1
|
Fricska DI, Mesoy SM, Lummis SCR. The MA Helix Is Important for Receptor Assembly and Function in the α4β2 nACh Receptor. MEMBRANES 2023; 13:891. [PMID: 38132895 PMCID: PMC10744633 DOI: 10.3390/membranes13120891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
Pentameric ligand-gated ion channels (pLGICs) are expressed throughout the central and peripheral nervous systems of vertebrates and modulate many aspects of human health and disease. Recent structural and computational data indicate that cation-selective pLGICs contain a long helical extension (MA) of one of the transmembrane helices. The MA helix has been shown to affect both the membrane expression of, and ion conductance levels through, these pLGICs. Here we probe the functional effects of 68 mutations in the MA region of the α4β2 nicotinic acetylcholine receptor (nAChR), using a voltage-sensitive membrane dye and radioligand binding to measure receptor function and expression/assembly. We found seven alanine mutations in a stretch of the MA helix that prevent correct receptor folding and/or assembly, as evidenced by the lack of both function and ligand binding. A further two alanine mutations resulted in receptors that were capable of binding ligand but showed no functional response, and we propose that, in these mutants, ligand binding is insufficient to trigger channel opening. The data clarify the effect of the MA helix, and as the effects of some of our mutations in the α4β2 nAChR differ from the effects of equivalent mutations in other cation-selective pLGICs, we suggest that residues in the MA helix may play subtly different roles in different receptors.
Collapse
Affiliation(s)
| | | | - Sarah C. R. Lummis
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK; (D.I.F.); (S.M.M.)
| |
Collapse
|
2
|
Wang YJ, Di XJ, Mu TW. Quantitative interactome proteomics identifies a proteostasis network for GABA A receptors. J Biol Chem 2022; 298:102423. [PMID: 36030824 PMCID: PMC9493394 DOI: 10.1016/j.jbc.2022.102423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
Gamma-aminobutyric acid type A (GABAA) receptors are the primary inhibitory neurotransmitter-gated ion channels in the mammalian central nervous system. Maintenance of GABAA receptor protein homeostasis (proteostasis) in cells utilizing its interacting proteins is essential for the function of GABAA receptors. However, how the proteostasis network orchestrates GABAA receptor biogenesis in the endoplasmic reticulum is not well understood. Here, we employed a proteomics-based approach to systematically identify the interactomes of GABAA receptors. We carried out a quantitative immunoprecipitation-tandem mass spectrometry analysis utilizing stable isotope labeling by amino acids in cell culture. Furthermore, we performed comparative proteomics by using both WT α1 subunit and a misfolding-prone α1 subunit carrying the A322D variant as the bait proteins. We identified 125 interactors for WT α1-containing receptors, 105 proteins for α1(A322D)-containing receptors, and 54 overlapping proteins within these two interactomes. Our bioinformatics analysis identified potential GABAA receptor proteostasis network components, including chaperones, folding enzymes, trafficking factors, and degradation factors, and we assembled a model of their potential involvement in the cellular folding, degradation, and trafficking pathways for GABAA receptors. In addition, we verified endogenous interactions between α1 subunits and selected interactors by using coimmunoprecipitation in mouse brain homogenates. Moreover, we showed that TRIM21 (tripartite motif containing-21), an E3 ubiquitin ligase, positively regulated the degradation of misfolding-prone α1(A322D) subunits selectively. This study paves the way for understanding the molecular mechanisms as well as fine-tuning of GABAA receptor proteostasis to ameliorate related neurological diseases such as epilepsy.
Collapse
Affiliation(s)
- Ya-Juan Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| | - Xiao-Jing Di
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Ting-Wei Mu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| |
Collapse
|
3
|
Shao J, Kuiper BP, Thunnissen AMWH, Cool RH, Zhou L, Huang C, Dijkstra BW, Broos J. The Role of Tryptophan in π Interactions in Proteins: An Experimental Approach. J Am Chem Soc 2022; 144:13815-13822. [PMID: 35868012 PMCID: PMC9354243 DOI: 10.1021/jacs.2c04986] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
In proteins, the amino acids Phe, Tyr, and especially
Trp are frequently
involved in π interactions such as π–π, cation−π,
and CH−π bonds. These interactions are often crucial
for protein structure and protein–ligand binding. A powerful
means to study these interactions is progressive fluorination of these
aromatic residues to modulate the electrostatic component of the interaction.
However, to date no protein expression platform is available to produce
milligram amounts of proteins labeled with such fluorinated amino
acids. Here, we present a Lactococcus lactis Trp
auxotroph-based expression system for efficient incorporation (≥95%)
of mono-, di-, tri-, and tetrafluorinated, as well as a methylated
Trp analog. As a model protein we have chosen LmrR, a dimeric multidrug
transcriptional repressor protein from L. lactis. LmrR binds aromatic drugs, like daunomycin and riboflavin, between
Trp96 and Trp96′ in the dimer interface. Progressive fluorination
of Trp96 decreased the affinity for the drugs 6- to 70-fold, clearly
establishing the importance of electrostatic π–π
interactions for drug binding. Presteady state kinetic data of the
LmrR–drug interaction support the enthalpic nature of the interaction,
while high resolution crystal structures of the labeled protein–drug
complexes provide for the first time a structural view of the progressive
fluorination approach. The L. lactis expression system
was also used to study the role of Trp68 in the binding of riboflavin
by the membrane-bound riboflavin transport protein RibU from L. lactis. Progressive fluorination of Trp68 revealed a
strong electrostatic component that contributed 15–20% to the
total riboflavin-RibU binding energy.
Collapse
Affiliation(s)
- Jinfeng Shao
- Groningen Biomolecular Science and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Bastiaan P Kuiper
- Groningen Biomolecular Science and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Andy-Mark W H Thunnissen
- Groningen Biomolecular Science and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Robbert H Cool
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Liang Zhou
- Groningen Biomolecular Science and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Chenxi Huang
- Groningen Biomolecular Science and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Bauke W Dijkstra
- Groningen Biomolecular Science and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Jaap Broos
- Groningen Biomolecular Science and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
4
|
Oliveira ASF, Ibarra AA, Bermudez I, Casalino L, Gaieb Z, Shoemark DK, Gallagher T, Sessions RB, Amaro RE, Mulholland AJ. A potential interaction between the SARS-CoV-2 spike protein and nicotinic acetylcholine receptors. Biophys J 2021; 120:983-993. [PMID: 33609494 PMCID: PMC7889469 DOI: 10.1016/j.bpj.2021.01.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 01/08/2023] Open
Abstract
Changeux et al. (Changeux et al. C. R. Biol. 343:33-39.) recently suggested that the SARS-CoV-2 spike protein may interact with nicotinic acetylcholine receptors (nAChRs) and that such interactions may be involved in pathology and infectivity. This hypothesis is based on the fact that the SARS-CoV-2 spike protein contains a sequence motif similar to known nAChR antagonists. Here, we use molecular simulations of validated atomically detailed structures of nAChRs and of the spike to investigate the possible binding of the Y674-R685 region of the spike to nAChRs. We examine the binding of the Y674-R685 loop to three nAChRs, namely the human α4β2 and α7 subtypes and the muscle-like αβγδ receptor from Tetronarce californica. Our results predict that Y674-R685 has affinity for nAChRs. The region of the spike responsible for binding contains a PRRA motif, a four-residue insertion not found in other SARS-like coronaviruses. The conformational behavior of the bound Y674-R685 is highly dependent on the receptor subtype; it adopts extended conformations in the α4β2 and α7 complexes but is more compact when bound to the muscle-like receptor. In the α4β2 and αβγδ complexes, the interaction of Y674-R685 with the receptors forces the loop C region to adopt an open conformation, similar to other known nAChR antagonists. In contrast, in the α7 complex, Y674-R685 penetrates deeply into the binding pocket in which it forms interactions with the residues lining the aromatic box, namely with TrpB, TyrC1, and TyrC2. Estimates of binding energy suggest that Y674-R685 forms stable complexes with all three nAChR subtypes. Analyses of simulations of the glycosylated spike show that the Y674-R685 region is accessible for binding. We suggest a potential binding orientation of the spike protein with nAChRs, in which they are in a nonparallel arrangement to one another.
