1
|
Ando K, Yokoyama Y, Miyairi Y, Sakai O, Hamatsu T, Yamashita Y, Chimura M, Nagata T. Otolith radiocarbon signatures provide distinct migration history of walleye pollock around Hokkaido, Japan in the North-Western Pacific. Ecol Evol 2024; 14:e11288. [PMID: 38952647 PMCID: PMC11214435 DOI: 10.1002/ece3.11288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 07/03/2024] Open
Abstract
Trace elements and stable isotope ratios in otoliths have been used as proxies for the migration history of teleosts; however, their application in oceanic fishes remains limited. This study reports the first use of radiocarbons in otoliths to evaluate the horizontal migration histories of an oceanic fish species, the walleye pollock Gadus chalcogrammus. We conducted radiocarbon analyses of three stocks sourced from Hokkaido, Japan. The radiocarbon concentrations from the outermost portion of the otoliths from the Japanese Pacific, Northern Japan Sea (JS), and Southern Okhotsk Sea (OS) stocks were in general agreement with the seawater radiocarbon concentration of the sampling region, suggesting that pollock of all three stocks generally inhabited the within the sea region where each pollocks were sampled throughout their life cycle. However, the radiocarbon signals also provided some indications that some JS and OS stocks may be migrating between different sea regions. The proposed novel approach of reconstructing the individual migration history of marine fish using radiocarbon in otoliths may help examine fish migration with a higher temporal and spatial resolution that could not be achieved by trace elements and stable isotope ratios.
Collapse
Affiliation(s)
- Kozue Ando
- Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaJapan
- Department of Earth and Planetary ScienceThe University of TokyoHongoJapan
| | - Yusuke Yokoyama
- Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaJapan
- Department of Earth and Planetary ScienceThe University of TokyoHongoJapan
- Graduate Program on Environmental SciencesThe University of TokyoKomabaJapan
- Department of BiogeochemistryJapan Agency for Marine‐Earth Science and TechnologyYokosukaJapan
- Research School of PhysicsThe Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Yosuke Miyairi
- Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaJapan
| | - Osamu Sakai
- Fisheries Resources Institute (Kushiro)Japan Fisheries Research and Education AgencyKushiroJapan
| | - Tomonori Hamatsu
- Fisheries Resources Institute (Kushiro)Japan Fisheries Research and Education AgencyKushiroJapan
| | - Yuuho Yamashita
- Fisheries Resources Institute (Yokohama)Japan Fisheries Research and Education AgencyYokohamaJapan
| | - Masayuki Chimura
- Fisheries Resources Institute (Kushiro)Japan Fisheries Research and Education AgencyKushiroJapan
| | - Toshi Nagata
- Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaJapan
| |
Collapse
|
2
|
Fu Y, Zhang R, Rong S, Wu Y, Wu Y, Ya M. A methodological review of compound-specific radiocarbon analysis for polycyclic aromatic hydrocarbons in environmental matrices. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:124050. [PMID: 38677454 DOI: 10.1016/j.envpol.2024.124050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Identifying the sources of polycyclic aromatic hydrocarbons (PAHs) in complex environmental matrices is essential for understanding the impact of combustion-related human activities on the environment. Since the turn of the century, advances in analytical capability and accuracy of accelerator mass spectrometry (AMS) have made it possible to accurately determine the source apportionment of PAHs based on their radiocarbon (14C) mass conservation. This also allows us to trace the environmental transport processes of PAHs from the perspective of molecular 14C. However, natural environmental matrices have very low concentrations of PAHs (ppb to ppm level). To meet the requirements of carbon weight for 14C measurement by AMS, trace PAHs in complex environmental matrices must be enriched thousands of times, and then higher purity individual PAH molecules should be obtained through a series of complex purification procedures. Therefore, the technical difficulty is the main challenge in expanding the application of compound-specific 14C analysis in environmental science. This article reviews the detailed pretreatment procedures for 14C measurement of specific PAHs, including sample enrichment, extraction and purification of aromatic components, preparation of compound-specific PAHs by preparative capillary gas chromatography, graphitization of samples with ultra-small carbon content, and relevant quality control and assurance procedures. This study aims to help environmental geoscientists understand the technical process of 14C analysis of PAHs and inspire new scientific questions related to environmental science. To our knowledge, this is the first comprehensive review of the technical method of compound-specific 14C analysis for PAHs.
Collapse
Affiliation(s)
- Yu Fu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Rui Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Shaopeng Rong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Yuling Wu
- School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Ying Wu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Miaolei Ya
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China.
| |
Collapse
|
3
|
Che Y, Lin C, Li S, Liu J, Zhu L, Yu S, Wang N, Li H, Bao M, Zhou Y, Si T, Bao R. Influences of hydrodynamics on microbial community assembly and organic carbon composition of resuspended sediments in shallow marginal seas. WATER RESEARCH 2024; 248:120882. [PMID: 38006834 DOI: 10.1016/j.watres.2023.120882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/25/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
Hydrodynamic processes play a crucial role in driving the transmission of sediments, likely harboring diverse microbes and heterogeneous organic carbon (OC) in the ocean. Here we conducted continuous micro-erosion experiments on surface sediments retrieved from shallow marginal seas, and analyzed the microbial community structures, OC content, and isotope compositions (δ13C and Δ14C) of resuspended sediments to investigate the effects of hydrodynamics on microbial assembly and OC composition in marginal seas. Our results showed that gene abundance and major microbial compositions in resuspended sediments changed with varying benthic shear stresses, which evolved towards diversification after continuous hydrodynamic erosion. Aerobic bacteria were more likely to be eroded out from sediments under lower shear stresses compared with anaerobic bacteria. Our study provides evidence that hydrodynamic disturbances shape the assembly of microbial communities with different metabolic functions, especially for bacteria, which may spatially influence the microbial-mediated biogeochemical transformation in marginal seas. Isotopic results revealed that more terrestrial OC was resuspended under initial erosion, while more marine OC was eroded out with increasing shear stresses, suggesting that hydrodynamics may control the redistribution of different sourced OC and contribute to the dispersion and degradation of terrestrial OC during transport process. Our findings further suggest that the nature of resuspended OC may influence the assembly of sediment-attached microbes due to their metabolic preference for carbon sources, as evidenced by correlations between OC compositions and microbial diversity and abundance. We thus suggest that hydrodynamic disturbance is an extrinsic physical driver of OC redistribution and microbial reassembly, whereas OC may be an intrinsic factor influencing microbial colonization, helping to interpret the spatial heterogeneity of microbes and OC compositions observed in marginal sea sediments. Our study underscores the significant roles of hydrodynamic-driven sediment resuspension in shaping diverse microbial communities and redistributing OC in aquatic systems, and highlights the importance of this process in biogeochemical cycles and ecological environment evolution in shallow marginal sea systems.
