1
|
Breithofer J, Bulfon D, Fawzy N, Tischitz M, Zitta C, Hartig L, Grabner GF, Pirchheim A, Hackl H, Taschler U, Lass A, Tam-Amersdorfer C, Strobl H, Kratky D, Zimmermann R. Phospholipase A2 group IVD mediates the transacylation of glycerophospholipids and acylglycerols. J Lipid Res 2024:100685. [PMID: 39490928 DOI: 10.1016/j.jlr.2024.100685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
In mammalian cells, glycerolipids are mainly synthesized using acyl-CoA-dependent mechanisms. The acyl-CoA-independent transfer of fatty acids between lipids, designated as transacylation reaction, represents an additional mechanism for lipid remodeling and synthesis pathways. Here, we demonstrate that human and mouse phospholipase A2 group IVD (PLA2G4D) catalyzes transacylase reactions using both phospholipids and acylglycerols as substrates. In the presence of mono- and diacylglycerol (MAG and DAG), purified PLA2G4D generates DAG and triacylglycerol (TAG), respectively. The enzyme also transfers fatty acids between phospholipids and from phospholipids to acylglycerols. Overexpression of PLA2G4D in COS7 cells enhances the incorporation of polyunsaturated fatty acids into TAG stores and induces the accumulation of lysophospholipids. In the presence of exogenously added MAG, the enzyme strongly increases cellular DAG formation, while MAG levels are decreased. PLA2G4D is not or poorly detectable in commonly used cell lines. It is expressed in keratinocytes, where it is strongly upregulated by proinflammatory cytokines. Pla2g4d-deficient mouse keratinocytes exhibit complex lipidomic changes in response to cytokine treatment, indicating that PLA2G4D is involved in the remodeling of the lipidome under inflammatory conditions. Transcriptomic analysis revealed that PLA2G4D modulates fundamental biological processes including cell proliferation, differentiation, and signaling. Together, our observations demonstrate that PLA2G4D has broad substrate specificity for fatty acid donor and acceptor lipids, allowing the acyl-CoA-independent synthesis of both phospholipids and acylglycerols. Loss-of-function studies indicate that PLA2G4D affects metabolic and signaling pathways in keratinocytes, which is associated with complex lipidomic and transcriptomic alterations.
Collapse
Affiliation(s)
- Johannes Breithofer
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31, 8010 Graz, Austria
| | - Dominik Bulfon
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31, 8010 Graz, Austria
| | - Nermeen Fawzy
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31, 8010 Graz, Austria
| | - Martin Tischitz
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31, 8010 Graz, Austria
| | - Clara Zitta
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31, 8010 Graz, Austria
| | - Lennart Hartig
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31, 8010 Graz, Austria
| | - Gernot F Grabner
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria
| | - Anita Pirchheim
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Ulrike Taschler
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31, 8010 Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Carmen Tam-Amersdorfer
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology, Medical University of Graz, 8010 Graz, Austria
| | - Herbert Strobl
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology, Medical University of Graz, 8010 Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria.
| |
Collapse
|
2
|
Kumar K, Pazare M, Ratnaparkhi GS, Kamat SS. CG17192 is a Phospholipase That Regulates Signaling Lipids in the Drosophila Gut upon Infection. Biochemistry 2024. [PMID: 39442931 DOI: 10.1021/acs.biochem.4c00579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The chemoproteomics technique, activity-based protein profiling (ABPP), has proven to be an invaluable tool in assigning functions to enzymes. The serine hydrolase (SH) enzyme superfamily, in particular, has served as an excellent example in displaying the versatility of various ABPP platforms and has resulted in a comprehensive cataloging of the biochemical activities associated within this superfamily. Besides SHs, in mammals, several other enzyme classes have been thoroughly investigated using ABPP platforms. However, the utility of ABPP platforms in fly models remains underexplored. Realizing this knowledge gap, leveraging complementary ABPP platforms, we reported the full array of SH activities during various developmental stages and adult tissues in the fruit fly (Drosophila melanogaster). Following up on this study, using ABPP, we mapped SH activities in adult fruit flies in an infection model and found that a gut-resident lipase CG17192 showed increased activity during infection. To assign a biological function to this uncharacterized lipase, we performed an untargeted lipidomics analysis and found that phosphatidylinositols were significantly elevated when CG17192 was depleted in the adult fruit fly gut. Next, we overexpressed this lipase in insect cells, and using biochemical assays, we show that CG17192 is a secreted enzyme that has phospholipase C (PLC) type activity, with phosphatidylinositol being a preferred substrate. Finally, we show during infection that heightened CG17192 regulates phosphatidylinositol levels and, by doing so, likely modulates signaling pathways in the adult fruit fly gut that might be involved in the resolution of this pathophysiological condition.
Collapse
Affiliation(s)
- Kundan Kumar
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Mrunal Pazare
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Girish S Ratnaparkhi
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| |
Collapse
|
3
|
Bennett JM, Narwal SK, Kabeche S, Abegg D, Thathy V, Hackett F, Yeo T, Li VL, Muir R, Faucher F, Lovell S, Blackman MJ, Adibekian A, Yeh E, Fidock DA, Bogyo M. Mixed alkyl/aryl phosphonates identify metabolic serine hydrolases as antimalarial targets. Cell Chem Biol 2024; 31:1714-1728.e10. [PMID: 39137783 PMCID: PMC11457795 DOI: 10.1016/j.chembiol.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/20/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024]
Abstract
Malaria, caused by Plasmodium falciparum, remains a significant health burden. One major barrier for developing antimalarial drugs is the ability of the parasite to rapidly generate resistance. We previously demonstrated that salinipostin A (SalA), a natural product, potently kills parasites by inhibiting multiple lipid metabolizing serine hydrolases, a mechanism that results in a low propensity for resistance. Given the difficulty of employing natural products as therapeutic agents, we synthesized a small library of lipidic mixed alkyl/aryl phosphonates as bioisosteres of SalA. Two constitutional isomers exhibited divergent antiparasitic potencies that enabled the identification of therapeutically relevant targets. The active compound kills parasites through a mechanism that is distinct from both SalA and the pan-lipase inhibitor orlistat and shows synergistic killing with orlistat. Our compound induces only weak resistance, attributable to mutations in a single protein involved in multidrug resistance. These data suggest that mixed alkyl/aryl phosphonates are promising, synthetically tractable antimalarials.
Collapse
Affiliation(s)
- John M Bennett
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Sunil K Narwal
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, USA
| | - Stephanie Kabeche
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Abegg
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Vandana Thathy
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, USA
| | - Fiona Hackett
- Malaria Biochemistry Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, USA
| | - Veronica L Li
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Ryan Muir
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Franco Faucher
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Scott Lovell
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, Francis Crick Institute, London NW1 1AT, UK; Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Ellen Yeh
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, USA; Division of Infectious Diseases, Columbia University Medical Center, New York, NY 10032, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Zhai Y, Zhang X, Chen Z, Yan D, Zhu L, Zhang Z, Wang X, Tian K, Huang Y, Yang X, Sun W, Wang D, Tsai YH, Luo T, Li G. Global profiling of functional histidines in live cells using small-molecule photosensitizer and chemical probe relay labelling. Nat Chem 2024; 16:1546-1557. [PMID: 38834725 DOI: 10.1038/s41557-024-01545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 04/26/2024] [Indexed: 06/06/2024]
Abstract
Recent advances in chemical proteomics have focused on developing chemical probes that react with nucleophilic amino acid residues. Although histidine is an attractive candidate due to its importance in enzymatic catalysis, metal binding and protein-protein interaction, its moderate nucleophilicity poses challenges. Its modification is frequently influenced by cysteine and lysine, which results in poor selectivity and narrow proteome coverage. Here we report a singlet oxygen and chemical probe relay labelling method that achieves high selectivity towards histidine. Libraries of small-molecule photosensitizers and chemical probes were screened to optimize histidine labelling, enabling histidine profiling in live cells with around 7,200 unique sites. Using NMR spectroscopy and X-ray crystallography, we characterized the reaction mechanism and the structures of the resulting products. We then applied this method to discover unannotated histidine sites key to enzymatic activity and metal binding in select metalloproteins. This method also revealed the accessibility change of histidine mediated by protein-protein interaction that influences select protein subcellular localization, underscoring its capability in discovering functional histidines.
Collapse
Affiliation(s)
- Yansheng Zhai
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Xinyu Zhang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, China
| | - Zijing Chen
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | | | - Lin Zhu
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Zhe Zhang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xianghe Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Kailu Tian
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yan Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Xi Yang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Dong Wang
- Shenzhen University, Shenzhen, China
| | - Yu-Hsuan Tsai
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Gang Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
5
|
Žužek MC. Advances in Cholinesterase Inhibitor Research-An Overview of Preclinical Studies of Selected Organoruthenium(II) Complexes. Int J Mol Sci 2024; 25:9049. [PMID: 39201735 PMCID: PMC11354293 DOI: 10.3390/ijms25169049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Cholinesterase (ChE) inhibitors are crucial therapeutic agents for the symptomatic treatment of certain chronic neurodegenerative diseases linked to functional disorders of the cholinergic system. Significant research efforts have been made to develop novel derivatives of classical ChE inhibitors and ChE inhibitors with novel scaffolds. Over the past decade, ruthenium complexes have emerged as promising novel therapeutic alternatives for the treatment of neurodegenerative diseases. Our research group has investigated a number of newly synthesized organoruthenium(II) complexes for their inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Three complexes (C1a, C1-C, and C1) inhibit ChE in a pharmacologically relevant range. C1a reversibly inhibits AChE and BChE without undesirable peripheral effects, making it a promising candidate for the treatment of Alzheimer's disease. C1-Cl complex reversibly and competitively inhibits ChEs, particularly AChE. It inhibits nerve-evoked skeletal muscle twitch and tetanic contraction in a concentration-dependent manner with no effect on directly elicited twitch and tetanic contraction and is promising for further preclinical studies as a competitive neuromuscular blocking agent. C1 is a selective, competitive, and reversible inhibitor of BChE that inhibits horse serum BChE (hsBChE) without significant effect on the peripheral neuromuscular system and is a highly species-specific inhibitor of hsBChE that could serve as a species-specific drug target. This research contributes to the expanding knowledge of ChE inhibitors based on ruthenium complexes and highlights their potential as promising therapeutic candidates for chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- Monika C Žužek
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| |
Collapse
|
6
|
Justin Grams R, Yuan K, Founds MW, Ware ML, Pilar MG, Hsu KL. Imidazoles are Tunable Nucleofuges for Developing Tyrosine-Reactive Electrophiles. Chembiochem 2024; 25:e202400382. [PMID: 38819848 PMCID: PMC11462048 DOI: 10.1002/cbic.202400382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Imidazole-1-sulfonyl and -sulfonate (imidazylate) are widely used in synthetic chemistry as nucleofuges for diazotransfer, nucleophilic substitution, and cross-coupling reactions. The utility of these reagents for protein bioconjugation, in contrast, have not been comprehensively explored and important considering the prevalence of imidazoles in biomolecules and drugs. Here, we synthesized a series of alkyne-modified sulfonyl- and sulfonate-imidazole probes to investigate the utility of this electrophile for protein binding. Alkylation of the distal nitrogen activated the nucleofuge capability of the imidazole to produce sulfonyl-imidazolium electrophiles that were highly reactive but unstable for biological applications. In contrast, arylsulfonyl imidazoles functioned as a tempered electrophile for assessing ligandability of select tyrosine and lysine sites in cell proteomes and when mated to a recognition element could produce targeted covalent inhibitors with reduced off-target activity. In summary, imidazole nucleofuges show balanced stability and tunability to produce sulfone-based electrophiles that bind functional tyrosine and lysine sites in the proteome.
