1
|
Nassereddine A, Prat A, Ould-Chikh S, Lahera E, Proux O, Delnet W, Costes A, Maurin I, Kieffer I, Min S, Rovezzi M, Testemale D, Cerrillo Olmo JL, Gascon J, Hazemann JL, Aguilar Tapia A. Novel high-pressure/high-temperature reactor cell for in situ and operando x-ray absorption spectroscopy studies of heterogeneous catalysts at synchrotron facilities. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:055103. [PMID: 38690984 DOI: 10.1063/5.0202557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
This paper presents the development of a novel high-pressure/high-temperature reactor cell dedicated to the characterization of catalysts using synchrotron x-ray absorption spectroscopy under operando conditions. The design of the vitreous carbon reactor allows its use as a plug-flow reactor, monitoring catalyst samples in a powder form with a continuous gas flow at high-temperature (up to 1000 °C) and under high pressure (up to 1000 bar) conditions, depending on the gas environment. The high-pressure/high-temperature reactor cell incorporates an automated gas distribution system and offers the capability to operate in both transmission and fluorescence detection modes. The operando x-ray absorption spectroscopy results obtained on a bimetallic InCo catalyst during CO2 hydrogenation reaction at 300 °C and 50 bar are presented, replicating the conditions of a conventional microreactor. The complete setup is available for users and permanently installed on the Collaborating Research Groups French Absorption spectroscopy beamline in Material and Environmental (CRG-FAME) sciences and French Absorption spectroscopy beamline in Material and Environmental sciences at ultra-high dilution (FAME-UHD) beamlines (BM30 and BM16) at the European Synchrotron Radiation Facility in Grenoble, France.
Collapse
Affiliation(s)
| | - Alain Prat
- Institut Néel, UPR 2940 CNRS - Université Grenoble Alpes, Grenoble F-38000, France
| | - Samy Ould-Chikh
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Eric Lahera
- OSUG, UAR 832 CNRS - Université Grenoble Alpes, F-38041 Grenoble, France
| | - Olivier Proux
- OSUG, UAR 832 CNRS - Université Grenoble Alpes, F-38041 Grenoble, France
| | - William Delnet
- OSUG, UAR 832 CNRS - Université Grenoble Alpes, F-38041 Grenoble, France
| | - Anael Costes
- Institut Néel, UPR 2940 CNRS - Université Grenoble Alpes, Grenoble F-38000, France
| | - Isabelle Maurin
- Institut Néel, UPR 2940 CNRS - Université Grenoble Alpes, Grenoble F-38000, France
| | - Isabelle Kieffer
- OSUG, UAR 832 CNRS - Université Grenoble Alpes, F-38041 Grenoble, France
| | - Sophie Min
- OSUG, UAR 832 CNRS - Université Grenoble Alpes, F-38041 Grenoble, France
| | - Mauro Rovezzi
- OSUG, UAR 832 CNRS - Université Grenoble Alpes, F-38041 Grenoble, France
| | - Denis Testemale
- Institut Néel, UPR 2940 CNRS - Université Grenoble Alpes, Grenoble F-38000, France
| | - Jose Luis Cerrillo Olmo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), Advanced Catalytic Materials, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Jean-Louis Hazemann
- Institut Néel, UPR 2940 CNRS - Université Grenoble Alpes, Grenoble F-38000, France
| | - Antonio Aguilar Tapia
- Institut de Chimie Moléculaire de Grenoble, UAR2607 CNRS- Université Grenoble Alpes, Grenoble F-38000, France
| |
Collapse
|
2
|
Lopez-Astacio H, Vargas-Perez BL, Del Valle-Perez A, Pollock CJ, Cunci L. Open-source electrochemical cell for in situ X-ray absorption spectroscopy in transmission and fluorescence modes. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:322-327. [PMID: 38306299 PMCID: PMC10914171 DOI: 10.1107/s1600577524000122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/04/2024] [Indexed: 02/04/2024]
Abstract
X-ray spectroscopy is a valuable technique for the study of many materials systems. Characterizing reactions in situ and operando can reveal complex reaction kinetics, which is crucial to understanding active site composition and reaction mechanisms. In this project, the design, fabrication and testing of an open-source and easy-to-fabricate electrochemical cell for in situ electrochemistry compatible with X-ray absorption spectroscopy in both transmission and fluorescence modes are accomplished via windows with large opening angles on both the upstream and downstream sides of the cell. Using a hobbyist computer numerical control machine and free 3D CAD software, anyone can make a reliable electrochemical cell using this design. Onion-like carbon nanoparticles, with a 1:3 iron-to-cobalt ratio, were drop-coated onto carbon paper for testing in situ X-ray absorption spectroscopy. Cyclic voltammetry of the carbon paper showed the expected behavior, with no increased ohmic drop, even in sandwiched cells. Chronoamperometry was used to apply 0.4 V versus reversible hydrogen electrode, with and without 15 min of oxygen purging to ensure that the electrochemical cell does not provide any artefacts due to gas purging. The XANES and EXAFS spectra showed no differences with and without oxygen, as expected at 0.4 V, without any artefacts due to gas purging. The development of this open-source electrochemical cell design allows for improved collection of in situ X-ray absorption spectroscopy data and enables researchers to perform both transmission and fluorescence simultaneously. It additionally addresses key practical considerations including gas purging, reduced ionic resistance and leak prevention.
Collapse
Affiliation(s)
- Hiram Lopez-Astacio
- Department of Chemistry and Physics, Universidad Ana G. Mendez at Gurabo, Gurabo, Puerto Rico, USA
| | - Brenda Lee Vargas-Perez
- Department of Chemistry, University of Puerto Rico at Rio Piedras, San Juan, Puerto Rico, USA
| | - Angelica Del Valle-Perez
- Department of Chemistry and Physics, Universidad Ana G. Mendez at Gurabo, Gurabo, Puerto Rico, USA
- Department of Chemistry, University of Puerto Rico at Rio Piedras, San Juan, Puerto Rico, USA
| | - Christopher J. Pollock
- Cornell High Energy Synchrotron Source, Wilson Laboratory, Cornell University, Ithaca, NY 14853, USA
| | - Lisandro Cunci
- Department of Chemistry, University of Puerto Rico at Rio Piedras, San Juan, Puerto Rico, USA
| |
Collapse
|
3
|
Lin F, Li M, Zeng L, Luo M, Guo S. Intermetallic Nanocrystals for Fuel-Cells-Based Electrocatalysis. Chem Rev 2023; 123:12507-12593. [PMID: 37910391 DOI: 10.1021/acs.chemrev.3c00382] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Electrocatalysis underpins the renewable electrochemical conversions for sustainability, which further replies on metallic nanocrystals as vital electrocatalysts. Intermetallic nanocrystals have been known to show distinct properties compared to their disordered counterparts, and been long explored for functional improvements. Tremendous progresses have been made in the past few years, with notable trend of more precise engineering down to an atomic level and the investigation transferring into more practical membrane electrode assembly (MEA), which motivates this timely review. After addressing the basic thermodynamic and kinetic fundamentals, we discuss classic and latest synthetic strategies that enable not only the formation of intermetallic phase but also the rational control of other catalysis-determinant structural parameters, such as size and morphology. We also demonstrate the emerging intermetallic nanomaterials for potentially further advancement in energy electrocatalysis. Then, we discuss the state-of-the-art characterizations and representative intermetallic electrocatalysts with emphasis on oxygen reduction reaction evaluated in a MEA setup. We summarize this review by laying out existing challenges and offering perspective on future research directions toward practicing intermetallic electrocatalysts for energy conversions.
Collapse
Affiliation(s)
- Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Gong Y, He T. Gaining Deep Understanding of Electrochemical CO 2 RR with In Situ/Operando Techniques. SMALL METHODS 2023; 7:e2300702. [PMID: 37608449 DOI: 10.1002/smtd.202300702] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/09/2023] [Indexed: 08/24/2023]
Abstract
Electrocatalysis for CO2 conversion has been extensively studied to mitigate the energy shortage and environmental issues, which are gaining ever-increasing attention. However, the complicated CO2 reduction process and the dynamic evolution occurring on electrocatalyst surface make it hard to understand the catalytic mechanism. The development of advanced in situ/operando techniques intelligently coupled with electrochemical cells sheds light on the related study via capturing surface atomic rearrangement, tracing chemical state change of catalysts, monitoring the behavior of intermediates and products, and depicting microenvironment near the electrode surface. In this review, fundamentals of the state-of-the-art in situ/operando techniques are clarified first. Case studies on the in situ/operando techniques performed to probe the CO2 reduction reaction processes are then discussed in detail. Finally, conclusions and outlook on this field are presented.
Collapse
Affiliation(s)
- Yue Gong
- CAS Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tao He
- CAS Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Sarma BB, Maurer F, Doronkin DE, Grunwaldt JD. Design of Single-Atom Catalysts and Tracking Their Fate Using Operando and Advanced X-ray Spectroscopic Tools. Chem Rev 2023; 123:379-444. [PMID: 36418229 PMCID: PMC9837826 DOI: 10.1021/acs.chemrev.2c00495] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 11/25/2022]
Abstract
The potential of operando X-ray techniques for following the structure, fate, and active site of single-atom catalysts (SACs) is highlighted with emphasis on a synergetic approach of both topics. X-ray absorption spectroscopy (XAS) and related X-ray techniques have become fascinating tools to characterize solids and they can be applied to almost all the transition metals deriving information about the symmetry, oxidation state, local coordination, and many more structural and electronic properties. SACs, a newly coined concept, recently gained much attention in the field of heterogeneous catalysis. In this way, one can achieve a minimum use of the metal, theoretically highest efficiency, and the design of only one active site-so-called single site catalysts. While single sites are not easy to characterize especially under operating conditions, XAS as local probe together with complementary methods (infrared spectroscopy, electron microscopy) is ideal in this research area to prove the structure of these sites and the dynamic changes during reaction. In this review, starting from their fundamentals, various techniques related to conventional XAS and X-ray photon in/out techniques applied to single sites are discussed with detailed mechanistic and in situ/operando studies. We systematically summarize the design strategies of SACs and outline their exploration with XAS supported by density functional theory (DFT) calculations and recent machine learning tools.