Collapse
Affiliation(s)
- Yangli Che
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Chaoran Lin
- College of Marine Geosciences, Ocean University of China, Qingdao, China
| | - Shen Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jiao Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Longhai Zhu
- College of Marine Geosciences, Ocean University of China, Qingdao, China
| | - Shilei Yu
- College of Marine Geosciences, Ocean University of China, Qingdao, China
| | - Nan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Submarine Geosciences and Prospecting Techniques, Ministry of Education and College of Marine Geosciences, Ocean University of China, Qingdao, China
| | - Haoshuai Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yang Zhou
- Guangzhou Marine Geological Survey, Guangzhou, China
| | - Tonghao Si
- College of Marine Geosciences, Ocean University of China, Qingdao, China
| | - Rui Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China.
| |
Collapse
|
4
|
Ma J, Li X, Song J, Wen L, Liang X, Xu K, Dai J. Distribution patterns of six metals and their influencing factors in M4 seamount seawater of the Western Pacific. MARINE POLLUTION BULLETIN 2023; 196:115664. [PMID: 37862843 DOI: 10.1016/j.marpolbul.2023.115664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
Metals are crucial to the stability of marine ecosystems, and it is important to analyze their spatial heterogeneity. This study examined the distribution and influencing factors of six metals such as manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu) and cadmium (Cd) in M4 seamount of the Western Pacific. The results showed that the factors affecting the distribution of metals are complex. The concentration ranges of Mn, Fe, Co, Ni, Cu, and Cd in the M4 seamount were 0-0.05, 0-0.44, 0-0.0014, 0-0.082, 0.12-0.16, and 0-0.013 μg/L, respectively, roughly equivalent to those of other open seas, however, there were also some differences. Specifically, the distribution of ferromanganese nodules and Co-rich crusts, resulted in a significant increase in the concentration of metals such as Mn, Fe, and Co in the bottom. This study will significantly contribute to our understanding of the spatial heterogeneity of metals in seamount areas.
Collapse
Affiliation(s)
- Jun Ma
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Xuegang Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jinming Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Lilian Wen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xianmeng Liang
- Joint Laboratory of Ocean Observation and Exploration, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Kuidong Xu
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jiajia Dai
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
5
|
Wu W, Li H, Wang N, Huo X, Zhong G, Zhu L, Liu J, Zhou Y, Yan C, Bao R. An approach for carbon content measurement in marine sediment: Application of organic and elemental carbon analyzer. MARINE ENVIRONMENTAL RESEARCH 2023; 188:106000. [PMID: 37121173 DOI: 10.1016/j.marenvres.2023.106000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 06/11/2023]
Abstract
Organic and Elemental Carbon (OEC) is widely applied in the atmospheric sciences for determining carbon content and distinguishing black carbon contents of aerosols, with an advantage that OEC-based approach can provide thermograms derived from carbonaceous material. It is potential to adopt the advantage to measure the content and composition of organic carbon (OC)% in marine sediments. Here, we utilized the OEC analyzer to measure the OC% in marine sediment based on the pyrolytic oxidation principle, and obtain the OC-derived carbon dioxide (CO2) thermograms. We examined marine sediments and reference materials to understand the stability and reproducibility of OC% measurements using our approach. The findings indicate that the OC% results (ranging from 1.44 to 1.59%, ave. 1.55 ± 0.03%, n = 64) based on this approach are accurate. In addition, CO2 concentration thermograms obtained by repeated measurements exhibit a strong reproducibility. Our approach can thus provide the concentrations of thermally-evolved CO2 with increasing heating temperature to deeply understand the reactivities of OC and the compositions in sediments. We suggest that the OEC-based OC% measurement is credible when samples preparation is well-performed (e.g., suitable sample mass and uniformly distributed loading). To sum up, we provide a means to accurately determine the OC% in marine sediments in terms of the ramped-pyrolysis principle.
Collapse
Affiliation(s)
- Weifeng Wu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Studies, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266100, China
| | - Haoshuai Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Studies, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266100, China
| | - Nan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Submarine Geosciences and Prospecting Techniques, College of Marine Geosciences, Ocean University of China, Qingdao, 266100, China
| | - Xuan Huo
- Laboratory of Intelligent Data Analysis and Systems (IDAS), Institute of Artificial Intelligence and College of Computer Science and Technology, Ocean University of China, Qingdao, 266100, China
| | - Guoqiang Zhong
- Laboratory of Intelligent Data Analysis and Systems (IDAS), Institute of Artificial Intelligence and College of Computer Science and Technology, Ocean University of China, Qingdao, 266100, China
| | - Longhai Zhu
- Key Lab of Submarine Geosciences and Prospecting Techniques, College of Marine Geosciences, Ocean University of China, Qingdao, 266100, China
| | - Jingyu Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Studies, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266100, China
| | - Yang Zhou
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458, China
| | - Caiqing Yan
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Rui Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Studies, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266100, China.
