1
|
Chavan SG, Rathod PR, Koyappayil A, Hwang S, Lee MH. Recent advances of electrochemical and optical point-of-care biosensors for detecting neurotransmitter serotonin biomarkers. Biosens Bioelectron 2025; 267:116743. [PMID: 39270361 DOI: 10.1016/j.bios.2024.116743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/16/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Since its discovery in 1984, the monoamine serotonin (5-HT) has been recognized for its critical role as a neuromodulator in both the central and peripheral nervous systems. Recent research reveals that serotonin also significantly influences various neuronal activities. Historically, it was believed that peripheral serotonin, produced by tryptophan hydroxylase in intestinal cells, functioned primarily as a hormone. However, new insights have expanded its known roles, necessitating advanced detection methods. Biosensors have emerged as indispensable tools in biomedical diagnostics, enabling the rapid and minimally invasive detection of target analytes with high spatial and temporal resolution. This review summarizes the progress made in the past decade in developing optical and electrochemical biosensors for serotonin detection. We evaluate various sensing strategies that optimize performance in terms of detection limits, sensitivity, and specificity. The study also explores recent innovations in biosensing technologies utilizing surface-modified electrodes with nanomaterials, including gold, graphite, carbon nanotubes, and metal oxide particles. Applications range from in vivo studies to chemical imaging and diagnostics, highlighting future prospects in the field.
Collapse
Affiliation(s)
- Sachin Ganpat Chavan
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea
| | - Pooja Ramrao Rathod
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea
| | - Aneesh Koyappayil
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea
| | - Seowoo Hwang
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, South Korea.
| |
Collapse
|
2
|
Zhou T, Deng J, Zeng Y, Liu X, Song B, Ye S, Li M, Yang Y, Wang Z, Zhou C. Biochar Meets Single-Atom: A Catalyst for Efficient Utilization in Environmental Protection Applications and Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404254. [PMID: 38984755 DOI: 10.1002/smll.202404254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Single-atom catalysts (SACs), combining the advantages of multiphase and homogeneous catalysis, have been increasingly investigated in various catalytic applications. Carbon-based SACs have attracted much attention due to their large specific surface area, high porosity, particular electronic structure, and excellent stability. As a cheap and readily available carbon material, biochar has begun to be used as an alternative to carbon nanotubes, graphene, and other such expensive carbon matrices to prepare SACs. However, a review of biochar-based SACs for environmental pollutant removal and energy conversion and storage is lacking. This review focuses on strategies for synthesizing biochar-based SACs, such as pre-treatment of organisms with metal salts, insertion of metal elements into biochar, or pyrolysis of metal-rich biomass, which are more simplistic ways of synthesizing SACs. Meanwhile, this paper attempts to 1) demonstrate their applications in environmental remediation based on advanced oxidation technology and energy conversion and storage based on electrocatalysis; 2) reveal the catalytic oxidation mechanism in different catalytic systems; 3) discuss the stability of biochar-based SACs; and 4) present the future developments and challenges regarding biochar-based SACs.
Collapse
Affiliation(s)
- Ting Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Jie Deng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Yuxi Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Xiaoqian Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Biao Song
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Shujing Ye
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Meifang Li
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Shaoshan South Road, Tianxin District, Changsha, 410004, P. R China
| | - Yang Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Ziwei Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, P. R China
| | - Chengyun Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
3
|
Li S, Liu Z, Ouyang H, Pang J, Deng C, Xiao Z, Tan R. Photoswitchable Metal-Organic Framework as a Smart Nanoreactor for Ultraviolet Light-Enhanced Confined Catalysis. Inorg Chem 2024; 63:18110-18119. [PMID: 39288269 DOI: 10.1021/acs.inorgchem.4c02883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Confined catalysis, where a chemical reaction is accommodated within a nanoscale host, provides an effective approach to control the pathways and outcomes of catalytic transformations. However, the confinement effect is typically limited to a fixed rate and/or selectivity once the nanohost is chosen. Herein, we developed a photoresponsive metal-organic framework (MOF) as a "smart" nanohost to realize ultraviolet (UV) light-enhanced confined catalysis of Knoevenagel condensation. Photoresponsive MOF of Zn-ADA was thus prepared by solvothermal strategy where azobenzene-4,4'-dicarboxylic acid (ADA) was used as the photoactive linker to coordinate with zinc nitrate. Characterization results suggested that UV light could decrease the pore size of Zn-ADA due to suppressed bending of the azobenzene-containing ADA linker in Zn-ADA. It enforced the proximity between substrates and catalytic groups within the confined space, and thus enhanced the confinement effect on Knoevenagel condensation. The UV light-enhanced confined catalysis enabled the translation of light stimulus into chemical signal, which may open up new control on the basis of the specific reaction field.