Collapse
Affiliation(s)
- Bidyut Bikash Sarma
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| | - Florian Maurer
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Dmitry E. Doronkin
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| | - Jan-Dierk Grunwaldt
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| |
Collapse
|
6
|
Kreider ME, Kamat GA, Zamora Zeledón JA, Wei L, Sokaras D, Gallo A, Stevens MB, Jaramillo TF. Understanding the Stability of Manganese Chromium Antimonate Electrocatalysts through Multimodal In Situ and Operando Measurements. J Am Chem Soc 2022; 144:22549-22561. [PMID: 36453840 DOI: 10.1021/jacs.2c08600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Improving electrocatalyst stability is critical for the development of electrocatalytic devices. Herein, we utilize an on-line electrochemical flow cell coupled with an inductively coupled plasma-mass spectrometer (ICP-MS) to characterize the impact of composition and reactant gas on the multielement dissolution of Mn(-Cr)-Sb-O electrocatalysts. Compared to Mn2O3 and Cr2O3 oxides, the antimonate framework stabilizes Mn at OER potentials and Cr at both ORR and OER potentials. Furthermore, dissolution of Mn and Cr from Mn(-Cr) -Sb-O is driven by the ORR reaction rate, with minimal dissolution under N2. We observe preferential dissolution of Cr totaling 13% over 10 min at 0.3, 0.6, and 0.9 V vs RHE, with only 1.5% loss of Mn, indicating an enrichment of Mn at the surface of the particles. Despite this asymmetric dissolution, operando X-ray absorption spectroscopy (XAS) showed no measurable changes in the Mn K-edge at comparable potentials. This could suggest that modification to the Mn oxidation state and/or phase in the surface layer is too small or that the layer is too thin to be measured with the bulk XAS measurement. Lastly, on-line ICP-MS was used to assess the effects of applied potential, scan rate, and current on Mn-Cr-Sb-O during cyclic voltammetry and accelerated stress tests. With this deeper understanding of the interplay between oxygen reduction and dissolution, testing procedures were identified to maximize both activity and stability. This work highlights the use of multimodal in situ characterization techniques in tandem to build a more complete model of stability and develop protocols for optimizing catalyst performance.
Collapse
Affiliation(s)
- Melissa E Kreider
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States.,SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Gaurav A Kamat
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States.,SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - José A Zamora Zeledón
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States.,SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Lingze Wei
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States.,SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Dimosthenis Sokaras
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Alessandro Gallo
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Michaela Burke Stevens
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Thomas F Jaramillo
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States.,SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
7
|
Luo H, Yukuhiro VY, Fernández PS, Feng J, Thompson P, Rao RR, Cai R, Favero S, Haigh SJ, Durrant JR, Stephens IEL, Titirici MM. Role of Ni in PtNi Bimetallic Electrocatalysts for Hydrogen and Value-Added Chemicals Coproduction via Glycerol Electrooxidation. ACS Catal 2022; 12:14492-14506. [PMID: 36504912 PMCID: PMC9724082 DOI: 10.1021/acscatal.2c03907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/30/2022] [Indexed: 11/12/2022]
Abstract
Pt-based bimetallic electrocatalysts are promising candidates to convert surplus glycerol from the biodiesel industry to value-added chemicals and coproduce hydrogen. It is expected that the nature and content of the elements in the bimetallic catalyst can not only affect the reaction kinetics but also influence the product selectivity, providing a way to increase the yield of the desired products. Hence, in this work, we investigate the electrochemical oxidation of glycerol on a series of PtNi nanoparticles with increasing Ni content using a combination of physicochemical structural analysis, electrochemical measurements, operando spectroscopic techniques, and advanced product characterizations. With a moderate Ni content and a homogenously alloyed bimetallic Pt-Ni structure, the PtNi2 catalyst displayed the highest reaction activity among all materials studied in this work. In situ FTIR data show that PtNi2 can activate the glycerol molecule at a more negative potential (0.4 V RHE) than the other PtNi catalysts. In addition, its surface can effectively catalyze the complete C-C bond cleavage, resulting in lower CO poisoning and higher stability. Operando X-ray absorption spectroscopy and UV-vis spectroscopy suggest that glycerol adsorbs strongly onto surface Ni(OH) x sites, preventing their oxidation and activation of oxygen or hydroxyl from water. As such, we propose that the role of Ni in PtNi toward glycerol oxidation is to tailor the electronic structure of the pure Pt sites rather than a bifunctional mechanism. Our experiments provide guidance for the development of bimetallic catalysts toward highly efficient, selective, and stable glycerol oxidation reactions.
Collapse
Affiliation(s)
- Hui Luo
- Department
of Chemical Engineering, Imperial College
London, South Kensington
Campus, LondonSW7 2AZ, U.K.
| | - Victor Y. Yukuhiro
- Chemistry
Institute and Center for Innovation on New Energies, State University of Campinas, P.O. Box
6154, São Paulo13083-970, Campinas, Brazil
| | - Pablo S. Fernández
- Chemistry
Institute and Center for Innovation on New Energies, State University of Campinas, P.O. Box
6154, São Paulo13083-970, Campinas, Brazil
| | - Jingyu Feng
- Department
of Chemical Engineering, Imperial College
London, South Kensington
Campus, LondonSW7 2AZ, U.K.,School
of Engineering and Materials Science, Queen
Mary University of London, LondonE1 4NS, U.K.
| | - Paul Thompson
- XMaS
CRG, ESRF, 71 Avenue
des Martyrs, Grenoble38000, France
| | - Reshma R. Rao
- Department
of Materials, Imperial College London, South Kensington Campus, LondonSW7 2AZ, U.K.
| | - Rongsheng Cai
- School of
Materials, University of Manchester, Oxford Road, ManchesterM13 9PL, U.K.
| | - Silvia Favero
- Department
of Chemical Engineering, Imperial College
London, South Kensington
Campus, LondonSW7 2AZ, U.K.
| | - Sarah J. Haigh
- School of
Materials, University of Manchester, Oxford Road, ManchesterM13 9PL, U.K.
| | - James R. Durrant
- Centre
for Processable Electronics, Imperial College
London, LondonSW7 2AZ, U.K.,Department
of Chemistry, Imperial College London, South Kensington Campus, LondonSW7 2AZ, U.K.
| | - Ifan E. L. Stephens
- Department
of Materials, Imperial College London, South Kensington Campus, LondonSW7 2AZ, U.K.,
| | - Maria-Magdalena Titirici
- Department
of Chemical Engineering, Imperial College
London, South Kensington
Campus, LondonSW7 2AZ, U.K.,Advanced
Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1
Katahira, Aobaku, Sendai, Miyagi980-8577, Japan,
| |
Collapse
|
8
|
|
9
|
Dynamic hetero-metallic bondings visualized by sequential atom imaging. Nat Commun 2022; 13:2968. [PMID: 35624108 PMCID: PMC9142510 DOI: 10.1038/s41467-022-30533-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Traditionally, chemistry has been developed to obtain thermodynamically stable and isolable compounds such as molecules and solids by chemical reactions. However, recent developments in computational chemistry have placed increased importance on studying the dynamic assembly and disassembly of atoms and molecules formed in situ. This study directly visualizes the formation and dissociation dynamics of labile dimers and trimers at atomic resolution with elemental identification. The video recordings of many homo- and hetero-metallic dimers are carried out by combining scanning transmission electron microscopy (STEM) with elemental identification based on the Z-contrast principle. Even short-lived molecules with low probability of existence such as AuAg, AgCu, and AuAgCu are directly visualized as a result of identifying moving atoms at low electron doses. The dynamic assembly and disassembly of atoms and molecules is challenging to characterize in real time, with atomic resolution and elemental identification. Here, the authors report direct observation of more than twenty homo and hetero-metallic compounds, including labile Ag-Cu dimers and Au-Ag-Cu trimers.
Collapse
|
10
|
Fang L, Seifert S, Winans RE, Li T. Understanding Synthesis and Structural Variation of Nanomaterials Through In Situ/Operando XAS and SAXS. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106017. [PMID: 35142037 DOI: 10.1002/smll.202106017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Nanostructured materials with high surface area and low coordinated atoms present distinct intrinsic properties from their bulk counterparts. However, nanomaterials' nucleation/growth mechanism during the synthesis process and the changes of the nanomaterials in the working state are still not thoroughly studied. As two indispensable methods, X-ray absorption spectroscopy (XAS) provides nanomaterials' electronic structure and coordination environment, while small-angle X-ray scattering (SAXS) offers structural properties and morphology information. A combination of in situ/operando XAS and SAXS provides high temporal and spatial resolution to monitor the evolution of nanomaterials. This review gives a brief introduction to in situ/operando SAXS/XAS cells. In addition, the application of in situ/operando XAS and SAXS in preparing nanomaterials and studying changes of working nanomaterials are summarized.