| |
Collapse
|
6
|
Zhao S, Mincer TJ, Lebreton L, Egger M. Pelagic microplastics in the North Pacific Subtropical Gyre: A prevalent anthropogenic component of the particulate organic carbon pool. PNAS NEXUS 2023; 2:pgad070. [PMID: 37007708 PMCID: PMC10062330 DOI: 10.1093/pnasnexus/pgad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/08/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023]
Abstract
AbstractDue to its ever-increasing ocean inputs, fossil-based microplastics (MP) comprise a considerable constituent in the particulate organic carbon (POC) pool, which is instrumental in ocean biogeochemical cycling. Their distribution within the oceanic water column and the underpinning processes, however, remain unclear. Here we show that MP prevail throughout the water column of the eastern North Pacific Subtropical Gyre, comprising 334 #/m3 (84.5% of plastic particles <100 µm), with exponential relationships between concentrations and water depth in the upper 500-m layer and marked accumulation below this layer. Our results suggest that the biological carbon pump (BCP) strongly contributes to the water column MP redistribution in terms of polymer type, material density and particle size, which in turn could influence the efficiency of organic matter export to the deep sea. We further show that 14C-depleted plastic particles predictably are an emerging nonneglectable perturbation to radiocarbon signatures in the deep ocean through depletion of the 14C/C ratio in the POC pool. Our data provide insight into vertical MP flux and highlight the potential role of MP in alternating the marine particulate pool and interactions with the BCP.
Collapse
Affiliation(s)
- Shiye Zhao
- To whom correspondence should be addressed: ;
| | | | - Laurent Lebreton
- The Ocean Cleanup, Rotterdam 3014 JH, The Netherlands
- The Modelling House, Raglan 3297, New Zealand
| | | |
Collapse
|
7
|
Crocker DR, Kaluarachchi CP, Cao R, Dinasquet J, Franklin EB, Morris CK, Amiri S, Petras D, Nguyen T, Torres RR, Martz TR, Malfatti F, Goldstein AH, Tivanski AV, Prather KA, Thiemens MH. Isotopic Insights into Organic Composition Differences between Supermicron and Submicron Sea Spray Aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9947-9958. [PMID: 35763461 DOI: 10.1021/acs.est.2c02154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To elucidate the seawater biological and physicochemical factors driving differences in organic composition between supermicron and submicron sea spray aerosol (SSAsuper and SSAsub), carbon isotopic composition (δ13C) measurements were performed on size-segregated, nascent SSA collected during a phytoplankton bloom mesocosm experiment. The δ13C measurements indicate that SSAsuper contains a mixture of particulate and dissolved organic material in the bulk seawater. After phytoplankton growth, a greater amount of freshly produced carbon was observed in SSAsuper with the proportional contribution being modulated by bacterial activity, emphasizing the importance of the microbial loop in controlling the organic composition of SSAsuper. Conversely, SSAsub exhibited no apparent relationship with biological activity but tracked closely with surface tension measurements probing the topmost ∼0.2-1.5 μm of the sea surface microlayer. This probing depth is similar to a bubble's film thickness at the ocean surface, suggesting that SSAsub organic composition may be influenced by the presence of surfactants at the air-sea interface that are transferred into SSAsub by bubble bursting. Our findings illustrate the substantial impact of seawater dynamics on the pronounced organic compositional differences between SSAsuper and SSAsub and demonstrate that these two SSA populations should be considered separately when assessing their contribution to marine aerosols and climate.
Collapse
Affiliation(s)
- Daniel R Crocker
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | | | - Ruochen Cao
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Julie Dinasquet
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92037, United States
| | - Emily B Franklin
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Clare K Morris
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92037, United States
| | - Sarah Amiri
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92037, United States
| | - Daniel Petras
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92037, United States
| | - Tran Nguyen
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92037, United States
| | - Ralph R Torres
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92037, United States
| | - Todd R Martz
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92037, United States
| | - Francesca Malfatti
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92037, United States
- University of Trieste, Trieste 34100, Italy
- OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale), Trieste 34100, Italy
| | - Allen H Goldstein
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, United States
| | - Alexei V Tivanski
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Kimberly A Prather
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92037, United States
| | - Mark H Thiemens
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
8
|
Gonsior M, Powers L, Lahm M, McCallister SL. New Perspectives on the Marine Carbon Cycle-The Marine Dissolved Organic Matter Reactivity Continuum. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5371-5380. [PMID: 35442650 PMCID: PMC9069685 DOI: 10.1021/acs.est.1c08871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 05/08/2023]
Abstract
This perspective challenges our current understanding of the marine carbon cycle, including an alternative explanation of bulk 14C-DOM measurements. We propose the adoption of the carbon reactivity continuum concept previously established for lakes and sediments for the oceans using kinetic data and term this the marine DOM reactivity continuum. We need to gain a fundamental understanding of the biogeochemical drivers of surface water DOM concentrations and reactivity, biological carbon pump efficiency, and the autotrophic communities that are the ultimate but variable sources of marine DOM. This perspective is intended to shift our focus to a more inclusive kinetic model and may lead us to a more accurate assessment of the active and dynamic role marine DOM plays in the global carbon cycle. Currently, the kinetic data to establish and validate such a marine DOM reactivity continuum model are still lacking, and their resolution depends on the discovery of new organic tracers that span large differences in reactivity and microbial degradation rates. We may need to refocus our efforts in deciphering the structure and reactivity of marine organic molecules in a kinetic context, including the microbial and physicochemical constraints on molecular reactivity that are present in the deep ocean.