Collapse
Affiliation(s)
- Shiye Li
- College of Chemistry & Chemical Engineering, Hunan Normal University, No.36, South Lushan Road, Changsha, Hunan 410081, PR China
| | - Zewei Liu
- College of Chemistry & Chemical Engineering, Hunan Normal University, No.36, South Lushan Road, Changsha, Hunan 410081, PR China
| | - Huan Ouyang
- College of Chemistry & Chemical Engineering, Hunan Normal University, No.36, South Lushan Road, Changsha, Hunan 410081, PR China
| | - Jun Pang
- College of Chemistry & Chemical Engineering, Hunan Normal University, No.36, South Lushan Road, Changsha, Hunan 410081, PR China
| | - Chengzhang Deng
- College of Chemistry & Chemical Engineering, Hunan Normal University, No.36, South Lushan Road, Changsha, Hunan 410081, PR China
| | - Zhisheng Xiao
- College of Chemistry & Chemical Engineering, Hunan Normal University, No.36, South Lushan Road, Changsha, Hunan 410081, PR China
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha, 410081, PR China
| | - Rong Tan
- College of Chemistry & Chemical Engineering, Hunan Normal University, No.36, South Lushan Road, Changsha, Hunan 410081, PR China
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha, 410081, PR China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Hunan Normal University, Changsha, 410081, PR China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| |
Collapse
|
4
|
Abdulkareem-Alsultan G, Asikin-Mijan N, Samidin S, Voon Lee H, Chyuan Ong H, Hwa Teo S, Agustiono Kurniawan T, Adzahar NA, Alomari N, Hin Taufiq-Yap Y. Hydrodeoxygenation of Isoeugenol-Derived Model Compound over Carbon-Supported Pt and Pt-SnS Catalysts for the Production of Sustainable Jet Fuel. Chempluschem 2024:e202400368. [PMID: 39228206 DOI: 10.1002/cplu.202400368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/07/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
This study focuses on the sustainable production of bio-jet fuel through the catalytic hydrodeoxygenation (HDO) of isoeugenol (IE). Sucrose-based activated carbon supported bimetallic Platinum-Tin metal sulphides (PtO-SnS/AC) catalyst was prepared for HDO process. Physicochemical properties of catalysts with different spraying synthesis methods (in situ and ex situ metal doping) and Pt loading (0.1-1.0 %) were further investigated. The PtO-SnS/AC catalysts were characterised using various techniques such as X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), field-emission scanning electron microscopy (FESEM) and thermogravimetric analysis (TGA). Both HRTEM and FESEM results show the successful preparation of a spherical nanoparticles doped over activated carbon, and Pt was dispersed on the outer shell of the particles. The catalytic HDO of IE was evaluated in a batch system and showed a high yield and conversion as follows: IE conversion of 100 %, liquid-phase mass balance of 95.92 %, dihydroeugenol (DH) conversion of 99.32 %, propylcyclohexane (PCH) yield of 88.94 % and 2-methoxy-4-propylcyclohexanol (HYD) yield of 76.19 %. Moreover, the PtO-SnS/AC catalyst exhibited high reusability with low metal leaching and high coke resistance for 10 cycles. The catalyst was evaluated in a continuous flow reactor for 100 h at different reaction temperatures, and interestingly, the catalyst showed low deactivation with a high half-time.