Collapse
Affiliation(s)
- Lingzhe Fang
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Soenke Seifert
- Chemistry and Material Science Group, X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Randall E Winans
- Chemistry and Material Science Group, X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Tao Li
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
- Chemistry and Material Science Group, X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| |
Collapse
|
11
|
Lee JD, Miller JB, Shneidman AV, Sun L, Weaver JF, Aizenberg J, Biener J, Boscoboinik JA, Foucher AC, Frenkel AI, van der Hoeven JES, Kozinsky B, Marcella N, Montemore MM, Ngan HT, O'Connor CR, Owen CJ, Stacchiola DJ, Stach EA, Madix RJ, Sautet P, Friend CM. Dilute Alloys Based on Au, Ag, or Cu for Efficient Catalysis: From Synthesis to Active Sites. Chem Rev 2022; 122:8758-8808. [PMID: 35254051 DOI: 10.1021/acs.chemrev.1c00967] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The development of new catalyst materials for energy-efficient chemical synthesis is critical as over 80% of industrial processes rely on catalysts, with many of the most energy-intensive processes specifically using heterogeneous catalysis. Catalytic performance is a complex interplay of phenomena involving temperature, pressure, gas composition, surface composition, and structure over multiple length and time scales. In response to this complexity, the integrated approach to heterogeneous dilute alloy catalysis reviewed here brings together materials synthesis, mechanistic surface chemistry, reaction kinetics, in situ and operando characterization, and theoretical calculations in a coordinated effort to develop design principles to predict and improve catalytic selectivity. Dilute alloy catalysts─in which isolated atoms or small ensembles of the minority metal on the host metal lead to enhanced reactivity while retaining selectivity─are particularly promising as selective catalysts. Several dilute alloy materials using Au, Ag, and Cu as the majority host element, including more recently introduced support-free nanoporous metals and oxide-supported nanoparticle "raspberry colloid templated (RCT)" materials, are reviewed for selective oxidation and hydrogenation reactions. Progress in understanding how such dilute alloy catalysts can be used to enhance selectivity of key synthetic reactions is reviewed, including quantitative scaling from model studies to catalytic conditions. The dynamic evolution of catalyst structure and composition studied in surface science and catalytic conditions and their relationship to catalytic function are also discussed, followed by advanced characterization and theoretical modeling that have been developed to determine the distribution of minority metal atoms at or near the surface. The integrated approach demonstrates the success of bridging the divide between fundamental knowledge and design of catalytic processes in complex catalytic systems, which can accelerate the development of new and efficient catalytic processes.
Collapse
Affiliation(s)
- Jennifer D Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jeffrey B Miller
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Anna V Shneidman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Lixin Sun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jason F Weaver
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Juergen Biener
- Nanoscale Synthesis and Characterization Laboratory, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - J Anibal Boscoboinik
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Alexandre C Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States.,Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jessi E S van der Hoeven
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Boris Kozinsky
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Nicholas Marcella
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Matthew M Montemore
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Hio Tong Ngan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Christopher R O'Connor
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Cameron J Owen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Dario J Stacchiola
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert J Madix
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Cynthia M Friend
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
12
|
Yang Y, Peltier CR, Zeng R, Schimmenti R, Li Q, Huang X, Yan Z, Potsi G, Selhorst R, Lu X, Xu W, Tader M, Soudackov AV, Zhang H, Krumov M, Murray E, Xu P, Hitt J, Xu L, Ko HY, Ernst BG, Bundschu C, Luo A, Markovich D, Hu M, He C, Wang H, Fang J, DiStasio RA, Kourkoutis LF, Singer A, Noonan KJT, Xiao L, Zhuang L, Pivovar BS, Zelenay P, Herrero E, Feliu JM, Suntivich J, Giannelis EP, Hammes-Schiffer S, Arias T, Mavrikakis M, Mallouk TE, Brock JD, Muller DA, DiSalvo FJ, Coates GW, Abruña HD. Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chem Rev 2022; 122:6117-6321. [PMID: 35133808 DOI: 10.1021/acs.chemrev.1c00331] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogen energy-based electrochemical energy conversion technologies offer the promise of enabling a transition of the global energy landscape from fossil fuels to renewable energy. Here, we present a comprehensive review of the fundamentals of electrocatalysis in alkaline media and applications in alkaline-based energy technologies, particularly alkaline fuel cells and water electrolyzers. Anion exchange (alkaline) membrane fuel cells (AEMFCs) enable the use of nonprecious electrocatalysts for the sluggish oxygen reduction reaction (ORR), relative to proton exchange membrane fuel cells (PEMFCs), which require Pt-based electrocatalysts. However, the hydrogen oxidation reaction (HOR) kinetics is significantly slower in alkaline media than in acidic media. Understanding these phenomena requires applying theoretical and experimental methods to unravel molecular-level thermodynamics and kinetics of hydrogen and oxygen electrocatalysis and, particularly, the proton-coupled electron transfer (PCET) process that takes place in a proton-deficient alkaline media. Extensive electrochemical and spectroscopic studies, on single-crystal Pt and metal oxides, have contributed to the development of activity descriptors, as well as the identification of the nature of active sites, and the rate-determining steps of the HOR and ORR. Among these, the structure and reactivity of interfacial water serve as key potential and pH-dependent kinetic factors that are helping elucidate the origins of the HOR and ORR activity differences in acids and bases. Additionally, deliberately modulating and controlling catalyst-support interactions have provided valuable insights for enhancing catalyst accessibility and durability during operation. The design and synthesis of highly conductive and durable alkaline membranes/ionomers have enabled AEMFCs to reach initial performance metrics equal to or higher than those of PEMFCs. We emphasize the importance of using membrane electrode assemblies (MEAs) to integrate the often separately pursued/optimized electrocatalyst/support and membranes/ionomer components. Operando/in situ methods, at multiscales, and ab initio simulations provide a mechanistic understanding of electron, ion, and mass transport at catalyst/ionomer/membrane interfaces and the necessary guidance to achieve fuel cell operation in air over thousands of hours. We hope that this Review will serve as a roadmap for advancing the scientific understanding of the fundamental factors governing electrochemical energy conversion in alkaline media with the ultimate goal of achieving ultralow Pt or precious-metal-free high-performance and durable alkaline fuel cells and related technologies.
Collapse
Affiliation(s)
- Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Cheyenne R Peltier
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Roberto Schimmenti
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Qihao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Zhifei Yan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Georgia Potsi
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ryan Selhorst
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xinyao Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mariel Tader
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Alexander V Soudackov
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hanguang Zhang
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Mihail Krumov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ellen Murray
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Pengtao Xu
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy Hitt
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Linxi Xu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hsin-Yu Ko
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brian G Ernst
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Colin Bundschu
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Aileen Luo
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Danielle Markovich
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Meixue Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Cheng He
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Robert A DiStasio
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Andrej Singer
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kevin J T Noonan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Li Xiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bryan S Pivovar
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Piotr Zelenay
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Enrique Herrero
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Juan M Feliu
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Jin Suntivich
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Emmanuel P Giannelis
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | | | - Tomás Arias
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Thomas E Mallouk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joel D Brock
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Francis J DiSalvo
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Center for Alkaline Based Energy Solutions (CABES), Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
13
|
Taherkhani F, Fortunelli A. Chemical ordering and temperature effects on the thermal conductivity of Ag–Au and Ag–Pd bimetallic bulk and nanocluster systems. NEW J CHEM 2022. [DOI: 10.1039/d2nj02899a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the heat transfer mechanisms in bimetallic nanoparticles, e.g. to promote heat transfer in a nanofluid, is a significant problem for industrial and fluid mechanics related applications.
Collapse
Affiliation(s)
- Farid Taherkhani
- Departments of Production Engineering, Universität Bremen, Bibliothekstraße 1, 28359, Germany
- Universtät Bremen, Energiespeicher-und Energiewandlersysteme, Bibliotechkstraße 1, Bremen, 28359, Germany
| | - Alessandro Fortunelli
- CNR-ICCOM, Istituto per la Chimica dei Composti Organometallici del Consiglio Nazionale delle Ricerche, via G. Moruzzi 1, 56124, Pisa, Italy
| |
Collapse
|
14
|
Parvulescu VI, Epron F, Garcia H, Granger P. Recent Progress and Prospects in Catalytic Water Treatment. Chem Rev 2021; 122:2981-3121. [PMID: 34874709 DOI: 10.1021/acs.chemrev.1c00527] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Presently, conventional technologies in water treatment are not efficient enough to completely mineralize refractory water contaminants. In this context, the implementation of catalytic processes could be an alternative. Despite the advantages provided in terms of kinetics of transformation, selectivity, and energy saving, numerous attempts have not yet led to implementation at an industrial scale. This review examines investigations at different scales for which controversies and limitations must be solved to bridge the gap between fundamentals and practical developments. Particular attention has been paid to the development of solar-driven catalytic technologies and some other emerging processes, such as microwave assisted catalysis, plasma-catalytic processes, or biocatalytic remediation, taking into account their specific advantages and the drawbacks. Challenges for which a better understanding related to the complexity of the systems and the coexistence of various solid-liquid-gas interfaces have been identified.
Collapse
Affiliation(s)
- Vasile I Parvulescu
- Department of Organic Chemistry, Biochemistry and Catalysis, University of Bucharest, B-dul Regina Elisabeta 4-12, Bucharest 030016, Romania
| | - Florence Epron
- Université de Poitiers, CNRS UMR 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Hermenegildo Garcia
- Instituto Universitario de Tecnología Química, Universitat Politecnica de Valencia-Consejo Superior de Investigaciones Científicas, Universitat Politencia de Valencia, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Pascal Granger
- CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Univ. Lille, F-59000 Lille, France
| |
Collapse
|
15
|
Wang X, Zhang Y, Wu J, Zhang Z, Liao Q, Kang Z, Zhang Y. Single-Atom Engineering to Ignite 2D Transition Metal Dichalcogenide Based Catalysis: Fundamentals, Progress, and Beyond. Chem Rev 2021; 122:1273-1348. [PMID: 34788542 DOI: 10.1021/acs.chemrev.1c00505] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Single-atom catalysis has been recognized as a pivotal milestone in the development history of heterogeneous catalysis by virtue of its superior catalytic performance, ultrahigh atomic utilization, and well-defined structure. Beyond single-atom protrusions, two more motifs of single-atom substitutions and single-atom vacancies along with synergistic single-atom motif assemblies have been progressively developed to enrich the single-atom family. On the other hand, besides traditional carbon material based substrates, a wide variety of 2D transitional metal dichalcogenides (TMDs) have been emerging as a promising platform for single-atom catalysis owing to their diverse elemental compositions, variable crystal structures, flexible electronic structures, and intrinsic activities toward many catalytic reactions. Such substantial expansion of both single-atom motifs and substrates provides an enriched toolbox to further optimize the geometric and electronic structures for pushing the performance limit. Concomitantly, higher requirements have been put forward for synthetic and characterization techniques with related technical bottlenecks being continuously conquered. Furthermore, this burgeoning single-atom catalyst (SAC) system has triggered serial scientific issues about their changeable single atom-2D substrate interaction, ambiguous synergistic effects of various atomic assemblies, as well as dynamic structure-performance correlations, all of which necessitate further clarification and comprehensive summary. In this context, this Review aims to summarize and critically discuss the single-atom engineering development in the whole field of 2D TMD based catalysis covering their evolution history, synthetic methodologies, characterization techniques, catalytic applications, and dynamic structure-performance correlations. In situ characterization techniques are highlighted regarding their critical roles in real-time detection of SAC reconstruction and reaction pathway evolution, thus shedding light on lifetime dynamic structure-performance correlations which lay a solid theoretical foundation for the whole catalytic field, especially for SACs.