Collapse
Affiliation(s)
- R Justin Grams
- Department of Chemistry, University of Texas at Austin, 100 E 24th St, Texas, 78712, United States
| | - Kun Yuan
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22904, United States
| | - Michael W Founds
- Department of Chemistry, University of Texas at Austin, 100 E 24th St, Texas, 78712, United States
| | - Madeleine L Ware
- Department of Chemistry, University of Texas at Austin, 100 E 24th St, Texas, 78712, United States
| | - Michael G Pilar
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22904, United States
| | - Ku-Lung Hsu
- Department of Chemistry, University of Texas at Austin, 100 E 24th St, Texas, 78712, United States
| |
Collapse
|
7
|
Nguyen T, Chang C, Cipolla D, Malinin V, Perkins W, Viramontes V, Zhou J, Corboz M. Treprostinil palmitil inhalation powder leverages endogenous lung enzymes to provide sustained treprostinil. Expert Opin Drug Deliv 2024; 21:1297-1305. [PMID: 39234785 DOI: 10.1080/17425247.2024.2395444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND To determine key enzymes enabling treprostinil palmitil (TP) conversion to treprostinil and the main converting sites in the respiratory system. RESEARCH DESIGN AND METHODS We performed in vitro activity assays to identify lung enzymes hydrolyzing TP, and cell-based assays and immunostainings to establish the likely locations within the lung. RESULTS Lipoprotein lipase (LPL) had greater activity than the other tested lung enzymes. Excess LPL activity was present both in vitro and at the target TP dose in vivo. CONCLUSIONS LPL is likely the key enzyme enabling TP conversion. The rate-limiting step is likely the accessibility of TP and not the enzyme activity.
Collapse
Affiliation(s)
- Tam Nguyen
- Department of Research, Insmed Incorporated, Bridgewater, NJ, USA
| | - Christina Chang
- Department of Research, Insmed Incorporated, Bridgewater, NJ, USA
| | - David Cipolla
- Department of Research, Insmed Incorporated, Bridgewater, NJ, USA
| | - Vladimir Malinin
- Department of Research, Insmed Incorporated, Bridgewater, NJ, USA
| | - Walter Perkins
- Department of Research, Insmed Incorporated, Bridgewater, NJ, USA
| | | | - Junguo Zhou
- Department of Research, Insmed Incorporated, Bridgewater, NJ, USA
| | - Michel Corboz
- Department of Research, Insmed Incorporated, Bridgewater, NJ, USA
| |
Collapse
|
8
|
Šprager E, Möller J, Lin Y, Reisinger V, Bratkovič T, Lunder M, Vašl J, Krajnc A. Identification of Acyl-Protein Thioesterase-1 as a Polysorbate-Degrading Host Cell Protein in a Monoclonal Antibody Formulation Using Activity-Based Protein Profiling. J Pharm Sci 2024; 113:2128-2139. [PMID: 38772451 DOI: 10.1016/j.xphs.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
Polysorbate (PS) degradation in monoclonal antibody (mAb) formulations poses a significant challenge in the biopharmaceutical industry. PS maintains protein stability during drug product's shelf life but is vulnerable to breakdown by low-abundance residual host cell proteins (HCPs), particularly hydrolytic enzymes such as lipases and esterases. In this study, we used activity-based protein profiling (ABPP) coupled with mass spectrometry to identify acyl-protein thioesterase-1 (APT-1) as a polysorbate-degrading HCP in one case of mAb formulation with stability problems. We validated the role of APT1 by matching the polysorbate degradation fingerprint in the mAb formulation with that of a recombinant APT1 protein. Furthermore, we found an agreement between APT1 levels and PS degradation rates in the mAb formulation, and we successfully halted PS degradation using APT1-specific inhibitors ML348 and ML211. APT1 was found to co-purify with a specific mAb via hitchhiking mechanism. Our work provides a streamlined approach to identifying critical HCPs in PS degradation, supporting quality-by-design principles in pharmaceutical development.
Collapse
Affiliation(s)
- Ernest Šprager
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia; Novartis Technical Research & Development, Biologics Technical Development Mengeš, Novartis Pharmaceutical Manufacturing LLC, Slovenia
| | - Jens Möller
- Novartis Technical Research & Development, Analytical Characterization, Novartis Pharmaceutical Manufacturing GmbH, Kundl, Austria
| | - Yuhsien Lin
- Novartis Technical Research & Development, Analytical Characterization, Novartis Pharmaceutical Manufacturing GmbH, Kundl, Austria
| | - Veronika Reisinger
- Novartis Technical Research & Development, Analytical Characterization, Novartis Pharmaceutical Manufacturing GmbH, Kundl, Austria
| | - Tomaž Bratkovič
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Mojca Lunder
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Jožica Vašl
- Novartis Technical Research & Development, Biologics Technical Development Mengeš, Novartis Pharmaceutical Manufacturing LLC, Slovenia
| | - Aleksander Krajnc
- Novartis Technical Research & Development, Biologics Technical Development Mengeš, Novartis Pharmaceutical Manufacturing LLC, Slovenia.
| |
Collapse
|
9
|
Goss AL, Shudick RE, Johnson RJ. Shifting Mycobacterial Serine Hydrolase Activity Visualized Using Multi-Layer In-Gel Activity Assays. Molecules 2024; 29:3386. [PMID: 39064965 PMCID: PMC11279797 DOI: 10.3390/molecules29143386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The ability of Mycobacterium tuberculosis to derive lipids from the host, store them intracellularly, and then break them down into energy requires a battery of serine hydrolases. Serine hydrolases are a large, diverse enzyme family with functional roles in dormant, active, and reactivating mycobacterial cultures. To rapidly measure substrate-dependent shifts in mycobacterial serine hydrolase activity, we combined a robust mycobacterial growth system of nitrogen limitation and variable carbon availability with nimble in-gel fluorogenic enzyme measurements. Using this methodology, we rapidly analyzed a range of ester substrates, identified multiple hydrolases concurrently, observed functional enzyme shifts, and measured global substrate preferences. Within every growth condition, mycobacterial hydrolases displayed the full, dynamic range of upregulated, downregulated, and constitutively active hydrolases independent of the ester substrate. Increasing the alkyl chain length of the ester substrate also allowed visualization of distinct hydrolase activity likely corresponding with lipases most responsible for lipid breakdown. The most robust expression of hydrolase activity was observed under the highest stress growth conditions, reflecting the induction of multiple metabolic pathways scavenging for energy to survive under this high stress. The unique hydrolases present under these high-stress conditions could represent novel drug targets for combination treatment with current front-line therapeutics. Combining diverse fluorogenic esters with in-gel activity measurements provides a rapid, customizable, and sensitive detection method for mycobacterial serine hydrolase activity.
Collapse
Affiliation(s)
| | | | - R. Jeremy Johnson
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA
| |
Collapse
|
10
|
Ciuffreda P, Xynomilakis O, Casati S, Ottria R. Fluorescence-Based Enzyme Activity Assay: Ascertaining the Activity and Inhibition of Endocannabinoid Hydrolytic Enzymes. Int J Mol Sci 2024; 25:7693. [PMID: 39062935 PMCID: PMC11276806 DOI: 10.3390/ijms25147693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The endocannabinoid system, known for its regulatory role in various physiological processes, relies on the activities of several hydrolytic enzymes, such as fatty acid amide hydrolase (FAAH), N-acylethanolamine-hydrolyzing acid amidase (NAAA), monoacylglycerol lipase (MAGL), and α/β-hydrolase domains 6 (ABHD6) and 12 (ABHD12), to maintain homeostasis. Accurate measurement of these enzymes' activities is crucial for understanding their function and for the development of potential therapeutic agents. Fluorometric assays, which offer high sensitivity, specificity, and real-time monitoring capabilities, have become essential tools in enzymatic studies. This review provides a comprehensive overview of the principles behind these assays, the various substrates and fluorophores used, and advances in assay techniques used not only for the determination of the kinetic mechanisms of enzyme reactions but also for setting up kinetic assays for the high-throughput screening of each critical enzyme involved in endocannabinoid degradation. Through this comprehensive review, we aim to highlight the strengths and limitations of current fluorometric assays and suggest future directions for improving the measurement of enzyme activity in the endocannabinoid system.
Collapse
Affiliation(s)
| | | | | | - Roberta Ottria
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, 20157 Milan, Italy; (P.C.); (O.X.); (S.C.)
| |
Collapse
|
11
|
Choi M, Lee J, Jeong K, Pak Y. Caveolin-2 palmitoylation turnover facilitates insulin receptor substrate-1-directed lipid metabolism by insulin receptor tyrosine kinase. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167173. [PMID: 38631410 DOI: 10.1016/j.bbadis.2024.167173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/13/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Here, we show that insulin induces palmitoylation turnover of Caveolin-2 (Cav-2) in adipocytes. Acyl protein thioesterases-1 (APT1) catalyzes Cav-2 depalmitoylation, and zinc finger DHHC domain-containing protein palmitoyltransferase 21 (ZDHHC21) repalmitoylation of the depalmitoylated Cav-2 for the turnover, thereby controlling insulin receptor (IR)-Cav-2-insulin receptor substrate-1 (IRS-1)-Akt-driven signaling. Insulin-induced palmitoylation turnover of Cav-2 facilitated glucose uptake and fat storage through induction of lipogenic genes. Cav-2-, APT1-, and ZDHHC21-deficient adipocytes, however, showed increased induction of lipolytic genes and glycerol release. In addition, white adipose tissues from insulin sensitive and resistant obese patients exhibited augmented expression of LYPLA1 (APT1) and ZDHHC20 (ZDHHC20). Our study identifies the specific enzymes regulating Cav-2 palmitoylation turnover, and reveals a new mechanism by which insulin-mediated lipid metabolism is controlled in adipocytes.
Collapse
Affiliation(s)
- Moonjeong Choi
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jaewoong Lee
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Kyuho Jeong
- Department of Biochemistry, College of Medicine, Dongguk University, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
| | - Yunbae Pak
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
12
|
Chakraborty A, Kamat SS. Lysophosphatidylserine: A Signaling Lipid with Implications in Human Diseases. Chem Rev 2024; 124:5470-5504. [PMID: 38607675 DOI: 10.1021/acs.chemrev.3c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Lysophosphatidylserine (lyso-PS) has emerged as yet another important signaling lysophospholipid in mammals, and deregulation in its metabolism has been directly linked to an array of human autoimmune and neurological disorders. It has an indispensable role in several biological processes in humans, and therefore, cellular concentrations of lyso-PS are tightly regulated to ensure optimal signaling and functioning in physiological settings. Given its biological importance, the past two decades have seen an explosion in the available literature toward our understanding of diverse aspects of lyso-PS metabolism and signaling and its association with human diseases. In this Review, we aim to comprehensively summarize different aspects of lyso-PS, such as its structure, biodistribution, chemical synthesis, and SAR studies with some synthetic analogs. From a biochemical perspective, we provide an exhaustive coverage of the diverse biological activities modulated by lyso-PSs, such as its metabolism and the receptors that respond to them in humans. We also briefly discuss the human diseases associated with aberrant lyso-PS metabolism and signaling and posit some future directions that may advance our understanding of lyso-PS-mediated mammalian physiology.