Collapse
Affiliation(s)
- Michael Gonsior
- Chesapeake
Biological Laboratory, University of Maryland
Center for Environmental Science, 146 Williams Street, Solomons, Maryland 20688, United
States
| | - Leanne Powers
- Chesapeake
Biological Laboratory, University of Maryland
Center for Environmental Science, 146 Williams Street, Solomons, Maryland 20688, United
States
| | - Madeline Lahm
- Chesapeake
Biological Laboratory, University of Maryland
Center for Environmental Science, 146 Williams Street, Solomons, Maryland 20688, United
States
| | - Shannon Leigh McCallister
- Biology
Department, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
9
|
Zhang X. Marine refractory dissolved organic carbon and transgressive black shales. CHINESE SCIENCE BULLETIN-CHINESE 2021. [DOI: 10.1360/tb-2021-0613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Chen S, Zhong J, Li S, Ran L, Wang W, Xu S, Yan Z, Xu S. Multiple controls on carbon dynamics in mixed karst and non-karst mountainous rivers, Southwest China, revealed by carbon isotopes (δ 13C and Δ 14C). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148347. [PMID: 34139492 DOI: 10.1016/j.scitotenv.2021.148347] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/17/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
Riverine transport of carbon from the land to the oceans plays a significant role in global carbon cycle. However, multiple processes can affect aquatic carbon cycling, and the carbon sources and processing in river systems are still elusive. Here, we analysed the water chemistry and dual carbon isotopes (δ13C and Δ14C) of dissolved inorganic carbon (DIC) and particulate organic carbon (POC) from mixed karst and non-karst subtropical monsoonal catchments, southwest China. The water chemistry of the river water showed that DIC concentrations were mainly controlled by carbonate weathering and modulated by agricultural activities and geomorphic characteristics (i.e. elevation and slope), but the stable isotope of DIC (δ13CDIC) was highly affected by CO2 outgassing and in-stream photosynthesis. The C/N ratios and stable isotope of POC (δ13CPOC) indicated that the composition of riverine POC derived from a mixture of terrestrial sources and algae/microbial sources. Based on the δ13C and Δ14C of POC, we used a Bayesian mixing model to constrain the POC sources, which showed that aquatic photosynthesis was the main source for POC. Our findings suggest that carbon dynamics in subtropical rivers are highly affected by aquatic photosynthesis, which has significant implications on carbon cycling within river systems.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Geography, The University of Hong Kong, Pokfulam Road, Hong Kong, China; Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Jun Zhong
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Siliang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Lishan Ran
- Department of Geography, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Wanfa Wang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Sen Xu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Zelong Yan
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Sheng Xu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
11
|
Ohta Y, Katsumata M, Kurosawa K, Takaki Y, Nishimura H, Watanabe T, Kasuya KI. Degradation of ester linkages in rice straw components by Sphingobium species recovered from the sea bottom using a non-secretory tannase-family α/β hydrolase. Environ Microbiol 2021; 23:4151-4167. [PMID: 33939871 DOI: 10.1111/1462-2920.15551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 11/28/2022]
Abstract
Microbial decomposition of allochthonous plant components imported into the aquatic environment is one of the vital steps of the carbon cycle on earth. To expand the knowledge of the biodegradation of complex plant materials in aquatic environments, we recovered a sunken wood from the bottom of Otsuchi Bay, situated in northeastern Japan in 2012. We isolated Sphingobium with high ferulic acid esterase activity. The strain, designated as OW59, grew on various aromatic compounds and sugars, occurring naturally in terrestrial plants. A genomic study of the strain suggested its role in degrading hemicelluloses. We identified a gene encoding a non-secretory tannase-family α/β hydrolase, which exhibited ferulic acid esterase activity. This enzyme shares the consensus catalytic triad (Ser-His-Asp) within the tannase family block X in the ESTHER database. The molecules, which had the same calculated elemental compositions, were produced consistently in both the enzymatic and microbial degradation of rice straw crude extracts. The non-secretory tannase-family α/β hydrolase activity may confer an important phenotypic feature on the strain to accelerate plant biomass degradation. Our study provides insights into the underlying biodegradation process of terrestrial plant polymers in aquatic environments.
Collapse
Affiliation(s)
- Yukari Ohta
- Gunma University Center for Food Science and Wellness, 4-2 Aramaki, Maebashi, Gunma, 371-8510, Japan
| | - Madoka Katsumata
- Gunma University Center for Food Science and Wellness, 4-2 Aramaki, Maebashi, Gunma, 371-8510, Japan
| | - Kanako Kurosawa
- Super-cutting-edge Grand and Advanced Research Program, JAMSTEC, 2-15, Natsushima, Yokosuka, Kanagawa, 237-0061, Japan
| | - Yoshihiro Takaki
- Super-cutting-edge Grand and Advanced Research Program, JAMSTEC, 2-15, Natsushima, Yokosuka, Kanagawa, 237-0061, Japan
| | - Hiroshi Nishimura
- Biomass Conversion, Research Institute for Sustainable Humanosphere, Kyoto University Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Takashi Watanabe
- Biomass Conversion, Research Institute for Sustainable Humanosphere, Kyoto University Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Ken-Ichi Kasuya
- Gunma University Center for Food Science and Wellness, 4-2 Aramaki, Maebashi, Gunma, 371-8510, Japan.,Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin, Kiryu, Gunma, 376-8515, Japan
| |
Collapse
|
12
|
The Influence of Dissolved Organic Carbon on the Microbial Community Associated with Tetraselmis striata for Bio-Diesel Production. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The green alga Tetraselmis striata is regarded as a suitable candidate microalga for bio-diesel production. Recently, T. striata was cultured near Yeonghueung Island, Korea, in a “marine culturing field”; however, its environmental impacts are not yet studied. We estimated the amount of dissolved organic carbon (DOC) released from T. striata cultivation in the marine culturing field, and we investigated the changes in bacterial composition. Then, we designed and installed a mesocosm for further understanding. From the mesocosm results, the DOC released from the cultivation of T. striata led to changes in bacterial communities, disturbance of the microbial food web structure, rapid depletion of nutrients, and a decrease in dissolved oxygen (DO) and pH. Our novel work demonstrates that large amounts of DOC secreted by large-scale microalgal cultures such as that of T. striata can potentially have a significant impact on the structure and function of the surrounding microbial ecosystem.