Collapse
Affiliation(s)
- A Sofia F Oliveira
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, United Kingdom; Bristol Synthetic Biology Centre, BrisSynBio, Bristol, United Kingdom
| | - Amaurys Avila Ibarra
- Research Software Engineering, Advanced Computing Research Centre, University of Bristol, Bristol, United Kingdom
| | - Isabel Bermudez
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Lorenzo Casalino
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | - Zied Gaieb
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | - Deborah K Shoemark
- School of Biochemistry, University of Bristol, Bristol, United Kingdom; Bristol Synthetic Biology Centre, BrisSynBio, Bristol, United Kingdom
| | - Timothy Gallagher
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, United Kingdom
| | | | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
5
|
Kaji MD, Geary TG, Beech RN. A Functional Comparison of Homopentameric Nicotinic Acetylcholine Receptors (ACR-16) Receptors From Necator americanus and Ancylostoma ceylanicum. Front Mol Neurosci 2020; 13:601102. [PMID: 33324163 PMCID: PMC7725692 DOI: 10.3389/fnmol.2020.601102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
Effective control of hookworm infections in humans and animals relies on using a small group of anthelmintics. Many of these drugs target cholinergic ligand-gated ion channels, yet the direct activity of anthelmintics has only been studied in a subset of these receptors, primarily in the non-parasitic nematode, Caenorhabditis elegans. Here we report the characterization of a homopentameric ionotropic acetylcholine receptor (AChR), ACR-16, from Necator americanus and Ancylostoma ceylanicum, the first known characterization of human hookworm ion channels. We used two-electrode voltage clamp electrophysiology in Xenopus laevis oocytes to determine the pharmacodynamics of cholinergics and anthelmintics on ACR-16 from both species of hookworm. The A. ceylanicum receptor (Ace-ACR-16) was more sensitive to acetylcholine (EC50 = 20.64 ± 0.32 μM) and nicotine (EC50 = 24.37 ± 2.89 μM) than the N. americanus receptor (Nam-ACR-16) (acetylcholine EC50 = 170.1 ± 19.23 μM; nicotine EC50 = 597.9 ± 59.12 μM), at which nicotine was a weak partial agonist (% maximal acetylcholine response = 30.4 ± 7.4%). Both receptors were inhibited by 500 μM levamisole (Ace-ACR-16 = 65.1 ± 14.3% inhibition, Nam-ACR-16 = 79.5 ± 7.7% inhibition), and responded to pyrantel, but only Ace-ACR-16 responded to oxantel. We used in silico homology modeling to investigate potential structural differences that account for the differences in agonist binding and identified a loop E isoleucine 130 of Nam-ACR-16 as possibly playing a role in oxantel insensitivity. These data indicate that key functional differences exist among ACR-16 receptors from closely related species and suggest mechanisms for differential drug sensitivity.
Collapse
Affiliation(s)
- Mark D. Kaji
- Institute of Parasitology, McGill University, Montreal, QC, Canada
| | - Timothy G. Geary
- Institute of Parasitology, McGill University, Montreal, QC, Canada
- School of Biological Sciences, Queen’s University-Belfast, Belfast, United Kingdom
| | - Robin N. Beech
- Institute of Parasitology, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Oliveira ASF, Ibarra AA, Bermudez I, Casalino L, Gaieb Z, Shoemark DK, Gallagher T, Sessions RB, Amaro RE, Mulholland AJ. Simulations support the interaction of the SARS-CoV-2 spike protein with nicotinic acetylcholine receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.07.16.206680. [PMID: 32743575 PMCID: PMC7386492 DOI: 10.1101/2020.07.16.206680] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Changeux et al. recently suggested that the SARS-CoV-2 spike (S) protein may interact with nicotinic acetylcholine receptors (nAChRs). Such interactions may be involved in pathology and infectivity. Here, we use molecular simulations of validated atomically detailed structures of nAChRs, and of the S protein, to investigate this 'nicotinic hypothesis'. We examine the binding of the Y674-R685 loop of the S protein to three nAChRs, namely the human α4β2 and α7 subtypes and the muscle-like αβγδ receptor from Tetronarce californica. Our results indicate that Y674-R685 has affinity for nAChRs and the region responsible for binding contains the PRRA motif, a four-residue insertion not found in other SARS-like coronaviruses. In particular, R682 has a key role in the stabilisation of the complexes as it forms interactions with loops A, B and C in the receptor's binding pocket. The conformational behaviour of the bound Y674-R685 region is highly dependent on the receptor subtype, adopting extended conformations in the α4β2 and α7 complexes and more compact ones when bound to the muscle-like receptor. In the α4β2 and αβγδ complexes, the interaction of Y674-R685 with the receptors forces the loop C region to adopt an open conformation similar to other known nAChR antagonists. In contrast, in the α7 complex, Y674-R685 penetrates deeply into the binding pocket where it forms interactions with the residues lining the aromatic box, namely with TrpB, TyrC1 and TyrC2. Estimates of binding energy suggest that Y674-R685 forms stable complexes with all three nAChR subtypes. Analyses of the simulations of the full-length S protein show that the Y674-R685 region is accessible for binding, and suggest a potential binding orientation of the S protein with nAChRs.
Collapse
Affiliation(s)
- A. Sofia F. Oliveira
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Amaurys Avila Ibarra
- Research Software Engineering, Advanced Computing Research Centre, University of Bristol, Bristol BS1 5QD, UK
| | - Isabel Bermudez
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX30BP, UK
| | - Lorenzo Casalino
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093 USA
| | - Zied Gaieb
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093 USA
| | | | - Timothy Gallagher
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | | | - Rommie E. Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093 USA
| | - Adrian J. Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
7
|
Choudhary S, Buxton SK, Puttachary S, Verma S, Mair GR, McCoy CJ, Reaves BJ, Wolstenholme AJ, Martin RJ, Robertson AP. EAT-18 is an essential auxiliary protein interacting with the non-alpha nAChR subunit EAT-2 to form a functional receptor. PLoS Pathog 2020; 16:e1008396. [PMID: 32243475 PMCID: PMC7173930 DOI: 10.1371/journal.ppat.1008396] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/21/2020] [Accepted: 02/11/2020] [Indexed: 11/19/2022] Open
Abstract
Nematode parasites infect approximately 1.5 billion people globally and are a significant public health concern. There is an accepted need for new, more effective anthelmintic drugs. Nicotinic acetylcholine receptors on parasite nerve and somatic muscle are targets of the cholinomimetic anthelmintics, while glutamate-gated chloride channels in the pharynx of the nematode are affected by the avermectins. Here we describe a novel nicotinic acetylcholine receptor on the nematode pharynx that is a potential new drug target. This homomeric receptor is comprised of five non-α EAT-2 subunits and is not sensitive to existing cholinomimetic anthelmintics. We found that EAT-18, a novel auxiliary subunit protein, is essential for functional expression of the receptor. EAT-18 directly interacts with the mature receptor, and different homologs alter the pharmacological properties. Thus we have described not only a novel potential drug target but also a new type of obligate auxiliary protein for nAChRs. Soil-transmitted helminths affect about a quarter of the worlds’ population. Chemical anthelmintics not only alleviate the threat to human and animal health but also improve agricultural economics and food security. Here we have identified a “druggable” nicotinic acetylcholine receptor (nAChR) subunit, EAT-2, that constitutes the pharyngeal cholinergic receptor in nematodes. The receptor is required for feeding and possibly for reproductive behavior in worms. A selective therapeutic compound targeting this nAChR should either starve the worms or make them sluggish, helping with faster expulsion from the host. The EAT-2 pharyngeal nAChR is a unique receptor formed by five non-α subunits that lack vicinal cysteines in the ligand binding loop-C. To date, all cation selective nAChRs contain at least two α subunits. It is possible that EAT-2 subunits have retained functionality without the vicinal cysteines due to evolutionary modifications and expresses as a new nAChR subtype which doesn’t fit the established dogma based on the study of vertebrate receptors. Our findings also identified a new type of auxiliary protein subunit, which is essential for functional expression of the pharyngeal nAChR and also modulates its pharmacology. To the best of our knowledge, this is the first report of an auxiliary protein that is essential for functional expression in any cys-loop ligand-gated ion channel.
Collapse
Affiliation(s)
- Shivani Choudhary
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Samuel K. Buxton
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Sreekanth Puttachary
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Saurabh Verma
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Gunnar R. Mair
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Ciaran J. McCoy
- Department of Infectious Diseases and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Barbara J. Reaves
- Department of Infectious Diseases and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Adrian J. Wolstenholme
- Department of Infectious Diseases and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Richard J. Martin
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Alan P. Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
8
|
Blom AE, Campello HR, Lester HA, Gallagher T, Dougherty DA. Probing Binding Interactions of Cytisine Derivatives to the α4β2 Nicotinic Acetylcholine Receptor. J Am Chem Soc 2019; 141:15840-15849. [DOI: 10.1021/jacs.9b06580] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Hugo Rego Campello
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | | | - Timothy Gallagher
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | | |
Collapse
|
9
|
Oliveira ASF, Shoemark DK, Campello HR, Wonnacott S, Gallagher T, Sessions RB, Mulholland AJ. Identification of the Initial Steps in Signal Transduction in the α4β2 Nicotinic Receptor: Insights from Equilibrium and Nonequilibrium Simulations. Structure 2019; 27:1171-1183.e3. [PMID: 31130483 DOI: 10.1016/j.str.2019.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/28/2019] [Accepted: 04/10/2019] [Indexed: 02/02/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) modulate synaptic transmission in the nervous system. These receptors have emerged as therapeutic targets in drug discovery for treating several conditions, including Alzheimer's disease, pain, and nicotine addiction. In this in silico study, we use a combination of equilibrium and nonequilibrium molecular dynamics simulations to map dynamic and structural changes induced by nicotine in the human α4β2 nAChR. They reveal a striking pattern of communication between the extracellular binding pockets and the transmembrane domains (TMDs) and show the sequence of conformational changes associated with the initial steps in this process. We propose a general mechanism for signal transduction for Cys-loop receptors: the mechanistic steps for communication proceed firstly through loop C in the principal subunit, and are subsequently transmitted, gradually and cumulatively, to loop F of the complementary subunit, and then to the TMDs through the M2-M3 linker.