Collapse
Affiliation(s)
- Arnab Chakraborty
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| |
Collapse
|
13
|
Li H, Li XD, Yan CH, Ni ZH, Lü MH, Zou LW, Yang L. Rational design of a near-infrared fluorescent probe for monitoring butyrylcholinesterase activity and its application in development of inhibitors. Front Bioeng Biotechnol 2024; 12:1387146. [PMID: 38638318 PMCID: PMC11024273 DOI: 10.3389/fbioe.2024.1387146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
Butyrylcholinesterase (BChE) is widely expressed in multiple tissues and has a vital role in several key human disorders, such as Alzheimer's disease and tumorigenesis. However, the role of BChE in human disorders has not been investigated. Thus, to quantitatively detect and visualize dynamical variations in BChE activity is essential for exploring the biological roles of BChE in the progression of a number of human disorders. Herein, based on the substrate characteristics of BChE, we customized and synthesized three near-infrared (NIR) fluorescent probe substrates with cyanine-skeleton, and finally selected a NIR fluorescence probe substrate named CYBA. The CYBA demonstrated a significant increase in fluorescence when interacting with BChE, but mainly avoided AChE. Upon the addition of BChE, CYBA could be specifically hydrolyzed to TBO, resulting in a significant NIR fluorescence signal enhancement at 710 nm. Systematic evaluation revealed that CYBA exhibited exceptional chemical stability in complex biosamples and possessed remarkable selectivity and sensitivity towards BChE. Moreover, CYBA was successfully applied for real-time imaging of endogenous BChE activity in two types of nerve-related living cells. Additionally, CYBA demonstrated exceptional stability in the detection of complex biological samples in plasma recovery studies (97.51%-104.01%). Furthermore, CYBA was used to construct a high-throughput screening (HTS) method for BChE inhibitors using human plasma as the enzyme source. We evaluated inhibitory effects of a series of natural products and four flavonoids were identified as potent inhibitors of BChE. Collectively, CYBA can serve as a practical tool to track the changes of BChE activity in complicated biological environments due to its excellent capabilities.
Collapse
Affiliation(s)
- Hao Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiao-Dong Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao-Hua Yan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Hua Ni
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mu-Han Lü
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Li-Wei Zou
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Yang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Mezeiova E, Prchal L, Hrabinova M, Muckova L, Pulkrabkova L, Soukup O, Misiachna A, Janousek J, Fibigar J, Kucera T, Horak M, Makhaeva GF, Korabecny J. Morphing cholinesterase inhibitor amiridine into multipotent drugs for the treatment of Alzheimer's disease. Biomed Pharmacother 2024; 173:116399. [PMID: 38492439 DOI: 10.1016/j.biopha.2024.116399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
The search for novel drugs to address the medical needs of Alzheimer's disease (AD) is an ongoing process relying on the discovery of disease-modifying agents. Given the complexity of the disease, such an aim can be pursued by developing so-called multi-target directed ligands (MTDLs) that will impact the disease pathophysiology more comprehensively. Herewith, we contemplated the therapeutic efficacy of an amiridine drug acting as a cholinesterase inhibitor by converting it into a novel class of novel MTDLs. Applying the linking approach, we have paired amiridine as a core building block with memantine/adamantylamine, trolox, and substituted benzothiazole moieties to generate novel MTDLs endowed with additional properties like N-methyl-d-aspartate (NMDA) receptor affinity, antioxidant capacity, and anti-amyloid properties, respectively. The top-ranked amiridine-based compound 5d was also inspected by in silico to reveal the butyrylcholinesterase binding differences with its close structural analogue 5b. Our study provides insight into the discovery of novel amiridine-based drugs by broadening their target-engaged profile from cholinesterase inhibitors towards MTDLs with potential implications in AD therapy.
Collapse
Affiliation(s)
- Eva Mezeiova
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Lukas Prchal
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Martina Hrabinova
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, Hradec Kralove 500 05, Czech Republic; University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, Hradec Kralove 500 01, Czech Republic
| | - Lubica Muckova
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, Hradec Kralove 500 05, Czech Republic; University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, Hradec Kralove 500 01, Czech Republic
| | - Lenka Pulkrabkova
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, Hradec Kralove 500 05, Czech Republic; University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, Hradec Kralove 500 01, Czech Republic
| | - Ondrej Soukup
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, Hradec Kralove 500 05, Czech Republic; University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, Hradec Kralove 500 01, Czech Republic
| | - Anna Misiachna
- Institute of Experimental Medicine of the Czech Academy of Sciences, Department of Neurochemistry, Videnska 1083, Prague 14220, Czech Republic; Charles University in Prague, Department of Physiology, Faculty of Science, Albertov 6, Prague 2, Czech Republic
| | - Jiri Janousek
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Jakub Fibigar
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, Hradec Kralove 500 01, Czech Republic
| | - Tomas Kucera
- University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, Hradec Kralove 500 01, Czech Republic
| | - Martin Horak
- Institute of Experimental Medicine of the Czech Academy of Sciences, Department of Neurochemistry, Videnska 1083, Prague 14220, Czech Republic.
| | - Galina F Makhaeva
- Russian Academy of Sciences, Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Severny proezd 1, Chernogolovka 142432, Russia.
| | - Jan Korabecny
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, Hradec Kralove 500 05, Czech Republic; University of Defence, Military Faculty of Medicine, Department of Toxicology and Military Pharmacy, Trebesska 1575, Hradec Kralove 500 01, Czech Republic.
| |
Collapse
|
15
|
Paquette AR, Brazeau-Henrie JT, Boddy CN. Thioesterases as tools for chemoenzymatic synthesis of macrolactones. Chem Commun (Camb) 2024; 60:3379-3388. [PMID: 38456624 DOI: 10.1039/d4cc00401a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Macrocycles are a key functional group that can impart unique properties into molecules. Their synthesis has led to the development of many outstanding chemical methodologies and yet still remains challenging. Thioesterase (TE) domains are frequently responsible for macrocyclization in natural product biosynthesis and provide unique strengths for the enzymatic synthesis of macrocycles. In this feature article, we describe our work to characterize the substrate selectivity of TEs and to use these enzymes as biocatalysts. Our efforts have shown that the linear thioester activated substrates are loaded on TEs with limited substrate selectivity to generate acyl-enzyme intermediates. We show that cyclization of the acyl-enzyme intermediates can be highly selective, with competing hydrolysis of the acyl-enzyme intermediates. The mechanisms controlling TE-mediated macrocyclization versus hydrolysis are a significant unsolved problem in TE biochemistry. The potential of TEs as biocatalysts was demonstrated by using them in the chemoenzymatic total synthesis of macrocyclic depsipeptide natural products. This article highlights the strengths and potential of TEs as biocatalysts as well as their limitations, opening exciting research opportunities including TE engineering to optimize these powerful biocatalysts.
Collapse
Affiliation(s)
- André R Paquette
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada K1N 6N5.
| | - Jordan T Brazeau-Henrie
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada K1N 6N5.
| | - Christopher N Boddy
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada K1N 6N5.
| |
Collapse
|
16
|
Ali MY, Bar-Peled L. Chemical proteomics to study metabolism, a reductionist approach applied at the systems level. Cell Chem Biol 2024; 31:446-451. [PMID: 38518745 DOI: 10.1016/j.chembiol.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/02/2023] [Accepted: 02/28/2024] [Indexed: 03/24/2024]
Abstract
Cellular metabolism encompasses a complex array of interconnected biochemical pathways that are required for cellular homeostasis. When dysregulated, metabolism underlies multiple human pathologies. At the heart of metabolic networks are enzymes that have been historically studied through a reductionist lens, and more recently, using high throughput approaches including genomics and proteomics. Merging these two divergent viewpoints are chemical proteomic technologies, including activity-based protein profiling, which combines chemical probes specific to distinct enzyme families or amino acid residues with proteomic analysis. This enables the study of metabolism at the network level with the precision of powerful biochemical approaches. Herein, we provide a primer on how chemical proteomic technologies custom-built for studying metabolism have unearthed fundamental principles in metabolic control. In parallel, these technologies have leap-frogged drug discovery through identification of novel targets and drug specificity. Collectively, chemical proteomics technologies appear to do the impossible: uniting systematic analysis with a reductionist approach.
Collapse
Affiliation(s)
- Md Yousuf Ali
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Liron Bar-Peled
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
17
|
Judge A, Sankaran B, Hu L, Palaniappan M, Birgy A, Prasad BVV, Palzkill T. Network of epistatic interactions in an enzyme active site revealed by large-scale deep mutational scanning. Proc Natl Acad Sci U S A 2024; 121:e2313513121. [PMID: 38483989 PMCID: PMC10962969 DOI: 10.1073/pnas.2313513121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
Cooperative interactions between amino acids are critical for protein function. A genetic reflection of cooperativity is epistasis, which is when a change in the amino acid at one position changes the sequence requirements at another position. To assess epistasis within an enzyme active site, we utilized CTX-M β-lactamase as a model system. CTX-M hydrolyzes β-lactam antibiotics to provide antibiotic resistance, allowing a simple functional selection for rapid sorting of modified enzymes. We created all pairwise mutations across 17 active site positions in the β-lactamase enzyme and quantitated the function of variants against two β-lactam antibiotics using next-generation sequencing. Context-dependent sequence requirements were determined by comparing the antibiotic resistance function of double mutations across the CTX-M active site to their predicted function based on the constituent single mutations, revealing both positive epistasis (synergistic interactions) and negative epistasis (antagonistic interactions) between amino acid substitutions. The resulting trends demonstrate that positive epistasis is present throughout the active site, that epistasis between residues is mediated through substrate interactions, and that residues more tolerant to substitutions serve as generic compensators which are responsible for many cases of positive epistasis. Additionally, we show that a key catalytic residue (Glu166) is amenable to compensatory mutations, and we characterize one such double mutant (E166Y/N170G) that acts by an altered catalytic mechanism. These findings shed light on the unique biochemical factors that drive epistasis within an enzyme active site and will inform enzyme engineering efforts by bridging the gap between amino acid sequence and catalytic function.
Collapse
Affiliation(s)
- Allison Judge
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| | - Banumathi Sankaran
- Department of Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| | - Murugesan Palaniappan
- Department of Pathology and Immunology, Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
| | - André Birgy
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
- Infections, Antimicrobials, Modelling, Evolution, UMR 1137, French Insitute for Medical Research (INSERM), Faculty of Health, Université Paris Cité, Paris75006, France
| | - B. V. Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| | - Timothy Palzkill
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| |
Collapse
|
18
|
Yuan Y, Li P, Li J, Zhao Q, Chang Y, He X. Protein lipidation in health and disease: molecular basis, physiological function and pathological implication. Signal Transduct Target Ther 2024; 9:60. [PMID: 38485938 PMCID: PMC10940682 DOI: 10.1038/s41392-024-01759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/31/2023] [Accepted: 01/24/2024] [Indexed: 03/18/2024] Open
Abstract
Posttranslational modifications increase the complexity and functional diversity of proteins in response to complex external stimuli and internal changes. Among these, protein lipidations which refer to lipid attachment to proteins are prominent, which primarily encompassing five types including S-palmitoylation, N-myristoylation, S-prenylation, glycosylphosphatidylinositol (GPI) anchor and cholesterylation. Lipid attachment to proteins plays an essential role in the regulation of protein trafficking, localisation, stability, conformation, interactions and signal transduction by enhancing hydrophobicity. Accumulating evidence from genetic, structural, and biomedical studies has consistently shown that protein lipidation is pivotal in the regulation of broad physiological functions and is inextricably linked to a variety of diseases. Decades of dedicated research have driven the development of a wide range of drugs targeting protein lipidation, and several agents have been developed and tested in preclinical and clinical studies, some of which, such as asciminib and lonafarnib are FDA-approved for therapeutic use, indicating that targeting protein lipidations represents a promising therapeutic strategy. Here, we comprehensively review the known regulatory enzymes and catalytic mechanisms of various protein lipidation types, outline the impact of protein lipidations on physiology and disease, and highlight potential therapeutic targets and clinical research progress, aiming to provide a comprehensive reference for future protein lipidation research.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiyuan Li
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianghui Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| | - Xingxing He
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| |
Collapse
|
19
|
Jo J, Upadhyay T, Woods EC, Park KW, Pedowitz NJ, Jaworek-Korjakowska J, Wang S, Valdez TA, Fellner M, Bogyo M. Development of Oxadiazolone Activity-Based Probes Targeting FphE for Specific Detection of Staphylococcus aureus Infections. J Am Chem Soc 2024; 146:6880-6892. [PMID: 38411555 DOI: 10.1021/jacs.3c13974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Staphylococcus aureus (S. aureus) is a major human pathogen that is responsible for a wide range of systemic infections. Since its propensity to form biofilms in vivo poses formidable challenges for both detection and treatment, tools that can be used to specifically image S. aureus biofilms are highly valuable for clinical management. Here, we describe the development of oxadiazolone-based activity-based probes to target the S. aureus-specific serine hydrolase FphE. Because this enzyme lacks homologues in other bacteria, it is an ideal target for selective imaging of S. aureus infections. Using X-ray crystallography, direct cell labeling, and mouse models of infection, we demonstrate that oxadiazolone-based probes enable specific labeling of S. aureus bacteria through the direct covalent modification of the FphE active site serine. These results demonstrate the utility of the oxadizolone electrophile for activity-based probes and validate FphE as a target for the development of imaging contrast agents for the rapid detection of S. aureus infections.