Collapse
Affiliation(s)
- G Abdulkareem-Alsultan
- Catalysis Science and Technology Research Centre, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - N Asikin-Mijan
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor Darul Ehsan, Malaysia
| | - Salma Samidin
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Hwei Voon Lee
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hwai Chyuan Ong
- Department of Engineering, School of Engineering and Technology, Sunway University, Jalan Universiti, 47500, Bandar Sunway, Petaling Jaya, Selangor, Malaysia
| | - Siow Hwa Teo
- Catalysis Science and Technology Research Centre, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | | | - Nur Athirah Adzahar
- Catalysis Science and Technology Research Centre, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Noor Alomari
- Department of Chemical and Paper Engineering, Western Michigan University, 49008, Kalamazoo, MI, USA
| | - Yun Hin Taufiq-Yap
- Catalysis Science and Technology Research Centre, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
5
|
Li C, Zhu Q, Song C, Zeng Y, Zheng Y. Electrocatalysts for Urea Synthesis from CO 2 and Nitrogenous Species: From CO 2 and N 2/NOx Reduction to urea synthesis. CHEMSUSCHEM 2024:e202401333. [PMID: 39121168 DOI: 10.1002/cssc.202401333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/11/2024]
Abstract
The traditional industrial synthesis of urea relies on the energy-intensive and polluting process, namely the Haber-Bosch method for ammonia production, followed by the Bosch-Meiser process for urea synthesis. In contrast, electrocatalytic C-N coupling from carbon dioxide (CO2) and nitrogenous species presents a promising alternative for direct urea synthesis under ambient conditions, bypassing the need for ammonia production. This review provides an overview of recent progress in the electrocatalytic coupling of CO2 and nitrogen sources for urea synthesis. It focuses on the role of intermediate species and active site structures in promoting urea synthesis, drawing from insights into reactants' adsorption behavior and interactions with catalysts tailored for CO2 reduction, nitrogen reduction, and nitrate reduction. Advanced electrocatalyst design strategies for urea synthesis from CO2 and nitrogenous species under ambient conditions are explored, providing insights for efficient catalyst design. Key challenges and prospective directions are presented in the conclusion. Mechanistic studies elucidating the C-N coupling reaction and future development directions are discussed. The review aims to inspire further research and development in electrocatalysts for electrochemical urea synthesis.
Collapse
Affiliation(s)
- Chun Li
- Department of Chemical and Biochemical Engineering, Western University, 1150 Richmond Street, London, ON, N6A 3K7, Canada
| | - Qiuji Zhu
- Department of Chemical and Biochemical Engineering, Western University, 1150 Richmond Street, London, ON, N6A 3K7, Canada
| | - Chaojie Song
- Clean Energy Innovation, National Research Council Canada, 4250 Wesbrook Mall, Vancouver, BC, V6T 1W5, Canada
| | - Yimin Zeng
- CanmetMaterial, 183 Longwood Rd S., Hamilton, Ontario, L8P 0A5, Canada
| | - Ying Zheng
- Department of Chemical and Biochemical Engineering, Western University, 1150 Richmond Street, London, ON, N6A 3K7, Canada
| |
Collapse
|
6
|
Mousavi H, Zeynizadeh B, Hasanpour Galehban M. Ni II-containing l-glutamic acid cross-linked chitosan anchored on Fe 3O 4/ f-MWCNT: a sustainable catalyst for the green reduction and one-pot two-step reductive Schotten-Baumann-type acetylation of nitroarenes. NANOSCALE ADVANCES 2024; 6:3961-3977. [PMID: 39050942 PMCID: PMC11265578 DOI: 10.1039/d4na00160e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/28/2024] [Indexed: 07/27/2024]
Abstract
In this research, new and eye-catching catalytic applications of the nickelII (NiII) nanoparticles (NPs)-containing l-glutamic acid cross-linked chitosan anchored on magnetic carboxylic acid-functionalized multi-walled carbon nanotube (Fe3O4/f-MWCNT-CS-Glu/NiII) system, which was characterized by Fourier transform infrared (FT-IR), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), SEM-based energy-dispersive X-ray (EDX) and elemental mapping, inductively coupled plasma-optical emission spectrometry (ICP-OES), thermogravimetric analysis (TGA), differential thermal analysis (DTA), and vibrating sample magnetometry (VSM), have been introduced for the environmentally benign and efficient reduction and one-pot two-step reductive Schotten-Baumann-type acetylation of nitroarenes in water at 60 °C under an air atmosphere. It is worth noting that the NiII-containing hybrid nanocatalyst, in the mentioned organic reactions, showed short reaction times, high yields of the desired products, acceptable turnover numbers (TONs) and turnover frequencies (TOFs), and also satisfactory magnetic recycling and reusability performance even after ten times of reuse. As another significant point, all the titled organic transformations have been carried out in water as an entirely favorable and green solvent for chemical reactions.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | | |
