1
|
O'Callahan BT, Larsen A, Leichty S, Cliff J, Gagnon AC, Raschke MB. Correlative chemical and elemental nano-imaging of morphology and disorder at the nacre-prismatic region interface in Pinctada margaritifera. Sci Rep 2023; 13:21258. [PMID: 38040799 PMCID: PMC10692121 DOI: 10.1038/s41598-023-47446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023] Open
Abstract
Understanding biomineralization relies on imaging chemically heterogeneous organic-inorganic interfaces across a hierarchy of spatial scales. Further, organic minority phases are often responsible for emergent inorganic structures from the atomic arrangement of different polymorphs, to nano- and micrometer crystal dimensions, up to meter size mollusk shells. The desired simultaneous chemical and elemental imaging to identify sparse organic moieties across a large field-of-view with nanometer spatial resolution has not yet been achieved. Here, we combine nanoscale secondary ion mass spectroscopy (NanoSIMS) with spectroscopic IR s-SNOM imaging for simultaneous chemical, molecular, and elemental nanoimaging. At the example of Pinctada margaritifera mollusk shells we identify and resolve ~ 50 nm interlamellar protein sheets periodically arranged in regular ~ 600 nm intervals. The striations typically appear ~ 15 µm from the nacre-prism boundary at the interface between disordered neonacre to mature nacre. Using the polymorph distinctive IR-vibrational carbonate resonance, the nacre and prismatic regions are consistently identified as aragonite ([Formula: see text] cm-1) and calcite ([Formula: see text] cm-1), respectively. We observe previously unreported morphological features including aragonite subdomains encapsulated in extensions of the prism-covering organic membrane and regions of irregular nacre tablet formation coincident with dispersed organics. We also identify a ~ 200 nm region in the incipient nacre region with less well-defined crystal structure and integrated organics. These results show with the identification of the interlamellar protein layer how correlative nano-IR chemical and NanoSIMS elemental imaging can help distinguish different models proposed for shell growth in particular, and how organic function may relate to inorganic structure in other biomineralized systems in general.
Collapse
Affiliation(s)
- Brian T O'Callahan
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Amy Larsen
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Sarah Leichty
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - John Cliff
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Alex C Gagnon
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Markus B Raschke
- Department of Physics, and JILA, University of Colorado at Boulder, Boulder, CO, USA.
| |
Collapse
|
2
|
Sadeghian Dehkord E, Kerckhofs G, Compère P, Lambert F, Geris L. An Empirical Model Linking Physico-Chemical Biomaterial Characteristics to Intra-Oral Bone Formation. J Funct Biomater 2023; 14:388. [PMID: 37504883 PMCID: PMC10381523 DOI: 10.3390/jfb14070388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
Facial trauma, bone resection due to cancer, periodontal diseases, and bone atrophy following tooth extraction often leads to alveolar bone defects that require bone regeneration in order to restore dental function. Guided bone regeneration using synthetic biomaterials has been suggested as an alternative approach to autologous bone grafts. The efficiency of bone substitute materials seems to be influenced by their physico-chemical characteristics; however, the debate is still ongoing on what constitutes optimal biomaterial characteristics. The purpose of this study was to develop an empirical model allowing the assessment of the bone regeneration potential of new biomaterials on the basis of their physico-chemical characteristics, potentially giving directions for the design of a new generation of dental biomaterials. A quantitative data set was built composed of physico-chemical characteristics of seven commercially available intra-oral bone biomaterials and their in vivo response. This empirical model allowed the identification of the construct parameters driving optimized bone formation. The presented model provides a better understanding of the influence of driving biomaterial properties in the bone healing process and can be used as a tool to design bone biomaterials with a more controlled and custom-made composition and structure, thereby facilitating and improving the clinical translation.
Collapse
Affiliation(s)
- Ehsan Sadeghian Dehkord
- GIGA In Silico Medicine, Biomechanics Research Unit (Biomech), University of Liège, 4000 Liège, Belgium
- Prometheus, Division for Skeletal Tissue Engineering, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Greet Kerckhofs
- Prometheus, Division for Skeletal Tissue Engineering, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- Biomechanics Laboratory, Institute of Mechanics, Materials, and Civil Engineering (iMMC), Université Catholique Louvain, 1348 Louvain-la-Neuve, Belgium
- Institute of Experimental and Clinical Research (IREC), Université Catholique Louvain, 1200 Woluwé-Saint-Lambert, Belgium
- Department of Materials Engineering (MTM), Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Philippe Compère
- Laboratory of Functional and Evolutionary Morphology, FOCUS Research Unit, Department of Biology, Ecology and Evolution, University of Liège, 4000 Liège, Belgium
- Center for Applied Research and Education in Microscopy (CAREM) and Biomaterials Interfaculty Center (CEIB), University of Liège, 4000 Liège, Belgium
| | - France Lambert
- Department of Periodontology, Oral Surgery and Implant Surgery, Faculty of Medicine, University Hospital of Liège, 4000 Liège, Belgium
- Dental Biomaterials Research Unit (d-BRU), University of Liège, 4000 Liège, Belgium
| | - Liesbet Geris
- GIGA In Silico Medicine, Biomechanics Research Unit (Biomech), University of Liège, 4000 Liège, Belgium
- Prometheus, Division for Skeletal Tissue Engineering, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- Department of Mechanical Engineering, Division of Biomechanics (BMe), Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| |
Collapse
|
3
|
Mertz EL, Makareeva E, Mirigian LS, Leikin S. Bone Formation in 2D Culture of Primary Cells. JBMR Plus 2022; 7:e10701. [PMID: 36699640 PMCID: PMC9850442 DOI: 10.1002/jbm4.10701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/15/2022] [Accepted: 10/16/2022] [Indexed: 11/13/2022] Open
Abstract
Relevance of mineralized nodules in two-dimensional (2D) osteoblast/osteocyte cultures to bone biology, pathology, and engineering is a decades old question, but a comprehensive answer appears to be still wanting. Bone-like cells, extracellular matrix (ECM), and mineral were all reported but so were non-bone-like ones. Many studies described seemingly bone-like cell-ECM structures based on similarity to few select bone features in vivo, yet no studies examined multiple bone features simultaneously and none systematically studied all types of structures coexisting in the same culture. Here, we report such comprehensive analysis of 2D cultures based on light and electron microscopies, Raman microspectroscopy, gene expression, and in situ messenger RNA (mRNA) hybridization. We demonstrate that 2D cultures of primary cells from mouse calvaria do form bona fide bone. Cells, ECM, and mineral within it exhibit morphology, structure, ultrastructure, composition, spatial-temporal gene expression pattern, and growth consistent with intramembranous ossification. However, this bone is just one of at least five different types of cell-ECM structures coexisting in the same 2D culture, which vary widely in their resemblance to bone and ability to mineralize. We show that the other two mineralizing structures may represent abnormal (disrupted) bone and cartilage-like structure with chondrocyte-to-osteoblast transdifferentiation. The two nonmineralizing cell-ECM structures may mimic periosteal cambium and pathological, nonmineralizing osteoid. Importantly, the most commonly used culture conditions (10mM β-glycerophosphate) induce artificial mineralization of all cell-ECM structures, which then become barely distinguishable. We therefore discuss conditions and approaches promoting formation of bona fide bone and simple means for distinguishing it from the other cell-ECM structures. Our findings may improve osteoblast differentiation and function analyses based on 2D cultures and extend applications of these cultures to general bone biology and tissue engineering research. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Edward L. Mertz
- Eunice Kennedy Shriver National Institute of Health and Human DevelopmentNational Institutes of HealthBethesdaMDUSA
| | - Elena Makareeva
- Eunice Kennedy Shriver National Institute of Health and Human DevelopmentNational Institutes of HealthBethesdaMDUSA
| | - Lynn S. Mirigian
- Eunice Kennedy Shriver National Institute of Health and Human DevelopmentNational Institutes of HealthBethesdaMDUSA
| | - Sergey Leikin
- Eunice Kennedy Shriver National Institute of Health and Human DevelopmentNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
4
|
Nobis B, Ostermann T, Weiler J, Dittmar T, Friedmann A. Impact of Cross-Linked Hyaluronic Acid on Osteogenic Differentiation of SAOS-2 Cells in an Air-Lift Model. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6528. [PMID: 36233870 PMCID: PMC9572243 DOI: 10.3390/ma15196528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to investigate the impact of cross-linked hyaluronic acid on osteoblast-like cells seeded on top of two collagen substrates, native porcine pericardium membrane (substrate A) and ribose cross-linked collagen membranes (substrate B), in an air-lift model. Substrates A or B, saturated with three hyaluronic acid concentrations, served as membranes for SAOS-2 cells seeded on top. Cultivation followed for 7 and 14 days in the air-lift model. Controls used the same substrates without hyaluronic pre-treatment. Cells were harvested, and four (Runx2, BGLAP, IBSP, Cx43) different osteogenic differentiation markers were assessed by qPCR. Triplicated experiment outcomes were statistically analyzed (ANOVA, t-test; SPSS). Supplementary histologic analysis confirmed the cells' vitality. After seven days, only few markers were overexpressed on both substrates. After 14 days, targeted genes were highly expressed on substrate A. The same substrate treated with 1:100 diluted xHyA disclosed statistically significant different expression level vs. substrate B (p = 0.032). Time (p = 0.0001), experimental condition as a function of time (p = 0.022), and substrate (p = 0.028) were statistically significant factors. Histological imaging demonstrated vitality and visualized nuclei. We conclude that the impact of hyaluronic acid resulted in a higher expression profile of SAOS-2 cells on substrate A compared to substrate B in an air-lift culture after two weeks.
Collapse
Affiliation(s)
- Bianca Nobis
- Department of Periodontology, School of Dentistry, Faculty of Health, Witten-Herdecke University, Alfred-Herrhausen-Str. 50, 58455 Witten, Germany
- Institute of Immunology, Centre of Biomedical Education and Research (ZBAF), Stockumer Str. 10, 58448 Witten, Germany
| | - Thomas Ostermann
- Department of Psychology, Witten-Herdecke University, 58455 Witten, Germany
| | - Julian Weiler
- Institute of Immunology, Centre of Biomedical Education and Research (ZBAF), Stockumer Str. 10, 58448 Witten, Germany
| | - Thomas Dittmar
- Institute of Immunology, Centre of Biomedical Education and Research (ZBAF), Stockumer Str. 10, 58448 Witten, Germany
| | - Anton Friedmann
- Department of Periodontology, School of Dentistry, Faculty of Health, Witten-Herdecke University, Alfred-Herrhausen-Str. 50, 58455 Witten, Germany
- Institute of Immunology, Centre of Biomedical Education and Research (ZBAF), Stockumer Str. 10, 58448 Witten, Germany
| |
Collapse
|
5
|
Optimizing Design Parameters of PLA 3D-Printed Scaffolds for Bone Defect Repair. SURGERIES 2022. [DOI: 10.3390/surgeries3030018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Current materials used to fill bone defects (ceramics, cement) either lack strength or do not induce bone repair. The use of biodegradable polymers such as PLA may promote patient healing by stimulating the production of new bone in parallel with a controlled degradation of the scaffold. This project aims to determine the design parameters maximising scaffold mechanical performance in such materials. Starting from a base cylindrical model of 10 mm height and of outer and inner diameters of 10 and 4 mm, respectively, 27 scaffolds were designed. Three design parameters were investigated: pore distribution (crosswise, lengthwise, and eccentric), pore shape (triangular, circular, and square), and pore size (surface area of 0.25 mm2, 0.5625 mm2, and 1 mm2). Using the finite element approach, a compressive displacement (0.05 mm/s up to 15% strain) was simulated on the models and the resulting scaffold stiffnesses (N/mm2) were compared. The models presenting good mechanical behaviors were further printed along two orientations: 0° (cylinder sitting on its base) and 90° (cylinder laying on its side). A total of n = 5 specimens were printed with PLA for each of the retained models and experimentally tested using a mechanical testing machine with the same compression parameters. Rigidity and yield strength were evaluated from the experimental curves. Both numerically and experimentally, the highest rigidity was found in the model with circular pore shape, crosswise pore distribution, small pore size (surface area of 0.25 mm2), and a 90° printing orientation. Its average rigidity reached 961 ± 32 MPa from the mechanical testing and 797 MPa from the simulation, with a yield strength of 42 ± 1.5 MPa. The same model with a printing orientation of 0° resulted in an average rigidity of 515 ± 7 MPa with a yield strength of 32 ± 1.6 MPa. Printing orientation and pore size were found to be the most influential design parameters on rigidity. The developed design methodology should accelerate the identification of effective scaffolds for future in vitro and in vivo studies.