Collapse
Affiliation(s)
- Jeyun Jo
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Tulsi Upadhyay
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Emily C Woods
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Ki Wan Park
- Department of Otolaryngology-Head & Neck Surgery Divisions, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Nichole J Pedowitz
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | | | - Sijie Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Tulio A Valdez
- Department of Otolaryngology-Head & Neck Surgery Divisions, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Matthias Fellner
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
20
|
Dehghani A, Binder F, Zorn M, Feigler A, Fischer KI, Felix MN, Happersberger P, Reisinger B. Investigating pH Effects on Enzymes Catalyzing Polysorbate Degradation by Activity-Based Protein Profiling. J Pharm Sci 2024; 113:744-753. [PMID: 37758159 DOI: 10.1016/j.xphs.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023]
Abstract
Host cell proteins (HCPs) are process-related impurities that can negatively impact the quality of biotherapeutics. Some HCPs possess enzymatic activity and can affect the active pharmaceutical ingredient (API) or excipients such as polysorbates (PS). PSs are a class of non-ionic surfactants commonly used as excipients in biotherapeutics to enhance the stability of APIs. The enzyme activity of certain HCPs can result in the degradation of PSs, leading to particle formation and decreased shelf life of biotherapeutics. Identifying and characterizing these HCPs is therefore crucial. This study employed the Activity-Based Protein Profiling (ABPP) technique to investigate the effect of pH on the activity of HCPs that have the potential to degrade polysorbates. Two probes were utilized: the commercially available fluorophosphonate (FP)-Desthiobiotin probe and a probe based on the antiobesity drug, Orlistat. Over 50 HCPs were identified, showing a strong dependence on pH-milieu regarding their enzyme activity. These findings underscore the importance of accounting for pH variations in the ABPP method and other investigations of HCP activity. Notably, the Orlistat-based probe (OBP) enabled us to investigate the enzymatic activity of a wider range of HCPs, emphasizing the advantage of using more than one probe for ABPP. Finally, this study led to the discovery of previously unreported active enzymes, including three HCPs from the carboxylesterase enzyme family.
Collapse
Affiliation(s)
- Alireza Dehghani
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, Biberach D-88397, Germany
| | - Florian Binder
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, Biberach D-88397, Germany
| | - Michael Zorn
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, Biberach D-88397, Germany
| | - Andreas Feigler
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, Biberach D-88397, Germany
| | - Kathrin Inge Fischer
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, Biberach D-88397, Germany
| | - Marius Nicolaus Felix
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, Biberach D-88397, Germany
| | - Peter Happersberger
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, Biberach D-88397, Germany
| | - Bernd Reisinger
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, Biberach D-88397, Germany.
| |
Collapse
|
21
|
Carvalho LAR, Sousa BB, Zaidman D, Kiely-Collins H, Bernardes GJL. Design and Evaluation of PROTACs Targeting Acyl Protein Thioesterase 1. Chembiochem 2024; 25:e202300736. [PMID: 38195841 DOI: 10.1002/cbic.202300736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/22/2023] [Indexed: 01/11/2024]
Abstract
PROTAC linker design remains mostly an empirical task. We employed the PRosettaC computational software in the design of sulfonyl-fluoride-based PROTACs targeting acyl protein thioesterase 1 (APT1). The software efficiently generated ternary complex models from empirically-designed PROTACs and suggested alkyl linkers to be the preferred type of linker to target APT1. Western blotting analysis revealed efficient degradation of APT1 and activity-based protein profiling showed remarkable selectivity of an alkyl linker-based PROTAC amongst serine hydrolases. Collectively, our data suggests that combining PRosettaC and chemoproteomics can effectively assist in triaging PROTACs for synthesis and providing early data on their potency and selectivity.
Collapse
Affiliation(s)
- Luís A R Carvalho
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW
- Instituto de Medicina Molecular João Lobo Antunes, Edifício Egas Moniz, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Bárbara B Sousa
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW
- Instituto de Medicina Molecular João Lobo Antunes, Edifício Egas Moniz, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Daniel Zaidman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW
| | - Hannah Kiely-Collins
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW
| | - Gonçalo J L Bernardes
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW
- Instituto de Medicina Molecular João Lobo Antunes, Edifício Egas Moniz, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| |
Collapse
|
22
|
Lu P, Dai SM, Zhou H, Wang F, Dong WR, Jiang JH. Xanthene-based near-infrared chromophores for high-contrast fluorescence and photoacoustic imaging of dipeptidyl peptidase 4. Chem Sci 2024; 15:2221-2228. [PMID: 38332839 PMCID: PMC10848782 DOI: 10.1039/d3sc04947g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024] Open
Abstract
Near-infrared (NIR) chromophores with analyte tunable emission and absorption properties are highly desirable for developing activatable fluorescence and photoacoustic (PA) probes for bioimaging and disease diagnosis. Here we engineer a class of new chromophores by extending the π-conjugation system of a xanthene scaffold at position 7 with different electron withdrawing groups. It is demonstrated that these chromophores exhibit pH-dependent transition from a spirocyclic "closed" form to a xanthene "open" form with remarkable changes in spectral properties. We further develop fluorescence and PA probes by caging the NIR xanthene chromophores with a dipeptidyl peptidase 4 (DPPIV) substrate. In vitro and live cell studies show that these probes allow activatable fluorescence and PA detection and imaging of DPPIV activity with high sensitivity, high specificity and fast response. Moreover, these two probes allow high-contrast and highly specific imaging of DPPIV activity in a tumour-bearing mouse model in vivo via systemic administration. This study highlights the potential of a xanthene scaffold as a versatile platform for developing high-contrast fluorescence and PA molecular probes.
Collapse
Affiliation(s)
- Pei Lu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometric, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Si-Min Dai
- State Key Laboratory of Chemo/Bio-Sensing and Chemometric, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Huihui Zhou
- State Key Laboratory of Chemo/Bio-Sensing and Chemometric, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Fenglin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometric, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Wan-Rong Dong
- State Key Laboratory of Chemo/Bio-Sensing and Chemometric, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometric, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| |
Collapse
|
23
|
Liu B, Zhao X, Zhang S, Li Q, Li X, Huang D, Xia J, Ma N, Duan Y, Zhang X, Rao J. Targeting ZDHHC21/FASN axis for the treatment of diffuse large B-cell lymphoma. Leukemia 2024; 38:351-364. [PMID: 38195819 PMCID: PMC10844076 DOI: 10.1038/s41375-023-02130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024]
Abstract
S-palmitoylation is essential for cancer development via regulating protein stability, function and subcellular location, yet the roles S-palmitoylation plays in diffuse large B-cell lymphoma (DLBCL) progression remain enigmatic. In this study, we uncovered a novel function of the palmitoyltransferase ZDHHC21 as a tumor suppressor in DLBCL and identified ZDHHC21 as a key regulator of fatty acid synthetase (FASN) S-palmitoylation for the first time. Specifically, ZDHHC21 was downregulated in DLBCL, and its expression level was associated with the clinical prognosis of patients with DLBCL. In vitro and in vivo experiments suggested that ZDHHC21 suppressed DLBCL cell proliferation. Mechanistically, ZDHHC21 interacted with FASN and mediated its palmitoylation at Cys1317, resulting in a decrease in FASN protein stability and fatty acid synthesis, consequently leading to the inhibition of DLBCL cell growth. Of note, an FDA-approved small-molecule compound lanatoside C interacted with ZDHHC21, increased ZDHHC21 protein stability and decreased FASN expression, which contributed to the suppression of DLBCL growth in vitro and in vivo. Our results demonstrate that ZDHHC21 strongly represses DLBCL cell proliferation by mediating FASN palmitoylation, and suggest that targeting ZDHHC21/FASN axis is a potential therapeutic strategy against DLBCL.
Collapse
MESH Headings
- Humans
- Cell Line, Tumor
- Cell Proliferation
- Fatty Acid Synthase, Type I/genetics
- Fatty Acid Synthase, Type I/metabolism
- Fatty Acids
- Gene Expression Regulation, Neoplastic
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Prognosis
Collapse
Affiliation(s)
- Bangdong Liu
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Jinfeng Laboratory, Chongqing, China
| | - Xianlan Zhao
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Shihao Zhang
- Department of Basic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiong Li
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xinlei Li
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Dezhi Huang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jing Xia
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Naya Ma
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yishuo Duan
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Jinfeng Laboratory, Chongqing, China.
| | - Jun Rao
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Jinfeng Laboratory, Chongqing, China.
| |
Collapse
|
24
|
Dirak M, Chan J, Kolemen S. Optical imaging probes for selective detection of butyrylcholinesterase. J Mater Chem B 2024; 12:1149-1167. [PMID: 38196348 DOI: 10.1039/d3tb02468g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Butyrylcholinesterase (BChE), a member of the human serine hydrolase family, is an essential enzyme for cholinergic neurotransmission as it catalyzes the hydrolysis of acetylcholine. It also plays central roles in apoptosis, lipid metabolism, and xenobiotic detoxification. On the other side, abnormal levels of BChE are directly associated with the formation of pathogenic states such as neurodegenerative diseases, psychiatric and cardiovascular disorders, liver damage, diabetes, and cancer. Thus, selective and sensitive detection of BChE level in living organisms is highly crucial and is of great importance to further understand the roles of BChE in both physiological and pathological processes. However, it is a very complicated task due to the potential interference of acetylcholinesterase (AChE), the other human cholinesterase, as these two enzymes share a very similar substrate scope. To this end, optical imaging probes have attracted immense attention in recent years as they have modular structures, which can be tuned precisely to satisfy high selectivity toward BChE, and at the same time they offer real time and nondestructive imaging opportunities with a high spatial and temporal resolution. Here, we summarize BChE selective imaging probes by discussing the critical milestones achieved during the development process of these molecular sensors over the years. We put a special emphasis on design principles and biological applications of highly promising new generation activity-based probes. We also give a comprehensive outlook for the future of BChE-responsive probes and highlight the ongoing challenges. This collection marks the first review article on BChE-responsive imaging agents.
Collapse
Affiliation(s)
- Musa Dirak
- Department of Chemistry, Koç University, 34450 Istanbul, Turkey.