Collapse
|
7
|
Lian T, Xu L, Piankova D, Yang JL, Tarakina NV, Wang Y, Antonietti M. Metal-organic framework derived crystalline nanocarbon for Fenton-like reaction. Nat Commun 2024; 15:6199. [PMID: 39043667 PMCID: PMC11266689 DOI: 10.1038/s41467-024-50476-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024] Open
Abstract
Nanoporous carbons with tailorable nanoscale texture and long-range ordered structure are promising candidates for energy, environmental and catalytic applications, while the current synthetic methods do not allow elaborate control of local structure. Here we report a salt-assisted strategy to obtain crystalline nanocarbon from direct carbonization of metal-organic frameworks (MOFs). The crystalline product maintains a highly ordered two-dimensional (2D) stacking mode and substantially differs from the traditional weakly ordered patterns of nanoporous carbons upon high-temperature pyrolysis. The MOF-derived crystalline nanocarbon (MCC) comes with a high level of nitrogen and oxygen terminating the 2D layers and shows an impressive performance as a carbocatalyst in Fenton-like reaction for water purification. The successful preparation of MCC illustrates the possibility to discover other crystalline heteroatom-doped carbon phases starting from correctly designed organic precursors and appropriate templating reactions.
Collapse
Affiliation(s)
- Tingting Lian
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Li Xu
- Department of Environmental Science and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Diana Piankova
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Jin-Lin Yang
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore, Singapore
| | - Nadezda V Tarakina
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Yang Wang
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany.
- Department of Environmental Science and Engineering, University of Science and Technology of China, 230026, Hefei, China.
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| |
Collapse
|
8
|
Wang YM, Ning GH, Li D. Multifunctional Metal-Organic Frameworks as Catalysts for Tandem Reactions. Chemistry 2024; 30:e202400360. [PMID: 38376356 DOI: 10.1002/chem.202400360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/21/2024]
Abstract
Owing to well-defined structure as well as easy synthesis and modification, metal-organic frameworks (MOFs) have emerged as promising catalysts for tandem reactions. In this article, we aim to summarize the development of multifunctional MOFs, including mixed metal MOFs, MOFs that are synergistically catalyzed by metal nodes and organic linkers, MOFs loaded with metal nanoparticles, etc, as heterogenous catalysts for tandem reactions over the past five years. This concept briefly discusses on present challenges, future trends, and prospects of multifunctional MOFs catalysts in tandem reactions.
Collapse
Affiliation(s)
- Yu-Mei Wang
- Department College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Guo-Hong Ning
- Department College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Dan Li
- Department College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| |
Collapse
|
9
|
Ghasemlou M, Pn N, Alexander K, Zavabeti A, Sherrell PC, Ivanova EP, Adhikari B, Naebe M, Bhargava SK. Fluorescent Nanocarbons: From Synthesis and Structure to Cancer Imaging and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312474. [PMID: 38252677 DOI: 10.1002/adma.202312474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Nanocarbons are emerging at the forefront of nanoscience, with diverse carbon nanoforms emerging over the past two decades. Early cancer diagnosis and therapy, driven by advanced chemistry techniques, play a pivotal role in mitigating mortality rates associated with cancer. Nanocarbons, with an attractive combination of well-defined architectures, biocompatibility, and nanoscale dimension, offer an incredibly versatile platform for cancer imaging and therapy. This paper aims to review the underlying principles regarding the controllable synthesis, fluorescence origins, cellular toxicity, and surface functionalization routes of several classes of nanocarbons: carbon nanodots, nanodiamonds, carbon nanoonions, and carbon nanohorns. This review also highlights recent breakthroughs regarding the green synthesis of different nanocarbons from renewable sources. It also presents a comprehensive and unified overview of the latest cancer-related applications of nanocarbons and how they can be designed to interface with biological systems and work as cancer diagnostics and therapeutic tools. The commercial status for large-scale manufacturing of nanocarbons is also presented. Finally, it proposes future research opportunities aimed at engendering modifiable and high-performance nanocarbons for emerging applications across medical industries. This work is envisioned as a cornerstone to guide interdisciplinary teams in crafting fluorescent nanocarbons with tailored attributes that can revolutionize cancer diagnostics and therapy.