Collapse
|
6
|
Chakraborty J, Roy S, Ghosh S. 3D Printed Hydroxyapatite Promotes Congruent Bone Ingrowth in Rat Load Bearing Defects. Biomed Mater 2022; 17. [PMID: 35381582 DOI: 10.1088/1748-605x/ac6471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/05/2022] [Indexed: 11/11/2022]
Abstract
3D porous hydroxyapatite scaffolds produced by conventional foaming processes have limited control over the scaffold's pore size, geometry, and pore interconnectivity. In addition, random internal pore architecture often results in limited clinical success. Imitating the intricate 3D architecture and the functional dynamics of skeletal deformations is a difficult task, highlighting the necessity for a custom-made, on-demand tissue replacement, for which 3D printing is a potential solution. To combat these problems, here we report the ability of 3D printed hydroxyapatite scaffolds for in vivo bone regeneration in a rat tibial defect model. Rapid prototyping using the direct-write technique to fabricate 25 mm2 hydroxyapatite scaffolds were employed for precise control over geometry (both external and internal) and scaffold chemistry. Bone ingrowth was determined using histomorphometry and a novel micro-CT image analysis. Substantial bone ingrowth was observed in implants that filled the defect site. Further validating this quantitatively by micro-CT, the Bone mineral density of the implant at the defect site was 1024 mgHA/ccm, which was approximately 61.5% more than the bone mineral density found with the sham control at the defect site. In addition, no evident immunoinflammatory response was observed in the H&E micrographs. Interestingly, the present study showed a positive correlation with the outcomes obtained in our previous in vitro study. Overall, the results suggest that 3D printed hydroxyapatite scaffolds developed in this study offer a suitable matrix for rendering patient-specific and defect-specific bone formation and warrant further testing for clinical application.
Collapse
Affiliation(s)
- Juhi Chakraborty
- Indian Institute of Technology Delhi, Hauz Khas, New Delhi, Delhi, 110016, INDIA
| | - Subhadeep Roy
- Indian Institute of Technology Delhi, Hauz Khas, New Delhi, Delhi, 110016, INDIA
| | - Sourabh Ghosh
- Department of Textile Technology, Indian Institute of Technology Delhi, TX-110C, Hauz Khas, New Delhi, 110016, New Delhi, 110016, INDIA
| |
Collapse
|
7
|
Dentin Matrix Protein 1 on Titanium Surface Facilitates Osteogenic Differentiation of Stem Cells. Molecules 2021; 26:molecules26226756. [PMID: 34833848 PMCID: PMC8621853 DOI: 10.3390/molecules26226756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Dentin matrix protein 1 (DMP1) contains a large number of acidic domains, multiple phosphorylation sites, a functional arginine-glycine-aspartate (RGD) motif, and a DNA binding domain, and has been shown to play essential regulatory function in dentin and bone mineralization. DMP1 could also orchestrate bone matrix formation, but the ability of DMP1 on Ti to human mesenchymal stem cell (hMSC) conversion to osteoblasts has not been studied. There is importance to test if the DMP1 coated Ti surface would promote cell migration and attachment to the metal surface and promote the differentiation of the attached stem cells to an osteogenic lineage. This study aimed to study the human mesenchymal stem cells (hMSCs) attachment and proliferation on DMP1 coated titanium (Ti) disks compared to non-coated disks, and to assess possible osteoblastic differentiation of attached hMSCs. Sixty-eight Ti disks were divided into two groups. Group 1 disks were coated with dentin matrix protein 1 and group 2 disks served as control. Assessment with light microscopy was used to verify hMSC attachment and proliferation. Cell viability was confirmed through fluorescence microscopy and mitochondrial dehydrogenase activity. Real-time polymerase chain reaction analysis was done to study the gene expression. The proliferation assay showed significantly greater cell proliferation with DMP1 coated disks compared to the control group (p-value < 0.001). Cell vitality analysis showed a greater density of live cells on DMP1 coated disks compared to the control group. Alkaline phosphatase staining revealed higher enzyme activity on DMP1 coated disks and showed itself to be significantly higher than the control group (p-value < 0.001). von Kossa staining revealed higher positive areas for mineralized deposits on DMP1 coated disks than the control group (p-value < 0.05). Gene expression analysis confirmed upregulation of runt-related transcription factor 2, osteoprotegerin, osteocalcin, osteopontin, and alkaline phosphatase on DMP1 coated disks (p-value < 0.001). The dentin matrix protein promoted the adhesion, proliferation, facilitation differentiation of hMSC, and mineralized matrix formation.
Collapse
|
8
|
Suspension of Amorphous Calcium Phosphate Nanoparticles Impact Commitment of Human Adipose-Derived Stem Cells In Vitro. BIOLOGY 2021; 10:biology10070675. [PMID: 34356530 PMCID: PMC8301486 DOI: 10.3390/biology10070675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022]
Abstract
Amorphous calcium phosphate (aCaP) nanoparticles may trigger the osteogenic commitment of adipose-derived stem cells (ASCs) in vitro. The ASCs of three human donors are investigated using basal culture medium DMEM to either 5 or 50 µg/mL aCaP nanoparticles suspension (control: no nanoparticles). After 7 or 14 days, stem cell marker genes, as well as endothelial, osteogenic, chondrogenic, and adipogenic genes, are analyzed by qPCR. Free calcium and phosphate ion concentrations are assessed in the cell culture supernatant. After one week and 5 µg/mL aCaP, downregulation of osteogenic markers ALP and Runx2 is found, and averaged across the three donors. Our results show that after two weeks, ALP is further downregulated, but Runx2 is upregulated. Endothelial cell marker genes, such as CD31 and CD34, are upregulated with 50 µg/mL aCaP and a 2-week exposure. Inter-donor variability is high: Two out of three donors show a significant upregulation of ALP and Runx2 at day 14 with 50 µg/mL aCaP compared to 5 µg/mL aCaP. Notably, all changes in stem cell commitment are obtained in the absence of an osteogenic medium. While the chemical composition of the culture medium and the saturation status towards calcium phosphate phases remain approximately the same for all conditions, gene expression of ASCs changes considerably. Hence, aCaP nanoparticles show the potential to trigger osteogenic and endothelial commitment in ASCs.
Collapse
|
9
|
Min Y, Xu W, Xiao Y, Xiao J, Shu Z, Li S, Zhang J, Liu Y, Yin Y, Zhang X, Meng J. Biomineralization improves the stability of a Streptococcus pneumoniae protein vaccine at high temperatures. Nanomedicine (Lond) 2021; 16:1747-1761. [PMID: 34264093 DOI: 10.2217/nnm-2021-0023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: Protein vaccines have been the focus of research for vaccine development due to their safety record and facile production. Improving the stability of proteins is of great significance to the application of protein vaccines. Materials & methods: Based on the proteins pneumolysin and DnaJ of Streptococcus pneumoniae, biomineralization was carried out to prepare protein nanoparticles, and their thermal stability was tested both in vivo and in vitro. Results: Mineralized nanoparticles were formed successfully and these calcium phosphate-encapsulated proteins were resistant to proteinase K degradation and were thermally stable at high temperatures. The mineralized proteins retained the immunoreactivity of the original proteins. Conclusion: Mineralization technology is an effective means to stabilize protein vaccines, presenting a safe and economical method for vaccine administration.
Collapse
Affiliation(s)
- Yajun Min
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, PR China.,Department of Obstetrics & Gynecology, Assisted Reproductive Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Wenchun Xu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Yunju Xiao
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Jiangming Xiao
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Zhaoche Shu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Sijie Li
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Jinghui Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Yusi Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Yibing Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Xuemei Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Jiangping Meng
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
10
|
Jablonská E, Horkavcová D, Rohanová D, Brauer DS. A review of in vitro cell culture testing methods for bioactive glasses and other biomaterials for hard tissue regeneration. J Mater Chem B 2021; 8:10941-10953. [PMID: 33169773 DOI: 10.1039/d0tb01493a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bioactive glasses are used to regenerate bone by a mechanism which involves surface degradation, the release of ions such as calcium, soluble silica and phosphate and the precipitation of a biomimetic apatite surface layer on the glass. One major area of bioactive glass research is the incorporation of therapeutically active ions to broaden the application range of these materials. When developing such new compositions, in vitro cell culture studies are a key part of their characterisation. However, parameters of cell culture studies vary widely, and depending on the intended use of bioactive glass compositions, different layouts, cell types and assays need to be used. The aim of this publication is to provide materials scientists, particularly those new to cell culture studies, with a tool for selecting the most appropriate assays to give insight into the properties of interest.
Collapse
Affiliation(s)
- Eva Jablonská
- Laboratory of Molecular Biology and Virology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technická 3, 166 28 Prague 6, Czech Republic.
| | - Diana Horkavcová
- Laboratory of Chemistry and Technology of Glasses, Department of Glass and Ceramics, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Dana Rohanová
- Laboratory of Chemistry and Technology of Glasses, Department of Glass and Ceramics, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Delia S Brauer
- Otto Schott Institute of Materials Research, Faculty of Chemistry and Earth Sciences, Friedrich Schiller University Jena, Fraunhoferstr. 6, 07743 Jena, Germany.
| |
Collapse
|
11
|
Maher S, Wijenayaka AR, Lima-Marques L, Yang D, Atkins GJ, Losic D. Advancing of Additive-Manufactured Titanium Implants with Bioinspired Micro- to Nanotopographies. ACS Biomater Sci Eng 2021; 7:441-450. [PMID: 33492936 DOI: 10.1021/acsbiomaterials.0c01210] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
There is an increasing demand for low-cost and more efficient titanium (Ti) medical implants that will provide improved osseointegration and at the same time reduce the likelihood of infection. In the past decade, additive manufacturing (AM) using metal selective laser melting (SLM) or three-dimensional (3D) printing techniques has emerged to enable novel implant geometries or properties to overcome such potential challenges. This study presents a new surface engineering approach to create bioinspired multistructured surfaces on SLM-printed Ti alloy (Ti6Al4V) implants by combining SLM technology, electrochemical anodization, and hydrothermal (HT) processes. The resulting implants display unique surfaces with a distinctive dual micro- to nano-topography composed of micron-sized spherical features, fabricated by SLM and vertically aligned nanoscale pillar structures as a result of combining anodization and HT treatment. The fabricated implants enhanced hydroxyapatite-like mineral deposition from simulated body fluid (SBF) compared to control. In addition, normal human osteoblast-like cells (NHBCs) showed strong adhesion to the nano-/microstructures and displayed greater propensity to mineralize compared to control surfaces. This engineering approach and the resulting nature-inspired multiscale-structured surface offers desired features for improving osseointegration and antibacterial performance toward the development of next-generation orthopedic and dental implants.