Collapse
Affiliation(s)
- A Sofia F Oliveira
- School of Biochemistry, University of Bristol, Bristol BS8 1DT, UK; Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | | | - Hugo Rego Campello
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Susan Wonnacott
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Timothy Gallagher
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | | | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.
| |
Collapse
|
10
|
Yamada S. Onium Ion-assisted Organic Reactions Through Cation–π Interactions. NONCOVALENT INTERACTIONS IN CATALYSIS 2019. [DOI: 10.1039/9781788016490-00137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The cation–π interaction is an attractive noncovalent interaction between a cation and a π-face. Owing to the stronger interaction energy than those of the other π interactions, such as π–π and CH–π interactions, the cation–π interaction has recently been recognized as a new tool for controlling the regio- and stereoselectivities in various types of organic reactions. This chapter attempts to cover a variety of organic reactions assisted by interactions between unreactive onium ions and π-faces, which will provide comprehensive knowledge on the role of cation–π interactions in organic synthesis.
Collapse
Affiliation(s)
- Shinji Yamada
- Department of Chemistry, Ochanomizu University 2-1-1 Otsuka Bunkyo-ku Tokyo 112-8610 Japan
| |
Collapse
|
11
|
Affiliation(s)
- Shinji Yamada
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| |
Collapse
|
12
|
|
13
|
Designing selective modulators for the nicotinic receptor subtypes: challenges and opportunities. Future Med Chem 2018; 10:433-459. [PMID: 29451400 DOI: 10.4155/fmc-2017-0169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nicotinic receptors are membrane proteins involved in several physiological processes. They are considered suitable drug targets for various CNS disorders or conditions, as shown by the large number of compounds which have entered clinical trials. In recent years, nonconventional agonists have been discovered: positive allosteric modulators, allosteric agonists, site-specific agonists and silent desensitizers are compounds able to modulate the receptor interacting at sites different from the orthodox one, or to desensitize the receptor without prior opening. While these new findings can further complicate the pharmacology of these proteins and the design and optimization of ligands, they undoubtedly offer new opportunities to find drugs for the many therapeutic indications involving nicotinic receptors.
Collapse
|
14
|
Yamada S, Yamamoto N, Takamori E. Synthesis of Molecular Seesaw Balances and the Evaluation of Pyridinium−π Interactions. J Org Chem 2016; 81:11819-11830. [DOI: 10.1021/acs.joc.6b02295] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shinji Yamada
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku,
Tokyo 112-8610, Japan
| | - Natsuo Yamamoto
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku,
Tokyo 112-8610, Japan
| | - Eri Takamori
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku,
Tokyo 112-8610, Japan
| |
Collapse
|
15
|
Ondachi PW, Castro AH, Luetje CW, Wageman CR, Marks MJ, Damaj MI, Mascarella SW, Navarro HA, Carroll FI. Synthesis, Nicotinic Acetylcholine Binding, and in Vitro and in Vivo Pharmacological Properties of 2'-Fluoro-(carbamoylpyridinyl)deschloroepibatidine Analogues. ACS Chem Neurosci 2016; 7:1004-12. [PMID: 27166021 DOI: 10.1021/acschemneuro.6b00107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In this study, we report the synthesis, nAChR in vitro and in vivo pharmacological properties of 2'-fluoro-(carbamoylpyridinyl)deschloroepibatidine analogues (5, 6a,b, and 7a,b), which are analogues of our lead structure epibatidine. All of the analogues had subnanomolar binding affinity for α4β2*-nAChRs, and all were potent antagonists of α4β2-nAChRs in an in vitro functional assay. Analogues 6a,b were also highly selective for α4β2- relative to α3β4- and α7-nAChRs. Surprisingly, all of the analogues were exceptionally potent antagonists of nicotine-induced antinociception in the mouse tail-flick test, relative to standard nAChR antagonists such as DHβE. 2'-Fluoro-(4-carbamoyl-3-pyridinyl)deschloroepitabidine (6a) displayed an attractive combination of properties, including subnanomolar binding affinity (Ki = 0.07 nM), submicromolar inhibition of α4β2-nAChRs in the functional assay (IC50 = 0.46 μM) with a high degree of selectivity for α4β2- relative to the α3β4/α7-nAChRs (54-/348-fold, respectively), potent inhibition of [(3)H]dopamine release mediated by α4β2*- and α6β2*-nAChRs in a synaptosomal preparation (IC50 = 21 and 32 nM, respectively), and an AD50 of 0.007 μg/kg as an antagonist of nicotine induced antinociception in the mouse tail-flick test which is 64 250 times more potent than DHβE. These data suggest that compound 6a will be highly useful as a pharmacological tool for studying nAChRs and merits further development.
Collapse
Affiliation(s)
- Pauline W. Ondachi
- Research Triangle Institute, P.O. Box 12194, Research Triangle Park, North Carolina 27709, United States
| | - Ana H. Castro
- Department
of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida 33101, United States
| | - Charles W. Luetje
- Department
of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida 33101, United States
| | | | | | - M. Imad Damaj
- Department
of Pharmacology, Virginia Commonwealth University Medical Campus, P.O. Box 980615, Richmond, Virginia 23298-0613, United States
| | - S. Wayne Mascarella
- Research Triangle Institute, P.O. Box 12194, Research Triangle Park, North Carolina 27709, United States
| | - Hernán A. Navarro
- Research Triangle Institute, P.O. Box 12194, Research Triangle Park, North Carolina 27709, United States
| | - F. Ivy Carroll
- Research Triangle Institute, P.O. Box 12194, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
16
|
Elucidating ligand binding and channel gating mechanisms in pentameric ligand-gated ion channels by atomistic simulations. Biochem Soc Trans 2016; 43:151-6. [PMID: 25849909 DOI: 10.1042/bst20140259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pentameric ligand-gated ion channels (pLGICs) are important biomolecules that mediate fast synaptic transmission. Their malfunctions are linked to serious neuronal disorders and they are major pharmaceutical targets; in invertebrates, they are involved in insecticide resistance. The complexity of pLGICs and the limited crystallographic information available prevent a detailed understanding of how they function. State-of-the-art computational techniques are therefore crucial to build an accurate picture at the atomic level of the mechanisms which drive the activation of pLGICs, complementing the available experimental data. We have used a series of simulation methods, including homology modelling, ligand-protein docking, density functional theory, molecular dynamics and metadynamics, a powerful scheme for accelerating rare events, with the guidance of mutagenesis electrophysiology experiments, to explore ligand-binding mechanisms, the effects of mutations and the potential role of a proline molecular switch for the gating of the ion channels. Results for the insect RDL receptor, the GABAC receptor, the 5-HT3 receptor and the nicotinic acetylcholine receptor will be reviewed.
Collapse
|
17
|
Alamiddine Z, Selvam B, Cerón-Carrasco JP, Mathé-Allainmat M, Lebreton J, Thany SH, Laurent AD, Graton J, Le Questel JY. Molecular recognition of thiaclopride by Aplysia californica AChBP: new insights from a computational investigation. J Comput Aided Mol Des 2015; 29:1151-67. [PMID: 26589615 DOI: 10.1007/s10822-015-9884-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/16/2015] [Indexed: 11/29/2022]
Abstract
The binding of thiaclopride (THI), a neonicotinoid insecticide, with Aplysia californica acetylcholine binding protein (Ac-AChBP), the surrogate of the extracellular domain of insects nicotinic acetylcholine receptors, has been studied with a QM/QM' hybrid methodology using the ONIOM approach (M06-2X/6-311G(d):PM6). The contributions of Ac-AChBP key residues for THI binding are accurately quantified from a structural and energetic point of view. The importance of water mediated hydrogen-bond (H-bond) interactions involving two water molecules and Tyr55 and Ser189 residues in the vicinity of the THI nitrile group, is specially highlighted. A larger stabilization energy is obtained with the THI-Ac-AChBP complex compared to imidacloprid (IMI), the forerunner of neonicotinoid insecticides. Pairwise interaction energy calculations rationalize this result with, in particular, a significantly more important contribution of the pivotal aromatic residues Trp147 and Tyr188 with THI through CH···π/CH···O and π-π stacking interactions, respectively. These trends are confirmed through a complementary non-covalent interaction (NCI) analysis of selected THI-Ac-AChBP amino acid pairs.
Collapse
Affiliation(s)
- Zakaria Alamiddine
- CEISAM UMR CNRS 6230, Faculté des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, Nantes, 44322, France
| | - Balaji Selvam
- CEISAM UMR CNRS 6230, Faculté des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, Nantes, 44322, France.,Roger Adams Laboratory, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL, 61801, USA
| | - José P Cerón-Carrasco
- CEISAM UMR CNRS 6230, Faculté des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, Nantes, 44322, France.,Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Science Department, Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos, 30107, Murcia, Spain
| | - Monique Mathé-Allainmat
- CEISAM UMR CNRS 6230, Faculté des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, Nantes, 44322, France
| | - Jacques Lebreton
- CEISAM UMR CNRS 6230, Faculté des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, Nantes, 44322, France
| | - Steeve H Thany
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d'Orléans, UPRES EA 1207. Rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
| | - Adèle D Laurent
- CEISAM UMR CNRS 6230, Faculté des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, Nantes, 44322, France
| | - Jérôme Graton
- CEISAM UMR CNRS 6230, Faculté des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, Nantes, 44322, France
| | - Jean-Yves Le Questel
- CEISAM UMR CNRS 6230, Faculté des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, Nantes, 44322, France.