Collapse
Affiliation(s)
- Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
- Center for Sustainable Products, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Navya Pn
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Katia Alexander
- School of Engineering, The Australian National University, Canberra, ACT, 2601, Australia
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Peter C Sherrell
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Elena P Ivanova
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
| | - Benu Adhikari
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Minoo Naebe
- Carbon Nexus, Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Suresh K Bhargava
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| |
Collapse
|
10
|
Zhao L, Sun J, E S, Sheng K, Wang K, Zhang X. Synthesis and characterization of TiO 2/hydrochar matrix composites for enhanced ammonia degradation. RSC Adv 2024; 14:12131-12141. [PMID: 38628472 PMCID: PMC11019408 DOI: 10.1039/d4ra00671b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/06/2024] [Indexed: 04/19/2024] Open
Abstract
This study explores the limitations of TiO2 as a photocatalyst, focusing on its narrow bandwidth and high electron-hole complexation probabilities that restrict its applications. A novel one-pot synthesis method for TiO2/hydrochar matrix composites is presented, with variations achieved through control of hydrothermal temperature, time, and loading concentration. The efficacy of these composites in ammonia removal is investigated, revealing optimal performance for the composite denoted as 3Ti-160-7, synthesized with a titanium salt concentration of 0.3 mol L-1, a hydrothermal temperature of 160 °C, and a hydrothermal time of 7 hours. Comparative analyses with commercial TiO2 (P25) and hydrochar demonstrate superior performance of 3Ti-160-7, exhibiting significantly lower ammonia concentration and reduced NO and NO2 concentrations. This research underscores the cost-effectiveness and application potential of TiO2/hydrochar matrix composites, offering valuable insights for the enhancement of photocatalytic activity and broader applicability in addressing TiO2-related challenges.
Collapse
Affiliation(s)
- Ling Zhao
- College of Engineering, Shenyang Agricultural University Shenyang 110161 China
| | - Jiaxing Sun
- College of Engineering, Shenyang Agricultural University Shenyang 110161 China
- College of Biosystems Engineering and Food Science, Zhejiang University Hangzhou 310058 China
| | - Shuang E
- College of Biosystems Engineering and Food Science, Zhejiang University Hangzhou 310058 China
- Institute of Zhejiang University-Quzhou 99 Zheda Road Quzhou Zhejiang Province 324000 China
| | - Kuichuan Sheng
- College of Biosystems Engineering and Food Science, Zhejiang University Hangzhou 310058 China
- Institute of Zhejiang University-Quzhou 99 Zheda Road Quzhou Zhejiang Province 324000 China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province Hangzhou 310058 China
| | - Kaiying Wang
- College of Biosystems Engineering and Food Science, Zhejiang University Hangzhou 310058 China
| | - Ximing Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University Hangzhou 310058 China
- Institute of Zhejiang University-Quzhou 99 Zheda Road Quzhou Zhejiang Province 324000 China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province Hangzhou 310058 China
- National Key Laboratory of Biobased Transportation Fuel Technology, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
11
|
Tang S, Yang H, Yang J, Zheng X, Qiao Y, Yang G, Liang Z, Feng Z. Cellulose-based carbon nanotubes array with lawn-like 3D architecture for oxygen reduction reaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:169943. [PMID: 38199365 DOI: 10.1016/j.scitotenv.2024.169943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
The conversion of biomass into high-performance carbon-based materials provides an opportunity to valorize biomass for advanced applications. Achieving this necessitates requires dedicated efforts and innovations in biocarbon synthesis, design, and applications. This study proposes the controllable conversion of biomass-derived cellulose into well-distributed carbon nanotubes (CNTs) by tuning the precipitation of cellulose pyrolysis generated vapors with in-situ formed ferric metal nanoparticles. The obtained CNTs exhibited lawn-like 3D architecture with similar length, uniform alignment, and dense distribution. The combined use of ferric chloride and dicyandiamide as the reagents with a mass ration of 0.162:1.05, demonstrated optimal performance in controlling the morphology of CNTs, enhancing the graphitization, and increasing the content of graphitic-N and pyridine-N. This multi-dimensional modification enhanced the electrocatalytic performance of the obtained CNTs, achieving an onset potential of 0.875 V vs. relative hydrogen electrode (RHE), a half-wave potential of 0.703 V vs. RHE, and a current density of -4.95 mA cm-2 during the oxygen reduction reaction. Following microbial fuel cells (MFCs) tests achieved an output voltage of 0.537 V and an output power density of 412.85 mW m-2, comparable to MFC with Pt/C as the cathode catalyst. This biomass-derived catalyst is recommended as a high-quality, non-noble metal alternative to traditional noble-metal catalysts.