Collapse
Affiliation(s)
- Shaheer Maher
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Asiri R Wijenayaka
- Centre for Orthopaedic and Trauma Research, Adelaide Medical School, Discipline of Orthopaedics and Trauma, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Luis Lima-Marques
- The Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Dongqing Yang
- Centre for Orthopaedic and Trauma Research, Adelaide Medical School, Discipline of Orthopaedics and Trauma, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Gerald J Atkins
- Centre for Orthopaedic and Trauma Research, Adelaide Medical School, Discipline of Orthopaedics and Trauma, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
12
|
Blufstein A, Behm C, Kubin B, Gahn J, Rausch-Fan X, Moritz A, Andrukhov O. Effect of vitamin D 3 on the osteogenic differentiation of human periodontal ligament stromal cells under inflammatory conditions. J Periodontal Res 2021; 56:579-588. [PMID: 33547643 PMCID: PMC8248386 DOI: 10.1111/jre.12858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/21/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022]
Abstract
Objectives Vitamin D3 is known to activate osteogenic differentiation of human periodontal ligament stromal cells (hPDLSCs). Recently, inflammatory stimuli were shown to inhibit the transcriptional activity of hPDLSCs, but their effect on vitamin D3‐induced osteogenic differentiation is not known. The present study aimed to investigate whether the effects of 1,25‐dihydroxvitamin D3 (1,25(OH)2D3) and 25‐hydroxvitamin D3 (25(OH)D3) on the osteogenic differentiation of hPDLSCs are also altered under inflammatory conditions. Furthermore, the expression of osteogenesis‐related factors by hPDLSCs under osteogenic conditions was assessed in the presence of inflammatory stimuli. Materials and Methods Primary hPDLSCs of six donors were cultured in osteogenic induction medium containing either 1,25(OH)2D3 (0‐10 nM) or 25(OH)D3 (0‐100 nM) in the presence and absence of Porphyromonas gingivalis lipopolysaccharide (LPS) or Pam3CSK4 for 7, 14 and 21 days. Osteogenic differentiation of hPDLSCs was evaluated by analysis of mineralization as assessed by Alizarin Red S staining and gene expression levels of osteogenesis‐related factors osteocalcin, osteopontin and runt‐related transcription factor 2 (RUNX2) were analysed with qPCR. Results Treatment with 1,25(OH)2D3 significantly enhanced the osteogenic differentiation of hPDLSCs and their expression of osteocalcin and osteopontin. The 1,25(OH)2D3‐triggered expression of osteogenesis‐related factors was significantly lower in the presence of Pam3CSK4, but not P. gingivalis LPS. None of the inflammatory stimuli had significant effects on the 1,25(OH)2D3‐induced osteogenic differentiation. 25(OH)D3 neither affected gene expression levels nor osteogenic differentiation of hPDLSCs cultured in osteogenic induction medium. Conclusion The results of this study indicate that inflammatory stimuli also diminish the 1,25(OH)2D3‐induced expression of osteogenesis‐related factors in hPDLSCs under osteogenic conditions, while having no effect on the osteogenic differentiation.
Collapse
Affiliation(s)
- Alice Blufstein
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christian Behm
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Barbara Kubin
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Johannes Gahn
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Andreas Moritz
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Oleh Andrukhov
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Embedding cells within nanoscale, rapidly mineralizing hydrogels: A new paradigm to engineer cell-laden bone-like tissue. J Struct Biol 2020; 212:107636. [PMID: 33039511 DOI: 10.1016/j.jsb.2020.107636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 11/20/2022]
Abstract
Bone mineralization is a highly specific and dynamic nanoscale process that has been studied extensively from a structural, chemical, and biological standpoint. Bone tissue, therefore, may be defined by the interplay of its intricately mineralized matrix and the cells that regulate its biological function. However, the far majority of engineered bone model systems and bone replacement materials have been unable to replicate this key characteristic of bone tissue; that is, the ability of cells to be gradually and rapidly embedded in a three-dimensional (3D) heavily calcified matrix material. Here we review the characteristics that define the bone matrix from a nanostructural perspective. We then revisit the benefits and challenges of existing model systems and engineered bone replacement materials, and discuss recent efforts to replicate the biological, cellular, mechanical, and materials characteristics of bone tissue on the nano- to microscale. We pay particular attention to a recently proposed method developed by our group, which seeks to replicate key aspects of the entrapment of bone cells within a mineralized matrix with precisions down to the level of individual nano-crystallites, inclusive of the bone vasculature, and osteogenic differentiation process. In summary, this paper discusses existing and emerging evidence pointing towards future developments bridging the gap between the fields of biomineralization, structural biology, stem cells, and tissue engineering, which we believe will hold the key to engineer truly functional bone-like tissue in the laboratory.
Collapse
|
14
|
Abuna G, Campos P, Hirashi N, Giannini M, Nikaido T, Tagami J, Coelho Sinhoreti MA, Geraldeli S. The ability of a nanobioglass-doped self-etching adhesive to re-mineralize and bond to artificially demineralized dentin. Dent Mater 2020; 37:120-130. [PMID: 33229040 DOI: 10.1016/j.dental.2020.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/17/2020] [Accepted: 10/24/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To a self-etch adhesive doped with nano-bioglass and evaluate its ability to bond and re-mineralize artificially demineralized dentin. METHODS Experimental Si, Ca, Na and PO4 based nanobioglass particles were synthesized, doped into experimental self-etch adhesives, and divided into 3 groups: Clearfi SE2 (CSE2), experimental (EXC), and experimental doped with 10% of nanobioglass (ExNB). The adhesives were applied onto the caries-affected dentin (chemically simulated), and evaluated after 24 h and 28 days of immersion in simulated body fluid. The remineralization process was assessed using optical coherence tomography, nanoindentation, in situ zymography, transmission electron microscopy, confocal laser scanning microscopy, μ-tensile bond strength, and pH buffer. RESULTS The addition of nanobioglass particles into the experimental self-etch adhesives altered the μTBS in the short-term jeopardizing dentin bonding properties, when compared to the non-doped self-etch adhesive. The remineralization recovered the nanohardness, and volume lost by caries lesion (p = 0.02). Moreover, reduced the enzymatic activity (p = 1.24E-4) and formed new crystals within of the hybrid layer. CONCLUSION The use of nanobioglass was efficient to recover the properties of a caries affected dentin. Furthermore, the adhesive properties were not hampered and the probabilistic reliability increased.
Collapse
Affiliation(s)
- Gabriel Abuna
- Restorative Dentistry Department, Dental Materials Division, Piracicaba Dental School, State University of Campinas, Piracicaba, Sao Paulo, Brazil; Cariology and Operative Dentistry Department, Tokyo Medical and Dental University, Tokyo, Japan; General Dentistry Department, Division of Biomedical Materials, East Carolina University School of Dental Medicine, Greenville, NC, USA.
| | - Paulo Campos
- Restorative Dentistry Department, Dental Materials Division, Piracicaba Dental School, State University of Campinas, Piracicaba, Sao Paulo, Brazil
| | - Noriko Hirashi
- Cariology and Operative Dentistry Department, Tokyo Medical and Dental University, Tokyo, Japan
| | - Marcelo Giannini
- Restorative Dentistry Department, Dental Materials Division, Piracicaba Dental School, State University of Campinas, Piracicaba, Sao Paulo, Brazil
| | - Toru Nikaido
- Department of Operative Dentistry, Division of Oral Funtional Science and Rehabiltation, School of Dentistry, Asahi University, Gifu, Japan
| | - Junji Tagami
- Cariology and Operative Dentistry Department, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mario Alexandre Coelho Sinhoreti
- Restorative Dentistry Department, Dental Materials Division, Piracicaba Dental School, State University of Campinas, Piracicaba, Sao Paulo, Brazil
| | - Saulo Geraldeli
- General Dentistry Department, Division of Biomedical Materials, East Carolina University School of Dental Medicine, Greenville, NC, USA
| |
Collapse
|
15
|
Calcium and hydroxyapatite binding site of human vitronectin provides insights to abnormal deposit formation. Proc Natl Acad Sci U S A 2020; 117:18504-18510. [PMID: 32699145 DOI: 10.1073/pnas.2007699117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human blood protein vitronectin (Vn) is a major component of the abnormal deposits associated with age-related macular degeneration, Alzheimer's disease, and many other age-related disorders. Its accumulation with lipids and hydroxyapatite (HAP) has been demonstrated, but the precise mechanism for deposit formation remains unknown. Using a combination of solution and solid-state NMR experiments, cosedimentation assays, differential scanning fluorimetry (DSF), and binding energy calculations, we demonstrate that Vn is capable of binding both soluble ionic calcium and crystalline HAP, with high affinity and chemical specificity. Calcium ions bind preferentially at an external site, at the top of the hemopexin-like (HX) domain, with a group of four Asp carboxylate groups. The same external site is also implicated in HAP binding. Moreover, Vn acquires thermal stability upon association with either calcium ions or crystalline HAP. The data point to a mechanism whereby Vn plays an active role in orchestrating calcified deposit formation. They provide a platform for understanding the pathogenesis of macular degeneration and other related degenerative disorders, and the normal functions of Vn, especially those related to bone resorption.
Collapse
|
16
|
Karadas O, Mese G, Ozcivici E. Low magnitude high frequency vibrations expedite the osteogenesis of bone marrow stem cells on paper based 3D scaffolds. Biomed Eng Lett 2020; 10:431-441. [PMID: 32850178 PMCID: PMC7438393 DOI: 10.1007/s13534-020-00161-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/12/2020] [Accepted: 06/27/2020] [Indexed: 01/08/2023] Open
Abstract
Anabolic effects of low magnitude high frequency (LMHF) vibrations on bone tissue were consistently shown in the literature in vivo, however in vitro efforts to elucidate underlying mechanisms are generally limited to 2D cell culture studies. Three dimensional cell culture platforms better mimic the natural microenvironment and biological processes usually differ in 3D compared to 2D culture. In this study, we used laboratory grade filter paper as a scaffold material for studying the effects of LHMF vibrations on osteogenesis of bone marrow mesenchymal stem cells in a 3D system. LMHF vibrations were applied 15 min/day at 0.1 g acceleration and 90 Hz frequency for 21 days to residing cells under quiescent and osteogenic conditions. mRNA expression analysis was performed for alkaline phosphatase (ALP) and osteocalcin (OCN) genes, Alizarin red S staining was performed for mineral nodule formation and infrared spectroscopy was performed for determination of extracellular matrix composition. The highest osteocalcin expression, mineral nodule formation and the phosphate bands arising from the inorganic phase was observed for the cells incubated in osteogenic induction medium with vibration. Our results showed that filter paper can be used as a model scaffold system for studying the effects of mechanical loads on cells, and LMHF vibrations induced the osteogenic differentiation of stem cells.
Collapse
Affiliation(s)
- Ozge Karadas
- Department of Bioengineering, Rm A210, Izmir Institute of Technology, Urla, Izmir, 35430 Turkey
| | - Gulistan Mese
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Engin Ozcivici
- Department of Bioengineering, Rm A210, Izmir Institute of Technology, Urla, Izmir, 35430 Turkey
| |
Collapse
|
17
|
Blueberry Juice Antioxidants Protect Osteogenic Activity against Oxidative Stress and Improve Long-Term Activation of the Mineralization Process in Human Osteoblast-Like SaOS-2 Cells: Involvement of SIRT1. Antioxidants (Basel) 2020; 9:antiox9020125. [PMID: 32024159 PMCID: PMC7070538 DOI: 10.3390/antiox9020125] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/17/2022] Open
Abstract
Diets rich in fruits and vegetables with many antioxidants can be very important in the prevention and treatment of osteoporosis. Studies show that oxidative stress, often due to lack of antioxidants, is involved in alteration of bone remodeling and reduction in bone density. This study demonstrates in human osteoblast-like SaOS-2 cells that blueberry juice (BJ), containing 7.5 or 15 μg∙mL-1 total soluble polyphenols (TSP), is able to prevent the inhibition of osteogenic differentiation and the mineralization process due to oxidative stress induced by glutathione depletion. This situation mimics a metabolic condition of oxidative stress that may occur during estrogen deficiency. The effect of BJ phytochemicals occurs through redox- and non-redox-regulated mechanisms. BJ protects from oxidative damage factors related to bone remodeling and bone formation, such as alkaline phosphatase and Runt-related transcription factor 2. It upregulates these factors by activation of sirtuin type 1 deacetylase expression, a possible molecular target for anti-osteoporotic drugs. Quantitative analysis of TSP in BJ shows high levels of anthocyanins with high antioxidant capacity and bioavailability. These novel data may be important to elucidate the molecular and cellular beneficial effects of blueberry polyphenols on bone regeneration, and they suggest their use as a dietary supplement for osteoporosis prevention and therapies.