| |
Collapse
|
18
|
Di Maio D, Chandramouli B, Brancato G. Pathways and Barriers for Ion Translocation through the 5-HT3A Receptor Channel. PLoS One 2015; 10:e0140258. [PMID: 26465896 PMCID: PMC4605793 DOI: 10.1371/journal.pone.0140258] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/12/2015] [Indexed: 11/29/2022] Open
Abstract
Pentameric ligand gated ion channels (pLGICs) are ionotropic receptors that mediate fast intercellular communications at synaptic level and include either cation selective (e.g., nAChR and 5-HT3) or anion selective (e.g., GlyR, GABAA and GluCl) membrane channels. Among others, 5-HT3 is one of the most studied members, since its first cloning back in 1991, and a large number of studies have successfully pinpointed protein residues critical for its activation and channel gating. In addition, 5-HT3 is also the target of a few pharmacological treatments due to the demonstrated benefits of its modulation in clinical trials. Nonetheless, a detailed molecular analysis of important protein features, such as the origin of its ion selectivity and the rather low conductance as compared to other channel homologues, has been unfeasible until the recent crystallization of the mouse 5-HT3A receptor. Here, we present extended molecular dynamics simulations and free energy calculations of the whole 5-HT3A protein with the aim of better understanding its ion transport properties, such as the pathways for ion permeation into the receptor body and the complex nature of the selectivity filter. Our investigation unravels previously unpredicted structural features of the 5-HT3A receptor, such as the existence of alternative intersubunit pathways for ion translocation at the interface between the extracellular and the transmembrane domains, in addition to the one along the channel main axis. Moreover, our study offers a molecular interpretation of the role played by an arginine triplet located in the intracellular domain on determining the characteristic low conductance of the 5-HT3A receptor, as evidenced in previous experiments. In view of these results, possible implications on other members of the superfamily are suggested.
Collapse
Affiliation(s)
- Danilo Di Maio
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
| | | | - Giuseppe Brancato
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
- * E-mail:
| |
Collapse
|
19
|
Yamada S, Yamamoto N, Takamori E. A Molecular Seesaw Balance: Evaluation of Solvent and Counteranion Effects on Pyridinium−π Interactions. Org Lett 2015; 17:4862-5. [DOI: 10.1021/acs.orglett.5b02420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shinji Yamada
- Department of Chemistry,
Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo112-8610, Japan
| | - Natsuo Yamamoto
- Department of Chemistry,
Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo112-8610, Japan
| | - Eri Takamori
- Department of Chemistry,
Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo112-8610, Japan
| |
Collapse
|
20
|
Marotta CB, Lester HA, Dougherty DA. An Unaltered Orthosteric Site and a Network of Long-Range Allosteric Interactions for PNU-120596 in α7 Nicotinic Acetylcholine Receptors. ACTA ACUST UNITED AC 2015. [PMID: 26211363 DOI: 10.1016/j.chembiol.2015.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are vital to neuronal signaling, are implicated in important processes such as learning and memory, and are therapeutic targets for neural diseases. The α7 nAChR has been implicated in Alzheimer's disease and schizophrenia, and allosteric modulators have become one focus of drug development efforts. We investigate the mode of action of the α7-selective positive allosteric modulator, PNU-120596, and show that the higher potency of acetylcholine in the presence of PNU-120596 is not due to an altered agonist binding site. In addition, we propose several residues in the gating interface and transmembrane region that are functionally important to transduction of allosteric properties, and link PNU-120596, the acetylcholine binding region, and the receptor gate. These results suggest global protein stabilization from a communication network through several key residues that alter the gating equilibrium of the receptor while leaving the agonist binding properties unperturbed.
Collapse
Affiliation(s)
- Christopher B Marotta
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Dennis A Dougherty
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.
| |
Collapse
|
21
|
Petersen IN, Crestey F, Jensen AA, Indurthi DC, Pedersen H, Andreasen JT, Balle T, Kristensen JL. Tying up Nicotine: New Selective Competitive Antagonist of the Neuronal Nicotinic Acetylcholine Receptors. ACS Med Chem Lett 2015; 6:472-5. [PMID: 25941557 DOI: 10.1021/acsmedchemlett.5b00028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/04/2015] [Indexed: 01/17/2023] Open
Abstract
Conformational restriction of the pyrrolidine nitrogen in nicotine by the introduction of an ethylene bridge provided a potent and selective antagonist of the α4β2-subtype of the nicotinic acetylcholine receptors. Resolution by chiral SFC, pharmacological characterization of the two enantiomers, and determination of absolute configuration via enantioselective synthesis showed that the pharmacological activity resided almost exclusively in the (R)-enantiomer.
Collapse
Affiliation(s)
- Ida Nymann Petersen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - François Crestey
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Anders A. Jensen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | | | - Henrik Pedersen
- Discovery Chemistry and DMPK, H.
Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| | - Jesper T. Andreasen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Thomas Balle
- Faculty
of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| | - Jesper L. Kristensen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
22
|
Selvam B, Graton J, Laurent AD, Alamiddine Z, Mathé-Allainmat M, Lebreton J, Coqueret O, Olivier C, Thany SH, Le Questel JY. Imidacloprid and thiacloprid neonicotinoids bind more favourably to cockroach than to honeybee α6 nicotinic acetylcholine receptor: Insights from computational studies. J Mol Graph Model 2015; 55:1-12. [DOI: 10.1016/j.jmgm.2014.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/30/2014] [Accepted: 10/31/2014] [Indexed: 11/26/2022]
|
23
|
Han DY, Di XJ, Fu YL, Mu TW. Combining valosin-containing protein (VCP) inhibition and suberanilohydroxamic acid (SAHA) treatment additively enhances the folding, trafficking, and function of epilepsy-associated γ-aminobutyric acid, type A (GABAA) receptors. J Biol Chem 2014; 290:325-37. [PMID: 25406314 DOI: 10.1074/jbc.m114.580324] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GABAA receptors are the primary inhibitory ion channels in the mammalian central nervous system. The A322D mutation in the α1 subunit results in its excessive endoplasmic reticulum-associated degradation at the expense of plasma membrane trafficking, leading to autosomal dominant juvenile myoclonic epilepsy. Presumably, valosin-containing protein (VCP)/p97 extracts misfolded subunits from the endoplasmic reticulum membrane to the cytosolic proteasome for degradation. Here we showed that inhibiting VCP using Eeyarestatin I reduces the endoplasmic reticulum-associated degradation of the α1(A322D) subunit without an apparent effect on its dynamin-1 dependent endocytosis and that this treatment enhances its trafficking. Furthermore, coapplication of Eeyarestatin I and suberanilohydroxamic acid, a known small molecule that promotes chaperone-assisted folding, yields an additive restoration of surface expression of α1(A322D) subunits in HEK293 cells and neuronal SH-SY5Y cells. Consequently, this combination significantly increases GABA-induced chloride currents in whole-cell patch clamping experiments than either chemical compound alone in HEK293 cells. Our findings suggest that VCP inhibition without stress induction, together with folding enhancement, represents a new strategy to restore proteostasis of misfolding-prone GABAA receptors and, therefore, a potential remedy for idiopathic epilepsy.
Collapse
Affiliation(s)
- Dong-Yun Han
- From the Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
| | - Xiao-Jing Di
- From the Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
| | - Yan-Lin Fu
- From the Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
| | - Ting-Wei Mu
- From the Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
| |
Collapse
|
24
|
Warner JB, Muthusamy AK, Petersson EJ. Specific modulation of protein activity by using a bioorthogonal reaction. Chembiochem 2014; 15:2508-14. [PMID: 25256385 DOI: 10.1002/cbic.201402423] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Indexed: 11/06/2022]
Abstract
Unnatural amino acids with bioorthogonal reactive groups have the potential to provide a rapid and specific mechanism for covalently inhibiting a protein of interest. Here, we use mutagenesis to insert an unnatural amino acid containing an azide group (Z) into the target protein at positions such that a "click" reaction with an alkyne modulator (X) will alter the function of the protein. This bioorthogonally reactive pair can engender specificity of X for the Z-containing protein, even if the target is otherwise identical to another protein, allowing for rapid target validation in living cells. We demonstrate our method using inhibition of the Escherichia coli enzyme aminoacyl transferase by both active-site occlusion and allosteric mechanisms. We have termed this a "clickable magic bullet" strategy, and it should be generally applicable to studying the effects of protein inhibition, within the limits of unnatural amino acid mutagenesis.
Collapse
Affiliation(s)
- John B Warner
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323 (USA)
| | | | | |
Collapse
|
25
|
Krall J, Kongstad KT, Nielsen B, Sørensen TE, Balle T, Jensen AA, Frølund B. 5-(Piperidin-4-yl)-3-Hydroxypyrazole: A Novel Scaffold for Probing the Orthosteric γ-Aminobutyric Acid Type A Receptor Binding Site. ChemMedChem 2014; 9:2475-85. [DOI: 10.1002/cmdc.201402248] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Indexed: 11/11/2022]
|
26
|
Green BT, Lee ST, Welch KD, Panter KE. Plant alkaloids that cause developmental defects through the disruption of cholinergic neurotransmission. ACTA ACUST UNITED AC 2014; 99:235-46. [PMID: 24339035 DOI: 10.1002/bdrc.21049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/24/2013] [Accepted: 10/24/2013] [Indexed: 12/26/2022]
Abstract
The exposure of a developing embryo or fetus to alkaloids from plants, plant products, or plant extracts has the potential to cause developmental defects in humans and animals. These defects may have multiple causes, but those induced by piperidine and quinolizidine alkaloids arise from the inhibition of fetal movement and are generally referred to as multiple congenital contracture-type deformities. These skeletal deformities include arthrogyrposis, kyposis, lordosis, scoliosis, and torticollis, associated secondary defects, and cleft palate. Structure-function studies have shown that plant alkaloids with a piperidine ring and a minimum of a three-carbon side-chain α to the piperidine nitrogen are teratogenic. Further studies determined that an unsaturation in the piperidine ring, as occurs in gamma coniceine, or anabaseine, enhances the toxic and teratogenic activity, whereas the N-methyl derivatives are less potent. Enantiomers of the piperidine teratogens, coniine, ammodendrine, and anabasine, also exhibit differences in biological activity, as shown in cell culture studies, suggesting variability in the activity due to the optical rotation at the chiral center of these stereoisomers. In this article, we review the molecular mechanism at the nicotinic pharmacophore and biological activities, as it is currently understood, of a group of piperidine and quinolizidine alkaloid teratogens that impart a series of flexure-type skeletal defects and cleft palate in animals.