Collapse
Affiliation(s)
- Songbiao Tang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Hui Yang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Juntao Yang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Xuhong Zheng
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Yu Qiao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Gaixiu Yang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China.
| | - Zheng Liang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Zhijie Feng
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| |
Collapse
|
12
|
Guo W, Yu L, Tang L, Wan Y, Lin Y. Recent Advances in Mechanistic Understanding of Metal-Free Carbon Thermocatalysis and Electrocatalysis with Model Molecules. NANO-MICRO LETTERS 2024; 16:125. [PMID: 38376726 PMCID: PMC10879078 DOI: 10.1007/s40820-023-01262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 02/21/2024]
Abstract
Metal-free carbon, as the most representative heterogeneous metal-free catalysts, have received considerable interests in electro- and thermo-catalytic reactions due to their impressive performance and sustainability. Over the past decade, well-designed carbon catalysts with tunable structures and heteroatom groups coupled with various characterization techniques have proposed numerous reaction mechanisms. However, active sites, key intermediate species, precise structure-activity relationships and dynamic evolution processes of carbon catalysts are still rife with controversies due to the monotony and limitation of used experimental methods. In this Review, we summarize the extensive efforts on model catalysts since the 2000s, particularly in the past decade, to overcome the influences of material and structure limitations in metal-free carbon catalysis. Using both nanomolecule model and bulk model, the real contribution of each alien species, defect and edge configuration to a series of fundamentally important reactions, such as thermocatalytic reactions, electrocatalytic reactions, were systematically studied. Combined with in situ techniques, isotope labeling and size control, the detailed reaction mechanisms, the precise 2D structure-activity relationships and the rate-determining steps were revealed at a molecular level. Furthermore, the outlook of model carbon catalysis has also been proposed in this work.
Collapse
Affiliation(s)
- Wei Guo
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Linhui Yu
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
| | - Ling Tang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Yan Wan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Yangming Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China.
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
13
|
Wang B, Fu Y, Xu F, Lai C, Zhang M, Li L, Liu S, Yan H, Zhou X, Huo X, Ma D, Wang N, Hu X, Fan X, Sun H. Copper Single-Atom Catalysts-A Rising Star for Energy Conversion and Environmental Purification: Synthesis, Modification, and Advanced Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306621. [PMID: 37814375 DOI: 10.1002/smll.202306621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/13/2023] [Indexed: 10/11/2023]
Abstract
Future renewable energy supply and green, sustainable environmental development rely on various types of catalytic reactions. Copper single-atom catalysts (Cu SACs) are attractive due to their distinctive electronic structure (3d orbitals are not filled with valence electrons), high atomic utilization, and excellent catalytic performance and selectivity. Despite numerous optimization studies are conducted on Cu SACs in terms of energy conversion and environmental purification, the coupling among Cu atoms-support interactions, active sites, and catalytic performance remains unclear, and a systematic review of Cu SACs is lacking. To this end, this work summarizes the recent advances of Cu SACs. The synthesis strategies of Cu SACs, metal-support interactions between Cu single atoms and different supports, modification methods including modification for carriers, coordination environment regulating, site distance effect utilizing, and dual metal active center catalysts constructing, as well as their applications in energy conversion and environmental purification are emphatically introduced. Finally, the opportunities and challenges for the future Cu SACs development are discussed. This review aims to provide insight into Cu SACs and a reference for their optimal design and wide application.