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Safacan Kolemen
- Department of Chemistry, Koç University, 34450 Istanbul, Turkey.
| |
Collapse
|
25
|
Bennett JM, Narwal SK, Kabeche S, Abegg D, Hackett F, Yeo T, Li VL, Muir RK, Faucher FF, Lovell S, Blackman MJ, Adibekian A, Yeh E, Fidock DA, Bogyo M. Mixed Alkyl/Aryl Phosphonates Identify Metabolic Serine Hydrolases as Antimalarial Targets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575224. [PMID: 38260474 PMCID: PMC10802587 DOI: 10.1101/2024.01.11.575224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Malaria, caused by Plasmodium falciparum, remains a significant health burden. A barrier for developing anti-malarial drugs is the ability of the parasite to rapidly generate resistance. We demonstrated that Salinipostin A (SalA), a natural product, kills parasites by inhibiting multiple lipid metabolizing serine hydrolases, a mechanism with a low propensity for resistance. Given the difficulty of employing natural products as therapeutic agents, we synthesized a library of lipidic mixed alkyl/aryl phosphonates as bioisosteres of SalA. Two constitutional isomers exhibited divergent anti-parasitic potencies which enabled identification of therapeutically relevant targets. We also confirm that this compound kills parasites through a mechanism that is distinct from both SalA and the pan-lipase inhibitor, Orlistat. Like SalA, our compound induces only weak resistance, attributable to mutations in a single protein involved in multidrug resistance. These data suggest that mixed alkyl/aryl phosphonates are a promising, synthetically tractable anti-malarials with a low-propensity to induce resistance.
Collapse
Affiliation(s)
- John M Bennett
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Sunil K Narwal
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, USA
| | - Stephanie Kabeche
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Abegg
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
| | - Fiona Hackett
- Malaria Biochemistry Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, USA
| | - Veronica L Li
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Ryan K Muir
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Scott Lovell
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, Francis Crick Institute, London NW1 1AT, UK
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Ellen Yeh
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, NY, USA
- Division of Infectious Diseases, Columbia University Medical Center, New York, NY 10032 USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
26
|
Ni H, Wang Y, Yao K, Wang L, Huang J, Xiao Y, Chen H, Liu B, Yang CY, Zhao J. Cyclical palmitoylation regulates TLR9 signalling and systemic autoimmunity in mice. Nat Commun 2024; 15:1. [PMID: 38169466 PMCID: PMC10762000 DOI: 10.1038/s41467-023-43650-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024] Open
Abstract
Toll-like receptor 9 (TLR9) recognizes self-DNA and plays intricate roles in systemic lupus erythematosus (SLE). However, the molecular mechanism regulating the endosomal TLR9 response is incompletely understood. Here, we report that palmitoyl-protein thioesterase 1 (PPT1) regulates systemic autoimmunity by removing S-palmitoylation from TLR9 in lysosomes. PPT1 promotes the secretion of IFNα by plasmacytoid dendritic cells (pDCs) and TNF by macrophages. Genetic deficiency in or chemical inhibition of PPT1 reduces anti-nuclear antibody levels and attenuates nephritis in B6.Sle1yaa mice. In healthy volunteers and patients with SLE, the PPT1 inhibitor, HDSF, reduces IFNα production ex vivo. Mechanistically, biochemical and mass spectrometry analyses demonstrated that TLR9 is S-palmitoylated at C258 and C265. Moreover, the protein acyltransferase, DHHC3, palmitoylates TLR9 in the Golgi, and regulates TLR9 trafficking to endosomes. Subsequent depalmitoylation by PPT1 facilitates the release of TLR9 from UNC93B1. Our results reveal a posttranslational modification cycle that controls TLR9 response and autoimmunity.
Collapse
Affiliation(s)
- Hai Ni
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yinuo Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kai Yao
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ling Wang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiancheng Huang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yongfang Xiao
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongyao Chen
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bo Liu
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Huashen Institute of Microbes and Infections, Shanghai, China.
| | - Cliff Y Yang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Jijun Zhao
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
27
|
Chen T, Lu Y, Xiong X, Qiu M, Peng Y, Xu Z. Hydrolytic nanozymes: Preparation, properties, and applications. Adv Colloid Interface Sci 2024; 323:103072. [PMID: 38159448 DOI: 10.1016/j.cis.2023.103072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Hydrolytic nanozymes, as promising alternatives to hydrolytic enzymes, can efficiently catalyze the hydrolysis reactions and overcome the operating window limitations of natural enzymes. Moreover, they exhibit several merits such as relatively low cost, easier recovery and reuse, improved operating stability, and adjustable catalytic properties. Consequently, they have found relevance in practical applications such as organic synthesis, chemical weapon degradation, and biosensing. In this review, we highlight recent works addressing the broad topic of the development of hydrolytic nanozymes. We review the preparation, properties, and applications of six types of hydrolytic nanozymes, including AuNP-based nanozymes, polymeric nanozymes, surfactant assemblies, peptide assemblies, metal and metal oxide nanoparticles, and MOFs. Last, we discuss the remaining challenges and future directions. This review will stimulate the development and application of hydrolytic nanozymes.
Collapse
Affiliation(s)
- Tianyou Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Yizhuo Lu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xiaorong Xiong
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Meishuang Qiu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yan Peng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
28
|
Jo J, Upadhyay T, Woods EC, Park KW, Pedowitz NJ, Jaworek-Korjakowska J, Wang S, Valdez TA, Fellner M, Bogyo M. Development of Oxadiazolone Activity-Based Probes Targeting FphE for Specific Detection of S. aureus Infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.11.571116. [PMID: 38168396 PMCID: PMC10760020 DOI: 10.1101/2023.12.11.571116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Staphylococcus aureus is a major human pathogen responsible for a wide range of systemic infections. Since its propensity to form biofilms in vivo poses formidable challenges for both detection and treatment, tools that can be used to specifically image S. aureus biofilms are highly valuable for clinical management. Here we describe the development of oxadiazolonebased activity-based probes to target the S. aureus-specific serine hydrolase FphE. Because this enzyme lacks homologs in other bacteria, it is an ideal target for selective imaging of S. aureus infections. Using X-ray crystallography, direct cell labeling and mouse models of infection we demonstrate that oxadiazolone-based probes enable specific labeling of S. aureus bacteria through the direct covalent modification of the FphE active site serine. These results demonstrate the utility of the oxadizolone electrophile for activity-based probes (ABPs) and validate FphE as a target for development of imaging contrast agents for the rapid detection of S. aureus infections.
Collapse
Affiliation(s)
- Jeyun Jo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tulsi Upadhyay
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Emily C. Woods
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ki Wan Park
- Department of Otolaryngology–Head & Neck Surgery Divisions, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nichole J. Pedowitz
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Sijie Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tulio A. Valdez
- Department of Otolaryngology–Head & Neck Surgery Divisions, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthias Fellner
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
29
|
Conole D, Cao F, Am Ende CW, Xue L, Kantesaria S, Kang D, Jin J, Owen D, Lohr L, Schenone M, Majmudar JD, Tate EW. Discovery of a Potent Deubiquitinase (DUB) Small-Molecule Activity-Based Probe Enables Broad Spectrum DUB Activity Profiling in Living Cells. Angew Chem Int Ed Engl 2023; 62:e202311190. [PMID: 37779326 DOI: 10.1002/anie.202311190] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Deubiquitinases (DUBs) are a family of >100 proteases that hydrolyze isopeptide bonds linking ubiquitin to protein substrates, often leading to reduced substrate degradation through the ubiquitin proteasome system. Deregulation of DUB activity has been implicated in many diseases, including cancer, neurodegeneration and auto-inflammation, and several have been recognized as attractive targets for therapeutic intervention. Ubiquitin-derived covalent activity-based probes (ABPs) provide a powerful tool for DUB activity profiling, but their large recognition element impedes cellular permeability and presents an unmet need for small molecule ABPs which can account for regulation of DUB activity in intact cells or organisms. Here, through comprehensive chemoproteomic warhead profiling, we identify cyanopyrrolidine (CNPy) probe IMP-2373 (12) as a small molecule pan-DUB ABP to monitor DUB activity in physiologically relevant live cells. Through proteomics and targeted assays, we demonstrate that IMP-2373 quantitatively engages more than 35 DUBs across a range of non-toxic concentrations in diverse cell lines. We further demonstrate its application to quantification of changes in intracellular DUB activity during pharmacological inhibition and during MYC deregulation in a model of B cell lymphoma. IMP-2373 thus offers a complementary tool to ubiquitin ABPs to monitor dynamic DUB activity in the context of disease-relevant phenotypes.
Collapse
Affiliation(s)
- Daniel Conole
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London, W12 0BZ, United Kingdom
- Present address: Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Fangyuan Cao
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London, W12 0BZ, United Kingdom
| | - Christopher W Am Ende
- Pfizer Worldwide Research and Development, Pfizer Inc., Eastern Point Road, Groton, Connecticut, 06340, USA
| | - Liang Xue
- Pfizer Worldwide Research and Development, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts, 2139, USA
| | - Sheila Kantesaria
- Pfizer Worldwide Research and Development, Pfizer Inc., Eastern Point Road, Groton, Connecticut, 06340, USA
| | - Dahye Kang
- Pfizer Worldwide Research and Development, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts, 2139, USA
| | - Jun Jin
- BioDuro, No.233 North FuTe Rd., WaiGaoQiao Free Trade Zone, Shanghai, 200131, P.R. China
| | - Dafydd Owen
- Pfizer Worldwide Research and Development, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts, 2139, USA
| | - Linda Lohr
- Pfizer Worldwide Research and Development, Pfizer Inc., Eastern Point Road, Groton, Connecticut, 06340, USA
| | - Monica Schenone
- Pfizer Worldwide Research and Development, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts, 2139, USA
| | - Jaimeen D Majmudar
- Pfizer Worldwide Research and Development, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts, 2139, USA
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London, W12 0BZ, United Kingdom
| |
Collapse
|
30
|
Kong Y, Liu Y, Li X, Rao M, Li D, Ruan X, Li S, Jiang Z, Zhang Q. Palmitoylation landscapes across human cancers reveal a role of palmitoylation in tumorigenesis. J Transl Med 2023; 21:826. [PMID: 37978524 PMCID: PMC10655258 DOI: 10.1186/s12967-023-04611-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Protein palmitoylation, which is catalyzed by palmitoyl-transferase and de-palmitoyl-transferase, plays a crucial role in various biological processes. However, the landscape and dynamics of protein palmitoylation in human cancers are not well understood. METHODS We utilized 23 palmitoyl-acyltransferases and seven de-palmitoyl-acyltransferases as palmitoylation-related genes for protein palmitoylation analysis. Multiple publicly available datasets were employed to conduct pan-cancer analysis, examining the transcriptome, genomic alterations, clinical outcomes, and correlation with c-Myc (Myc) for palmitoylation-related genes. Real-time quantitative PCR and immunoblotting were performed to assess the expression of palmitoylation-related genes and global protein palmitoylation levels in cancer cells treated with Myc depletion or small molecule inhibitors. Protein docking and drug sensitivity analyses were employed to predict small molecules that target palmitoylation-related genes. RESULTS We identified associations between palmitoylation and cancer subtype, stage, and patient survival. We discovered that abnormal DNA methylation and oncogenic Myc-driven transcriptional regulation synergistically contribute to the dysregulation of palmitoylation-related genes. This dysregulation of palmitoylation was closely correlated with immune infiltration in the tumor microenvironment and the response to immunotherapy. Importantly, dysregulated palmitoylation was found to modulate canonical cancer-related pathways, thus influencing tumorigenesis. To support our findings, we performed a proof-of-concept experiment showing that depletion of Myc led to reduced expression of most palmitoylation-related genes, resulting in decreased global protein palmitoylation levels. Through mass spectrometry and enrichment analyses, we also identified palmitoyl-acyltransferases ZDHHC7 and ZDHHC23 as significant contributors to mTOR signaling, DNA repair, and immune pathways, highlighting their potential roles in tumorigenesis. Additionally, our study explored the potential of three small molecular (BI-2531, etoposide, and piperlongumine) to modulate palmitoylation by targeting the expression or activity of palmitoylation-related genes or enzymes. CONCLUSIONS Overall, our findings underscore the critical role of dysregulated palmitoylation in tumorigenesis and the response to immunotherapy, mediated through classical cancer-related pathways and immune cell infiltration. Additionally, we propose that the aforementioned three small molecule hold promise as potential therapeutics for modulating palmitoylation, thereby offering novel avenues for cancer therapy.