Collapse
|
13
|
Hopple AM, Wilson RM, Kolton M, Zalman CA, Chanton JP, Kostka J, Hanson PJ, Keller JK, Bridgham SD. Massive peatland carbon banks vulnerable to rising temperatures. Nat Commun 2020; 11:2373. [PMID: 32398638 PMCID: PMC7217827 DOI: 10.1038/s41467-020-16311-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/17/2020] [Indexed: 11/10/2022] Open
Abstract
Peatlands contain one-third of the world's soil carbon (C). If destabilized, decomposition of this vast C bank could accelerate climate warming; however, the likelihood of this outcome remains unknown. Here, we examine peatland C stability through five years of whole-ecosystem warming and two years of elevated atmospheric carbon dioxide concentrations (eCO2). Warming exponentially increased methane (CH4) emissions and enhanced CH4 production rates throughout the entire soil profile; although surface CH4 production rates remain much greater than those at depth. Additionally, older deeper C sources played a larger role in decomposition following prolonged warming. Most troubling, decreases in CO2:CH4 ratios in gas production, porewater concentrations, and emissions, indicate that the peatland is becoming more methanogenic with warming. We observed limited evidence of eCO2 effects. Our results suggest that ecosystem responses are largely driven by surface peat, but that the vast C bank at depth in peatlands is responsive to prolonged warming.
Collapse
Affiliation(s)
- A M Hopple
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA. .,Schmid College of Science and Technology, Chapman University, Orange, CA, 92866, USA. .,Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| | - R M Wilson
- Earth, Ocean, and Atmospheric Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - M Kolton
- School of Biological Sciences and School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - C A Zalman
- Schmid College of Science and Technology, Chapman University, Orange, CA, 92866, USA
| | - J P Chanton
- Earth, Ocean, and Atmospheric Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - J Kostka
- School of Biological Sciences and School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - P J Hanson
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - J K Keller
- Schmid College of Science and Technology, Chapman University, Orange, CA, 92866, USA
| | - S D Bridgham
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| |
Collapse
|
14
|
Fang L, Lee S, Lee SA, Hahm D, Kim G, Druffel ERM, Hwang J. Removal of Refractory Dissolved Organic Carbon in the Amundsen Sea, Antarctica. Sci Rep 2020; 10:1213. [PMID: 31988336 PMCID: PMC6985272 DOI: 10.1038/s41598-020-57870-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/25/2019] [Indexed: 11/24/2022] Open
Abstract
The removal mechanism of refractory deep-ocean dissolved organic carbon (deep-DOC) is poorly understood. The Amundsen Sea Polynya (ASP) serves as a natural test basin for assessing the fate of deep-DOC when it is supplied with a large amount of fresh-DOC and exposed to strong solar radiation during the polynya opening in austral summer. We measured the radiocarbon content of DOC in the water column on the western Amundsen shelf. The radiocarbon content of DOC in the surface water of the ASP reflected higher primary production than in the region covered by sea ice. The radiocarbon measurements of DOC, taken two years apart in the ASP, were different, suggesting rapid cycling of DOC. The increase in DOC concentration was less than expected from the observed increase in radiocarbon content from those at the greatest depths. Based on a radiocarbon mass balance, we show that deep-DOC is consumed along with fresh-DOC in the ASP. Our observations imply that water circulation through the surface layer, where fresh-DOC is produced, may play an important role in global DOC cycling.
Collapse
Affiliation(s)
- Ling Fang
- School of Earth and Environmental Sciences/Research Institute of Oceanography, Seoul National University, Seoul, 08826, South Korea.,Laboratory of Environmental Chemistry, Paul Scherrer Institute, Villigen, 5303, Switzerland
| | - SangHoon Lee
- Korea Polar Research Institute, Incheon, 21990, South Korea
| | - Shin-Ah Lee
- School of Earth and Environmental Sciences/Research Institute of Oceanography, Seoul National University, Seoul, 08826, South Korea
| | - Doshik Hahm
- Pusan National University, Busan, 46241, South Korea
| | - Guebuem Kim
- School of Earth and Environmental Sciences/Research Institute of Oceanography, Seoul National University, Seoul, 08826, South Korea
| | - Ellen R M Druffel
- Department of Earth System Science, University of California, Irvine, CA, 92697, USA
| | - Jeomshik Hwang
- School of Earth and Environmental Sciences/Research Institute of Oceanography, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
15
|
Ya M, Xu L, Wu Y, Li Y, Zhao S, Wang X. Fossil Fuel-Derived Polycyclic Aromatic Hydrocarbons in the Taiwan Strait, China, and Fluxes across the Air-Water Interface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7307-7316. [PMID: 29856922 DOI: 10.1021/acs.est.8b01331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
On the basis of the application of compound-specific radiocarbon analysis (CSRA) and air-water exchange models, the contributions of fossil fuel and biomass burning derived polycyclic aromatic hydrocarbons (PAHs) as well as their air-water transport were elucidated. The results showed that fossil fuel-derived PAHs (an average contribution of 89%) presented the net volatilization process at the air-water interface of the Taiwan Strait in summer. Net volatile fluxes of the dominant fluorene and phenanthrene (>58% of the total PAHs) were 27 ± 2.8 μg m-2 day-1, significantly higher than the dry deposition fluxes (average 0.43 μg m-2 day-1). The Δ14C contents of selected PAHs (fluorene, phenanthrene plus anthracene, fluoranthene, and pyrene) determined by CSRA in the dissolved seawater ranged from -997 ± 4‰ to -873 ± 6‰, indicating that 89-100% (95 ± 4%) of PAHs were supplied by fossil fuels. The South China Sea warm current originating from the southwest China in summer (98%) and the Min-Zhe coastal current originating from the north China in winter (97%) input more fossil fuel PAHs than the Jiulong River estuary (90%) and Xiamen harbor water (93%). The more radioactive decayed 14C of fluoranthene (a 4-ring PAH) than that of phenanthrene and anthracene (3-ring PAHs) represented a greater fossil fuel contribution to the former in dissolved seawater.