Collapse
Affiliation(s)
- Biting Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Yukui Fu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Fuhang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Huchuan Yan
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Xuerong Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Xiuqin Huo
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Dengsheng Ma
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Neng Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Xiaorui Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Xing Fan
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| | - Hao Sun
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
14
|
Laan PM, Bobylev EO, Geels NJ, Rothenberg G, Reek JNH, Yan N. Noncovalent Grafting of Molecular Complexes to Solid Supports by Counterion Confinement. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:24129-24136. [PMID: 38148850 PMCID: PMC10749480 DOI: 10.1021/acs.jpcc.3c05691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
Grafting molecular complexes on solid supports is a facile strategy to synthesize advanced materials. Here, we present a general and simple method for noncovalent grafting on charge-neutral surfaces. Our method is based on the generic principle of counterion confinement in surface micropores. We demonstrate the power of this approach using a set of three platinum complexes: Pt1 (Pt1L4(BF4)2, L = p-picoline), Pt2 (Pt2L4(BF4)4, L = 2,6-bis(pyridine-3-ylethynyl)pyridine), and Pt12 (Pt12L24(BF4)24, L = 4,4'-(5-methoxy-1,3-phenylene)dipyridine). These complexes share the same counterion (BF4-) but differ vastly in their size, charge, and structure. Imaging of the grafted materials by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (AC-HAADF-STEM) and energy-dispersive X-ray (EDX) showed that our method results in a homogeneous distribution of both complexes and counterions. Nitrogen sorption studies indicated a decrease in the available surface area and micropore volume, providing evidence for counterion confinement in the surface micropores. Following the adsorption of the complexes over time showed that this is a two-step process: fast surface adsorption by van der Waals forces was followed by migration over the surface and surface binding by counterion confinement. Regarding the binding of the complexes to the support, we found that the surface-adsorbate binding constant (KS) increases quadratically with the number of anions per complex up to KS = 1.6 × 106 M-1 equaling ΔG°ads = -35 kJ mol-1 for the surface binding of Pt12. Overall, our method has two important advantages: first, it is general, as you can anchor different complexes (with different charges, counterions, and/or sizes); second, it promotes the distribution of the complexes on the support surface, creating well-distributed sites that can be used in various applications across several areas of chemistry.
Collapse
Affiliation(s)
- Petrus
C. M. Laan
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Eduard O. Bobylev
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Norbert J. Geels
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Gadi Rothenberg
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Joost N. H. Reek
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Ning Yan
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
- Key
Laboratory of Artificial Micro- and Nano-Structures of Ministry of
Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
15
|
Mishra RK, Mohanty K. A review of the next-generation biochar production from waste biomass for material applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:167171. [PMID: 37741418 DOI: 10.1016/j.scitotenv.2023.167171] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
The development of carbonaceous materials such as biochar has triggered a hot spot in materials application. Carbon material derived from biomass could be a vital platform for energy storage and conversion. Biochar-based materials deliver a novel approach to deal with the current energy-related challenges. To design and utilize the maximum potential of biochar for environmentally sustainable applications, it is crucial to understand the recent progress and advancement in molecular structures of biochar to discover a new possible field to simplify structural application networks. However, most of the studies demonstrated the application of biochar in the form of soil enhancers and bio-adsorbents, reducing soil emissions of greenhouse gases and as fertilizers. The present review on biochar highlighted the application of biochar-based materials in various energy storage and conversion sectors, comprising different types of conversion technologies, biochar formation mechanisms, modification techniques on biochar surface chemistry and its functionality, catalysts, biochar application in energy storage gadgets such as supercapacitors and nanotubes, bio-based composite materials and inorganic based composites materials. Finally, this review addressed some vital outlooks on the prospect of the functionalization and best utilization of biochar-supported materials in numerous energy storage and conversion fields. After reviewing the literature, it was directed that advanced and in-depth research is essential for structural analysis and separation, considering the macroscopic and microscopic evidence of the formed structural design of biochar for specific applications.