Collapse
Affiliation(s)
- Yue Kong
- Department of Microbiology and Immunology, Basic Medicine College, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
- Key Laboratory of Ministry of Education for Viral Pathogenesis and Infection Prevention and Control, Jinan University, Guangzhou, 510632, China
| | - Yugeng Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Xianzhe Li
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Menglan Rao
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China
| | - Dawei Li
- Zhumadian Central Hospital, Huanghuai University, Zhumadian, 463000, China
| | - Xiaolan Ruan
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China
| | - Shanglin Li
- Department of Microbiology and Immunology, Basic Medicine College, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
- Key Laboratory of Ministry of Education for Viral Pathogenesis and Infection Prevention and Control, Jinan University, Guangzhou, 510632, China
| | - Zhenyou Jiang
- Department of Microbiology and Immunology, Basic Medicine College, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China.
- Key Laboratory of Ministry of Education for Viral Pathogenesis and Infection Prevention and Control, Jinan University, Guangzhou, 510632, China.
| | - Qiang Zhang
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
31
|
Vaidya K, Rodrigues G, Gupta S, Devarajan A, Yeolekar M, Madhusudhan MS, Kamat SS. Identification of sequence determinants for the ABHD14 enzymes. Proteins 2023. [PMID: 37974539 DOI: 10.1002/prot.26632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/14/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
Over the course of evolution, enzymes have developed remarkable functional diversity in catalyzing important chemical reactions across various organisms, and understanding how new enzyme functions might have evolved remains an important question in modern enzymology. To systematically annotate functions, based on their protein sequences and available biochemical studies, enzymes with similar catalytic mechanisms have been clustered together into an enzyme superfamily. Typically, enzymes within a superfamily have similar overall three-dimensional structures, conserved catalytic residues, but large variations in substrate recognition sites and residues to accommodate the diverse biochemical reactions that are catalyzed within the superfamily. The serine hydrolases are an excellent example of such an enzyme superfamily. Based on known enzymatic activities and protein sequences, they are split almost equally into the serine proteases and metabolic serine hydrolases. Within the metabolic serine hydrolases, there are two outlying members, ABHD14A and ABHD14B, that have high sequence similarity, but their biological functions remained cryptic till recently. While ABHD14A still lacks any functional annotation to date, we recently showed that ABHD14B functions as a lysine deacetylase in mammals. Given their high sequence similarity, automated databases often wrongly assign ABHD14A and ABHD14B as the same enzyme, and therefore, annotating functions to them in various organisms has been problematic. In this article, we present a bioinformatics study coupled with biochemical experiments, which identifies key sequence determinants for both ABHD14A and ABHD14B, and enable better classification for them. In addition, we map these enzymes on an evolutionary timescale and provide a much-wanted resource for studying these interesting enzymes in different organisms.
Collapse
Affiliation(s)
- Kaveri Vaidya
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| | - Golding Rodrigues
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| | - Sonali Gupta
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| | - Archit Devarajan
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Mihika Yeolekar
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| | - M S Madhusudhan
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| |
Collapse
|
32
|
Anwar MU, van der Goot FG. Refining S-acylation: Structure, regulation, dynamics, and therapeutic implications. J Cell Biol 2023; 222:e202307103. [PMID: 37756661 PMCID: PMC10533364 DOI: 10.1083/jcb.202307103] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
With a limited number of genes, cells achieve remarkable diversity. This is to a large extent achieved by chemical posttranslational modifications of proteins. Amongst these are the lipid modifications that have the unique ability to confer hydrophobicity. The last decade has revealed that lipid modifications of proteins are extremely frequent and affect a great variety of cellular pathways and physiological processes. This is particularly true for S-acylation, the only reversible lipid modification. The enzymes involved in S-acylation and deacylation are only starting to be understood, and the list of proteins that undergo this modification is ever-increasing. We will describe the state of knowledge on the enzymes that regulate S-acylation, from their structure to their regulation, how S-acylation influences target proteins, and finally will offer a perspective on how alterations in the balance between S-acylation and deacylation may contribute to disease.
Collapse
Affiliation(s)
- Muhammad U. Anwar
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - F. Gisou van der Goot
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
33
|
Konduri S, Schweer J, Siegel D. Short synthesis of a broadly Reactive, cell permeable serine hydrolase Fluorophosphonate-Alkyne probe. Bioorg Med Chem Lett 2023; 95:129434. [PMID: 37557924 DOI: 10.1016/j.bmcl.2023.129434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/11/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023]
Abstract
An abbreviated synthesis of the cell permeable fluorophosphonate-alkyne probe (FP-alkyne) for the broad assessment of serine hydrolase activity has been developed. While FP-alkyne has proven pivotal in numerous chemical biology studies access has relied on a lengthy preparation over nine steps. We have developed a four-step synthesis, starting from commercially available compounds, with three purification steps to provide a new expedited route allowing easy access to a useful tool compound for exploring serine hydrolases chemistry and biology. This route was used in our own studies to generate FP-alkyne which in turn was used to identify the enzyme responsible for Fatty Acid Esters of Hydroxy Fatty Acids (FAHFA) biosynthesis. The use of this route can enable the syntheses of new tool compounds in addition to improving accessibility to FP-alkyne.
Collapse
Affiliation(s)
- Srihari Konduri
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0934, United States
| | - Joshua Schweer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0934, United States
| | - Dionicio Siegel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0934, United States.
| |
Collapse
|
34
|
Marafie SK, Al-Mulla F. An Overview of the Role of Furin in Type 2 Diabetes. Cells 2023; 12:2407. [PMID: 37830621 PMCID: PMC10571965 DOI: 10.3390/cells12192407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Post-translational modifications (PTMs) play important roles in regulating several human diseases, like cancer, neurodegenerative disorders, and metabolic disorders. Investigating PTMs' contribution to protein functions is critical for modern biology and medicine. Proprotein convertases (PCs) are irreversible post-translational modifiers that have been extensively studied and are considered as key targets for novel therapeutics. They cleave proteins at specific sites causing conformational changes affecting their functions. Furin is considered as a PC model in regulating growth factors and is involved in regulating many pro-proteins. The mammalian target of the rapamycin (mTOR) signaling pathway is another key player in regulating cellular processes and its dysregulation is linked to several diseases including type 2 diabetes (T2D). The role of furin in the context of diabetes has been rarely explored and is currently lacking. Moreover, furin variants have altered activity that could have implications on overall health. In this review, we aim to highlight the role of furin in T2D in relation to mTOR signaling. We will also address furin genetic variants and their potential effect on T2D and β-cell functions. Understanding the role of furin in prediabetes and dissecting it from other confounding factors like obesity is crucial for future therapeutic interventions in metabolic disorders.
Collapse
Affiliation(s)
- Sulaiman K. Marafie
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait
| |
Collapse
|
35
|
Xue Z, Ye L, Ge J, Lan Z, Zou X, Mao C, Bao X, Yu L, Xu Y, Zhu X. Wwl70-induced ABHD6 inhibition attenuates memory deficits and pathological phenotypes in APPswe/PS1dE9 mice. Pharmacol Res 2023; 194:106864. [PMID: 37480972 DOI: 10.1016/j.phrs.2023.106864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/04/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Synaptic dysfunction plays a crucial role in the pathogenesis of Alzheimer's disease (AD). α/β-hydrolase domain-containing 6 (ABHD6) contributes to synaptic dysfunctions, and ABHD6 inhibition has shown potential therapeutic value in neurological disorders. However, the role of ABHD6 in AD has not been fully defined. In this study, we demonstrated that adeno-associated virus (AAV) mediated shRNA targeting ABHD6 in hippocampal neurons attenuated synaptic dysfunction and memory impairment of APPswe/PS1dE9 (APP/PS1) mice, while it didn't affect the amyloid-beta (Aβ) levels and neuroinflammation in the brains. In addition, intraperitoneal injection of wwl70, a specific inhibitor of ABHD6, improved synaptic plasticity and memory function in APP/PS1 mice, which might attribute to the activation of endogenous cannabinoid signaling. Furthermore, wwl70 significantly decreased the Aβ levels and neuroinflammation in the hippocampus of AD mice, and enhanced Aβ phagocytized by microglia. In conclusion, for the first time our data have shown that ABHD6 inhibition might be a promising strategy for AD treatment, and wwl70 is a potential candidate for AD drug development pipeline.
Collapse
Affiliation(s)
- Zhiwei Xue
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, China
| | - Lei Ye
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, China
| | - Jianwei Ge
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, China
| | - Zhen Lan
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinxin Zou
- Department of Neurology, Drum Tower Hospital of Xuzhou Medical University, Nanjing, Jiangsu, China
| | - Chenglu Mao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, China
| | - Linjie Yu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, China; Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Department of Neurology, Drum Tower Hospital of Xuzhou Medical University, Nanjing, Jiangsu, China
| | - Xiaolei Zhu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, China; Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
36
|
Mohammad I, Liebmann KL, Miller SC. Firefly luciferin methyl ester illuminates the activity of multiple serine hydrolases. Chem Commun (Camb) 2023; 59:8552-8555. [PMID: 37337906 PMCID: PMC10347678 DOI: 10.1039/d3cc02540c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Firefly luciferin methyl ester is hydrolyzed by monoacylglycerol lipase MAGL, amidase FAAH, poorly-characterized hydrolase ABHD11, and hydrolases known for S-depalmitoylation (LYPLA1/2), not just esterase CES1. This enables activity-based bioluminescent assays for serine hydrolases and suggests that the 'esterase activity' responsible for hydrolyzing ester prodrugs is more diverse than previously supposed.
Collapse
Affiliation(s)
- Innus Mohammad
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 364 Plantation St., Worcester, MA 01605, USA.
| | - Kate L Liebmann
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 364 Plantation St., Worcester, MA 01605, USA.
| | - Stephen C Miller
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 364 Plantation St., Worcester, MA 01605, USA.
| |
Collapse
|
37
|
Lulić AM, Katalinić M. The PNPLA family of enzymes: characterisation and biological role. Arh Hig Rada Toksikol 2023; 74:75-89. [PMID: 37357879 PMCID: PMC10291501 DOI: 10.2478/aiht-2023-74-3723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/01/2023] [Accepted: 05/01/2023] [Indexed: 06/27/2023] Open
Abstract
This paper brings a brief review of the human patatin-like phospholipase domain-containing protein (PNPLA) family. Even though it consists of only nine members, their physiological roles and mechanisms of their catalytic activity are not fully understood. However, the results of a number of knock-out and gain- or loss-of-function research models suggest that these enzymes have an important role in maintaining the homeostasis and integrity of organelle membranes, in cell growth, signalling, cell death, and the metabolism of lipids such as triacylglycerol, phospholipids, ceramides, and retinyl esters. Research has also revealed a connection between PNPLA family member mutations or irregular catalytic activity and the development of various diseases. Here we summarise important findings published so far and discuss their structure, localisation in the cell, distribution in the tissues, specificity for substrates, and their potential physiological role, especially in view of their potential as drug targets.