Collapse
Affiliation(s)
- Miaolei Ya
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology , Xiamen University , Xiamen , 361102 , China
- National Ocean Sciences Accelerator Mass Spectrometry Facility, Department of Geology and Geophysics , Woods Hole Oceanographic Institution , Woods Hole , Massachusetts 02543 , United States
| | - Li Xu
- National Ocean Sciences Accelerator Mass Spectrometry Facility, Department of Geology and Geophysics , Woods Hole Oceanographic Institution , Woods Hole , Massachusetts 02543 , United States
| | - Yuling Wu
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology , Xiamen University , Xiamen , 361102 , China
| | - Yongyu Li
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology , Xiamen University , Xiamen , 361102 , China
| | - Songhe Zhao
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology , Xiamen University , Xiamen , 361102 , China
| | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology , Xiamen University , Xiamen , 361102 , China
| |
Collapse
|
16
|
Chen J, Yang H, Zeng Y, Guo J, Song Y, Ding W. Combined use of radiocarbon and stable carbon isotope to constrain the sources and cycling of particulate organic carbon in a large freshwater lake, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:27-38. [PMID: 29287210 DOI: 10.1016/j.scitotenv.2017.12.275] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/09/2017] [Accepted: 12/23/2017] [Indexed: 06/07/2023]
Abstract
The concentrations and isotopic compositions of dissolved inorganic carbon (DIC) and particulate organic carbon (POC) were measured in order to better constrain the sources and cycling of POC in Lake Fuxian, the largest deep freshwater lake in China. Model results based on the combined δ13C and Δ14C, showed that the average lake-wide contributions of autochthonous POC, terrestrial POC, and resuspended sediment POC to the bulk POC in Lake Fuxian were 61%, 22%, and 17%, respectively. This indicated autochthonous POC might play a dominant role in sustaining large oligotrophic lake ecosystem. A mean 17% contribution of resuspended sediment POC to the bulk POC implied that sediment might have more significant influence on aquatic environment and ecosystem than previously recognized in large deep lakes. The contributions of different sources POC to the water-column POC were a function of the initial composition of the source materials, photosynthesis, physical regime of the lake, sediment resuspension, respiration and degradation of organic matter, and were affected indirectly by environmental factors such as light, temperature, DO, wind speed, turbidity, and nutrient concentration. This study is not only the first systematic investigation on the radiocarbon and stable isotope compositions of POC in large deep freshwater lake in China, but also one of the most extensive radiocarbon studies on the ecosystem of any great lakes in the world. The unique data constrain relative influences of autochthonous POC, terrestrial POC, and resuspended sediment POC, and deepen the understanding of the POC cycling in large freshwater lakes. This study is far from comprehensive, but it serves to highlight the potential of combined radiocarbon and stable carbon isotope for constraining the sources and cycling of POC in large lake system. More radiocarbon investigations on the water-column POC and the aquatic food webs are necessary to illuminate further the fate of autochthonous POC, terrestrial POC, and resuspended sediment POC, and their eco-environmental effects.
Collapse
Affiliation(s)
- Jingan Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China.
| | - Haiquan Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Yan Zeng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Jianyang Guo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Yilong Song
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Wei Ding
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| |
Collapse
|
17
|
Tectonically-triggered sediment and carbon export to the Hadal zone. Nat Commun 2018; 9:121. [PMID: 29317639 PMCID: PMC5760703 DOI: 10.1038/s41467-017-02504-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 12/05/2017] [Indexed: 11/08/2022] Open
Abstract
Sediments in deep ocean trenches may contain crucial information on past earthquake history and constitute important sites of carbon burial. Here we present 14C data on bulk organic carbon (OC) and its thermal decomposition fractions produced by ramped pyrolysis/oxidation for a core retrieved from the >7.5 km-deep Japan Trench. High-resolution 14C measurements, coupled with distinctive thermogram characteristics of OC, reveal hemipelagic sedimentation interrupted by episodic deposition of pre-aged OC in the trench. Low δ13C values and diverse 14C ages of thermal fractions imply that the latter material originates from the adjacent margin, and the co-occurrence of pre-aged OC with intervals corresponding to known earthquake events implies tectonically triggered, gravity-flow-driven supply. We show that 14C ages of thermal fractions can yield valuable chronological constraints on sedimentary sequences. Our findings shed new light on links between tectonically driven sedimentological processes and marine carbon cycling, with implications for carbon dynamics in hadal environments. Within sediments in deep ocean trenches an earthquake record may be observed. Here, the authors present 14C data on bulk organic carbon (OC) and thermal decomposition from a sediment core in the Japan Trench and match OC values with known earthquake events.