Collapse
|
18
|
Jun Y, Oh H, Karpoormath R, Jha A, Patel R. Role of microsphere as drug carrier for osteogenic differentiation. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1713783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yuju Jun
- Department of Nano Science and Engineering, Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Incheon, South Korea
| | - Hyunyoung Oh
- Department of Energy and Environmental Science and Engineering, Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Incheon, South Korea
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of Kwa Zulu Natal, Durban, South Africa
| | - Amitabh Jha
- Department of Chemistry, Acadia University, Wolfville, Canada
| | - Rajkumar Patel
- Department of Energy and Environmental Science and Engineering, Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Incheon, South Korea
| |
Collapse
|
19
|
Iwayama T, Okada T, Ueda T, Tomita K, Matsumoto S, Takedachi M, Wakisaka S, Noda T, Ogura T, Okano T, Fratzl P, Ogura T, Murakami S. Osteoblastic lysosome plays a central role in mineralization. SCIENCE ADVANCES 2019; 5:eaax0672. [PMID: 31281900 PMCID: PMC6609213 DOI: 10.1126/sciadv.aax0672] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/28/2019] [Indexed: 05/03/2023]
Abstract
Mineralization is the most fundamental process in vertebrates. It is predominantly mediated by osteoblasts, which secrete mineral precursors, most likely through matrix vesicles (MVs). These vesicular structures are calcium and phosphate rich and contain organic material such as acidic proteins. However, it remains largely unknown how intracellular MVs are transported and secreted. Here, we use scanning electron-assisted dielectric microscopy and super-resolution microscopy for assessing live osteoblasts in mineralizing conditions at a nanolevel resolution. We found that the calcium-containing vesicles were multivesicular bodies containing MVs. They were transported via lysosome and secreted by exocytosis. Thus, we present proof that the lysosome transports amorphous calcium phosphate within mineralizing osteoblasts.
Collapse
Affiliation(s)
- Tomoaki Iwayama
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Tomoko Okada
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Tsugumi Ueda
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Kiwako Tomita
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Shuji Matsumoto
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Masahide Takedachi
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Satoshi Wakisaka
- Department of Oral Anatomy and Development, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Takeshi Noda
- Center for Frontier Oral Science, Graduate School of Dentistry, and Graduate School of Frontier BioSciences, Osaka University, Osaka 565-0871, Japan
| | | | | | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam-Golm 14476, Germany
| | - Toshihiko Ogura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
- Corresponding author. (To. Ogura); (S. Mu.)
| | - Shinya Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
- Corresponding author. (To. Ogura); (S. Mu.)
| |
Collapse
|
20
|
Lee PS, Hess R, Friedrichs J, Haenchen V, Eckert H, Cuniberti G, Rancourt D, Krawetz R, Hintze V, Gelinsky M, Scharnweber D. Recapitulating bone development events in a customised bioreactor through interplay of oxygen tension, medium pH, and systematic differentiation approaches. J Tissue Eng Regen Med 2019; 13:1672-1684. [PMID: 31250556 DOI: 10.1002/term.2921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 12/12/2018] [Accepted: 02/13/2019] [Indexed: 11/08/2022]
Abstract
Bone development and homeostasis are intricate processes that require co-existence and dynamic interactions among multiple cell types. However, controlled dynamic niches that derive and support stable propagation of these cells from single stem cell source is not sustainable in conventional culturing vessels. In bioreactor cultures that support dynamic niches, the limited source and stability of growth factors are often a major limiting factor for long-term in vitro cultures. Hence, alternative growth factor-free differentiation approaches are designed and their efficacy to achieve different osteochondral cell types is investigated. Briefly, a dynamic niche is achieved by varying medium pH, oxygen tension (pO2 ) distribution in bioreactor, initiating chondrogenic differentiation with chondroitin sulphate A (CSA), and implementing systematic differentiation regimes. In this study, we demonstrated that CSA is a potent chondrogenic inducer, specifically in combination with acidic medium and low pO2 . Further, endochondral ossification is recapitulated through a systematic chondrogenic-osteogenic (ch-os) differentiation regime, and multiple osteochondral cell types are derived. Chondrogenic hypertrophy was also enhanced specifically in high pO2 regions. Consequently, mineralised constructs with higher structural integrity, volume, and tailored dimensions are achieved. In contrast, a continuous osteogenic differentiation regime (os-os) has derived compact and dense constructs, whereas a continuous chondrogenic differentiation regime (ch-ch) has attenuated construct mineralisation and impaired development. In conclusion, a growth factor-free differentiation approach is achieved through interplay of pO2 , medium pH, and systematic differentiation regimes. The controlled dynamic niches have recapitulated endochondral ossification and can potentially be exploited to derive larger bone constructs with near physiological properties.
Collapse
Affiliation(s)
- Poh Soo Lee
- Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| | - Ricarda Hess
- Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| | - Jens Friedrichs
- Leibniz Institute of Polymer Research Dresden e. V., Dresden, Germany
| | - Vanessa Haenchen
- Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany.,Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Hagen Eckert
- Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany.,Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, Dresden, Germany
| | - Gianaurelio Cuniberti
- Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany.,Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, Dresden, Germany
| | - Derrick Rancourt
- Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Roman Krawetz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vera Hintze
- Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| | - Michael Gelinsky
- Center for Translational Bone, Joint and Soft Tissue Research, Technische Universität Dresden, Dresden, Germany
| | - Dieter Scharnweber
- Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
21
|
Morsoleto MJMDS, Sella V, Machado P, Bomfim FD, Fernandes MH, Morgado F, Lopes Filho GDJ, Plapler H. Effect of low power laser in biomodulation of cultured osteoblastic cells of Wistar rats1. Acta Cir Bras 2019; 34:e201900210. [PMID: 30843943 PMCID: PMC6585914 DOI: 10.1590/s0102-8650201900210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/22/2019] [Indexed: 02/08/2023] Open
Abstract
Purpose To analyze aspects of the biomodulating effect of light in biological
tissues, bone cells from surgical explants of the femur of rats were
irradiated with low intensity laser. Methods Bone cells were cultured and irradiated with LASER light (GaAlAs). Growth,
cell viability, mineralized matrix formation, total protein dosage,
immunostimulatory properties, cytochemical analysis, gene expression of bone
proteins were examined using live cell imaging and cell counting by
colorimetric assay. The gene expression of: alkaline phosphatase (ALP), type
1 collagen, osteocalcin and osteopontin through the real-time polymerase
chain reaction. Results At 8 days, the viability of the irradiated culture was 82.3% and 72.4% in
non-irradiated cells. At 18 days, the cellular viability (with laser) was
77.42% and 47.62% without laser. At 8 days, the total protein concentration
was 21.622 mg / mol in the irradiated group and 16, 604 mg / mol in the
non-irradiated group and at 18 days the concentration was 37.25 mg / mol in
the irradiated group and 24, 95 mg / mol in the non-irradiated group. Conclusion The laser interfered in the histochemical reaction, cell viability, matrix
mineralization, and maintained the cellular expression of proteins
Collapse
Affiliation(s)
- Maria Jose Misael da Silva Morsoleto
- Postdoctoral, Postgraduate Program in Interdisciplinary Surgical Sciences, Universidade Federal de São Paulo (UNIFESP), Brazil. Design, intellectual and scientific content of the study; acquisition and interpretation of data; manuscript preparation and writing
| | - Valeria Sella
- Fellow PhD degree, Postgraduate Program in Interdisciplinary Surgical Science, UNIFESP, Sao Paulo-SP, Brazil. Conception and design of the study
| | - Paula Machado
- Physiotherapist, Postgraduate Program in Interdisciplinary Surgical Sciences, UNIFESP, Sao Paulo-SP, Brazil. Technical procedures
| | - Fernando do Bomfim
- Fellow PhD degree, Postgraduate Program in Interdisciplinary Surgical Sciences, UNIFESP, Sao Paulo-SP, Brazil. Technical procedures
| | - Maria Helena Fernandes
- Associate Professor, Department of Pharmacology and Cellular Compatibility, Dental Medicine Faculty, Universidade do Porto, Portugal. Histopathological examinations, Analysis and interpretation of data
| | - Fernando Morgado
- Associate Professor, Department of Biology, Universidade de Aveiro, Portugal. Analysis and interpretation of data, statistics analysis
| | - Gaspar de Jesus Lopes Filho
- Associate Professor, Department of Surgery, Medical School, UNIFESP, Sao Paulo-SP, Brazil. Critical revision, final approval
| | - Helio Plapler
- Associate Professor, Department of Surgery, Medical School, UNIFESP, Sao Paulo-SP, Brazil. Conception, design, intellectual and scientific content of the study; critical revision
| |
Collapse
|
22
|
Zakaria MN, Cahyanto A, El-Ghannam A. Calcium release and physical properties of modified carbonate apatite cement as pulp capping agent in dental application. Biomater Res 2018; 22:35. [PMID: 30546914 PMCID: PMC6282351 DOI: 10.1186/s40824-018-0146-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/27/2018] [Indexed: 12/30/2022] Open
Abstract
Background Carbonate apatite (CO3Ap) and silica-calcium phosphate composite (SCPC) are bone substitutes with good prospect for dental application. SCPC creates a hydroxyapatite surface layer and stimulate bone cell function while, CO3Ap induce apatite crystal formation with good adaptation providing good seal between cement and the bone. Together, these materials will add favorable properties as a pulp capping material to stimulate mineral barrier and maintain pulp vitality. The aim of this study is to investigate modification of CO3Ap cement combined with SCPC, later term as CO3Ap-SCPC cement (CAS) in means of its chemical (Calcium release) and physical properties (setting time, DTS and pH value). Methods The study consist of three groups; group 1 (100% calcium hydroxide, group 2 CO3Ap (60% DCPA: 40% vaterite, and group 3 CAS (60% DCPA: 20% vaterite: 20% SCPC. Distilled water was employed as a solution for group 1, and 0.2 mol/L Na3PO4 used for group 2 and group 3. Samples were evaluated with respect to important properties for pulp capping application such as pH, setting time, mechanical strength and calcium release evaluation. Results The fastest setting time was in CO3Ap cement group without SCPC, while the addition of 20% SCPC slightly increase the pH value but did not improved the cement mechanical strength, however, the mechanical strength of both CO3Ap groups were significantly higher than calcium hydroxide. All three groups released calcium ions and had alkaline pH. Highest pH level, as well as calcium released level, was in the control group. Conclusion The CAS cement had good mechanical and acceptable chemical properties for pulp capping application compared to calcium hydroxide as a gold standard. However, improvements and in vivo studies are to be carried out with the further development of this material.
Collapse
Affiliation(s)
- Myrna Nurlatifah Zakaria
- 1Department of Endodontology and Operative Dentistry, Program Study of Dentistry, Faculty of Medicine, Universitas Jenderal Achmad Yani, Cimahi, Indonesia
| | - Arief Cahyanto
- 2Department of Dental Materials Science and Technology, Faculty of Dentistry, Universitas Padjadjaran, Sumedang-Jatinangor, Indonesia
| | - Ahmed El-Ghannam
- 3Department of Mechanical Engineering and Engineering Science, The University of North Carolina at Charlotte, Charlotte, NC USA
| |
Collapse
|
23
|
Abedin E, Lari R, Mahdavi Shahri N, Fereidoni M. Development of a demineralized and decellularized human epiphyseal bone scaffold for tissue engineering: A histological study. Tissue Cell 2018; 55:46-52. [DOI: 10.1016/j.tice.2018.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 08/25/2018] [Accepted: 09/17/2018] [Indexed: 12/13/2022]
|
24
|
Turnbull G, Clarke J, Picard F, Riches P, Jia L, Han F, Li B, Shu W. 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater 2018; 3:278-314. [PMID: 29744467 PMCID: PMC5935790 DOI: 10.1016/j.bioactmat.2017.10.001] [Citation(s) in RCA: 598] [Impact Index Per Article: 85.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 12/13/2022] Open
Abstract
Bone is the second most commonly transplanted tissue worldwide, with over four million operations using bone grafts or bone substitute materials annually to treat bone defects. However, significant limitations affect current treatment options and clinical demand for bone grafts continues to rise due to conditions such as trauma, cancer, infection and arthritis. Developing bioactive three-dimensional (3D) scaffolds to support bone regeneration has therefore become a key area of focus within bone tissue engineering (BTE). A variety of materials and manufacturing methods including 3D printing have been used to create novel alternatives to traditional bone grafts. However, individual groups of materials including polymers, ceramics and hydrogels have been unable to fully replicate the properties of bone when used alone. Favourable material properties can be combined and bioactivity improved when groups of materials are used together in composite 3D scaffolds. This review will therefore consider the ideal properties of bioactive composite 3D scaffolds and examine recent use of polymers, hydrogels, metals, ceramics and bio-glasses in BTE. Scaffold fabrication methodology, mechanical performance, biocompatibility, bioactivity, and potential clinical translations will be discussed.