Collapse
Affiliation(s)
- Xin Wang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China.,State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yuwei Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China.,State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Jing Wu
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China.,State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Zheng Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China.,State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Qingliang Liao
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China.,State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Zhuo Kang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China.,State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yue Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China.,State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
16
|
Ding H, Liu H, Chu W, Wu C, Xie Y. Structural Transformation of Heterogeneous Materials for Electrocatalytic Oxygen Evolution Reaction. Chem Rev 2021; 121:13174-13212. [PMID: 34523916 DOI: 10.1021/acs.chemrev.1c00234] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrochemical water splitting for hydrogen generation is a promising pathway for renewable energy conversion and storage. One of the most important issues for efficient water splitting is to develop cost-effective and highly efficient electrocatalysts to drive sluggish oxygen-evolution reaction (OER) at the anode side. Notably, structural transformation such as surface oxidation of metals or metal nonoxide compounds and surface amorphization of some metal oxides during OER have attracted growing attention in recent years. The investigation of structural transformation in OER will contribute to the in-depth understanding of accurate catalytic mechanisms and will finally benefit the rational design of catalytic materials with high activity. In this Review, we provide an overview of heterogeneous materials with obvious structural transformation during OER electrocatalysis. To gain insight into the essence of structural transformation, we summarize the driving forces and critical factors that affect the transformation process. In addition, advanced techniques that are used to probe chemical states and atomic structures of transformed surfaces are also introduced. We then discuss the structure of active species and the relationship between catalytic performance and structural properties of transformed materials. Finally, the challenges and prospects of heterogeneous OER electrocatalysis are presented.
Collapse
Affiliation(s)
- Hui Ding
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hongfei Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wangsheng Chu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Changzheng Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230026, P. R. China
| | - Yi Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
17
|
Zhao Y, Jiang WJ, Zhang J, Lovell EC, Amal R, Han Z, Lu X. Anchoring Sites Engineering in Single-Atom Catalysts for Highly Efficient Electrochemical Energy Conversion Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102801. [PMID: 34477254 DOI: 10.1002/adma.202102801] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/09/2021] [Indexed: 05/23/2023]
Abstract
Single-atom catalysts (SACs) have been at the frontier of research field in catalysis owing to the maximized atomic utilization, unique structures and properties. The atomically dispersed and catalytically active metal atoms are necessarily anchored by surrounding atoms. As such, the structure and composition of anchoring sites significantly influence the catalytic performance of SACs even with the same metal element. Significant progress has been made to understand structure-activity relationships at an atomic level, but in-depth understanding in precisely designing highly efficient SACs for the targeted reactions is still required. In this review, various anchoring sites in SACs are summarized and classified into five different types (doped heteroatoms, defect sites, surface atoms, metal sites, and cavity sites). Then, their impacts on catalytic performance are elucidated for electrochemical reactions based on their distance from the metal center (first coordination shell and beyond). Further, SACs anchored on two typical types of hosts, carbon- and metal-based materials, are highlighted, and the effects of anchoring points on achieving the desirable atomic structure, catalytic performance, and reaction pathways are elaborated. At last, insights and outlook to the SAC field based on current achievements and challenges are presented.
Collapse
Affiliation(s)
- Yufei Zhao
- Particles and Catalysis Research Laboratory, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Wen-Jie Jiang
- Particles and Catalysis Research Laboratory, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jinqiang Zhang
- Center for Clean Energy Technology, School of Mathematical and Physical Science, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Emma C Lovell
- Particles and Catalysis Research Laboratory, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rose Amal
- Particles and Catalysis Research Laboratory, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Zhaojun Han
- Particles and Catalysis Research Laboratory, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
- School of Mechanical and Manufacturing Engineering, The University of New South Wales Sydney, Sydney, NSW, 2052, Australia
- CSIRO Manufacturing, 36 Bradfield Road, Lindfield, Sydney, NSW, 2070, Australia
| | - Xunyu Lu
- Particles and Catalysis Research Laboratory, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
18
|
Isolating the contributions of surface Sn atoms in the bifunctional behaviour of PtSn CO oxidation electrocatalysts. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Gang Y, Sarnello E, Pellessier J, Fang S, Suarez M, Pan F, Du Z, Zhang P, Fang L, Liu Y, Li T, Zhou HC, Hu YH, Li Y. One-Step Chemical Vapor Deposition Synthesis of Hierarchical Ni and N Co-Doped Carbon Nanosheet/Nanotube Hybrids for Efficient Electrochemical CO 2 Reduction at Commercially Viable Current Densities. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01864] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yang Gang
- J. Mike Walker ‘66 Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Erik Sarnello
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - John Pellessier
- J. Mike Walker ‘66 Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Siyuan Fang
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Manuel Suarez
- J. Mike Walker ‘66 Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Fuping Pan
- J. Mike Walker ‘66 Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Zichen Du
- J. Mike Walker ‘66 Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Peng Zhang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Lingzhe Fang
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Yuzi Liu
- Center of Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Tao Li
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
- Chemistry and Material Science Group, X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Yun Hang Hu
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Ying Li
- J. Mike Walker ‘66 Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
20
|
Baggio BF, Grunder Y. In Situ X-Ray Techniques for Electrochemical Interfaces. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:87-107. [PMID: 33940932 DOI: 10.1146/annurev-anchem-091020-100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article reviews progress in the study of materials using X-ray-based techniques from an electrochemistry perspective. We focus on in situ/in operando surface X-ray scattering, X-ray absorption spectroscopy, and the combination of both methods. The background of these techniques together with key concepts is introduced. Key examples of in situ and in operando investigation of liquid-solid and liquid-liquid interfaces are presented. X-ray scattering and spectroscopy have helped to develop an understanding of the underlying atomic and molecular processes associated with electrocatalysis, electrodeposition, and battery materials. We highlight recent developments, including resonant surface diffraction and time-resolved studies.
Collapse
Affiliation(s)
- Bruna F Baggio
- Oliver Lodge Laboratory, Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom;
| | - Yvonne Grunder
- Oliver Lodge Laboratory, Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom;
| |
Collapse
|
21
|
Hersbach TJP, Garcia AC, Kroll T, Sokaras D, Koper MTM, Garcia-Esparza AT. Base-Accelerated Degradation of Nanosized Platinum Electrocatalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02468] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thomas J. P. Hersbach
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States of America
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Amanda C. Garcia
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States of America
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States of America
| | - Marc T. M. Koper
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Angel T. Garcia-Esparza
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States of America
| |
Collapse
|
22
|
Leach AS, Hack J, Amboage M, Diaz-Moreno S, Huang H, Cullen PL, Wilding M, Magliocca E, Miller TS, Howard CA, Brett DJL, Shearing PR, McMillan PF, Russell AE, Jervis R. A novel fuel cell design for operandoenergy-dispersive x-ray absorption measurements. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:314002. [PMID: 34030140 DOI: 10.1088/1361-648x/ac0476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
A polymer electrolyte fuel cell has been designed to allowoperandox-ray absorption spectroscopy (XAS) measurements of catalysts. The cell has been developed to operate under standard fuel cell conditions, with elevated temperatures and humidification of the gas-phase reactants, both of which greatly impact the catalyst utilisation. X-ray windows in the endplates of the cell facilitate collection of XAS spectra during fuel cell operation while maintaining good compression in the area of measurement. Results of polarisation curves and cyclic voltammograms showed that theoperandocell performs well as a fuel cell, while also providing XAS data of suitable quality for robust XANES analysis. The cell has produced comparable XAS results when performing a cyclic voltammogram to an establishedin situcell when measuring the Pt LIII edge. Similar trends of Pt oxidation, and reduction of the formed Pt oxide, have been presented with a time resolution of 5 s for each spectrum, paving the way for time-resolved spectral measurements of fuel cell catalysts in a fully-operating fuel cell.