Collapse
Affiliation(s)
- Ana-Marija Lulić
- Institute for Medical Research and Occupational Health, Biochemistry and Organic Analytical Chemistry Unit, Zagreb, Croatia
| | - Maja Katalinić
- Institute for Medical Research and Occupational Health, Biochemistry and Organic Analytical Chemistry Unit, Zagreb, Croatia
| |
Collapse
|
38
|
He Q, Qu M, Shen T, Su J, Xu Y, Xu C, Barkat MQ, Cai J, Zhu H, Zeng LH, Wu X. Control of mitochondria-associated endoplasmic reticulum membranes by protein S-palmitoylation: Novel therapeutic targets for neurodegenerative diseases. Ageing Res Rev 2023; 87:101920. [PMID: 37004843 DOI: 10.1016/j.arr.2023.101920] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Mitochondria-associated endoplasmic reticulum membranes (MAMs) are dynamic coupling structures between mitochondria and the endoplasmic reticulum (ER). As a new subcellular structure, MAMs combine the two critical organelle functions. Mitochondria and the ER could regulate each other via MAMs. MAMs are involved in calcium (Ca2+) homeostasis, autophagy, ER stress, lipid metabolism, etc. Researchers have found that MAMs are closely related to metabolic syndrome and neurodegenerative diseases (NDs). The formation of MAMs and their functions depend on specific proteins. Numerous protein enrichments, such as the IP3R-Grp75-VDAC complex, constitute MAMs. The changes in these proteins govern the interaction between mitochondria and the ER; they also affect the biological functions of MAMs. S-palmitoylation is a reversible protein post-translational modification (PTM) that mainly occurs on protein cysteine residues. More and more studies have shown that the S-palmitoylation of proteins is closely related to their membrane localization. Here, we first briefly describe the composition and function of MAMs, reviewing the component and biological roles of MAMs mediated by S-palmitoylation, elaborating on S-palmitoylated proteins in Ca2+ flux, lipid rafts, and so on. We try to provide new insight into the molecular basis of MAMs-related diseases, mainly NDs. Finally, we propose potential drug compounds targeting S-palmitoylation.
Collapse
Affiliation(s)
- Qiangqiang He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Pharmacology, Hangzhou City University, Hangzhou 310015, China
| | - Meiyu Qu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Tingyu Shen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiakun Su
- Technology Center, China Tobacco Jiangxi Industrial Co. Ltd., Nanchang 330096, China
| | - Yana Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chengyun Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Muhammad Qasim Barkat
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jibao Cai
- Technology Center, China Tobacco Jiangxi Industrial Co. Ltd., Nanchang 330096, China
| | - Haibin Zhu
- Department of Gynecology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ling-Hui Zeng
- Department of Pharmacology, Hangzhou City University, Hangzhou 310015, China.
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
39
|
Yuksel S, Aredo B, Zegeye Y, Zhao CX, Tang M, Li X, Hulleman JD, Gautron L, Ludwig S, Moresco EMY, Butovich IA, Beutler BA, Ufret-Vincenty RL. Forward genetic screening using fundus spot scale identifies an essential role for Lipe in murine retinal homeostasis. Commun Biol 2023; 6:533. [PMID: 37198396 DOI: 10.1038/s42003-023-04870-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
Microglia play a role in the pathogenesis of many retinal diseases. Fundus spots in mice often correlate with the accumulation of activated subretinal microglia. Here we use a semiquantitative fundus spot scoring scale in combination with an unbiased, state-of-the-science forward genetics pipeline to identify causative associations between chemically induced mutations and fundus spot phenotypes. Among several associations, we focus on a missense mutation in Lipe linked to an increase in yellow fundus spots in C57BL/6J mice. Lipe-/- mice generated using CRISPR-Cas9 technology are found to develop accumulation of subretinal microglia, a retinal degeneration with decreased visual function, and an abnormal retinal lipid profile. We establish an indispensable role of Lipe in retinal/RPE lipid homeostasis and retinal health. Further studies using this new model will be aimed at determining how lipid dysregulation results in the activation of subretinal microglia and whether these microglia also play a role in the subsequent retinal degeneration.
Collapse
Affiliation(s)
- Seher Yuksel
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bogale Aredo
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yeshumenesh Zegeye
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Cynthia X Zhao
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Miao Tang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaohong Li
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John D Hulleman
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Laurent Gautron
- Center for Hypothalamic Research and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sara Ludwig
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eva M Y Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Igor A Butovich
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Bruce A Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | | |
Collapse
|
40
|
Schemenauer D, Pool EH, Raynor SN, Ruiz GP, Goehring LM, Koelper AJ, Wilson MA, Durand AJ, Kourtoglou EC, Larsen EM, Lavis LD, Esteb JJ, Hoops GC, Johnson RJ. Sequence and Structural Motifs Controlling the Broad Substrate Specificity of the Mycobacterial Hormone-Sensitive Lipase LipN. ACS OMEGA 2023; 8:13252-13264. [PMID: 37065048 PMCID: PMC10099132 DOI: 10.1021/acsomega.3c00534] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Mycobacterium tuberculosis has a complex life cycle transitioning between active and dormant growth states depending on environmental conditions. LipN (Rv2970c) is a conserved mycobacterial serine hydrolase with regulated catalytic activity at the interface between active and dormant growth conditions. LipN also catalyzes the xenobiotic degradation of a tertiary ester substrate and contains multiple conserved motifs connected with the ability to catalyze the hydrolysis of difficult tertiary ester substrates. Herein, we expanded a library of fluorogenic ester substrates to include more tertiary and constrained esters and screened 33 fluorogenic substrates for activation by LipN, identifying its unique substrate signature. LipN preferred short, unbranched ester substrates, but had its second highest activity against a heteroaromatic five-membered oxazole ester. Oxazole esters are present in multiple mycobacterial serine hydrolase inhibitors but have not been tested widely as ester substrates. Combined structural modeling, kinetic measurements, and substitutional analysis of LipN showcased a fairly rigid binding pocket preorganized for catalysis of short ester substrates. Substitution of diverse amino acids across the binding pocket significantly impacted the folded stability and catalytic activity of LipN with two conserved motifs (HGGGW and GDSAG) playing interconnected, multidimensional roles in regulating its substrate specificity. Together this detailed substrate specificity profile of LipN illustrates the complex interplay between structure and function in mycobacterial hormone-sensitive lipase homologues and indicates oxazole esters as promising inhibitor and substrate scaffolds for mycobacterial hydrolases.
Collapse
Affiliation(s)
- Daniel
E. Schemenauer
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Emily H. Pool
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Stephanie N. Raynor
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Gabriela P. Ruiz
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Leah M. Goehring
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Andrew J. Koelper
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Madeleine A. Wilson
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Anthony J. Durand
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Elexi C. Kourtoglou
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Erik M. Larsen
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Luke D. Lavis
- Howard
Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia 20147, United States
| | - John J. Esteb
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - Geoffrey C. Hoops
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| | - R. Jeremy Johnson
- Department
of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana 46208, United States
| |
Collapse
|
41
|
Chen C. Inhibiting degradation of 2-arachidonoylglycerol as a therapeutic strategy for neurodegenerative diseases. Pharmacol Ther 2023; 244:108394. [PMID: 36966972 PMCID: PMC10123871 DOI: 10.1016/j.pharmthera.2023.108394] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Endocannabinoids are endogenous lipid signaling mediators that participate in a variety of physiological and pathological processes. 2-Arachidonoylglycerol (2-AG) is the most abundant endocannabinoid and is a full agonist of G-protein-coupled cannabinoid receptors (CB1R and CB2R), which are targets of Δ9-tetrahydrocannabinol (Δ9-THC), the main psychoactive ingredient in cannabis. While 2-AG has been well recognized as a retrograde messenger modulating synaptic transmission and plasticity at both inhibitory GABAergic and excitatory glutamatergic synapses in the brain, growing evidence suggests that 2-AG also functions as an endogenous terminator of neuroinflammation in response to harmful insults, thus maintaining brain homeostasis. Monoacylglycerol lipase (MAGL) is the key enzyme that degrades 2-AG in the brain. The immediate metabolite of 2-AG is arachidonic acid (AA), a precursor of prostaglandins (PGs) and leukotrienes. Several lines of evidence indicate that pharmacological or genetic inactivation of MAGL, which boosts 2-AG levels and reduces its hydrolytic metabolites, resolves neuroinflammation, mitigates neuropathology, and improves synaptic and cognitive functions in animal models of neurodegenerative diseases, including Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease (PD), and traumatic brain injury (TBI)-induced neurodegenerative disease. Thus, it has been proposed that MAGL is a potential therapeutic target for treatment of neurodegenerative diseases. As the main enzyme hydrolyzing 2-AG, several MAGL inhibitors have been identified and developed. However, our understanding of the mechanisms by which inactivation of MAGL produces neuroprotective effects in neurodegenerative diseases remains limited. A recent finding that inhibition of 2-AG metabolism in astrocytes, but not in neurons, protects the brain from TBI-induced neuropathology might shed some light on this unsolved issue. This review provides an overview of MAGL as a potential therapeutic target for neurodegenerative diseases and discusses possible mechanisms underlying the neuroprotective effects of restraining degradation of 2-AG in the brain.
Collapse
|
42
|
Meanwell NA. The pyridazine heterocycle in molecular recognition and drug discovery. Med Chem Res 2023; 32:1-69. [PMID: 37362319 PMCID: PMC10015555 DOI: 10.1007/s00044-023-03035-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/06/2023] [Indexed: 03/17/2023]
Abstract
The pyridazine ring is endowed with unique physicochemical properties, characterized by weak basicity, a high dipole moment that subtends π-π stacking interactions and robust, dual hydrogen-bonding capacity that can be of importance in drug-target interactions. These properties contribute to unique applications in molecular recognition while the inherent polarity, low cytochrome P450 inhibitory effects and potential to reduce interaction of a molecule with the cardiac hERG potassium channel add additional value in drug discovery and development. The recent approvals of the gonadotropin-releasing hormone receptor antagonist relugolix (24) and the allosteric tyrosine kinase 2 inhibitor deucravacitinib (25) represent the first examples of FDA-approved drugs that incorporate a pyridazine ring. In this review, the properties of the pyridazine ring are summarized in comparison to the other azines and its potential in drug discovery is illustrated through vignettes that explore applications that take advantage of the inherent physicochemical properties as an approach to solving challenges associated with candidate optimization. Graphical Abstract
Collapse
|
43
|
Ouedraogo D, Souffrant M, Yao XQ, Hamelberg D, Gadda G. Non-active Site Residue in Loop L4 Alters Substrate Capture and Product Release in d-Arginine Dehydrogenase. Biochemistry 2023; 62:1070-1081. [PMID: 36795942 PMCID: PMC9996824 DOI: 10.1021/acs.biochem.2c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Numerous studies demonstrate that enzymes undergo multiple conformational changes during catalysis. The malleability of enzymes forms the basis for allosteric regulation: residues located far from the active site can exert long-range dynamical effects on the active site residues to modulate catalysis. The structure of Pseudomonas aeruginosa d-arginine dehydrogenase (PaDADH) shows four loops (L1, L2, L3, and L4) that span the substrate and the FAD-binding domains. Loop L4 comprises residues 329-336, spanning over the flavin cofactor. The I335 residue on loop L4 is ∼10 Å away from the active site and ∼3.8 Å from N(1)-C(2)═O atoms of the flavin. In this study, we used molecular dynamics and biochemical techniques to investigate the effect of the mutation of I335 to histidine on the catalytic function of PaDADH. Molecular dynamics showed that the conformational dynamics of PaDADH are shifted to a more closed conformation in the I335H variant. In agreement with an enzyme that samples more in a closed conformation, the kinetic data of the I335H variant showed a 40-fold decrease in the rate constant of substrate association (k1), a 340-fold reduction in the rate constant of substrate dissociation from the enzyme-substrate complex (k2), and a 24-fold decrease in the rate constant of product release (k5), compared to that of the wild-type. Surprisingly, the kinetic data are consistent with the mutation having a negligible effect on the reactivity of the flavin. Altogether, the data indicate that the residue at position 335 has a long-range dynamical effect on the catalytic function in PaDADH.