Collapse
Affiliation(s)
- Benedict T Green
- United States Department of Agriculture, Poisonous Plant Research Laboratory, Agricultural Research Service, 1150 E 1400 N, Logan, Utah, 84321
| | | | | | | |
Collapse
|
27
|
Liu Z, Szarecka A, Yonkunas M, Speranskiy K, Kurnikova M, Cascio M. Crosslinking constraints and computational models as complementary tools in modeling the extracellular domain of the glycine receptor. PLoS One 2014; 9:e102571. [PMID: 25025226 PMCID: PMC4099341 DOI: 10.1371/journal.pone.0102571] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/20/2014] [Indexed: 01/03/2023] Open
Abstract
The glycine receptor (GlyR), a member of the pentameric ligand-gated ion channel superfamily, is the major inhibitory neurotransmitter-gated receptor in the spinal cord and brainstem. In these receptors, the extracellular domain binds agonists, antagonists and various other modulatory ligands that act allosterically to modulate receptor function. The structures of homologous receptors and binding proteins provide templates for modeling of the ligand-binding domain of GlyR, but limitations in sequence homology and structure resolution impact on modeling studies. The determination of distance constraints via chemical crosslinking studies coupled with mass spectrometry can provide additional structural information to aid in model refinement, however it is critical to be able to distinguish between intra- and inter-subunit constraints. In this report we model the structure of GlyBP, a structural and functional homolog of the extracellular domain of human homomeric α1 GlyR. We then show that intra- and intersubunit Lys-Lys crosslinks in trypsinized samples of purified monomeric and oligomeric protein bands from SDS-polyacrylamide gels may be identified and differentiated by MALDI-TOF MS studies of limited resolution. Thus, broadly available MS platforms are capable of providing distance constraints that may be utilized in characterizing large complexes that may be less amenable to NMR and crystallographic studies. Systematic studies of state-dependent chemical crosslinking and mass spectrometric identification of crosslinked sites has the potential to complement computational modeling efforts by providing constraints that can validate and refine allosteric models.
Collapse
Affiliation(s)
- Zhenyu Liu
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Agnieszka Szarecka
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, Michigan, United States of America
| | - Michael Yonkunas
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Kirill Speranskiy
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Maria Kurnikova
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Michael Cascio
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
28
|
Structural basis for cooperative interactions of substituted 2-aminopyrimidines with the acetylcholine binding protein. Proc Natl Acad Sci U S A 2014; 111:10749-54. [PMID: 25006260 DOI: 10.1073/pnas.1410992111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The nicotinic acetylcholine receptor (nAChR) and the acetylcholine binding protein (AChBP) are pentameric oligomers in which binding sites for nicotinic agonists and competitive antagonists are found at selected subunit interfaces. The nAChR spontaneously exists in multiple conformations associated with its activation and desensitization steps, and conformations are selectively stabilized by binding of agonists and antagonists. In the nAChR, agonist binding and the associated conformational changes accompanying activation and desensitization are cooperative. AChBP, which lacks the transmembrane spanning and cytoplasmic domains, serves as a homology model of the extracellular domain of the nAChRs. We identified unique cooperative binding behavior of a number of 4,6-disubstituted 2-aminopyrimidines to Lymnaea AChBP, with different molecular variants exhibiting positive, nH > 1.0, and negative cooperativity, nH < 1.0. Therefore, for a distinctive set of ligands, the extracellular domain of a nAChR surrogate suffices to accommodate cooperative interactions. X-ray crystal structures of AChBP complexes with examples of each allowed the identification of structural features in the ligands that confer differences in cooperative behavior. Both sets of molecules bind at the agonist-antagonist site, as expected from their competition with epibatidine. An analysis of AChBP quaternary structure shows that cooperative ligand binding is associated with a blooming or flare conformation, a structural change not observed with the classical, noncooperative, nicotinic ligands. Positively and negatively cooperative ligands exhibited unique features in the detailed binding determinants and poses of the complexes.
Collapse
|
29
|
Dougherty DA, Van Arnam EB. In vivo incorporation of non-canonical amino acids by using the chemical aminoacylation strategy: a broadly applicable mechanistic tool. Chembiochem 2014; 15:1710-20. [PMID: 24990307 DOI: 10.1002/cbic.201402080] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Indexed: 01/05/2023]
Abstract
We describe a strategy for incorporating non-canonical amino acids site-specifically into proteins expressed in living cells, involving organic synthesis to chemically aminoacylate a suppressor tRNA, protein expression in Xenopus oocytes, and monitoring protein function, primarily by electrophysiology. With this protocol, a very wide range of non-canonical amino acids can be employed, allowing both systematic structure-function studies and the incorporation of reactive functionalities. Here, we present an overview of the methodology and examples meant to illustrate the versatility and power of the method as a tool for investigating protein structure and function.
Collapse
Affiliation(s)
- Dennis A Dougherty
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (USA).
| | | |
Collapse
|
30
|
Marotta C, Rreza I, Lester HA, Dougherty DA. Selective ligand behaviors provide new insights into agonist activation of nicotinic acetylcholine receptors. ACS Chem Biol 2014; 9:1153-9. [PMID: 24564429 PMCID: PMC4033646 DOI: 10.1021/cb400937d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/24/2014] [Indexed: 12/29/2022]
Abstract
Nicotinic acetylcholine receptors are a diverse set of ion channels that are essential to everyday brain function. Contemporary research studies selective activation of individual subtypes of receptors, with the hope of increasing our understanding of behavioral responses and neurodegenerative diseases. Here, we aim to expand current binding models to help explain the specificity seen among three activators of α4β2 receptors: sazetidine-A, cytisine, and NS9283. Through mutational analysis, we can interchange the activation profiles of the stoichiometry-selective compounds sazetidine-A and cytisine. In addition, mutations render NS9283--currently identified as a positive allosteric modulator--into an agonist. These results lead to two conclusions: (1) occupation at each primary face of an α subunit is needed to activate the channel and (2) the complementary face of the adjacent subunit dictates the binding ability of the agonist.
Collapse
|
31
|
Lynagh T, Pless SA. Principles of agonist recognition in Cys-loop receptors. Front Physiol 2014; 5:160. [PMID: 24795655 PMCID: PMC4006026 DOI: 10.3389/fphys.2014.00160] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/04/2014] [Indexed: 12/22/2022] Open
Abstract
Cys-loop receptors are ligand-gated ion channels that are activated by a structurally diverse array of neurotransmitters, including acetylcholine, serotonin, glycine, and GABA. After the term "chemoreceptor" emerged over 100 years ago, there was some wait until affinity labeling, molecular cloning, functional studies, and X-ray crystallography experiments identified the extracellular interface of adjacent subunits as the principal site of agonist binding. The question of how subtle differences at and around agonist-binding sites of different Cys-loop receptors can accommodate transmitters as chemically diverse as glycine and serotonin has been subject to intense research over the last three decades. This review outlines the functional diversity and current structural understanding of agonist-binding sites, including those of invertebrate Cys-loop receptors. Together, this provides a framework to understand the atomic determinants involved in how these valuable therapeutic targets recognize and bind their ligands.
Collapse
Affiliation(s)
| | - Stephan A. Pless
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of CopenhagenCopenhagen, Denmark
| |
Collapse
|
32
|
Van Arnam EB, Dougherty DA. Functional probes of drug-receptor interactions implicated by structural studies: Cys-loop receptors provide a fertile testing ground. J Med Chem 2014; 57:6289-300. [PMID: 24568098 PMCID: PMC4136689 DOI: 10.1021/jm500023m] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Structures
of integral membrane receptors provide valuable models
for drug–receptor interactions across many important classes
of drug targets and have become much more widely available in recent
years. However, it remains to be determined to what extent these images
are relevant to human receptors in their biological context and how
subtle issues such as subtype selectivity can be informed by them.
The high precision structural modifications enabled by unnatural amino
acid mutagenesis on mammalian receptors expressed in vertebrate cells
allow detailed tests of predictions from structural studies. Using
the Cys-loop superfamily of ligand-gated ion channels, we show that
functional studies lead to detailed binding models that, at times,
are significantly at odds with the structural studies on related invertebrate
proteins. Importantly, broad variations in binding interactions are
seen for very closely related receptor subtypes and for varying drugs
at a given binding site. These studies highlight the essential interplay
between structural studies and functional studies that can guide efforts
to develop new pharmaceuticals.