Collapse
Affiliation(s)
- A S Leach
- Electrochemical Innovation Lab, Department of Chemical Engineering, UCL, London WC1E 7JE, United Kingdom
| | - J Hack
- Electrochemical Innovation Lab, Department of Chemical Engineering, UCL, London WC1E 7JE, United Kingdom
| | - M Amboage
- Diamond Light Source, Didcot, Oxon, OX11 0DE, United Kingdom
| | - S Diaz-Moreno
- Diamond Light Source, Didcot, Oxon, OX11 0DE, United Kingdom
| | - H Huang
- School of Chemistry, University of Southampton, University Road, Southampton SO17 1BJ, United Kingdom
| | - P L Cullen
- Electrochemical Innovation Lab, Department of Chemical Engineering, UCL, London WC1E 7JE, United Kingdom
- School of Engineering and Materials Science (SEMS) and Material Research Institute, Queen Mary University of London, London, E1 4NS, United Kingdom
| | - M Wilding
- UK Catalysis Hub, Research Complex at Harwell, Harwell Campus, OX11 0FA, United Kingdom
| | - E Magliocca
- Electrochemical Innovation Lab, Department of Chemical Engineering, UCL, London WC1E 7JE, United Kingdom
| | - T S Miller
- Electrochemical Innovation Lab, Department of Chemical Engineering, UCL, London WC1E 7JE, United Kingdom
| | - C A Howard
- Department of Physics & Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - D J L Brett
- Electrochemical Innovation Lab, Department of Chemical Engineering, UCL, London WC1E 7JE, United Kingdom
| | - P R Shearing
- Electrochemical Innovation Lab, Department of Chemical Engineering, UCL, London WC1E 7JE, United Kingdom
| | - P F McMillan
- Department of Chemistry, Christopher Ingold Laboratory, University College London, 20 Gordon St., London WC1H 0AJ, United Kingdom
| | - A E Russell
- School of Chemistry, University of Southampton, University Road, Southampton SO17 1BJ, United Kingdom
| | - R Jervis
- Electrochemical Innovation Lab, Department of Chemical Engineering, UCL, London WC1E 7JE, United Kingdom
| |
Collapse
|
23
|
Routh PK, Liu Y, Marcella N, Kozinsky B, Frenkel AI. Latent Representation Learning for Structural Characterization of Catalysts. J Phys Chem Lett 2021; 12:2086-2094. [PMID: 33620230 DOI: 10.1021/acs.jpclett.0c03792] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Supervised machine learning-enabled mapping of the X-ray absorption near edge structure (XANES) spectra to local structural descriptors offers new methods for understanding the structure and function of working nanocatalysts. We briefly summarize a status of XANES analysis approaches by supervised machine learning methods. We present an example of an autoencoder-based, unsupervised machine learning approach for latent representation learning of XANES spectra. This new approach produces a lower-dimensional latent representation, which retains a spectrum-structure relationship that can be eventually mapped to physicochemical properties. The latent space of the autoencoder also provides a pathway to interpret the information content "hidden" in the X-ray absorption coefficient. Our approach (that we named latent space analysis of spectra, or LSAS) is demonstrated for the supported Pd nanoparticle catalyst studied during the formation of Pd hydride. By employing the low-dimensional representation of Pd K-edge XANES, the LSAS method was able to isolate the key factors responsible for the observed spectral changes.
Collapse
Affiliation(s)
- Prahlad K Routh
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Yang Liu
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Nicholas Marcella
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Boris Kozinsky
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Bosch Research, Cambridge, Massachusetts 02139, United States
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
24
|
Timoshenko J, Roldan Cuenya B. In Situ/ Operando Electrocatalyst Characterization by X-ray Absorption Spectroscopy. Chem Rev 2021; 121:882-961. [PMID: 32986414 PMCID: PMC7844833 DOI: 10.1021/acs.chemrev.0c00396] [Citation(s) in RCA: 220] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Indexed: 12/18/2022]
Abstract
During the last decades, X-ray absorption spectroscopy (XAS) has become an indispensable method for probing the structure and composition of heterogeneous catalysts, revealing the nature of the active sites and establishing links between structural motifs in a catalyst, local electronic structure, and catalytic properties. Here we discuss the fundamental principles of the XAS method and describe the progress in the instrumentation and data analysis approaches undertaken for deciphering X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra. Recent usages of XAS in the field of heterogeneous catalysis, with emphasis on examples concerning electrocatalysis, will be presented. The latter is a rapidly developing field with immense industrial applications but also unique challenges in terms of the experimental characterization restrictions and advanced modeling approaches required. This review will highlight the new insight that can be gained with XAS on complex real-world electrocatalysts including their working mechanisms and the dynamic processes taking place in the course of a chemical reaction. More specifically, we will discuss applications of in situ and operando XAS to probe the catalyst's interactions with the environment (support, electrolyte, ligands, adsorbates, reaction products, and intermediates) and its structural, chemical, and electronic transformations as it adapts to the reaction conditions.
Collapse
Affiliation(s)
- Janis Timoshenko
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, 14195 Berlin, Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, 14195 Berlin, Germany
| |
Collapse
|
25
|
Yang Y, Xiong Y, Zeng R, Lu X, Krumov M, Huang X, Xu W, Wang H, DiSalvo FJ, Brock JD, Muller DA, Abruña HD. Operando Methods in Electrocatalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04789] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yin Xiong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xinyao Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mihail Krumov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xin Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
| | - Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Francis J. DiSalvo
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Joel. D. Brock
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
| | - David A. Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, United States
| | - Héctor D. Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
26
|
Schade OR, Stein F, Reichenberger S, Gaur A, Saraҫi E, Barcikowski S, Grunwaldt J. Selective Aerobic Oxidation of 5‐(Hydroxymethyl)furfural over Heterogeneous Silver‐Gold Nanoparticle Catalysts. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Oliver R. Schade
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany 44820
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology (KIT) 76344 Eggenstein-Leopoldshafen Germany
| | - Frederic Stein
- Technical Chemistry I University of Duisburg-Essen 45141 Essen Germany
- Center for Nanointegration Duisburg-Essen (CENIDE) University of Duisburg-Essen 47057 Duisburg Germany
| | - Sven Reichenberger
- Technical Chemistry I University of Duisburg-Essen 45141 Essen Germany
- Center for Nanointegration Duisburg-Essen (CENIDE) University of Duisburg-Essen 47057 Duisburg Germany
| | - Abhijeet Gaur
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany 44820
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology (KIT) 76344 Eggenstein-Leopoldshafen Germany
| | - Erisa Saraҫi
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany 44820
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology (KIT) 76344 Eggenstein-Leopoldshafen Germany
| | - Stephan Barcikowski
- Technical Chemistry I University of Duisburg-Essen 45141 Essen Germany
- Center for Nanointegration Duisburg-Essen (CENIDE) University of Duisburg-Essen 47057 Duisburg Germany
| | - Jan‐Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany 44820
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology (KIT) 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
27
|
Bott‐Neto JL, Rodrigues MVF, Silva MC, Carneiro‐Neto EB, Wosiak G, Mauricio JC, Pereira EC, Figueroa SJA, Fernández PS. Versatile Spectroelectrochemical Cell for In Situ Experiments: Development, Applications, and Electrochemical Behavior**. ChemElectroChem 2020. [DOI: 10.1002/celc.202000910] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- José L. Bott‐Neto
- Institute of Chemistry State University of Campinas PO Box 6154 13083-970 Campinas SP Brazil
- Center for Innovation on New Energies State University of Campinas 13083-841 Campinas, SP Brazil
| | - Marta V. F. Rodrigues
- Institute of Chemistry State University of Campinas PO Box 6154 13083-970 Campinas SP Brazil
- Brazilian Synchrotron Light Laboratory (LNLS) Brazilian Center for Research in Energy and Materials (CNPEM) 13083-970 Campinas, SP Brazil
| | - Mariana C. Silva
- Center for Innovation on New Energies State University of Campinas 13083-841 Campinas, SP Brazil
- Chemistry Department Federal University of São Carlos 13565-905 São Carlos, SP Brazil
| | - Evaldo B. Carneiro‐Neto
- Center for Innovation on New Energies State University of Campinas 13083-841 Campinas, SP Brazil
- Chemistry Department Federal University of São Carlos 13565-905 São Carlos, SP Brazil
| | - Gabriel Wosiak
- Center for Innovation on New Energies State University of Campinas 13083-841 Campinas, SP Brazil
- Chemistry Department Federal University of São Carlos 13565-905 São Carlos, SP Brazil
| | - Junior C. Mauricio
- Brazilian Synchrotron Light Laboratory (LNLS) Brazilian Center for Research in Energy and Materials (CNPEM) 13083-970 Campinas, SP Brazil
| | - Ernesto C. Pereira
- Center for Innovation on New Energies State University of Campinas 13083-841 Campinas, SP Brazil
- Chemistry Department Federal University of São Carlos 13565-905 São Carlos, SP Brazil
| | - Santiago J. A. Figueroa
- Institute of Chemistry State University of Campinas PO Box 6154 13083-970 Campinas SP Brazil
- Brazilian Synchrotron Light Laboratory (LNLS) Brazilian Center for Research in Energy and Materials (CNPEM) 13083-970 Campinas, SP Brazil
| | - Pablo S. Fernández
- Institute of Chemistry State University of Campinas PO Box 6154 13083-970 Campinas SP Brazil
- Center for Innovation on New Energies State University of Campinas 13083-841 Campinas, SP Brazil
| |
Collapse
|
28
|
X-ray absorption spectroscopy principles and practical use in materials analysis. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2017-0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe X-ray Absorption Fine Structure (XAFS) with its subregions X-ray Absorption Near-edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) is a powerful tool for the structural analysis of materials, which is nowadays a standard component of research strategies in many fields. This review covers a wide range of topics related to its measurement and use: the origin of the fine structure, its analytical potential, derived from the physical basis, the environment for measuring XAFS at synchrotrons, including different measurement geometries, detection modes, and sample environments, e. g. for in-situ and operando work, the principles of data reduction, analysis, and interpretation, and a perspective on new methods for structure analysis combining X-ray absorption with X-ray emission. Examples for the application of XAFS have been selected from work with heterogeneous catalysts with the intention to demonstrate the strength of the method providing structural information about highly disperse and disordered systems, to illustrate pitfalls in the interpretation of results (e. g. by neglecting the averaged character of the information obtained) and to show how its merits can be further enhanced by combination with other methods of structural analysis and/or spectroscopy.