Collapse
Affiliation(s)
- Gareth Turnbull
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, 106 Rottenrow, Glasgow, G4 0NW, United Kingdom
- Department of Orthopaedic Surgery, Golden Jubilee National Hospital, Agamemnon St, Clydebank, G81 4DY, United Kingdom
| | - Jon Clarke
- Department of Orthopaedic Surgery, Golden Jubilee National Hospital, Agamemnon St, Clydebank, G81 4DY, United Kingdom
| | - Frédéric Picard
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, 106 Rottenrow, Glasgow, G4 0NW, United Kingdom
- Department of Orthopaedic Surgery, Golden Jubilee National Hospital, Agamemnon St, Clydebank, G81 4DY, United Kingdom
| | - Philip Riches
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, 106 Rottenrow, Glasgow, G4 0NW, United Kingdom
| | - Luanluan Jia
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, PR China
| | - Fengxuan Han
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, PR China
| | - Bin Li
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, PR China
| | - Wenmiao Shu
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, 106 Rottenrow, Glasgow, G4 0NW, United Kingdom
| |
Collapse
|
25
|
Studying biomineralization pathways in a 3D culture model of breast cancer microcalcifications. Biomaterials 2018; 179:71-82. [PMID: 29980076 DOI: 10.1016/j.biomaterials.2018.06.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022]
Abstract
Microcalcifications serve as diagnostic markers for breast cancer, yet their formation pathway(s) and role in cancer progression are debated due in part to a lack of relevant 3D culture models that allow studying the extent of cellular regulation over mineralization. Previous studies have suggested processes ranging from dystrophic mineralization associated with cell death to bone-like mineral deposition. Here, we evaluated microcalcification formation in 3D multicellular spheroids, generated from non-malignant, pre-cancer, and invasive cell lines from the MCF10A human breast tumor progression series. The spheroids with greater malignancy potential developed necrotic cores, thus recapitulating spatially distinct viable and non-viable areas known to regulate cellular behavior in tumors in vivo. The spatial distribution of the microcalcifications, as well as their compositions, were characterized using nanoCT, electron-microscopy, and X-ray spectroscopy. Apatite microcalcifications were primarily detected within the viable cell regions and their number and size increased with malignancy potential of the spheroids. Levels of alkaline phosphatase decreased with malignancy potential, whereas levels of osteopontin increased. These findings support a mineralization pathway in which cancer cells induce mineralization in a manner that is linked to their malignancy potential, but that is distinct from physiological osteogenic mineralization.
Collapse
|
26
|
Macri-Pellizzeri L, De Melo N, Ahmed I, Grant D, Scammell B, Sottile V. Live Quantitative Monitoring of Mineral Deposition in Stem Cells Using Tetracycline Hydrochloride. Tissue Eng Part C Methods 2018; 24:171-178. [PMID: 29353532 PMCID: PMC5865259 DOI: 10.1089/ten.tec.2017.0400] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The final stage of in vitro osteogenic differentiation is characterized by the production of mineral deposits containing calcium cations and inorganic phosphates, which populate the extracellular matrix (ECM) surrounding the cell monolayer. Conventional histological techniques for the assessment of mineralization, such as Von Kossa and Alizarin Red S staining, are end point techniques requiring cell fixation. Moreover, in both cases staining quantitation requires dye extraction, which irreversibly alters the ECM conformation and structure, therefore preventing the use of the sample for further analysis. In this study, the use of tetracycline hydrochloride (TC) is proposed for the nondestructive staining, quantitation, and imaging of mineralizing bone-like nodules in live cultures of human bone marrow mesenchymal stem cells cultured under osteogenic conditions. Overnight administration of TC to living cells was shown not to alter the metabolic activity or the progression of cell differentiation. When applied to differentiating cultures, cell exposure to serial doses of TC was found to produce quantifiable fluorescence emission specifically in osteogenic cultures. Incubation with TC enabled fluorescence imaging of mineralized areas in live cultures and the combination with other fluorophores using appropriate filters. These results demonstrate that serial TC administration over the differentiation time course provides a qualitative and quantitative tool for the monitoring and evaluation of the differentiation process in live cells.
Collapse
Affiliation(s)
- Laura Macri-Pellizzeri
- 1 Wolfson STEM Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham , Nottingham, United Kingdom .,2 Advanced Materials Group, Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Engineering, The University of Nottingham , Nottingham, United Kingdom
| | - Nigel De Melo
- 1 Wolfson STEM Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham , Nottingham, United Kingdom
| | - Ifty Ahmed
- 2 Advanced Materials Group, Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Engineering, The University of Nottingham , Nottingham, United Kingdom
| | - David Grant
- 2 Advanced Materials Group, Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Engineering, The University of Nottingham , Nottingham, United Kingdom
| | - Brigitte Scammell
- 3 Orthopaedics and Trauma Group, Division of Rheumatology, Orthopaedics, and Dermatology, School of Medicine, The University of Nottingham , Nottingham, United Kingdom
| | - Virginie Sottile
- 1 Wolfson STEM Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham , Nottingham, United Kingdom
| |
Collapse
|
27
|
Yao H, Li J, Li N, Wang K, Li X, Wang J. Surface Modification of Cardiovascular Stent Material 316L SS with Estradiol-Loaded Poly (trimethylene carbonate) Film for Better Biocompatibility. Polymers (Basel) 2017; 9:E598. [PMID: 30965897 PMCID: PMC6418789 DOI: 10.3390/polym9110598] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/27/2022] Open
Abstract
A delay in the endothelialization process represents a bottleneck in the application of a drug-eluting stent (DES) during cardiovascular interventional therapy, which may lead to a high risk of late restenosis. In this study, we used a novel active drug, estradiol, which may contribute to surface endothelialization of a DES, and prepared an estradiol-loaded poly (trimethylene carbonate) film (PTMC-E5) on the surface of the DES material, 316L stainless steel (316L SS), in order to evaluate its function in improving surface endothelialization. All the in vitro and in vivo experiments indicated that the PTMC-E5 film significantly improved surface hemocompatibility and anti-hyperplasia, anti-inflammation and pro-endothelialization properties. This novel drug-delivery system may provide a breakthrough for the surface endothelialization of cardiovascular DES.
Collapse
Affiliation(s)
- Hang Yao
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jingan Li
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450000, China.
| | - Na Li
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Kebing Wang
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Xin Li
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jin Wang
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
28
|
Binkley DM, Grandfield K. Advances in Multiscale Characterization Techniques of Bone and Biomaterials Interfaces. ACS Biomater Sci Eng 2017; 4:3678-3690. [PMID: 33429593 DOI: 10.1021/acsbiomaterials.7b00420] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The success of osseointegrated biomaterials often depends on the functional interface between the implant and mineralized bone tissue. Several parallels between natural and synthetic interfaces exist on various length scales from the microscale toward the cellular and the atomic scale structure. Interest lies in the development of more sophisticated methods to probe these hierarchical levels in tissues at both biomaterials interfaces and natural tissue interphases. This review will highlight new and emerging perspectives toward understanding mineralized tissues, particularly bone tissue, and interfaces between bone and engineered biomaterials at multilength scales and with multidimensionality. Emphasis will be placed on highlighting novel and correlative X-ray, ion, and electron beam imaging approaches, such as electron tomography, atom probe tomography, and in situ microscopies, as well as spectroscopic and mechanical characterizations. These less conventional approaches to imaging biomaterials are contributing to the evolution of the understanding of the structure and organization in bone and bone integrating materials.
Collapse
|
29
|
Mucuk G, Sepet E, Erguven M, Ekmekcı O, Bılır A. 1,25-Dihydroxyvitamin D 3 stimulates odontoblastic differentiation of human dental pulp-stem cells in vitro. Connect Tissue Res 2017; 58:531-541. [PMID: 27905856 DOI: 10.1080/03008207.2016.1264395] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND 1,25-Dihydroxyvitamin D3 (1,25-OH D3) plays an important role in mineralized tissue metabolism, including teeth. However, few studies have addressed its role in odontoblastic differentiation of human dental pulp-stem cells (hDPSCs). AIM This study aimed to understand the influence of various concentrations of 1,25-OH D3 on the proliferation capacity and early dentinogenesis responses of hDPSCs. MATERIALS AND METHODS hDPSCs were obtained from the impacted third molar teeth. Monolayer cultured cells were incubated with a differentiation medium containing different concentrations of 1,25-OH D3 (0.001, 0.01, and 0.1 µM). All groups were evaluated by S-phase rate [immunohistochemical (IHC) bromodeoxyuridine (BrdU) staining], STRO-1 and dentin sialoprotein (DSP)+ levels (IHC), and alkaline phosphatase (ALP, enzyme-linked immunosorbent assay (ELISA)) levels. RESULTS The number of cells that entered the S-phase was determined to be the highest and lowest in the control and 0.001 µM 1,25-OH D3 groups, respectively. The 0.1 µM vitamin D3 group had the highest increase in DSP+ levels. The highest Stro-1 levels were detected in the control and 0.1 µM 1,25-OH D3 groups, respectively. The 0.1 µM 1,25-OH D3 induced a mild increase in ALP activity. CONCLUSIONS This study demonstrated that 1,25-OH D3 stimulated odontoblastic differentiation of hDPSCs in vitro in a dose-dependent manner. The high DSP + cell number and a mild increase in ALP activity suggest that DPSCs treated with 0.1 μM 1,25-OH D3 are in the later stage of odontoblastic differentiation. The results confirm that 1,25-OH D3-added cocktail medium provides a sufficient microenvironment for the odontoblastic differentiation of hDPSCs in vitro.
Collapse
Affiliation(s)
- Goksen Mucuk
- a Pediatric Dentistry Department, Faculty of Dentistry , Istanbul University , Istanbul , Turkey
| | - Elif Sepet
- a Pediatric Dentistry Department, Faculty of Dentistry , Istanbul University , Istanbul , Turkey
| | - Mine Erguven
- b Medical Biochemistry Department, Faculty of Medicine , Istanbul Aydın University , Istanbul , Turkey
| | - Ozlem Ekmekcı
- c Biochemistry Department, Cerrahpasa Faculty of Medicine , Istanbul University , Istanbul , Turkey
| | - Ayhan Bılır
- d Histology and Embryology Department, Istanbul Faculty of Medicine , Istanbul Aydın University , Istanbul , Turkey
| |
Collapse
|
30
|
Sousa MP, Mano JF, d’Ischia M, Ruiz-Molina D. Cell-Adhesive Bioinspired and Catechol-Based Multilayer Freestanding Membranes for Bone Tissue Engineering. Biomimetics (Basel) 2017; 2:19. [PMID: 30842970 PMCID: PMC6352653 DOI: 10.3390/biomimetics2040019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/25/2017] [Indexed: 12/21/2022] Open
Abstract
Mussels are marine organisms that have been mimicked due to their exceptional adhesive properties to all kind of surfaces, including rocks, under wet conditions. The proteins present on the mussel's foot contain 3,4-dihydroxy-l-alanine (DOPA), an amino acid from the catechol family that has been reported by their adhesive character. Therefore, we synthesized a mussel-inspired conjugated polymer, modifying the backbone of hyaluronic acid with dopamine by carbodiimide chemistry. Ultraviolet-visible (UV-vis) spectroscopy and nuclear magnetic resonance (NMR) techniques confirmed the success of this modification. Different techniques have been reported to produce two-dimensional (2D) or three-dimensional (3D) systems capable to support cells and tissue regeneration; among others, multilayer systems allow the construction of hierarchical structures from nano- to macroscales. In this study, the layer-by-layer (LbL) technique was used to produce freestanding multilayer membranes made uniquely of chitosan and dopamine-modified hyaluronic acid (HA-DN). The electrostatic interactions were found to be the main forces involved in the film construction. The surface morphology, chemistry, and mechanical properties of the freestanding membranes were characterized, confirming the enhancement of the adhesive properties in the presence of HA-DN. The MC3T3-E1 cell line was cultured on the surface of the membranes, demonstrating the potential of these freestanding multilayer systems to be used for bone tissue engineering.