Collapse
Affiliation(s)
- Ethan B Van Arnam
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | | |
Collapse
|
33
|
Marotta CB, Dilworth CN, Lester HA, Dougherty DA. Probing the non-canonical interface for agonist interaction with an α5 containing nicotinic acetylcholine receptor. Neuropharmacology 2014; 77:342-9. [PMID: 24144909 PMCID: PMC3934363 DOI: 10.1016/j.neuropharm.2013.09.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/25/2013] [Accepted: 09/30/2013] [Indexed: 11/18/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) containing the α5 subunit are of interest because genome-wide association studies and candidate gene studies have identified polymorphisms in the α5 gene that are linked to an increased risk for nicotine dependence, lung cancer, and/or alcohol addiction. To probe the functional impact of an α5 subunit on nAChRs, a method to prepare a homogeneous population of α5-containing receptors must be developed. Here we use a gain of function (9') mutation to isolate populations of α5-containing nAChRs for characterization by electrophysiology. We find that the α5 subunit modulates nAChR rectification when co-assembled with α4 and β2 subunits. We also probe the α5-α4 interface for possible ligand-binding interactions. We find that mutations expected to ablate an agonist-binding site involving the α5 subunit have no impact on receptor function. The most straightforward interpretation of this observation is that agonists do not bind at the α5-α4 interface, in contrast to what has recently been demonstrated for the α4-α4 interface in related receptors. In addition, our mutational results suggest that the α5 subunit does not replace the α4 or β2 subunits and is relegated to occupying only the auxiliary position of the pentameric receptor.
Collapse
Affiliation(s)
- Christopher B Marotta
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA
| | - Crystal N Dilworth
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dennis A Dougherty
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA.
| |
Collapse
|
34
|
Comitani F, Cohen N, Ashby J, Botten D, Lummis SCR, Molteni C. Insights into the binding of GABA to the insect RDL receptor from atomistic simulations: a comparison of models. J Comput Aided Mol Des 2014; 28:35-48. [PMID: 24442887 PMCID: PMC3927061 DOI: 10.1007/s10822-013-9704-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 12/26/2013] [Indexed: 01/19/2023]
Abstract
The resistance to dieldrin (RDL) receptor is an insect pentameric ligand-gated ion channel (pLGIC). It is activated by the neurotransmitter γ-aminobutyric acid (GABA) binding to its extracellular domain; hence elucidating the atomistic details of this interaction is important for understanding how the RDL receptor functions. As no high resolution structures are currently available, we built homology models of the extracellular domain of the RDL receptor using different templates, including the widely used acetylcholine binding protein and two pLGICs, the Erwinia Chrysanthemi ligand-gated ion channel (ELIC) and the more recently resolved GluCl. We then docked GABA into the selected three dimensional structures, which we used as starting points for classical molecular dynamics simulations. This allowed us to analyze in detail the behavior of GABA in the binding sites, including the hydrogen bond and cation-π interaction networks it formed, the conformers it visited and the possible role of water molecules in mediating the interactions; we also estimated the binding free energies. The models were all stable and showed common features, including interactions consistent with experimental data and similar to other pLGICs; differences could be attributed to the quality of the models, which increases with increasing sequence identity, and the use of a pLGIC template. We supplemented the molecular dynamics information with metadynamics, a rare event method, by exploring the free energy landscape of GABA binding to the RDL receptor. Overall, we show that the GluCl template provided the best models. GABA forming direct salt-bridges with Arg211 and Glu204, and cation-π interactions with an aromatic cage including Tyr109, Phe206 and Tyr254, represents a favorable binding arrangement, and the interaction with Glu204 can also be mediated by a water molecule.
Collapse
Affiliation(s)
- Federico Comitani
- Physics Department, King's College London, Strand, London, WC2R 2LS, UK
| | | | | | | | | | | |
Collapse
|
35
|
Probing the orthosteric binding site of GABAA receptors with heterocyclic GABA carboxylic acid bioisosteres. Neurochem Res 2013; 39:1005-15. [PMID: 24362592 DOI: 10.1007/s11064-013-1226-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022]
Abstract
The ionotropic GABAA receptors (GABAARs) are widely distributed in the central nervous system where they play essential roles in numerous physiological and pathological processes. A high degree of structural heterogeneity of the GABAAR has been revealed and extensive effort has been made to develop selective and potent GABAAR agonists. This review investigates the use of heterocyclic carboxylic acid bioisosteres within the GABAAR area. Several heterocycles including 3-hydroxyisoxazole, 3-hydroxyisoxazoline, 3-hydroxyisothiazole, and the 1- and 3-hydroxypyrazole rings have been employed in order to map the orthosteric binding site. The physicochemical properties of the heterocyclic moieties making them suitable for bioisosteric replacement of the carboxylic acid in the molecule of GABA are discussed. A variety of synthetic strategies for synthesis of the heterocyclic scaffolds are available. Likewise, methods for introduction of substituents into specific positions of the heterocyclic scaffolds facilitate the investigation of different regions in the orthosteric binding pocket in close vicinity of the core scaffolds of muscimol/GABA. The development of structural models, from pharmacophore models to receptor homology models, has provided more insight into the molecular basis for binding. Similar binding modes are proposed for the heterocyclic GABA analogues covered in this review by use of ligand-receptor docking into the receptor homology model and the presented structure-activity relationships. A network of interactions between the analogues and the binding pocket is leaving no room for substituents and underline the limited space in the GABAAR orthosteric binding site when in the agonist conformation.
Collapse
|
36
|
Lynagh T, Kunz A, Laube B. Propofol modulation of α1 glycine receptors does not require a structural transition at adjacent subunits that is crucial to agonist-induced activation. ACS Chem Neurosci 2013; 4:1469-78. [PMID: 23992940 DOI: 10.1021/cn400134p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Pentameric glycine receptors (GlyRs) couple agonist binding to activation of an intrinsic ion channel. Substitution of the R271 residue impairs agonist-induced activation and is associated with the human disease hyperekplexia. On the basis of a homology model of the α1 GlyR, we substituted residues in the vicinity of R271 with cysteines, generating R271C, Q226C, and D284C single-mutant GlyRs and R271C/Q226C and R271C/D284C double-mutant GlyRs. We then examined the impact of interactions between these positions on receptor activation by glycine and modulation by the anesthetic propofol, as measured by electrophysiological experiments. Upon expression in Xenopus laevis oocytes, D284C-containing receptors were nonfunctional, despite biochemical evidence of successful cell surface expression. At R271C/Q226C GlyRs, glycine-activated whole-cell currents were increased 3-fold in the presence of the thiol reductant dithiothreitol, whereas the ability of propofol to enhance glycine-activated currents was not affected by dithiothreitol. Biochemical experiments showed that mutant R271C/Q226C subunits form covalently linked pentamers, showing that intersubunit disulfide cross-links are formed. These data indicate that intersubunit disulfide links in the transmembrane domain prevent a structural transition that is crucial to agonist-induced activation of GlyRs but not to modulation by the anesthetic propofol and implicate D284 in the functional integrity of GlyRs.
Collapse
Affiliation(s)
- Timothy Lynagh
- Neurophysiology and Neurosensory Systems, Technische Universität Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| | - Alexander Kunz
- Neurophysiology and Neurosensory Systems, Technische Universität Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| | - Bodo Laube
- Neurophysiology and Neurosensory Systems, Technische Universität Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| |
Collapse
|
37
|
Di XJ, Han DY, Wang YJ, Chance MR, Mu TW. SAHA enhances Proteostasis of epilepsy-associated α1(A322D)β2γ2 GABA(A) receptors. ACTA ACUST UNITED AC 2013; 20:1456-68. [PMID: 24211135 DOI: 10.1016/j.chembiol.2013.09.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 09/23/2013] [Accepted: 09/26/2013] [Indexed: 12/17/2022]
Abstract
GABA(A) receptors are the primary inhibitory ion channels in the mammalian central nervous system. The A322D mutation in the α1 subunit of GABA(A) receptors is known to result in its degradation and reduce its cell surface expression, leading to loss of GABAA receptor function in autosomal dominant juvenile myoclonic epilepsy. Here, we show that SAHA, a FDA-approved drug, increases the transcription of the α1(A322D) subunit, enhances its folding and trafficking posttranslationally, increases its cell surface level, and restores the GABA-induced maximal current in HEK293 cells expressing α1(A322D)β2γ2 receptors to 10% of that for wild-type receptors. To enhance the trafficking efficiency of the α1(A322D) subunit, SAHA increases the BiP protein level and the interaction between the α1(A322D) subunit and calnexin. SAHA is a drug that enhances epilepsy-associated GABAA receptor proteostasis.
Collapse
Affiliation(s)
- Xiao-Jing Di
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Dong-Yun Han
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ya-Juan Wang
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Mark R Chance
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ting-Wei Mu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
38
|
Wang YJ, Han DY, Tabib T, Yates JR, Mu TW. Identification of GABA(C) receptor protein homeostasis network components from three tandem mass spectrometry proteomics approaches. J Proteome Res 2013; 12:5570-86. [PMID: 24079818 DOI: 10.1021/pr400535z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
γ-Amino butyric acid type C (GABA(C)) receptors inhibit neuronal firing primarily in retina. Maintenance of GABA(C) receptor protein homeostasis in cells is essential for its function. However, a systematic study of GABA(C) receptor protein homeostasis (proteostasis) network components is absent. Here coimmunoprecipitation of human GABA(C)-ρ1-receptor complexes was performed in HEK293 cells overexpressing ρ1 receptors. To enhance the coverage and reliability of identified proteins, immunoisolated ρ1-receptor complexes were subjected to three tandem mass spectrometry (MS)-based proteomic analyses, namely, gel-based tandem MS (GeLC-MS/MS), solution-based tandem MS (SoLC-MS/MS), and multidimensional protein identification technology (MudPIT). From the 107 identified proteins, we assembled GABA(C)-ρ1-receptor proteostasis network components, including proteins with protein folding, degradation, and trafficking functions. We studied representative individual ρ1-receptor-interacting proteins, including calnexin, a lectin chaperone that facilitates glycoprotein folding, and LMAN1, a glycoprotein trafficking receptor, and global effectors that regulate protein folding in cells based on bioinformatics analysis, including HSF1, a master regulator of the heat shock response, and XBP1, a key transcription factor of the unfolded protein response. Manipulating selected GABA(C) receptor proteostasis network components is a promising strategy to regulate GABA(C) receptor folding, trafficking, degradation and thus function to ameliorate related retinal diseases.