Collapse
|
18
|
Babcock-Adams L, Chanton JP, Joye SB, Medeiros PM. Hydrocarbon composition and concentrations in the Gulf of Mexico sediments in the 3 years following the Macondo well blowout. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:329-338. [PMID: 28605720 DOI: 10.1016/j.envpol.2017.05.078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 06/07/2023]
Abstract
In April of 2010, the Macondo well blowout in the northern Gulf of Mexico resulted in an unprecedented release of oil into the water column at a depth of approximately 1500 m. A time series of surface and subsurface sediment samples were collected to the northwest of the well from 2010 to 2013 for molecular biomarker and bulk carbon isotopic analyses. While no clear trend was observed in subsurface sediments, surface sediments (0-3 cm) showed a clear pattern with total concentrations of n-alkanes, unresolved complex mixture (UCM), and petroleum biomarkers (terpanes, hopanes, steranes) increasing from May to September 2010, peaking in late November 2010, and strongly decreasing in the subsequent years. The peak in hydrocarbon concentrations were corroborated by higher organic carbon contents, more depleted Δ14C values and biomarker ratios similar to those of the initial MC252 crude oil reported in the literature. These results indicate that at least part of oil discharged from the accident sedimented to the seafloor in subsequent months, resulting in an apparent accumulation of hydrocarbons on the seabed by the end of 2010. Sediment resuspension and transport or biodegradation may account for the decrease in sedimented oil quantities in the years following the Macondo well spill.
Collapse
Affiliation(s)
| | - Jeffrey P Chanton
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahasee, FL 32306, USA
| | - Samantha B Joye
- Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA
| | - Patricia M Medeiros
- Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
19
|
Use of Multi-Carbon Sources by Zooplankton in an Oligotrophic Lake in the Tibetan Plateau. WATER 2016. [DOI: 10.3390/w8120565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Yan B, Passow U, Chanton JP, Nöthig EM, Asper V, Sweet J, Pitiranggon M, Diercks A, Pak D. Sustained deposition of contaminants from the Deepwater Horizon spill. Proc Natl Acad Sci U S A 2016; 113:E3332-40. [PMID: 27247393 PMCID: PMC4914201 DOI: 10.1073/pnas.1513156113] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The 2010 Deepwater Horizon oil spill resulted in 1.6-2.6 × 10(10) grams of petrocarbon accumulation on the seafloor. Data from a deep sediment trap, deployed 7.4 km SW of the well between August 2010 and October 2011, disclose that the sinking of spill-associated substances, mediated by marine particles, especially phytoplankton, continued at least 5 mo following the capping of the well. In August/September 2010, an exceptionally large diatom bloom sedimentation event coincided with elevated sinking rates of oil-derived hydrocarbons, black carbon, and two key components of drilling mud, barium and olefins. Barium remained in the water column for months and even entered pelagic food webs. Both saturated and polycyclic aromatic hydrocarbon source indicators corroborate a predominant contribution of crude oil to the sinking hydrocarbons. Cosedimentation with diatoms accumulated contaminants that were dispersed in the water column and transported them downward, where they were concentrated into the upper centimeters of the seafloor, potentially leading to sustained impact on benthic ecosystems.
Collapse
Affiliation(s)
- Beizhan Yan
- Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964;
| | - Uta Passow
- Marine Science Institute, University of California, Santa Barbara, CA 93106;
| | - Jeffrey P Chanton
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL 32306
| | - Eva-Maria Nöthig
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, D-27570 Bremerhaven, Germany
| | - Vernon Asper
- Department of Marine Science, The University of Southern Mississippi, Stennis Space Center, MS 39529
| | - Julia Sweet
- Marine Science Institute, University of California, Santa Barbara, CA 93106
| | - Masha Pitiranggon
- Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964
| | - Arne Diercks
- Department of Marine Science, The University of Southern Mississippi, Stennis Space Center, MS 39529
| | - Dorothy Pak
- Marine Science Institute, University of California, Santa Barbara, CA 93106
| |
Collapse
|
21
|
Chanton J, Zhao T, Rosenheim BE, Joye S, Bosman S, Brunner C, Yeager KM, Diercks AR, Hollander D. Using natural abundance radiocarbon to trace the flux of petrocarbon to the seafloor following the Deepwater Horizon oil spill. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:847-54. [PMID: 25494527 DOI: 10.1021/es5046524] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In 2010, the Deepwater Horizon accident released 4.6–6.0 × 10(11) grams or 4.1 to 4.6 million barrels of fossil petroleum derived carbon (petrocarbon) as oil into the Gulf of Mexico. Natural abundance radiocarbon measurements on surface sediment organic matter in a 2.4 × 10(10) m(2) deep-water region surrounding the spill site indicate the deposition of a fossil-carbon containing layer that included 1.6 to 2.6 × 10(10) grams of oil-derived carbon. This quantity represents between 0.5 to 9.1% of the released petrocarbon, with a best estimate of 3.0–4.9%. These values may be lower limit estimates of the fraction of the oil that was deposited on the seafloor because they focus on a limited mostly deep-water area of the Gulf, include a conservative estimate of thickness of the depositional layer, and use an average background or prespill radiocarbon value for sedimentary organic carbon that produces a conservative value. A similar approach using hopane tracer estimated that 4–31% of 2 million barrels of oil that stayed in the deep sea settled on the bottom. Converting that to a percentage of the total oil that entered into the environment (to which we normalized our estimate) converts this range to 1.8 to 14.4%. Although extrapolated over a larger area, our independent estimate produced similar values.