Collapse
|
29
|
|
30
|
de Souza MBC, Yukuhiro VY, Vicente RA, Vilela Menegaz Teixeira Pires CTG, Bott-Neto JL, Fernández PS. Pb- and Bi-Modified Pt Electrodes toward Glycerol Electrooxidation in Alkaline Media. Activity, Selectivity, and the Importance of the Pt Atoms Arrangement. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04805] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matheus B. C. de Souza
- Chemistry Institute, State University of Campinas, P.O. Box 6154, 13083-970, Campinas, SP, Brazil
| | - Victor Y. Yukuhiro
- Chemistry Institute, State University of Campinas, P.O. Box 6154, 13083-970, Campinas, SP, Brazil
| | - Rafael A. Vicente
- Chemistry Institute, State University of Campinas, P.O. Box 6154, 13083-970, Campinas, SP, Brazil
| | | | - José L. Bott-Neto
- Chemistry Institute, State University of Campinas, P.O. Box 6154, 13083-970, Campinas, SP, Brazil
| | - Pablo S. Fernández
- Chemistry Institute, State University of Campinas, P.O. Box 6154, 13083-970, Campinas, SP, Brazil
- Center for Innovation on New Energies, University of Campinas, CEP 13083-841 Campinas, SP, Brazil
| |
Collapse
|
31
|
Wang L, Wang H, Liu Y, Wang X, Tao P, Shang W, Fu B, Song C, Deng T. Pyroelectric synthesis of Au/Pt bimetallic nanoparticles–BaTiO3 hybrid nanomaterials. RSC Adv 2020; 10:22616-22621. [PMID: 35514593 PMCID: PMC9054579 DOI: 10.1039/d0ra00648c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/03/2020] [Indexed: 12/02/2022] Open
Abstract
This paper introduces an approach to synthesize bimetallic nanoparticles under an alternating temperature field in aqueous solution. During the synthesis, pyro-catalytic barium titanate is used as the substrate to reduce the metallic ions dispersed in the solution due to the generated charges at the surface of pyro-materials under temperature oscillation. Chloroauric acid and potassium tetrachloroplatinate are used as precursors to produce gold/platinum bimetallic nanoparticles through a pyro-catalytic process. Transmission electron microscopy characterization, in combination with energy dispersive X-ray spectroscopy mapping, demonstrates that the bimetallic nanoparticle is composed of an Au core and Au/Pt alloy shell structure. Compared to the conventional approaches, the pyroelectric synthesis approach demonstrated in this work requires no toxic reducing agents and waste heat can be used as a thermal energy source in the synthesis. Hence, it offers a potential “green” synthetic method for bimetallic nanoparticles. A “green” synthetic approach to Au/Pt bimetallic nanoparticles under an alternating temperature field.![]()
Collapse
Affiliation(s)
- Liren Wang
- State Key Laboratory of Metal Matrix Composites
- School of Materials Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P.R.China
| | - Han Wang
- State Key Laboratory of Metal Matrix Composites
- School of Materials Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P.R.China
| | - Yanming Liu
- State Key Laboratory of Metal Matrix Composites
- School of Materials Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P.R.China
| | - Xinyu Wang
- State Key Laboratory of Metal Matrix Composites
- School of Materials Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P.R.China
| | - Peng Tao
- State Key Laboratory of Metal Matrix Composites
- School of Materials Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P.R.China
| | - Wen Shang
- State Key Laboratory of Metal Matrix Composites
- School of Materials Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P.R.China
| | - Benwei Fu
- State Key Laboratory of Metal Matrix Composites
- School of Materials Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P.R.China
| | - Chengyi Song
- State Key Laboratory of Metal Matrix Composites
- School of Materials Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P.R.China
| | - Tao Deng
- State Key Laboratory of Metal Matrix Composites
- School of Materials Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P.R.China
| |
Collapse
|
32
|
Lee S, Jang JH, Jang I, Choi D, Lee KS, Ahn D, Kang YS, Park HY, Yoo SJ. Development of robust Pt shell through organic hydride donor in PtCo@Pt core-shell electrocatalysts for highly stable proton exchange membrane fuel cells. J Catal 2019. [DOI: 10.1016/j.jcat.2019.09.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Cheaib K, Maurice B, Mateo T, Halime Z, Lassalle-Kaiser B. Time-resolved X-ray absorption spectroelectrochemistry of redox active species in solution. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1980-1985. [PMID: 31721743 DOI: 10.1107/s1600577519013614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Electrochemistry and electrocatalysis have been receiving increased attention recently due to their crucial contribution to electrical-to-chemical conversion systems. We describe here the development and operation of a new spectroelectrochemical transmission cell for time-resolved X-ray absorption spectroscopy of solutions. X-ray absorption spectra were recorded on the ROCK beamline of SOLEIL under constant and scanning potentials. Spectra were recorded at a frequency of 2 Hz during a cyclic voltammetry experiment performed on a 20 mM solution of FeIIICl3·6H2O at 20 mV s-1 scanning speed. Spectra with good signal-to-noise ratios were obtained when averaging ten spectra over 5 s, corresponding to a 100 mV potential range. A 90% conversion rate from Fe(III) to Fe(II) was spectroscopically demonstrated in cyclic voltammetry mode.
Collapse
Affiliation(s)
- Khaled Cheaib
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (UMR CNRS 8182), Université Paris-Sud, Batiment 420, Rue du Doyen G. Poitou, 91405 Orsay, France
| | - Baptiste Maurice
- Synchrotron SOLEIL, l'Orme des Merisiers, Saint-Aubin, 91191 Gif-sur-Yvette, France
| | - Tiphaine Mateo
- Synchrotron SOLEIL, l'Orme des Merisiers, Saint-Aubin, 91191 Gif-sur-Yvette, France
| | - Zakaria Halime
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (UMR CNRS 8182), Université Paris-Sud, Batiment 420, Rue du Doyen G. Poitou, 91405 Orsay, France
| | | |
Collapse
|
34
|
Meyer Q, Zeng Y, Zhao C. In Situ and Operando Characterization of Proton Exchange Membrane Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901900. [PMID: 31373051 DOI: 10.1002/adma.201901900] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/06/2019] [Indexed: 06/10/2023]
Abstract
For proton exchange membrane fuel cells (PEMFCs) to become a mainstream energy source, significant improvements in their performance, durability, and efficiency are necessary. To improve their durability, there must be a solid understanding of how the structural and electrochemical processes are affected during operation to propose mitigation strategies. To this aim, in situ and operando characterization techniques can locally identify structural and electrochemical processes, which cannot be captured using conventional techniques. Linking these properties in the same geometric area has been challenging due to its inherent limitations, such as sample size and imaging resolution. This has created a knowledge gap in structure-to-electrochemical performance relationships as operation and degradation unevenly affect different areas of the cell. In the recent past, catalyst layer degradation, hot spots, and water management have been structurally and electrochemically visualized in the same geometric area, revealing new interactions. To further the research in this direction, these interconnected fields are reviewed, followed by a roadmap for in situ characterization of PEMFCs, treating structural and electrochemical processes as a unified subject. With this approach, the knowledge of the degradation of PEMFCs will be significantly improved.
Collapse
Affiliation(s)
- Quentin Meyer
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Yachao Zeng
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
35
|
Fracchia M, Cristino V, Vertova A, Rondinini S, Caramori S, Ghigna P, Minguzzi A. Operando X-ray absorption spectroscopy of WO3 photoanodes. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134561] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
Yamamoto K, Imaoka T, Tanabe M, Kambe T. New Horizon of Nanoparticle and Cluster Catalysis with Dendrimers. Chem Rev 2019; 120:1397-1437. [DOI: 10.1021/acs.chemrev.9b00188] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Kimihisa Yamamoto
- Laboratory for Chemistry and Life Science (CLS), Institute of Innovative Research (IIR), Tokyo Institute of Technology, Yokohama 226-8503, Japan
- ERATO-JST Yamamoto Atom Hybrid Project, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Takane Imaoka
- Laboratory for Chemistry and Life Science (CLS), Institute of Innovative Research (IIR), Tokyo Institute of Technology, Yokohama 226-8503, Japan
- ERATO-JST Yamamoto Atom Hybrid Project, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- PRESTO-JST, Kawaguchi 332-0012, Japan
| | - Makoto Tanabe
- Laboratory for Chemistry and Life Science (CLS), Institute of Innovative Research (IIR), Tokyo Institute of Technology, Yokohama 226-8503, Japan
- ERATO-JST Yamamoto Atom Hybrid Project, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Tetsuya Kambe
- Laboratory for Chemistry and Life Science (CLS), Institute of Innovative Research (IIR), Tokyo Institute of Technology, Yokohama 226-8503, Japan
- ERATO-JST Yamamoto Atom Hybrid Project, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
37
|
Zhao Z, Chen C, Liu Z, Huang J, Wu M, Liu H, Li Y, Huang Y. Pt-Based Nanocrystal for Electrocatalytic Oxygen Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1808115. [PMID: 31183932 DOI: 10.1002/adma.201808115] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/12/2019] [Indexed: 06/09/2023]
Abstract
Currently, Pt-based electrocatalysts are adopted in the practical proton exchange membrane fuel cell (PEMFC), which converts the energy stored in hydrogen and oxygen into electrical power. However, the broad implementation of the PEMFC, like replacing the internal combustion engine in the present automobile fleet, sets a requirement for less Pt loading compared to current devices. In principle, the requirement needs the Pt-based catalyst to be more active and stable. Two main strategies, engineering of the electronic (d-band) structure (including controlling surface facet, tuning surface composition, and engineering surface strain) and optimizing the reactant adsorption sites are discussed and categorized based on the fundamental working principle. In addition, general routes for improving the electrochemical surface area, which improves activity normalized by the unit mass of precious group metal/platinum group metal, and stability of the electrocatalyst are also discussed. Furthermore, the recent progress of full fuel cell tests of novel electrocatalysts is summarized. It is suggested that a better understanding of the reactant/intermediate adsorption, electron transfer, and desorption occurring at the electrolyte-electrode interface is necessary to fully comprehend these electrified surface reactions, and standardized membrane electrode assembly (MEA) testing protocols should be practiced, and data with full parameters detailed, for reliable evaluation of catalyst functions in devices.