Collapse
Affiliation(s)
- Ya-Juan Wang
- Center for Proteomics and Bioinformatics and Department of Epidemiology and Biostatistics and ‡Department of Physiology and Biophysics, Case Western Reserve University School of Medicine , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | | | | | | | | |
Collapse
|
39
|
Green BT, Welch KD, Panter KE, Lee ST. Plant toxins that affect nicotinic acetylcholine receptors: a review. Chem Res Toxicol 2013; 26:1129-38. [PMID: 23848825 DOI: 10.1021/tx400166f] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plants produce a wide variety of chemical compounds termed secondary metabolites that are not involved in basic metabolism, photosynthesis, or reproduction. These compounds are used as flavors, fragrances, insecticides, dyes, hallucinogens, nutritional supplements, poisons, and pharmaceutical agents. However, in some cases these secondary metabolites found in poisonous plants perturb biological systems. Ingestion of toxins from poisonous plants by grazing livestock often results in large economic losses to the livestock industry. The chemical structures of these compounds are diverse and range from simple, low molecular weight toxins such as oxalate in halogeton to the highly complex norditerpene alkaloids in larkspurs. While the negative effects of plant toxins on people and the impact of plant toxins on livestock producers have been widely publicized, the diversity of these toxins and their potential as new pharmaceutical agents for the treatment of diseases in people and animals has also received widespread interest. Scientists are actively screening plants from all regions of the world for bioactivity and potential pharmaceuticals for the treatment or prevention of many diseases. In this review, we focus the discussion to those plant toxins extensively studied at the USDA Poisonous Plant Research Laboratory that affect the nicotinic acetylcholine receptors including species of Delphinium (Larkspurs), Lupinus (Lupines), Conium (poison hemlock), and Nicotiana (tobaccos).
Collapse
Affiliation(s)
- Benedict T Green
- USDA/ARS Poisonous Plant Research Laboratory , 1150 East 1400 North, Logan, Utah 84341, USA
| | | | | | | |
Collapse
|
40
|
Van Arnam EB, Blythe EE, Lester HA, Dougherty DA. An unusual pattern of ligand-receptor interactions for the α7 nicotinic acetylcholine receptor, with implications for the binding of varenicline. Mol Pharmacol 2013; 84:201-7. [PMID: 23680636 PMCID: PMC3716316 DOI: 10.1124/mol.113.085795] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/16/2013] [Indexed: 12/18/2022] Open
Abstract
The α7 nicotinic acetylcholine receptor shows broad pharmacology, complicating the development of subtype-specific nicotinic receptor agonists. Here we use unnatural amino acid mutagenesis to characterize binding to α7 by the smoking cessation drug varenicline (Chantix; Pfizer, Groton, CT), an α4β2-targeted agonist that shows full efficacy and modest potency at the α7 receptor. We find that unlike binding to its target receptor, varenicline does not form a cation-π interaction with TrpB, further supporting a unique binding mode for the cationic amine of nicotinic agonists at the α7 receptor. We also evaluate binding to the complementary face of the receptor's binding site by varenicline, the endogenous agonist acetylcholine, and the potent nicotine analog epibatidine. Interestingly, we find no evidence for functionally important interactions involving backbone NH and CO groups thought to bind the canonical agonist hydrogen bond acceptor of the nicotinic pharmacophore, perhaps reflecting a lesser importance of this pharmacophore element for α7 binding. We also show that the Trp55 and Leu119 side chains of the binding site's complementary face are important for the binding of the larger agonists epibatidine and varenicline, but dispensable for binding of the smaller, endogenous agonist acetylcholine.
Collapse
Affiliation(s)
- Ethan B Van Arnam
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
41
|
Abstract
The chemistry community now recognizes the cation-π interaction as a major force for molecular recognition, joining the hydrophobic effect, the hydrogen bond, and the ion pair in determining macromolecular structure and drug-receptor interactions. This Account provides the author's perspective on the intellectual origins and fundamental nature of the cation-π interaction. Early studies on cyclophanes established that water-soluble, cationic molecules would forego aqueous solvation to enter a hydrophobic cavity if that cavity was lined with π systems. Important gas phase studies established the fundamental nature of the cation-π interaction. The strength of the cation-π interaction (Li(+) binds to benzene with 38 kcal/mol of binding energy; NH4(+) with 19 kcal/mol) distinguishes it from the weaker polar-π interactions observed in the benzene dimer or water-benzene complexes. In addition to the substantial intrinsic strength of the cation-π interaction in gas phase studies, the cation-π interaction remains energetically significant in aqueous media and under biological conditions. Many studies have shown that cation-π interactions can enhance binding energies by 2-5 kcal/mol, making them competitive with hydrogen bonds and ion pairs in drug-receptor and protein-protein interactions. As with other noncovalent interactions involving aromatic systems, the cation-π interaction includes a substantial electrostatic component. The six (four) C(δ-)-H(δ+) bond dipoles of a molecule like benzene (ethylene) combine to produce a region of negative electrostatic potential on the face of the π system. Simple electrostatics facilitate a natural attraction of cations to the surface. The trend for (gas phase) binding energies is Li(+) > Na(+) > K(+) > Rb(+): as the ion gets larger the charge is dispersed over a larger sphere and binding interactions weaken, a classical electrostatic effect. On other hand, polarizability does not define these interactions. Cyclohexane is more polarizable than benzene but a decidedly poorer cation binder. Many studies have documented cation-π interactions in protein structures, where lysine or arginine side chains interact with phenylalanine, tyrosine, or tryptophan. In addition, countless studies have established the importance of the cation-π interaction in a range of biological processes. Our work has focused on molecular neurobiology, and we have shown that neurotransmitters generally use a cation-π interaction to bind to their receptors. We have also shown that many drug-receptor interactions involve cation-π interactions. A cation-π interaction plays a critical role in the binding of nicotine to ACh receptors in the brain, an especially significant case. Other researchers have established important cation-π interactions in the recognition of the "histone code," in terpene biosynthesis, in chemical catalysis, and in many other systems.
Collapse
Affiliation(s)
- Dennis A. Dougherty
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
42
|
Blum AP, Van Arnam EB, German LA, Lester HA, Dougherty DA. Binding interactions with the complementary subunit of nicotinic receptors. J Biol Chem 2013; 288:6991-7. [PMID: 23349463 DOI: 10.1074/jbc.m112.439968] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The agonist-binding site of nicotinic acetylcholine receptors (nAChRs) spans an interface between two subunits of the pentameric receptor. The principal component of this binding site is contributed by an α subunit, and it binds the cationic moiety of the nicotinic pharmacophore. The other part of the pharmacophore, a hydrogen bond acceptor, has recently been shown to bind to the complementary non-α subunit via the backbone NH of a conserved Leu. This interaction was predicted by studies of ACh-binding proteins and confirmed by functional studies of the neuronal (CNS) nAChR, α4β2. The ACh-binding protein structures further suggested that the hydrogen bond to the backbone NH is mediated by a water molecule and that a second hydrogen bonding interaction occurs between the water molecule and the backbone CO of a conserved Asn, also on the non-α subunit. Here, we provide new insights into the nature of the interactions between the hydrogen bond acceptor of nicotinic agonists and the complementary subunit backbone. We studied both the nAChR of the neuromuscular junction (muscle-type) and a neuronal subtype, (α4)2(β4)3. In the muscle-type receptor, both ACh and nicotine showed a strong interaction with the Leu NH, but the potent nicotine analog epibatidine did not. This interaction was much attenuated in the α4β4 receptor. Surprisingly, we found no evidence for a functionally significant interaction with the backbone carbonyl of the relevant Asn in either receptor with an array of agonists.
Collapse
Affiliation(s)
- Angela P Blum
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
43
|
Petersen JG, Bergmann R, Møller HA, Jørgensen CG, Nielsen B, Kehler J, Frydenvang K, Kristensen J, Balle T, Jensen AA, Kristiansen U, Frølund B. Synthesis and biological evaluation of 4-(aminomethyl)-1-hydroxypyrazole analogues of muscimol as γ-aminobutyric acid(a) receptor agonists. J Med Chem 2013; 56:993-1006. [PMID: 23294161 DOI: 10.1021/jm301473k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A series of bioisosteric 4-(aminomethyl)-1-hydroxypyrazole (4-AHP) analogues of muscimol, a GABA(A) receptor agonist, has been synthesized and pharmacologically characterized at native and selected recombinant GABA(A) receptors. The unsubstituted 4-AHP analogue (2a) (EC(50) 19 μM, R(max) 69%) was a moderately potent agonist at human α(1)β(2)γ(2) GABA(A) receptors, and in SAR studies substitutions in the 3- and/or 5-position were found to be detrimental to binding affinities. Ligand-receptor docking in an α(1)β(2)γ(2) GABA(A) receptor homology model along with the obtained SAR indicate that 2a and muscimol share a common binding mode, which deviates from the binding mode of the structurally related antagonist series based on 4-(piperidin-4-yl)-1-hydroxypyrazole (4-PHP, 1). Selectivity for α(1)β(2)γ(2) over ρ(1) GABA(A) receptors was observed for the 5-chloro, 5-bromo, and 5-methyl substituted analogues of 2a illustrating that even small differences in structure can give rise to subtype selectivity.