Collapse
Affiliation(s)
| | - João F. Mano
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | | | | |
Collapse
|
31
|
Boys AJ, McCorry MC, Rodeo S, Bonassar LJ, Estroff LA. Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces. MRS COMMUNICATIONS 2017; 7:289-308. [PMID: 29333332 PMCID: PMC5761353 DOI: 10.1557/mrc.2017.91] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/28/2017] [Indexed: 05/17/2023]
Abstract
Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors.
Collapse
Affiliation(s)
- Alexander J Boys
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
| | | | - Scott Rodeo
- Orthopedic Surgery, Hospital for Special Surgery, New York, NY
- Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York, NY
- Tissue Engineering, Regeneration, and Repair Program, Hospital for Special Surgery, New York, NY
- Orthopedic Surgery, Weill Medical College of Cornell University, Cornell University, New York, NY
- New York Giants, East Rutherford, NJ
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
- Kavli Institute at Cornell, Cornell University, Ithaca, NY
| |
Collapse
|
32
|
Dang D, Prasad H, Rao R. Secretory pathway Ca 2+ -ATPases promote in vitro microcalcifications in breast cancer cells. Mol Carcinog 2017; 56:2474-2485. [PMID: 28618103 DOI: 10.1002/mc.22695] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/19/2017] [Accepted: 06/13/2017] [Indexed: 02/01/2023]
Abstract
Calcification of the breast is often an outward manifestation of underlying molecular changes that drive carcinogenesis. Up to 50% of all non-palpable breast tumors and 90% of ductal carcinoma in situ present with radiographically dense mineralization in mammographic scans. However, surprisingly little is known about the molecular pathways that lead to microcalcifications in the breast. Here, we report on a rapid and quantitative in vitro assay to monitor microcalcifications in breast cancer cell lines, including MCF7, MDA-MB-231, and Hs578T. We show that the Secretory Pathway Ca2+ -ATPases SPCA1 and SPCA2 are strongly induced under osteogenic conditions that elicit microcalcifications. SPCA gene expression is significantly elevated in breast cancer subtypes that are associated with microcalcifications. Ectopic expression of SPCA genes drives microcalcifications and is dependent on pumping activity. Conversely, knockdown of SPCA expression significantly attenuates formation of microcalcifications. We propose that high levels of SPCA pumps may initiate mineralization in the secretory pathway by elevating luminal Ca2+ . Our new findings offer mechanistic insight and functional implications on a widely observed, yet poorly understood radiographic signature of breast cancer.
Collapse
Affiliation(s)
- Donna Dang
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hari Prasad
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rajini Rao
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
33
|
Demineralized dentin and enamel matrices as suitable substrates for bone regeneration. J Appl Biomater Funct Mater 2017; 15:e236-e243. [PMID: 28731486 PMCID: PMC6379887 DOI: 10.5301/jabfm.5000373] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2017] [Indexed: 01/15/2023] Open
Abstract
Background In recent decades, tooth derivatives such as dentin (D) and enamel (E) have
been considered as potential graft biomaterials to treat bone defects. This
study aimed to investigate the effects of demineralization on the
physical-chemical and biological behavior of D and E. Methods Human D and E were minced into particles (Ø<1 mm), demineralized and
sterilized. Thorough physical-chemical and biochemical characterizations of
native and demineralized materials were performed by SEM and EDS analysis
and ELISA kits to determine mineral, collagen type I and BMP-2 contents. In
addition, MG63 and SAOS-2 cells were seeded on tooth-derived materials and
Bio-Oss®, and a comparison of cell responses in terms of adhesion and
proliferation was carried out. Results The sterilization process, as a combination of chemical and thermal
treatments, was found to be effective for all materials. On the other hand,
D demineralization allowed preserving the collagen content, while increasing
BMP-2 bioavailability. D and demineralized D (dD) displayed excellent
biocompatibility, even greater than Bio-Oss®. Conversely, the high mineral
content displayed by E, as confirmed by EDS analysis, inhibited cell
proliferation. Of note, even though the demineralization process was somehow
less effective in E than in D, demineralized E (dE) displayed increased
BMP-2 bioavailability and improved performance in vitro compared with native
E. Conclusions Our results substantiate the idea that the demineralization process lead to
an increase of BMP-2 bioavailability, thus paving the way toward development
of more effective, osteoinductive tooth-derived materials for bone
regeneration and replacement.
Collapse
|
34
|
Hixon KR, Eberlin CT, Lu T, Neal SM, Case ND, McBride-Gagyi SH, Sell SA. The calcification potential of cryogel scaffolds incorporated with various forms of hydroxyapatite for bone regeneration. Biomed Mater 2017; 12:025005. [DOI: 10.1088/1748-605x/aa5d76] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Houston DA, Staines KA, MacRae VE, Farquharson C. Culture of Murine Embryonic Metatarsals: A Physiological Model of Endochondral Ossification. J Vis Exp 2016. [PMID: 28060328 PMCID: PMC5226350 DOI: 10.3791/54978] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The fundamental process of endochondral ossification is under tight regulation in the healthy individual so as to prevent disturbed development and/or longitudinal bone growth. As such, it is imperative that we further our understanding of the underpinning molecular mechanisms involved in such disorders so as to provide advances towards human and animal patient benefit. The mouse metatarsal organ explant culture is a highly physiological ex vivo model for studying endochondral ossification and bone growth as the growth rate of the bones in culture mimic that observed in vivo. Uniquely, the metatarsal organ culture allows the examination of chondrocytes in different phases of chondrogenesis and maintains cell-cell and cell-matrix interactions, therefore providing conditions closer to the in vivo situation than cells in monolayer or 3D culture. This protocol describes in detail the intricate dissection of embryonic metatarsals from the hind limb of E15 murine embryos and the subsequent analyses that can be performed in order to examine endochondral ossification and longitudinal bone growth.
Collapse
Affiliation(s)
- Dean A Houston
- Developmental Biology, The Roslin Institute and R(D)SVS, The University of Edinburgh;
| | - Katherine A Staines
- Developmental Biology, The Roslin Institute and R(D)SVS, The University of Edinburgh
| | - Vicky E MacRae
- Developmental Biology, The Roslin Institute and R(D)SVS, The University of Edinburgh
| | - Colin Farquharson
- Developmental Biology, The Roslin Institute and R(D)SVS, The University of Edinburgh
| |
Collapse
|
36
|
Collagen/chitosan porous bone tissue engineering composite scaffold incorporated with Ginseng compound K. Carbohydr Polym 2016; 152:566-574. [DOI: 10.1016/j.carbpol.2016.07.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/01/2016] [Accepted: 07/01/2016] [Indexed: 11/21/2022]
|
37
|
Gao X, Song J, Zhang Y, Xu X, Zhang S, Ji P, Wei S. Bioinspired Design of Polycaprolactone Composite Nanofibers as Artificial Bone Extracellular Matrix for Bone Regeneration Application. ACS APPLIED MATERIALS & INTERFACES 2016; 8:27594-27610. [PMID: 27690143 DOI: 10.1021/acsami.6b10417] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The design and development of functional biomimetic systems for programmed stem cell response is a field of topical interest. To mimic bone extracellular matrix, we present an innovative strategy for constructing drug-loaded composite nanofibrous scaffolds in this study, which could integrate multiple cues from calcium phosphate mineral, bioactive molecule, and highly ordered fiber topography for the control of stem cell fate. Briefly, inspired by mussel adhesion mechanism, a polydopamine (pDA)-templated nanohydroxyapatite (tHA) was synthesized and then surface-functionalized with bone morphogenetic protein-7-derived peptides via catechol chemistry. Afterward, the resulting peptide-loaded tHA (tHA/pep) particles were blended with polycaprolactone (PCL) solution to fabricate electrospun hybrid nanofibers with random and aligned orientation. Our research demonstrated that the bioactivity of grafted peptides was retained in composite nanofibers. Compared to controls, PCL-tHA/pep composite nanofibers showed improved cytocompatibility. Moreover, the incorporated tHA/pep particles in nanofibers could further facilitate osteogenic differentiation potential of human mesenchymal stem cells (hMSCs). More importantly, the aligned PCL-tHA/pep composite nanofibers showed more osteogenic activity than did randomly oriented counterparts, even under nonosteoinductive conditions, indicating excellent performance of biomimetic design in cell fate decision. After in vivo implantation, the PCL-tHA/pep composite nanofibers with highly ordered structure could significantly promote the regeneration of lamellar-like bones in a rat calvarial critical-sized defect. Accordingly, the presented strategy in our work could be applied for a wide range of potential applications in not only bone regeneration application but also pharmaceutical science.
Collapse
Affiliation(s)
- Xiang Gao
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education , Chongqing 401147, China
| | - Jinlin Song
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education , Chongqing 401147, China
| | - Yancong Zhang
- Department of Oral and Maxillofacial Surgery, Central Laboratory, Peking University School and Hospital of Stomatology , Beijing 100081, China
| | - Xiao Xu
- Department of Oral and Maxillofacial Surgery, Central Laboratory, Peking University School and Hospital of Stomatology , Beijing 100081, China
| | - Siqi Zhang
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| | - Ping Ji
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education , Chongqing 401147, China
| | - Shicheng Wei
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education , Chongqing 401147, China
- Department of Oral and Maxillofacial Surgery, Central Laboratory, Peking University School and Hospital of Stomatology , Beijing 100081, China
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| |
Collapse
|
38
|
Camci-Unal G, Laromaine A, Hong E, Derda R, Whitesides GM. Biomineralization Guided by Paper Templates. Sci Rep 2016; 6:27693. [PMID: 27277575 PMCID: PMC4899756 DOI: 10.1038/srep27693] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/12/2016] [Indexed: 12/21/2022] Open
Abstract
This work demonstrates the fabrication of partially mineralized scaffolds fabricated in 3D shapes using paper by folding, and by supporting deposition of calcium phosphate by osteoblasts cultured in these scaffolds. This process generates centimeter-scale free-standing structures composed of paper supporting regions of calcium phosphate deposited by osteoblasts. This work is the first demonstration that paper can be used as a scaffold to induce template-guided mineralization by osteoblasts. Because paper has a porous structure, it allows transport of O2 and nutrients across its entire thickness. Paper supports a uniform distribution of cells upon seeding in hydrogel matrices, and allows growth, remodelling, and proliferation of cells. Scaffolds made of paper make it possible to construct 3D tissue models easily by tuning material properties such as thickness, porosity, and density of chemical functional groups. Paper offers a new approach to study mechanisms of biomineralization, and perhaps ultimately new techniques to guide or accelerate the repair of bone.
Collapse
Affiliation(s)
- Gulden Camci-Unal
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Anna Laromaine
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Catalunya, E-08193 Spain
| | - Estrella Hong
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - George M Whitesides
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, 60 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
39
|
Marklein RA, Lo Surdo JL, Bellayr IH, Godil SA, Puri RK, Bauer SR. High Content Imaging of Early Morphological Signatures Predicts Long Term Mineralization Capacity of Human Mesenchymal Stem Cells upon Osteogenic Induction. Stem Cells 2016; 34:935-47. [PMID: 26865267 DOI: 10.1002/stem.2322] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/30/2015] [Indexed: 01/05/2023]
Abstract
Human bone marrow-derived multipotent mesenchymal stromal cells, often referred to as mesenchymal stem cells (MSCs), represent an attractive cell source for many regenerative medicine applications due to their potential for multi-lineage differentiation, immunomodulation, and paracrine factor secretion. A major complication for current MSC-based therapies is the lack of well-defined characterization methods that can robustly predict how they will perform in a particular in vitro or in vivo setting. Significant advances have been made with identifying molecular markers of MSC quality and potency using multivariate genomic and proteomic approaches, and more recently with advanced techniques incorporating high content imaging to assess high-dimensional single cell morphological data. We sought to expand upon current methods of high dimensional morphological analysis by investigating whether short term cell and nuclear morphological profiles of MSCs from multiple donors (at multiple passages) correlated with long term mineralization upon osteogenic induction. Using the combined power of automated high content imaging followed by automated image analysis, we demonstrated that MSC morphology after 3 days was highly correlated with 35 day mineralization and comparable to other methods of MSC osteogenesis assessment (such as alkaline phosphatase activity). We then expanded on this initial morphological characterization and identified morphological features that were highly predictive of mineralization capacities (>90% accuracy) of MSCs from additional donors and different manufacturing techniques using linear discriminant analysis. Together, this work thoroughly demonstrates the predictive power of MSC morphology for mineralization capacity and motivates further studies into MSC morphology as a predictive marker for additional in vitro and in vivo responses.
