Glyoxylate acts as a chromophore, absorbing light below 400 nm via two absorption bands centered at about 346 and 231 nm. Cluster fragmentation dominates, which corresponds to internal conversion of the excited state energy into vibrational modes of the electronic ground state and subsequent unimolecular dissociation. Photochemical dissociation pathways in electronically excited states include CO and HCO elimination, leading to [Nan–xCln–x–2HCOO]+ and [NanCln–2COO˙]+ with typical quantum yields in the range of 1–3% and 5–10%, respectively, for n = 5. The latter species contains CO2˙– stabilized by the salt environment. The comparison of different cluster sizes shows that the fragments containing a carbon dioxide radical anion appear in a broad spectral region of 310–380 nm. This suggests that the elusive CO2˙– species may be formed by natural processes in the troposphere. Based on the photochemical cross sections obtained here, the photolysis lifetime of glyoxylate in a dry marine aerosol is estimated as 10 h. Quantum chemical calculations show that dissociation along the C–C bond in glyoxylic acid as well as glyoxylate embedded in the salt cluster occurs after reaching the S1/S0 conical intersection, while this conical intersection is absent in free glyoxylate ions.
Collapse
Affiliation(s)
- Nina K Bersenkowitsch
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Andreas Herburger
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Martin K Beyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| |
Collapse
|
49
|
Bertram TH, Cochran RE, Grassian VH, Stone EA. Sea spray aerosol chemical composition: elemental and molecular mimics for laboratory studies of heterogeneous and multiphase reactions. Chem Soc Rev 2018; 47:2374-2400. [DOI: 10.1039/c7cs00008a] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Schematic representation of the reactive uptake of N2O5to a sea spray aerosol particle containing a thick organic film.
Collapse
Affiliation(s)
| | - Richard E. Cochran
- Department of Chemistry and Biochemistry
- University of California
- La Jolla
- USA
| | - Vicki H. Grassian
- Department of Chemistry and Biochemistry
- University of California
- La Jolla
- USA
- Departments of Nanoengineering and Scripps Institution of Oceanography University of California
| | | |
Collapse
|
50
|
Li H, Kong X, Jiang L, Liu ZF. Solvation effects on the N–O and O–H stretching modes in hydrated NO3−(H2O)n clusters. Phys Chem Chem Phys 2018; 20:26918-26925. [DOI: 10.1039/c8cp05754k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ab initio molecular dynamics simulations reveal the solvation effects on the N–O and O–H stretching modes of NO3−(H2O)n.
Collapse
Affiliation(s)
- Huiyan Li
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong
- Shatin
- China
| | - Xiangtao Kong
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences
- Dalian 116023
- China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Collaborative Innovation Center of Chemistry for Energy and Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences
- Dalian 116023
- China
| | - Zhi-Feng Liu
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong
- Shatin
- China
- CUHK Shenzhen Research Institute
- Shenzhen
| |
Collapse
|