Collapse
Affiliation(s)
- Jette G Petersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Rodríguez I, Calaza MI, Cativiela C. Synthesis of Racemic δ,δ-Dimethylproline Derivatives. European J Org Chem 2013. [DOI: 10.1002/ejoc.201201420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
45
|
Duffy NH, Lester HA, Dougherty DA. Ondansetron and granisetron binding orientation in the 5-HT(3) receptor determined by unnatural amino acid mutagenesis. ACS Chem Biol 2012; 7:1738-45. [PMID: 22873819 DOI: 10.1021/cb300246j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The serotonin type 3 receptor (5-HT(3)R) is a ligand-gated ion channel found in the central and peripheral nervous systems. The 5-HT(3)R is a therapeutic target, and the clinically available drugs ondansetron and granisetron inhibit receptor activity. Their inhibitory action is through competitive binding to the native ligand binding site, although the binding orientation of the drugs at the receptor has been a matter of debate. Here we heterologously express mouse 5-HT(3)A receptors in Xenopus oocytes and use unnatural amino acid mutagenesis to establish a cation-π interaction for both ondansetron and granisetron to tryptophan 183 in the ligand binding pocket. This cation-π interaction establishes a binding orientation for both ondansetron and granisetron within the binding pocket.
Collapse
Affiliation(s)
- Noah H. Duffy
- Division
of Chemistry and Chemical Engineering and ‡Division of Biology, California Institute of Technology,
Pasadena, California 91125, United States
| | - Henry A. Lester
- Division
of Chemistry and Chemical Engineering and ‡Division of Biology, California Institute of Technology,
Pasadena, California 91125, United States
| | - Dennis A. Dougherty
- Division
of Chemistry and Chemical Engineering and ‡Division of Biology, California Institute of Technology,
Pasadena, California 91125, United States
| |
Collapse
|
46
|
Lemoine D, Jiang R, Taly A, Chataigneau T, Specht A, Grutter T. Ligand-gated ion channels: new insights into neurological disorders and ligand recognition. Chem Rev 2012; 112:6285-318. [PMID: 22988962 DOI: 10.1021/cr3000829] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Damien Lemoine
- Laboratoire de Biophysicochimie des Récepteurs Canaux, UMR 7199 CNRS, Conception et Application de Molécules Bioactives, Faculté de Pharmacie, Université de Strasbourg , 67400 Illkirch, France
| | | | | | | | | | | |
Collapse
|
47
|
Tavares XDS, Blum AP, Nakamura DT, Puskar NL, Shanata JAP, Lester HA, Dougherty DA. Variations in binding among several agonists at two stoichiometries of the neuronal, α4β2 nicotinic receptor. J Am Chem Soc 2012; 134:11474-80. [PMID: 22716019 DOI: 10.1021/ja3011379] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Drug-receptor binding interactions of four agonists, ACh, nicotine, and the smoking cessation compounds varenicline (Chantix) and cytisine (Tabex), have been evaluated at both the 2:3 and 3:2 stoichiometries of the α4β2 nicotinic acetylcholine receptor (nAChR). Previous studies have established that unnatural amino acid mutagenesis can probe three key binding interactions at the nAChR: a cation-π interaction, and two hydrogen-bonding interactions to the protein backbone of the receptor. We find that all drugs make a cation-π interaction to TrpB of the receptor. All drugs except ACh, which lacks an N(+)H group, make a hydrogen bond to a backbone carbonyl, and ACh and nicotine behave similarly in acting as a hydrogen-bond acceptor. However, varenicline is not a hydrogen-bond acceptor to the backbone NH that interacts strongly with the other three compounds considered. In addition, we see interesting variations in hydrogen bonding interactions with cytisine that provide a rationalization for the stoichiometry selectivity seen with this compound.
Collapse
Affiliation(s)
- Ximena Da Silva Tavares
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Stober ST, Abrams CF. Enhanced meta-analysis of acetylcholine binding protein structures reveals conformational signatures of agonism in nicotinic receptors. Protein Sci 2012; 21:307-17. [PMID: 22170867 DOI: 10.1002/pro.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The soluble acetylcholine binding protein (AChBP) is the default structural proxy for pentameric ligand-gated ion channels (LGICs). Unfortunately, it is difficult to recognize conformational signatures of LGIC agonism and antagonism within the large set of AChBP crystal structures in both apo and ligand-bound states, primarily because AChBP conformations in this set are nearly superimposable (root mean square deviation < 1.5 Å). We have undertaken a systematic, alignment-free approach to elucidate conformational differences displayed by AChBP that cleanly differentiate apo/antagonist-bound from agonist-bound states. Our approach uses statistical inference based on both crystallographic states and conformations sampled during long molecular dynamics simulations to select important inter-C(α) distances and map their collective values onto functional states. We observe that binding of (nAChR) agonists to AChBP elicits clockwise rotation of the inner β-sheet with respect to the outer β-sheet, causing tilting of the cys-loop away from the five-fold axis, in a manner quite similar to that speculated for α-subunits of the heteromeric nAChR structure (Unwin, J Mol Biol 2005;346:967), making this motion potentially important in transmission of the gating signal to the transmembrane domain of a LGIC. The method is also successful at discriminating partial from full agonists and supports the hypothesis that a particularly controversial ligand, lobeline, is in fact an LGIC antagonist.
Collapse
Affiliation(s)
- Spencer T Stober
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
49
|
Yu R, Kaas Q, Craik DJ. Delineation of the unbinding pathway of α-conotoxin ImI from the α7 nicotinic acetylcholine receptor. J Phys Chem B 2012; 116:6097-105. [PMID: 22571488 DOI: 10.1021/jp301352d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
α-Conotoxins potently and specifically inhibit isoforms of nicotinic acetylcholine receptors (nAChRs) and are used as molecular probes and as drugs or drug leads. Interactions occurring during binding and unbinding events are linked to binding kinetics, and knowledge of these interactions could help in the development of α-conotoxins as drugs. Here, the unbinding process for the prototypical α-conotoxin ImI/α7-nAChR system was investigated theoretically, and three exit routes were identified using random accelerated molecular dynamics simulations. The route involving the smallest conformation perturbation was further divided into three subpathways, which were studied using steered molecular dynamics simulations. Of the three subpathways, two had better experimental support and lower potential of mean force, indicating that they might be sampled more frequently. Additionally, these subpathways were supported by previous experimental studies. Several pairwise interactions, including a cation-π interaction and charge and hydrogen bond interactions, were identified as potentially playing important roles in the unbinding event.
Collapse
Affiliation(s)
- Rilei Yu
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|
50
|
Lummis SCR, Harrison NJ, Wang J, Ashby JA, Millen KS, Beene DL, Dougherty DA. Multiple Tyrosine Residues Contribute to GABA Binding in the GABA(C) Receptor Binding Pocket. ACS Chem Neurosci 2012; 3:186-192. [PMID: 22448304 PMCID: PMC3309607 DOI: 10.1021/cn200103n] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/06/2011] [Indexed: 11/28/2022] Open
Abstract
![]()
The ligand binding site of Cys-loop receptors is dominated
by aromatic
amino acids. In GABAC receptors, these are predominantly
tyrosine residues, with a number of other aromatic residues located
in or close to the binding pocket. Here we examine the roles of these
residues using substitution with both natural and unnatural amino
acids followed by functional characterization. Tyr198 (loop B) has
previously been shown to form a cation−π interaction
with GABA; the current data indicate that none of the other aromatic
residues form such an interaction, although the data indicate that
both Tyr102 and Phe138 may contribute to stabilization of the positively
charged amine of GABA. Tyr247 (loop C) was very sensitive to substitution
and, combined with data from a model of the receptor, suggest a π–π
interaction with Tyr241 (loop C); here again functional data show
aromaticity is important. In addition the hydroxyl group of Tyr241
is important, supporting the presence of a hydrogen bond with Arg104
suggested by the model. At position Tyr102 (loop D) size and aromaticity
are important; this residue may play a role in receptor gating and/or
ligand binding. The data also suggest that Tyr167, Tyr200, and Tyr208
have a structural role while Tyr106, Trp246, and Tyr251 are not critical.
Comparison of the agonist binding site “aromatic box”
across the superfamily of Cys-loop receptors reveals some interesting
parallels and divergences.
Collapse
Affiliation(s)
- Sarah C. R. Lummis
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge
CB2 1QW, United Kingdom
| | - Neil J. Harrison
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge
CB2 1QW, United Kingdom
| | - Jinti Wang
- Division of Chemistry and Chemical
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Jamie A. Ashby
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge
CB2 1QW, United Kingdom
| | - Katherine S. Millen
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge
CB2 1QW, United Kingdom
| | - Darren L. Beene
- Division of Chemistry and Chemical
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Dennis A. Dougherty
- Division of Chemistry and Chemical
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|