Collapse
Affiliation(s)
- Ross A Marklein
- Cellular and Tissue Therapies Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jessica L Lo Surdo
- Cellular and Tissue Therapies Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ian H Bellayr
- Cellular and Tissue Therapies Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Saniya A Godil
- Cellular and Tissue Therapies Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Raj K Puri
- Cellular and Tissue Therapies Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Steven R Bauer
- Cellular and Tissue Therapies Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
40
|
Gao X, Song J, Ji P, Zhang X, Li X, Xu X, Wang M, Zhang S, Deng Y, Deng F, Wei S. Polydopamine-Templated Hydroxyapatite Reinforced Polycaprolactone Composite Nanofibers with Enhanced Cytocompatibility and Osteogenesis for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2016; 8:3499-515. [PMID: 26756224 DOI: 10.1021/acsami.5b12413] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanohydroxyapatite (HA) synthesized by biomimetic strategy is a promising nanomaterial as bone substitute due to its physicochemical features similar to those of natural nanocrystal in bone tissue. Inspired by mussel adhesive chemistry, a novel nano-HA was synthesized in our work by employing polydopamine (pDA) as template under weak alkaline condition. Subsequently, the as-prepared pDA-templated HA (tHA) was introduced into polycaprolactone (PCL) matrix via coelectrospinning, and a bioactive tHA/PCL composite nanofiber scaffold was developed targeted at bone regeneration application. Our research showed that tHA reinforced PCL composite nanofibers exhibited favorable cytocompatibility at given concentration of tHA (0-10 w.t%). Compared to pure PCL and traditional nano-HA enriched PCL (HA/PCL) composite nanofibers, enhanced cell adhesion, spreading and proliferation of human mesenchymal stem cells (hMSCs) were observed on tHA/PCL composite nanofibers on account of the contribution of pDA present in tHA. More importantly, tHA nanoparticles exposed on the surface of composite nanofibers could further promote osteogenesis of hMSCs in vitro even in the absence of osteogenesis soluble inducing factors when compared to traditional HA/PCL scaffolds, which was supported by in vivo test as well according to the histological analysis. Overall, our study demonstrated that the developed tHA/PCL composite nanofibers with enhanced cytocompatibility and osteogenic capacity hold great potential as scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Xiang Gao
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education , Chongqing 401147, China
| | - Jinlin Song
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education , Chongqing 401147, China
| | - Ping Ji
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education , Chongqing 401147, China
| | - Xiaohong Zhang
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| | | | | | | | - Siqi Zhang
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| | - Yi Deng
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| | - Feng Deng
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education , Chongqing 401147, China
| | | |
Collapse
|
41
|
Dorozhkin SV. Calcium orthophosphates (CaPO 4): occurrence and properties. Prog Biomater 2015; 5:9-70. [PMID: 27471662 PMCID: PMC4943586 DOI: 10.1007/s40204-015-0045-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/05/2015] [Indexed: 01/02/2023] Open
Abstract
The present overview is intended to point the readers' attention to the important subject of calcium orthophosphates (CaPO4). This type of materials is of the special significance for the human beings because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (i.e., those appearing due to various diseases) calcified tissues of mammals. For example, atherosclerosis results in blood vessel blockage caused by a solid composite of cholesterol with CaPO4, while dental caries and osteoporosis mean a partial decalcification of teeth and bones, respectively, that results in replacement of a less soluble and harder biological apatite by more soluble and softer calcium hydrogenorthophosphates. Therefore, the processes of both normal and pathological calcifications are just an in vivo crystallization of CaPO4. Similarly, dental caries and osteoporosis might be considered as in vivo dissolution of CaPO4. In addition, natural CaPO4 are the major source of phosphorus, which is used to produce agricultural fertilizers, detergents and various phosphorus-containing chemicals. Thus, there is a great significance of CaPO4 for the humankind and, in this paper, an overview on the current knowledge on this subject is provided.
Collapse
|
42
|
Poellmann MJ, Estrada JB, Boudou T, Berent ZT, Franck C, Wagoner Johnson AJ. Differences in Morphology and Traction Generation of Cell Lines Representing Different Stages of Osteogenesis. J Biomech Eng 2015; 137:124503. [DOI: 10.1115/1.4031848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Indexed: 01/10/2023]
Abstract
Osteogenesis is the process by which mesenchymal stem cells differentiate to osteoblasts and form bone. The morphology and root mean squared (RMS) traction of four cell types representing different stages of osteogenesis were quantified. Undifferentiated D1, differentiated D1, MC3T3-E1, and MLO-A5 cell types were evaluated using both automated image analysis of cells stained for F-actin and by traction force microscopy (TFM). Undifferentiated mesenchymal stem cell lines were small, spindly, and exerted low traction, while differentiated osteoblasts were large, had multiple processes, and exerted higher traction. Size, shape, and traction all correlated with the differentiation stage. Thus, cell morphology evolved and RMS traction increased with differentiation. The results provide a foundation for further work with these cell lines to study the mechanobiology of bone formation.
Collapse
Affiliation(s)
- Michael J. Poellmann
- Mem. ASME Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | | | - Thomas Boudou
- Laboratory of Materials and Physical Engineering, Grenoble Institute of Technology, Grenoble 38016, France
| | - Zachary T. Berent
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Christian Franck
- Mem. ASME School of Engineering, Brown University, Providence, RI 02912 e-mail:
| | - Amy J. Wagoner Johnson
- Mem. ASME Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W. Green Street, Urbana, IL 61801 e-mail:
| |
Collapse
|
43
|
Denry I, Kuhn LT. Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering. Dent Mater 2015; 32:43-53. [PMID: 26423007 DOI: 10.1016/j.dental.2015.09.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/04/2015] [Accepted: 09/09/2015] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Our goal is to review design strategies for the fabrication of calcium phosphate ceramic scaffolds (CPS), in light of their transient role in bone tissue engineering and associated requirements for effective bone regeneration. METHODS We examine the various design options available to meet mechanical and biological requirements of CPS and later focus on the importance of proper characterization of CPS in terms of architecture, mechanical properties and time-sensitive properties such as biodegradability. Finally, relationships between in vitro versus in vivo testing are addressed, with an attempt to highlight reliable performance predictors. RESULTS A combinatory design strategy should be used with CPS, taking into consideration 3D architecture, adequate surface chemistry and topography, all of which are needed to promote bone formation. CPS represent the media of choice for delivery of osteogenic factors and anti-infectives. Non-osteoblast mediated mineral deposition can confound in vitro osteogenesis testing of CPS and therefore the expression of a variety of proteins or genes including collagen type I, bone sialoprotein and osteocalcin should be confirmed in addition to increased mineral content. CONCLUSIONS CPS are a superior scaffold material for bone regeneration because they actively promote osteogenesis. Biodegradability of CPS via calcium and phosphate release represents a unique asset. Structural control of CPS at the macro, micro and nanoscale and their combination with cells and polymeric materials is likely to lead to significant developments in bone tissue engineering.
Collapse
Affiliation(s)
- Isabelle Denry
- Department of Prosthodontics, University of Iowa College of Dentistry, 801 Newton Road, Iowa City, IA 52242-1010, USA.
| | - Liisa T Kuhn
- Department of Reconstructive Sciences, UConn Health, 263 Farmington Avenue, MC 1615, Farmington, CT 06030-1615, USA
| |
Collapse
|
44
|
Bottagisio M, Lovati AB, Lopa S, Moretti M. Osteogenic Differentiation of Human and Ovine Bone Marrow Stromal Cells in response to β-Glycerophosphate and Monosodium Phosphate. Cell Reprogram 2015; 17:235-42. [PMID: 26168053 DOI: 10.1089/cell.2014.0105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bone defects are severe burdens in clinics, and thus cell therapy offers an alternative strategy exploiting the features of bone marrow stromal cells (BMSCs). Sheep are a suitable orthopedic preclinical model for similarities with humans. This study compares the influence of two phosphate sources combined with bone morphogenetic protein-2 (BMP-2) on the osteogenic potential of human and ovine BMSCs. β-Glycerophosphate (β-GlyP) and monosodium phosphate (NaH2PO4) were used as organic and inorganic phosphate sources. Osteogenic differentiation of the BMSCs was assessed by calcified matrix, alkaline phosphatase (ALP) activity, and gene expression analysis. A higher calcified matrix deposition was detected in BMSCs cultured with NaH2PO4. Although no significant differences were detected among media for human BMSCs, β-GlyP with or without BMP-2 determined a positive trend in ALP levels compared to NaH2PO4. In contrast, NaH2PO4 had a positive effect on ALP levels in ovine BMSCs. β-GlyP better supported the expression of COL1A1 in human BMSCs, whereas all media enhanced RUNX2 and SPARC expression. Ovine BMSCs responded poorly to any media for RUNX2, COL1A1, and SPARC expression. NaH2PO4 improved calcified matrix deposition without upregulating the transcriptional expression of osteogenic markers. A further optimization of differentiation protocols needs to be performed to translate the procedures from preclinical to clinical models.
Collapse
Affiliation(s)
- Marta Bottagisio
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute , 20161 Milan, Italy
| | - Arianna B Lovati
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute , 20161 Milan, Italy
| | - Silvia Lopa
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute , 20161 Milan, Italy
| | - Matteo Moretti
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute , 20161 Milan, Italy
| |
Collapse
|
45
|
Wang T, Yang X, Qi X, Jiang C. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds. J Transl Med 2015; 13:152. [PMID: 25952675 PMCID: PMC4429830 DOI: 10.1186/s12967-015-0499-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/21/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Osteoinduction and proliferation of bone-marrow stromal cells (BMSCs) in three-dimensional (3D) poly(ε-caprolactone) (PCL) scaffolds have not been studied throughly and are technically challenging. This study aimed to optimize nanocomposites of 3D PCL scaffolds to provide superior adhesion, proliferation and differentiation environment for BMSCs in this scenario. METHODS BMSCs were isolated and cultured in a novel 3D tissue culture poly(ε-caprolactone) (PCL) scaffold coated with poly-lysine, hydroxyapatite (HAp), collagen and HAp/collagen. Cell morphology was observed and BMSC biomarkers for osteogenesis, osteoblast differentiation and activation were analyzed. RESULTS Scanning Electron Microscope (SEM) micrographs showed that coating materials were uniformly deposited on the surface of PCL scaffolds and BMSCs grew and aggregated to form clusters during 3D culture. Both mRNA and protein levels of the key players of osteogenesis and osteoblast differentiation and activation, including runt-related transcription factor 2 (Runx2), alkaline phosphates (ALP), osterix, osteocalcin, and RANKL, were significantly higher in BMSCs seeded in PCL scaffolds coated with HAp or HAp/collagen than those seeded in uncoated PCL scaffolds, whereas the expression levels were not significantly different in collagen or poly-lysine coated PCL scaffolds. In addition, poly-lysine, collagen, HAp/collagen, and HAp coated PCL scaffolds had significantly more viable cells than uncoated PCL scaffolds, especially scaffolds with HAp/collagen and collagen-alone coatings. That BMSCs in HAp or HAp/collagen PCL scaffolds had remarkably higher ALP activities than those in collagen-coated alone or uncoated PCL scaffolds indicating higher osteogenic differentiation levels of BMSCs in HAp or HAp/collagen PCL scaffolds. Moreover, morphological changes of BMSCs after four-week of 3D culture confirmed that BMSCs successfully differentiated into osteoblast with spread-out phenotype in HAp/collagen coated PCL scaffolds. CONCLUSION This study showed a proof of concept for preparing biomimetic 3D poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds with excellent osteoinduction and proliferation capacity for bone regeneration.