Collapse
|
22
|
Abstract
Marine dissolved organic carbon (DOC) is a large (660 Pg C) reactive carbon reservoir that mediates the oceanic microbial food web and interacts with climate on both short and long timescales. Carbon isotopic content provides information on the DOC source via δ(13)C and age via Δ(14)C. Bulk isotope measurements suggest a microbially sourced DOC reservoir with two distinct components of differing radiocarbon age. However, such measurements cannot determine internal dynamics and fluxes. Here we analyze serial oxidation experiments to quantify the isotopic diversity of DOC at an oligotrophic site in the central Pacific Ocean. Our results show diversity in both stable and radio isotopes at all depths, confirming DOC cycling hidden within bulk analyses. We confirm the presence of isotopically enriched, modern DOC cocycling with an isotopically depleted older fraction in the upper ocean. However, our results show that up to 30% of the deep DOC reservoir is modern and supported by a 1 Pg/y carbon flux, which is 10 times higher than inferred from bulk isotope measurements. Isotopically depleted material turns over at an apparent time scale of 30,000 y, which is far slower than indicated by bulk isotope measurements. These results are consistent with global DOC measurements and explain both the fluctuations in deep DOC concentration and the anomalous radiocarbon values of DOC in the Southern Ocean. Collectively these results provide an unprecedented view of the ways in which DOC moves through the marine carbon cycle.
Collapse
|
23
|
Law Y, Jacobsen GE, Smith AM, Yuan Z, Lant P. Fossil organic carbon in wastewater and its fate in treatment plants. WATER RESEARCH 2013; 47:5270-5281. [PMID: 23863394 DOI: 10.1016/j.watres.2013.06.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/28/2013] [Accepted: 06/02/2013] [Indexed: 06/02/2023]
Abstract
This study reports the presence of fossil organic carbon in wastewater and its fate in wastewater treatment plants. The findings pinpoint the inaccuracy of current greenhouse gas accounting guidelines which defines all organic carbon in wastewater to be of biogenic origin. Stable and radiocarbon isotopes ((13)C and (14)C) were measured throughout the process train in four municipal wastewater treatment plants equipped with secondary activated sludge treatment. Isotopic mass balance analyses indicate that 4-14% of influent total organic carbon (TOC) is of fossil origin with concentrations between 6 and 35 mg/L; 88-98% of this is removed from the wastewater. The TOC mass balance analysis suggests that 39-65% of the fossil organic carbon from the influent is incorporated into the activated sludge through adsorption or from cell assimilation while 29-50% is likely transformed to carbon dioxide (CO2) during secondary treatment. The fossil organic carbon fraction in the sludge undergoes further biodegradation during anaerobic digestion with a 12% decrease in mass. 1.4-6.3% of the influent TOC consists of both biogenic and fossil carbon is estimated to be emitted as fossil CO2 from activated sludge treatment alone. The results suggest that current greenhouse gas accounting guidelines, which assume that all CO2 emission from wastewater is biogenic may lead to underestimation of emissions.
Collapse
Affiliation(s)
- Yingyu Law
- Advanced Water Management Centre (AWMC), The University of Queensland, St. Lucia 4072, Australia
| | | | | | | | | |
Collapse
|
24
|
Jiao N, Herndl GJ, Hansell DA, Benner R, Kattner G, Wilhelm SW, Kirchman DL, Weinbauer MG, Luo T, Chen F, Azam F. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat Rev Microbiol 2010; 8:593-9. [DOI: 10.1038/nrmicro2386] [Citation(s) in RCA: 939] [Impact Index Per Article: 67.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Girguis PR, Nielsen ME, Figueroa I. Harnessing energy from marine productivity using bioelectrochemical systems. Curr Opin Biotechnol 2010; 21:252-8. [DOI: 10.1016/j.copbio.2010.03.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 03/18/2010] [Accepted: 03/18/2010] [Indexed: 11/28/2022]
|
26
|
Griffith DR, Barnes RT, Raymond PA. Inputs of fossil carbon from wastewater treatment plants to U.S. rivers and oceans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:5647-5651. [PMID: 19731657 DOI: 10.1021/es9004043] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Every day more than 500 million cubic meters of treated wastewater are discharged into rivers, estuaries, and oceans, an amount slightly less than the average flow of the Danube River. Typically, wastewaters have high organic carbon (OC) concentrations and represent a large fraction of total river flow and a higher fraction of river OC in densely populated watersheds. Here, we report the first direct measurements of radiocarbon (14C) in municipal wastewater treatment plant (WWTP) effluent. The radiocarbon ages of particulate and dissolved organic carbon (POC and DOC) in effluent are old and relatively uniform across a range of WWTPs in New York and Connecticut Wastewater DOC has a mean radiocarbon age of 1630 +/- 500 years B.P. and a mean delta13C of -26.0 +/- 1 per thousand. Mass balance calculations indicate that 25% of wastewater DOC is fossil carbon, which is likely derived from petroleum-based household products such as detergents and pharmaceuticals. These findings warrant reevaluation of the "apparent age" of riverine DOC, the total flux of petroleum carbon to U.S. oceans, and OC source assignments in waters impacted by sewage.
Collapse
Affiliation(s)
- David R Griffith
- School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06511, USA.
| | | | | |
Collapse
|
27
|
Shen H, McNichol AP, Xu L, Gagnon A, Heikes BG. Radiocarbon Analysis of Atmospheric Formaldehyde Using Cystamine Derivatization. Anal Chem 2009. [DOI: 10.1021/ac9004666] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haiwei Shen
- Center for Atmospheric Chemistry Studies, Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, and National Ocean Sciences Accelerator Mass Spectrometry Facility, Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
| | - Ann P. McNichol
- Center for Atmospheric Chemistry Studies, Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, and National Ocean Sciences Accelerator Mass Spectrometry Facility, Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
| | - Li Xu
- Center for Atmospheric Chemistry Studies, Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, and National Ocean Sciences Accelerator Mass Spectrometry Facility, Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
| | - Alan Gagnon
- Center for Atmospheric Chemistry Studies, Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, and National Ocean Sciences Accelerator Mass Spectrometry Facility, Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
| | - Brian G. Heikes
- Center for Atmospheric Chemistry Studies, Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, and National Ocean Sciences Accelerator Mass Spectrometry Facility, Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
| |
Collapse
|