Collapse
Affiliation(s)
- Daniel Ouedraogo
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Michael Souffrant
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Xin-Qiu Yao
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Donald Hamelberg
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States.,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302, United States.,Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302, United States
| | - Giovanni Gadda
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States.,Department of Biology, Georgia State University, Atlanta, Georgia 30302, United States.,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302, United States.,Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
44
|
Shi JH, Zhao B, Song LL, Song YQ, Sun MR, Tian T, Chen HY, Song YQ, Sun JM, Ge GB. Chalcone derivatives as novel, potent and selective inhibitors against human Notum: Structure–activity relationships and biological evaluations. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
45
|
Orozco-Cortés PC, Flores-Ortíz CM, Hernández-Portilla LB, Vázquez Medrano J, Rodríguez-Peña ON. Molecular Docking and In Vitro Studies of Ochratoxin A (OTA) Biodetoxification Testing Three Endopeptidases. Molecules 2023; 28:molecules28052019. [PMID: 36903263 PMCID: PMC10003963 DOI: 10.3390/molecules28052019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023] Open
Abstract
Ochratoxin A (OTA) is considered one of the main mycotoxins responsible for health problems and considerable economic losses in the feed industry. The aim was to study OTA's detoxifying potential of commercial protease enzymes: (i) Ananas comosus bromelain cysteine-protease, (ii) bovine trypsin serine-protease and (iii) Bacillus subtilis neutral metalloendopeptidase. In silico studies were performed with reference ligands and T-2 toxin as control, and in vitro experiments. In silico study results showed that tested toxins interacted near the catalytic triad, similar to how the reference ligands behave in all tested proteases. Likewise, based on the proximity of the amino acids in the most stable poses, the chemical reaction mechanisms for the transformation of OTA were proposed. In vitro experiments showed that while bromelain reduced OTA's concentration in 7.64% at pH 4.6; trypsin at 10.69% and the neutral metalloendopeptidase in 8.2%, 14.44%, 45.26% at pH 4.6, 5 and 7, respectively (p < 0.05). The less harmful α-ochratoxin was confirmed with trypsin and the metalloendopeptidase. This study is the first attempt to demonstrate that: (i) bromelain and trypsin can hydrolyse OTA in acidic pH conditions with low efficiency and (ii) the metalloendopeptidase was an effective OTA bio-detoxifier. This study confirmed α-ochratoxin as a final product of the enzymatic reactions in real-time practical information on OTA degradation rate, since in vitro experiments simulated the time that food spends in poultry intestines, as well as their natural pH and temperature conditions.
Collapse
Affiliation(s)
- Pablo César Orozco-Cortés
- Laboratorio de Fisiología Vegetal, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico
| | - Cesar Mateo Flores-Ortíz
- Laboratorio de Fisiología Vegetal, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico
- Correspondence: (C.M.F.-O.); (O.N.R.-P.); Tel.: +52-555-623-1131 (O.N.R.P.)
| | - Luis Barbo Hernández-Portilla
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico
| | - Josefina Vázquez Medrano
- Laboratorio de Fisiología Vegetal, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico
| | - Olga Nelly Rodríguez-Peña
- Laboratorio de Fisiología Vegetal, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico
- Correspondence: (C.M.F.-O.); (O.N.R.-P.); Tel.: +52-555-623-1131 (O.N.R.P.)
| |
Collapse
|
46
|
Racioppo B, Qiu N, Adibekian A. Serine Hydrolase Activity‐Based Probes for use in Chemical Proteomics. Isr J Chem 2023. [DOI: 10.1002/ijch.202300016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Brittney Racioppo
- Department of Chemistry University of Illinois Chicago Chicago Illinois 60607 United States
- Skaggs Doctoral Program in the Chemical and Biological Sciences, Scripps Research La Jolla California 92037 United States
| | - Nan Qiu
- Department of Chemistry University of Illinois Chicago Chicago Illinois 60607 United States
- Skaggs Doctoral Program in the Chemical and Biological Sciences, Scripps Research La Jolla California 92037 United States
| | - Alexander Adibekian
- Department of Chemistry University of Illinois Chicago Chicago Illinois 60607 United States
| |
Collapse
|
47
|
Brulet JW, Ciancone AM, Yuan K, Hsu K. Advances in Activity‐Based Protein Profiling of Functional Tyrosines in Proteomes. Isr J Chem 2023. [DOI: 10.1002/ijch.202300001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Jeffrey W. Brulet
- Department of Chemistry University of Virginia Charlottesville Virginia 22904 United States (K.-L.H
| | - Anthony M. Ciancone
- Department of Chemistry University of Virginia Charlottesville Virginia 22904 United States (K.-L.H
| | - Kun Yuan
- Department of Chemistry University of Virginia Charlottesville Virginia 22904 United States (K.-L.H
| | - Ku‐Lung Hsu
- Department of Chemistry University of Virginia Charlottesville Virginia 22904 United States (K.-L.H
- Department of Pharmacology University of Virginia School of Medicine Charlottesville Virginia 22908 United States
- Department of Molecular Physiology and Biological Physics University of Virginia Charlottesville Virginia 22908 United States
- University of Virginia Cancer Center University of Virginia Charlottesville VA 22903 USA
| |
Collapse
|
48
|
Honeder SE, Tomin T, Schinagl M, Pfleger R, Hoehlschen J, Darnhofer B, Schittmayer M, Birner‐Gruenberger R. Research Advances Through Activity‐Based Lipid Hydrolase Profiling. Isr J Chem 2023. [DOI: 10.1002/ijch.202200078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sophie Elisabeth Honeder
- Research and Diagnostic Institute of Pathology Medical University of Graz Stiftingtalstraße 6 8036 Graz Austria
| | - Tamara Tomin
- Institute of Chemical Technologies and Analytics University of Technology Vienna Getreidemarkt 9 1060 Wien Austria
| | - Maximilian Schinagl
- Institute of Chemical Technologies and Analytics University of Technology Vienna Getreidemarkt 9 1060 Wien Austria
| | - Raphael Pfleger
- Institute of Chemical Technologies and Analytics University of Technology Vienna Getreidemarkt 9 1060 Wien Austria
| | - Julia Hoehlschen
- Institute of Chemical Technologies and Analytics University of Technology Vienna Getreidemarkt 9 1060 Wien Austria
| | - Barbara Darnhofer
- Core Facility Mass Spectrometry Center for Medical Research Medical University of Graz Neue Stiftingtalstraße 24 8036 Graz Austria
| | - Matthias Schittmayer
- Institute of Chemical Technologies and Analytics University of Technology Vienna Getreidemarkt 9 1060 Wien Austria
| | - Ruth Birner‐Gruenberger
- Research and Diagnostic Institute of Pathology Medical University of Graz Stiftingtalstraße 6 8036 Graz Austria
- Institute of Chemical Technologies and Analytics University of Technology Vienna Getreidemarkt 9 1060 Wien Austria
| |
Collapse
|
49
|
Gan C, Wang J, Martínez-Chávez A, Hillebrand M, de Vries N, Beukers J, Wagenaar E, Wang Y, Lebre MC, Rosing H, Klarenbeek S, Ali RB, Pritchard C, Huijbers I, Beijnen JH, Schinkel AH. Carboxylesterase 1 family knockout alters drug disposition and lipid metabolism. Acta Pharm Sin B 2023; 13:618-631. [PMID: 36873183 PMCID: PMC9978993 DOI: 10.1016/j.apsb.2022.10.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/13/2022] [Accepted: 09/23/2022] [Indexed: 11/01/2022] Open
Abstract
The mammalian carboxylesterase 1 (Ces1/CES1) family comprises several enzymes that hydrolyze many xenobiotic chemicals and endogenous lipids. To investigate the pharmacological and physiological roles of Ces1/CES1, we generated Ces1 cluster knockout (Ces1 -/- ) mice, and a hepatic human CES1 transgenic model in the Ces1 -/- background (TgCES1). Ces1 -/- mice displayed profoundly decreased conversion of the anticancer prodrug irinotecan to SN-38 in plasma and tissues. TgCES1 mice exhibited enhanced metabolism of irinotecan to SN-38 in liver and kidney. Ces1 and hCES1 activity increased irinotecan toxicity, likely by enhancing the formation of pharmacodynamically active SN-38. Ces1 -/- mice also showed markedly increased capecitabine plasma exposure, which was moderately decreased in TgCES1 mice. Ces1 -/- mice were overweight with increased adipose tissue, white adipose tissue inflammation (in males), a higher lipid load in brown adipose tissue, and impaired blood glucose tolerance (in males). These phenotypes were mostly reversed in TgCES1 mice. TgCES1 mice displayed increased triglyceride secretion from liver to plasma, together with higher triglyceride levels in the male liver. These results indicate that the carboxylesterase 1 family plays essential roles in drug and lipid metabolism and detoxification. Ces1 -/- and TgCES1 mice will provide excellent tools for further study of the in vivo functions of Ces1/CES1 enzymes.
Collapse
Affiliation(s)
- Changpei Gan
- Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Jing Wang
- Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Alejandra Martínez-Chávez
- Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands.,Department of Pharmacy & Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Michel Hillebrand
- Department of Pharmacy & Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Niels de Vries
- Department of Pharmacy & Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Joke Beukers
- Department of Pharmacy & Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Els Wagenaar
- Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Yaogeng Wang
- Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Maria C Lebre
- Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Hilde Rosing
- Department of Pharmacy & Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Sjoerd Klarenbeek
- Experimental Animal Pathology Facility, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Rahmen Bin Ali
- Mouse Clinic for Cancer and Aging (MCCA) Transgenic Facility, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Colin Pritchard
- Mouse Clinic for Cancer and Aging (MCCA) Transgenic Facility, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Ivo Huijbers
- Mouse Clinic for Cancer and Aging (MCCA) Transgenic Facility, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Jos H Beijnen
- Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands.,Department of Pharmacy & Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands.,Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CS, the Netherlands
| | - Alfred H Schinkel
- Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| |
Collapse
|
50
|
Kwon H, Choi M, Ahn Y, Jang D, Pak Y. Flotillin-1 palmitoylation turnover by APT-1 and ZDHHC-19 promotes cervical cancer progression by suppressing IGF-1 receptor desensitization and proteostasis. Cancer Gene Ther 2023; 30:302-312. [PMID: 36257975 DOI: 10.1038/s41417-022-00546-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/20/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022]
Abstract
We have shown that insulin-like growth factor-1 (IGF-1) induces palmitoylation turnover of Flotillin-1 (Flot-1) in the plasma membrane (PM) for cell proliferation, after IGF-1 receptor (IGF-1R) signaling activation. However, the enzymes responsible for the turnover have not been identified. Herein, we show that acyl protein thioesterases-1 (APT-1) catalyzes Flot-1 depalmitoylation, and zinc finger DHHC domain-containing protein palmitoyltransferase-19 (ZDHHC-19) repalmitoylation of the depalmitoylated Flot-1 for the turnover in cervical cancer cells. The turnover prevented desensitization of IGF-1R via endocytosis and lysosomal degradation, thereby exerting excessive IGF-1R activation in cervical cancer cells. FLOT1, LYPLA1 and ZDHHC19 were highly expressed, and epithelial-to-mesenchymal transition (EMT)-inducing TIAM1 and GREM1 coordinately upregulated in malignant cervical cancer tissues. And blocking the turnover suppressed the EMT, migration, and invasion of cervical cancer cells. Our study identifies the specific enzymes regulating Flot-1 palmitoylation turnover, and reveals a novel regulatory mechanism of IGF-1-mediated cervical cancer progression.
Collapse
Affiliation(s)
- Hayeong Kwon
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju, 52828, Korea
| | - Moonjeong Choi
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju, 52828, Korea
| | - Yujin Ahn
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju, 52828, Korea
| | - Donghwan Jang
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju, 52828, Korea.,Clinical Research Center, Masan National Tuberculosis Hospital, Changwon, 51755, Korea
| | - Yunbae Pak
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju, 52828, Korea.
| |
Collapse
|