Collapse
Affiliation(s)
- Zipeng Zhao
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Changli Chen
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zeyan Liu
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Jin Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Menghao Wu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Haotian Liu
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Yujing Li
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, 90095, USA
- California Nanosystems Institute, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
38
|
In situ X-ray absorption spectroscopy of Sn species adsorbed on platinized platinum electrode in perchloric acid solution containing stannous ions. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04326-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Dixon D, Ávila M, Ehrenberg H, Bhaskar A. Difference in Electrochemical Mechanism of SnO 2 Conversion in Lithium-Ion and Sodium-Ion Batteries: Combined in Operando and Ex Situ XAS Investigations. ACS OMEGA 2019; 4:9731-9738. [PMID: 31460063 PMCID: PMC6648868 DOI: 10.1021/acsomega.9b00563] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/10/2019] [Indexed: 05/18/2023]
Abstract
Conversion and alloying type negative electrodes attracted huge attention in the present research on lithium/sodium-ion batteries (LIBs/SIBs) due to the high capacity delivered. Among these, SnO2 is investigated intensively in LIBs due to high cyclability, low reaction potential, cost-effectiveness, and environmental friendliness. Most of the LIB electrodes are explored in SIBs too due to expected similar electrochemical performance. Though several LIB negative electrode materials successfully worked in SIBs, bare SnO2 shows very poor electrochemical performance in SIB. The reason for this difference is investigated here through combined in operando and ex situ X-ray absorption spectroscopy (XAS). For this, the electrodes of SnO2 (space group P42/mnm synthesized via one-pot hydrothermal method) were cycled in Na-ion and Li-ion half-cells. The Na/SnO2 half-cell delivered a much lower discharge capacity than the Li/SnO2 half-cell. In addition, higher irreversibility was observed for Na/SnO2 half-cell during electrochemical investigations compared to that for Li/SnO2 half-cell. In operando XAS investigations on the Na/SnO2 half-cell confirms incomplete conversion and alloying reactions in the Na/SnO2 half-cell, resulting in poor electrochemical performance. The difference in the lithiation and sodiation mechanisms of SnO2 is discussed in detail.
Collapse
Affiliation(s)
- Ditty Dixon
- Karlsruhe
Institute of Technology (KIT), Institute for Applied Materials (IAM), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
- E-mail: (D.D.)
| | - Marta Ávila
- ALBA
Synchrotron, Carrer de
la Llum, 2-26, Cerdanyola del Vallés, 08290 Barcelona, Spain
| | - Helmut Ehrenberg
- Karlsruhe
Institute of Technology (KIT), Institute for Applied Materials (IAM), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Aiswarya Bhaskar
- Karlsruhe
Institute of Technology (KIT), Institute for Applied Materials (IAM), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
- Helmholtz
Institute Ulm for Electrochemical Energy Storage (HIU), Albert-Einstein Allee 11, D-89081 Ulm, Germany
- E-mail: (A.B.)
| |
Collapse
|
40
|
Jiang M, Li J, Li J, Zhao Y, Pan L, Cao Q, Wang D, Du Y. Two-dimensional bimetallic phosphide ultrathin nanosheets as non-noble electrocatalysts for a highly efficient oxygen evolution reaction. NANOSCALE 2019; 11:9654-9660. [PMID: 31065631 DOI: 10.1039/c8nr10521a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Highly efficient non-noble metal oxygen evolution reaction (OER) catalysts are urgently needed for the practical application of electrochemical energy technology. Herein, we report two-dimensional (2D) bimetallic phosphide (Co1-xFexP) ultrathin nanosheets as new OER catalysts. The two-dimensional (2D) morphology of the nanosheets and the synergistic effect between different transition-metal elements made contributions to the OER catalysis. By optimizing the doping ratio of the Fe atoms, the Co0.8Fe0.2P nanosheets showed the best OER performance with a small overpotential of 270 mV versus a rotating hydrogen electrode at a current density of 10 mA cm-2 and low Tafel slope of 50 mV dec-1 in an alkaline electrolyte. Moderate iron doping improved the degree of oxidation at the surface of CoP nanosheets and preserved the conductive and chemically stabilizing host, thereby enhancing the OER activity. Our findings could aid the rational design of novel non-layered 2D nanomaterial OER catalysts.
Collapse
Affiliation(s)
- Min Jiang
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, China.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Chen P, Jung IW, Walko DA, Li Z, Gao Y, Shenoy GK, López D, Wang J. Ultrafast photonic micro-systems to manipulate hard X-rays at 300 picoseconds. Nat Commun 2019; 10:1158. [PMID: 30858369 PMCID: PMC6411987 DOI: 10.1038/s41467-019-09077-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 02/20/2019] [Indexed: 11/09/2022] Open
Abstract
Time-resolved and ultrafast hard X-ray imaging, scattering and spectroscopy are powerful tools for elucidating the temporal and spatial evolution of complexity in materials. However, their temporal resolution has been limited by the storage-ring timing patterns and X-ray pulse width at synchrotron sources. Here we demonstrate that dynamic X-ray optics based on micro-electro-mechanical-system resonators can manipulate hard X-ray pulses on time scales down to 300 ps, comparable to the X-ray pulse width from typical synchrotron sources. This is achieved by timing the resonators with the storage ring to diffract X-ray pulses through the narrow Bragg peak of the single-crystalline material. Angular velocities exceeding 107 degrees s−1 are reached while maintaining the maximum linear velocity well below the sonic speed and material breakdown limit. As the time scale of the devices shortens, the devices promise to spatially disperse the temporal width of X-rays, thus generating a temporal resolution below the pulse-width limit. It is desirable to improve spatiotemporal control of light generated by synchrotron user facilities or table-top X-ray sources. Here the authors demonstrate manipulation of hard X-rays using microelectro mechanical systems (MEMS) oscillators on timescales of 300 ps, approaching the synchrotron pulse width.
Collapse
Affiliation(s)
- Pice Chen
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, 60439, IL, USA
| | - Il Woong Jung
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, 60439, IL, USA
| | - Donald A Walko
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, 60439, IL, USA
| | - Zhilong Li
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, 60439, IL, USA
| | - Ya Gao
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, 60439, IL, USA
| | - Gopal K Shenoy
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, 60439, IL, USA
| | - Daniel López
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, 60439, IL, USA
| | - Jin Wang
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, 60439, IL, USA.
| |
Collapse
|
42
|
Abstract
This minireview aims at providing a complete survey concerning the use of X-ray absorption spectroscopy (XAS) for time-resolved studies of electrochemical and photoelectrochemical phenomena. We will see that time resolution can range from the femto-picosecond to the second (or more) scale and that this joins the valuable throughput typical of XAS, which allows for determining the oxidation state of the investigated element, together with its local structure. We will analyze four different techniques that use different approaches to exploit the in real time capabilities of XAS. These are quick-XAS, energy dispersive XAS, pump & probe XAS and fixed-energy X-ray absorption voltammetry. In the conclusions, we will analyze possible future perspectives for these techniques.
Collapse
|
43
|
Kakitani K, Kimata T, Yamaki T, Yamamoto S, Matsumura D, Taguchi T, Terai T. X-ray absorption study of platinum nanoparticles on an ion-irradiated carbon support. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2018.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Jiang M, Li J, Cai X, Zhao Y, Pan L, Cao Q, Wang D, Du Y. Ultrafine bimetallic phosphide nanoparticles embedded in carbon nanosheets: two-dimensional metal-organic framework-derived non-noble electrocatalysts for the highly efficient oxygen evolution reaction. NANOSCALE 2018; 10:19774-19780. [PMID: 30328456 DOI: 10.1039/c8nr05659e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of noble-metal-free highly efficient oxygen evolution reaction (OER) catalysts is crucial for electrochemical energy technology but still challenging. Herein, ultrafine cobalt-iron bimetallic phosphide nanoparticles embedded in carbon nanosheets are synthesized using two-dimensional (2D) metal-organic frameworks (MOFs) as the precursor. The 2D morphology of the carbon matrix and the ultrafine character of Co1-xFexP nanoparticles make contributions to OER catalysis. By optimizing the molar ratio of Co/Fe atoms in MOFs, a series of Co1-xFexP/C catalysts are prepared. Among them, Co0.7Fe0.3P/C shows the best OER performance with an overpotential of 270 mV at a current density of 10 mA cm-2 and an ultralow Tafel slope of 27 mV dec-1 in an alkaline electrolyte. Moderate iron doping preserves the catalytically active sites and improves the ability to be oxidized of the surface of Co1-xFexP nanoparticles, and thus enhances the OER activity. Our finding paves the way to the rational design of the morphology and chemical composition of OER catalysts.
Collapse
Affiliation(s)
- Min Jiang
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, China.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Filez M, Poelman H, Redekop EA, Galvita VV, Alexopoulos K, Meledina M, Ramachandran RK, Dendooven J, Detavernier C, Van Tendeloo G, Safonova OV, Nachtegaal M, Weckhuysen BM, Marin GB. Kinetics of Lifetime Changes in Bimetallic Nanocatalysts Revealed by Quick X-ray Absorption Spectroscopy. Angew Chem Int Ed Engl 2018; 57:12430-12434. [PMID: 30067303 PMCID: PMC6175175 DOI: 10.1002/anie.201806447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/12/2018] [Indexed: 11/09/2022]
Abstract
Alloyed metal nanocatalysts are of environmental and economic importance in a plethora of chemical technologies. During the catalyst lifetime, supported alloy nanoparticles undergo dynamic changes which are well-recognized but still poorly understood. High-temperature O2 -H2 redox cycling was applied to mimic the lifetime changes in model Pt13 In9 nanocatalysts, while monitoring the induced changes by in situ quick X-ray absorption spectroscopy with one-second resolution. The different reaction steps involved in repeated Pt13 In9 segregation-alloying are identified and kinetically characterized at the single-cycle level. Over longer time scales, sintering phenomena are substantiated and the intraparticle structure is revealed throughout the catalyst lifetime. The in situ time-resolved observation of the dynamic habits of alloyed nanoparticles and their kinetic description can impact catalysis and other fields involving (bi)metallic nanoalloys.