Collapse
Affiliation(s)
- Ting Wang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Rd, Shanghai, 200233, China.
| | - Xiaoyan Yang
- Department of Medicine, Northwestern University, Chicago, IL, 60208, USA.
| | - Xin Qi
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Rd, Shanghai, 200233, China.
| | - Chaoyin Jiang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Rd, Shanghai, 200233, China.
| |
Collapse
|
46
|
Addison WN, Nelea V, Chicatun F, Chien YC, Tran-Khanh N, Buschmann MD, Nazhat SN, Kaartinen MT, Vali H, Tecklenburg MM, Franceschi RT, McKee MD. Extracellular matrix mineralization in murine MC3T3-E1 osteoblast cultures: an ultrastructural, compositional and comparative analysis with mouse bone. Bone 2015; 71:244-56. [PMID: 25460184 PMCID: PMC6342200 DOI: 10.1016/j.bone.2014.11.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/30/2014] [Accepted: 11/06/2014] [Indexed: 10/24/2022]
Abstract
Bone cell culture systems are essential tools for the study of the molecular mechanisms regulating extracellular matrix mineralization. MC3T3-E1 osteoblast cell cultures are the most commonly used in vitro model of bone matrix mineralization. Despite the widespread use of this cell line to study biomineralization, there is as yet no systematic characterization of the mineral phase produced in these cultures. Here we provide a comprehensive, multi-technique biophysical characterization of this cell culture mineral and extracellular matrix, and compare it to mouse bone and synthetic apatite mineral standards, to determine the suitability of MC3T3-E1 cultures for biomineralization studies. Elemental compositional analysis by energy-dispersive X-ray spectroscopy (EDS) showed calcium and phosphorus, and trace amounts of sodium and magnesium, in both biological samples. X-ray diffraction (XRD) on resin-embedded intact cultures demonstrated that similar to 1-month-old mouse bone, apatite crystals grew with preferential orientations along the (100), (101) and (111) mineral planes indicative of guided biogenic growth as opposed to dystrophic calcification. XRD of crystals isolated from the cultures revealed that the mineral phase was poorly crystalline hydroxyapatite with 10 to 20nm-sized nanocrystallites. Consistent with the XRD observations, electron diffraction patterns indicated that culture mineral had low crystallinity typical of biological apatites. Fourier-transform infrared spectroscopy (FTIR) confirmed apatitic carbonate and phosphate within the biological samples. With all techniques utilized, cell culture mineral and mouse bone mineral were remarkably similar. Scanning (SEM) and transmission (TEM) electron microscopy showed that the cultures had a dense fibrillar collagen matrix with small, 100nm-sized, collagen fibril-associated mineralization foci which coalesced to form larger mineral aggregates, and where mineralized sites showed the accumulation of the mineral-binding protein osteopontin. Light microscopy, confocal microscopy and three-dimensional reconstructions showed that some cells had dendritic processes and became embedded within the mineral in an osteocyte-like manner. In conclusion, we have documented characteristics of the mineral and matrix phases of MC3T3-E1 osteoblast cultures, and have determined that the structural and compositional properties of the mineral are highly similar to that of mouse bone.
Collapse
Affiliation(s)
- W N Addison
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - V Nelea
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - F Chicatun
- Department of Mining and Materials, McGill University, Montreal, Quebec, Canada
| | - Y-C Chien
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - N Tran-Khanh
- Department of Chemical Engineering, École Polytechnique, Montreal, Quebec, Canada
| | - M D Buschmann
- Department of Chemical Engineering, École Polytechnique, Montreal, Quebec, Canada
| | - S N Nazhat
- Department of Mining and Materials, McGill University, Montreal, Quebec, Canada
| | - M T Kaartinen
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - H Vali
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - M M Tecklenburg
- Department of Chemistry, Central Michigan University, Mount Pleasant, MI, USA
| | - R T Franceschi
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - M D McKee
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
47
|
Vetsch JR, Paulsen SJ, Müller R, Hofmann S. Effect of fetal bovine serum on mineralization in silk fibroin scaffolds. Acta Biomater 2015; 13:277-85. [PMID: 25463486 DOI: 10.1016/j.actbio.2014.11.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/05/2014] [Accepted: 11/13/2014] [Indexed: 12/30/2022]
Abstract
Fetal bovine serum (FBS) is a common media supplement used in tissue engineering (TE) cultures. The chemical composition of FBS is known to be highly variable between different brands, types or batches and can have a significant impact on cell function. This study investigated the influence of four different FBS types in osteogenic or control medium on mineralization of acellular and cell-seeded silk fibroin (SF) scaffolds. In bone TE, mineralized tissue is considered as the final product of a successful cell culture. Calcium assays and micro-computed tomography scans revealed spontaneous mineralization on SF scaffolds with certain FBS types, even without cells present. In contrast, cell-mediated mineralization was found under osteogenic conditions only. Fourier transform infrared spectroscopy analysis demonstrated a similar ion composition of the mineralization present in scaffolds, whether cell-mediated or spontaneous. These results were confirmed by scanning electron microscopy. This study shows clear evidence for the influence of FBS type on mineralization on SF scaffolds. The suitability of FBS medium supplementation in TE studies is highly questionable with regard to reproducibility of studies and comparability of obtained results. For future TE studies, alternatives to conventional FBS such as defined FBS or serum-free media should be considered, as suggested decades ago.
Collapse
|
48
|
Liskova J, Babchenko O, Varga M, Kromka A, Hadraba D, Svindrych Z, Burdikova Z, Bacakova L. Osteogenic cell differentiation on H-terminated and O-terminated nanocrystalline diamond films. Int J Nanomedicine 2015; 10:869-84. [PMID: 25670900 PMCID: PMC4315565 DOI: 10.2147/ijn.s73628] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nanocrystalline diamond (NCD) films are promising materials for bone implant coatings because of their biocompatibility, chemical resistance, and mechanical hardness. Moreover, NCD wettability can be tailored by grafting specific atoms. The NCD films used in this study were grown on silicon substrates by microwave plasma-enhanced chemical vapor deposition and grafted by hydrogen atoms (H-termination) or oxygen atoms (O-termination). Human osteoblast-like Saos-2 cells were used for biological studies on H-terminated and O-terminated NCD films. The adhesion, growth, and subsequent differentiation of the osteoblasts on NCD films were examined, and the extracellular matrix production and composition were quantified. The osteoblasts that had been cultivated on the O-terminated NCD films exhibited a higher growth rate than those grown on the H-terminated NCD films. The mature collagen fibers were detected in Saos-2 cells on both the H-terminated and O-terminated NCD films; however, the quantity of total collagen in the extracellular matrix was higher on the O-terminated NCD films, as were the amounts of calcium deposition and alkaline phosphatase activity. Nevertheless, the expression of genes for osteogenic markers – type I collagen, alkaline phosphatase, and osteocalcin – was either comparable on the H-terminated and O-terminated films or even lower on the O-terminated films. In conclusion, the higher wettability of the O-terminated NCD films is promising for adhesion and growth of osteoblasts. In addition, the O-terminated surface also seems to support the deposition of extracellular matrix proteins and extracellular matrix mineralization, and this is promising for better osteoconductivity of potential bone implant coatings.
Collapse
Affiliation(s)
- Jana Liskova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Oleg Babchenko
- Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Marian Varga
- Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Alexander Kromka
- Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Daniel Hadraba
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Zdenek Svindrych
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Zuzana Burdikova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lucie Bacakova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
49
|
Dennis SC, Berkland CJ, Bonewald LF, Detamore MS. Endochondral ossification for enhancing bone regeneration: converging native extracellular matrix biomaterials and developmental engineering in vivo. TISSUE ENGINEERING PART B-REVIEWS 2014; 21:247-66. [PMID: 25336144 DOI: 10.1089/ten.teb.2014.0419] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autologous bone grafting (ABG) remains entrenched as the gold standard of treatment in bone regenerative surgery. Consequently, many marginally successful bone tissue engineering strategies have focused on mimicking portions of ABG's "ideal" osteoconductive, osteoinductive, and osteogenic composition resembling the late reparative stage extracellular matrix (ECM) in bone fracture repair, also known as the "hard" or "bony" callus. An alternative, less common approach that has emerged in the last decade harnesses endochondral (EC) ossification through developmental engineering principles, which acknowledges that the molecular and cellular mechanisms involved in developmental skeletogenesis, specifically EC ossification, are closely paralleled during native bone healing. EC ossification naturally occurs during the majority of bone fractures and, thus, can potentially be utilized to enhance bone regeneration for nearly any orthopedic indication, especially in avascular critical-sized defects where hypoxic conditions favor initial chondrogenesis instead of direct intramembranous ossification. The body's native EC ossification response, however, is not capable of regenerating critical-sized defects without intervention. We propose that an underexplored potential exists to regenerate bone through the native EC ossification response by utilizing strategies which mimic the initial inflammatory or fibrocartilaginous ECM (i.e., "pro-" or "soft" callus) observed in the early reparative stage of bone fracture repair. To date, the majority of strategies utilizing this approach rely on clinically burdensome in vitro cell expansion protocols. This review will focus on the confluence of two evolving areas, (1) native ECM biomaterials and (2) developmental engineering, which will attempt to overcome the technical, business, and regulatory challenges that persist in the area of bone regeneration. Significant attention will be given to native "raw" materials and ECM-based designs that provide necessary osteo- and chondro-conductive and inductive features for enhancing EC ossification. In addition, critical perspectives on existing stem cell-based therapeutic strategies will be discussed with a focus on their use as an extension of the acellular ECM-based designs for specific clinical indications. Within this framework, a novel realm of unexplored design strategies for bone tissue engineering will be introduced into the collective consciousness of the regenerative medicine field.
Collapse
Affiliation(s)
- S Connor Dennis
- 1Bioengineering Program, University of Kansas, Lawrence, Kansas.,2Chemical and Petroleum Engineering Department, University of Kansas, Lawrence, Kansas
| | - Cory J Berkland
- 1Bioengineering Program, University of Kansas, Lawrence, Kansas.,2Chemical and Petroleum Engineering Department, University of Kansas, Lawrence, Kansas.,3Pharmaceutical Chemistry Department, University of Kansas, Lawrence, Kansas
| | - Lynda F Bonewald
- 4Department of Oral Biology, University of Missouri-Kansas City, Kansas City, Missouri
| | - Michael S Detamore
- 1Bioengineering Program, University of Kansas, Lawrence, Kansas.,2Chemical and Petroleum Engineering Department, University of Kansas, Lawrence, Kansas
| |
Collapse
|
50
|
Kuhn LT, Liu Y, Boyd NL, Dennis JE, Jiang X, Xin X, Charles LF, Wang L, Aguila HL, Rowe DW, Lichtler AC, Goldberg AJ. Developmental-like bone regeneration by human embryonic stem cell-derived mesenchymal cells. Tissue Eng Part A 2013; 20:365-77. [PMID: 23952622 DOI: 10.1089/ten.tea.2013.0321] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The in vivo osteogenesis potential of mesenchymal-like cells derived from human embryonic stem cells (hESC-MCs) was evaluated in vivo by implantation on collagen/hydroxyapatite scaffolds into calvarial defects in immunodeficient mice. This study is novel because no osteogenic or chondrogenic differentiation protocols were applied to the cells prior to implantation. After 6 weeks, X-ray, microCT, and histological analysis showed that the hESC-MCs had consistently formed a highly vascularized new bone that bridged the bone defect and seamlessly integrated with host bone. The implanted hESC-MCs differentiated in situ to functional hypertrophic chondrocytes, osteoblasts, and osteocytes forming new bone tissue via an endochondral ossification pathway. Evidence for the direct participation of the human cells in bone morphogenesis was verified by two separate assays: with Alu and by human mitochondrial antigen positive staining in conjunction with co-localized expression of human bone sialoprotein in histologically verified regions of new bone. The large volume of new bone in a calvarial defect and the direct participation of the hESC-MCs far exceeds that of previous studies and that of the control adult hMSCs. This study represents a key step forward for bone tissue engineering because of the large volume, vascularity, and reproducibility of new bone formation and the discovery that it is advantageous to not over-commit these progenitor cells to a particular lineage prior to implantation. The hESC-MCs were able to recapitulate the mesenchymal developmental pathway and were able to repair the bone defect semi-autonomously without preimplantation differentiation to osteo- or chondroprogenitors.
Collapse
Affiliation(s)
- Liisa T Kuhn
- 1 Department of Reconstructive Sciences, Center for Biomaterials, School of Dental Medicine, University of Connecticut Health Center , Farmington, Connecticut
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|