Collapse
Affiliation(s)
- Matthias Filez
- Laboratory for Chemical Technology, Ghent University, Technologiepark 914, 9052, Ghent, Belgium.,Current address: Inorganic Chemistry and Catalysis group, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Hilde Poelman
- Laboratory for Chemical Technology, Ghent University, Technologiepark 914, 9052, Ghent, Belgium
| | - Evgeniy A Redekop
- Laboratory for Chemical Technology, Ghent University, Technologiepark 914, 9052, Ghent, Belgium.,Current address: Centre for Materials Science and Nanotechnology, University of Oslo, P.O box 1126 Blindern, 0318, Oslo, Norway
| | - Vladimir V Galvita
- Laboratory for Chemical Technology, Ghent University, Technologiepark 914, 9052, Ghent, Belgium
| | - Konstantinos Alexopoulos
- Laboratory for Chemical Technology, Ghent University, Technologiepark 914, 9052, Ghent, Belgium.,Current address: Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Maria Meledina
- Electron microscopy for materials science, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.,Current address: Central Facility for Electron Microscopy, RWTH Aachen, Ahornstraße 55, 52074, Aachen, Germany
| | - Ranjith K Ramachandran
- Conformal Coatings of Nanomaterials group, Ghent University, Krijgslaan 281/S1, 9000, Ghent, Belgium
| | - Jolien Dendooven
- Conformal Coatings of Nanomaterials group, Ghent University, Krijgslaan 281/S1, 9000, Ghent, Belgium
| | - Christophe Detavernier
- Conformal Coatings of Nanomaterials group, Ghent University, Krijgslaan 281/S1, 9000, Ghent, Belgium
| | - Gustaaf Van Tendeloo
- Electron microscopy for materials science, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | | | | | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis group, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Guy B Marin
- Laboratory for Chemical Technology, Ghent University, Technologiepark 914, 9052, Ghent, Belgium
| |
Collapse
|
46
|
Filez M, Poelman H, Redekop EA, Galvita VV, Alexopoulos K, Meledina M, Ramachandran RK, Dendooven J, Detavernier C, Van Tendeloo G, Safonova OV, Nachtegaal M, Weckhuysen BM, Marin GB. Kinetics of Lifetime Changes in Bimetallic Nanocatalysts Revealed by Quick X-ray Absorption Spectroscopy. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Matthias Filez
- Laboratory for Chemical Technology; Ghent University; Technologiepark 914 9052 Ghent Belgium
- Current address: Inorganic Chemistry and Catalysis group; Utrecht University; Universiteitsweg 99 3584CG Utrecht The Netherlands
| | - Hilde Poelman
- Laboratory for Chemical Technology; Ghent University; Technologiepark 914 9052 Ghent Belgium
| | - Evgeniy A. Redekop
- Laboratory for Chemical Technology; Ghent University; Technologiepark 914 9052 Ghent Belgium
- Current address: Centre for Materials Science and Nanotechnology; University of Oslo; P.O box 1126 Blindern 0318 Oslo Norway
| | - Vladimir V. Galvita
- Laboratory for Chemical Technology; Ghent University; Technologiepark 914 9052 Ghent Belgium
| | - Konstantinos Alexopoulos
- Laboratory for Chemical Technology; Ghent University; Technologiepark 914 9052 Ghent Belgium
- Current address: Department of Chemical & Biomolecular Engineering; University of Delaware; Newark DE 19716 USA
| | - Maria Meledina
- Electron microscopy for materials science; University of Antwerp; Groenenborgerlaan 171 2020 Antwerp Belgium
- Current address: Central Facility for Electron Microscopy; RWTH Aachen; Ahornstraße 55 52074 Aachen Germany
| | - Ranjith K. Ramachandran
- Conformal Coatings of Nanomaterials group; Ghent University; Krijgslaan 281/S1 9000 Ghent Belgium
| | - Jolien Dendooven
- Conformal Coatings of Nanomaterials group; Ghent University; Krijgslaan 281/S1 9000 Ghent Belgium
| | - Christophe Detavernier
- Conformal Coatings of Nanomaterials group; Ghent University; Krijgslaan 281/S1 9000 Ghent Belgium
| | - Gustaaf Van Tendeloo
- Electron microscopy for materials science; University of Antwerp; Groenenborgerlaan 171 2020 Antwerp Belgium
| | | | | | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis group; Utrecht University; Universiteitsweg 99 3584CG Utrecht The Netherlands
| | - Guy B. Marin
- Laboratory for Chemical Technology; Ghent University; Technologiepark 914 9052 Ghent Belgium
| |
Collapse
|
47
|
Ding M, Zhong G, Zhao Z, Huang Z, Li M, Shiu HY, Liu Y, Shakir I, Huang Y, Duan X. On-Chip in Situ Monitoring of Competitive Interfacial Anionic Chemisorption as a Descriptor for Oxygen Reduction Kinetics. ACS CENTRAL SCIENCE 2018; 4:590-599. [PMID: 29806005 PMCID: PMC5968516 DOI: 10.1021/acscentsci.8b00082] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Indexed: 05/05/2023]
Abstract
The development of future sustainable energy technologies relies critically on our understanding of electrocatalytic reactions occurring at the electrode-electrolyte interfaces, and the identification of key reaction promoters and inhibitors. Here we present a systematic in situ nanoelectronic measurement of anionic surface adsorptions (sulfates, halides, and cyanides) on ultrathin platinum nanowires during active electrochemical processes, probing their competitive adsorption behavior with oxygenated species and correlating them to the electrokinetics of the oxygen reduction reaction (ORR). The competitive anionic adsorption features obtained from our studies provide fundamental insight into the surface poisoning of Pt-catalyzed ORR kinetics by various anionic species. Particularly, the unique nanoelectronic approach enables highly sensitive characterization of anionic adsorption and opens an efficient pathway to address the practical poisoning issue (at trace level contaminations) from a fundamental perspective. Through the identified nanoelectronic indicators, we further demonstrate that rationally designed competitive anionic adsorption may provide improved poisoning resistance, leading to performance (activity and lifetime) enhancement of energy conversion devices.
Collapse
Affiliation(s)
- Mengning Ding
- Department of Materials Science and Engineering, Department of Chemistry and Biochemistry, and California Nanosystems
Institute, University of California, Los Angeles, California 90095, United States
| | - Guangyan Zhong
- Department of Materials Science and Engineering, Department of Chemistry and Biochemistry, and California Nanosystems
Institute, University of California, Los Angeles, California 90095, United States
| | - Zipeng Zhao
- Department of Materials Science and Engineering, Department of Chemistry and Biochemistry, and California Nanosystems
Institute, University of California, Los Angeles, California 90095, United States
| | - Zhihong Huang
- Department of Materials Science and Engineering, Department of Chemistry and Biochemistry, and California Nanosystems
Institute, University of California, Los Angeles, California 90095, United States
| | - Mufan Li
- Department of Materials Science and Engineering, Department of Chemistry and Biochemistry, and California Nanosystems
Institute, University of California, Los Angeles, California 90095, United States
| | - Hui-Ying Shiu
- Department of Materials Science and Engineering, Department of Chemistry and Biochemistry, and California Nanosystems
Institute, University of California, Los Angeles, California 90095, United States
| | - Yuan Liu
- Department of Materials Science and Engineering, Department of Chemistry and Biochemistry, and California Nanosystems
Institute, University of California, Los Angeles, California 90095, United States
| | - Imran Shakir
- Sustainable
Energy Technologies Centre, College of Engineering, King Saud University, Riyadh 11421, Kingdom of Saudi Arabia
| | - Yu Huang
- Department of Materials Science and Engineering, Department of Chemistry and Biochemistry, and California Nanosystems
Institute, University of California, Los Angeles, California 90095, United States
- (Y.H.) E-mail:
| | - Xiangfeng Duan
- Department of Materials Science and Engineering, Department of Chemistry and Biochemistry, and California Nanosystems
Institute, University of California, Los Angeles, California 90095, United States
- (X.D.) E-mail:
| |
Collapse
|
48
|
Structural Kinetics of Cathode Events on Polymer Electrolyte Fuel Cell Catalysts Studied by Operando Time-Resolved XAFS. Catal Letters 2018. [DOI: 10.1007/s10562-018-2383-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
49
|
Wise AM, Richardson PW, Price SW, Chouchelamane G, Calvillo L, Hendra PJ, Toney MF, Russell AE. Inhibitive effect of Pt on Pd-hydride formation of Pd@Pt core-shell electrocatalysts: An in situ EXAFS and XRD study. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.12.161] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Gründer Y, Lucas CA. Probing the charge distribution at the electrochemical interface. Phys Chem Chem Phys 2018; 19:8416-8422. [PMID: 28286888 DOI: 10.1039/c7cp00244k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The electrode/electrolyte interface is central to many electrochemical systems; however, gaining insight into the electronic structure at the interface is challenging. Due to its buried nature it is difficult to employ traditional techniques that provide spectroscopic information of localised atoms. To gain new insight into the charge distribution at the interface, we used resonant surface X-ray diffraction to select atoms at the interface via the diffraction conditions and obtained spectroscopic information simultaneously. Coupling the polarisation of the incident X-ray beam with the electron density at the interface allows direct probing of the charge transfer between the metal electrode and the adsorbing species in the electrolyte solution. Results for the adsorption of halide anions onto Cu and Au single crystal electrode surfaces reveal that there is significant modification of the charge distribution of both the surface and sub-surface atomic metal adlayers in the case of ionic bond formation. This has potential impact both in developing a theoretical understanding of the interface structure and in designing new materials for electrochemical applications.
Collapse
Affiliation(s)
- Yvonne Gründer
- Oliver Lodge Laboratory, Department of Physics, University of Liverpool, Liverpool, L69 7ZE, UK.
| | - Christopher A Lucas
- Oliver Lodge Laboratory, Department of Physics, University of Liverpool, Liverpool, L69 7ZE, UK.
| |
Collapse
|