Collapse
Affiliation(s)
- Ranjeet Kumar Mishra
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| | - Kaustubha Mohanty
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
16
|
Caruso M, Navalón S, Cametti M, Dhakshinamoorthy A, Punta C, García H. Challenges and opportunities for N-hydroxyphthalimide supported over heterogeneous solids for aerobic oxidations. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
17
|
Li N, He X, Ye J, Dai H, Peng W, Cheng Z, Yan B, Chen G, Wang S. H 2O 2 activation and contaminants removal in heterogeneous Fenton-like systems. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131926. [PMID: 37379591 DOI: 10.1016/j.jhazmat.2023.131926] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/23/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023]
Abstract
Emerging contaminants can be removed effectively in heterogeneous Fenton-like systems. Currently, catalyst activity and contaminant removal mechanisms have been studied extensively in Fenton-like systems. However, a systematic summary was lacking. This review summarized: 1) The effects of various heterogeneous catalysts on emerging contaminants degradation by activating H2O2; 2) The role of active sites in different catalysts during the activation of H2O2 and their contribution to the generation of active species; 3) The modulation of degradation pathways of emerging contaminants. This paper will help scholars to advance the controlled construction of active sites in heterogeneous Fenton-like systems. Suitable heterogeneous Fenton catalysts can be selected in practical water treatment processes.
Collapse
Affiliation(s)
- Ning Li
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Xu He
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Jingya Ye
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Haoxi Dai
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, State Key Lab of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zhanjun Cheng
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China.
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
18
|
Wu Y, Wang L, Chen L, Li Y, Shen K. Morphology-Engineering Construction of Anti-Aggregated Co/N-Doped Hollow Carbon from Metal-Organic Frameworks for Efficient Biomass Upgrading. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207689. [PMID: 36843277 DOI: 10.1002/smll.202207689] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/07/2023] [Indexed: 05/18/2023]
Abstract
The controlled pyrolysis of metal/carbon-containing precursors is commonly used for fabricating multifunctional metal/carbon-based catalysts, nevertheless, the inevitable agglomeration of these precursors in pyrolysis is extremely negative for efficient catalysis. This study reports the first example of suppressing the interfacial fusion and agglomeration of metal/carbon-based catalyst in its pyrolysis-involved fabrication process by developing a facile morphology-engineering strategy. Metal-organic framework precursors are chosen as a proof of concept and five Co/N-doped hollow carbons with different morphologies (rhombic dodecahedron, cube, plate, interpenetration twin, and rod) are synthesized via the pyrolysis of their corresponding core-shell ZIF-8@ZIF-67 precursors. It is demonstrated that the interpenetration twin precursor shows the minimum interfacial contact of interparticles due to its partly-concave morphology with abundant facets, which endows it with the best resistibility from interfacial fusion and thus aggregation of interparticles during pyrolysis. Benefiting from its unique anti-aggregated structure with high specific surface area, abundant fully-exposed active sites, and good dispersibility, the resultant 36-facet Co/N-doped hollow carbon exhibit remarkably improved catalytic property for biomass upgrading as compared with its aggregated counterparts. This study highlights the crucial role of engineering morphology to prevent metal/carbon-containing precursors from detrimental agglomeration during pyrolysis, demonstrating a new approach to constructing anti-aggregated metal/carbon-based catalysts.
Collapse
Affiliation(s)
- Yaohui Wu
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Li Wang
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Liyu Chen
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yingwei Li
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Kui Shen
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
19
|
Liu DW, Ji L, Nie Y, Li Y, Xu L, Liu JQ, Xue G. Facile and controllable preparation of carbon microsphere for electro-driven nitrogen reduction: Accommodating nitrogen doping with hierarchical porous structure. J Colloid Interface Sci 2023; 634:995-1004. [PMID: 36571861 DOI: 10.1016/j.jcis.2022.12.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Driven by sustainable electricity, electrochemical nitrogen fixation under ambient conditions is considered as a promising strategy to generate low-concentrated NH3/NH4+. Under the principle of doping and porous engineering, nitrogen-doped carbon microsphere with hierarchical pores (NC-HP) is fabricated via pyrolyzing polymer microsphere. Hierarchical structure with macro-, meso- and micropores is obtained by assembling melamine/phenol-formaldehyde oligomers in Pickering droplets, with the assistance of triblock copolymer Pluronic F127. The regularity of mesopores is strongly affected by melamine to phenol mass ratio. For NC-HP, nitrogen content (N-content) in the carbon matrix can reach as high as 19.1 wt%, yet trade-off effect is observed between N-content and regularity of mesopores. As consequence, NC-HP-3 with N-content of 15.6 wt% and distinct mesopores exhibits the highest catalytic performance. At -0.5 V vs. RHE, NH3/NH4+ production rate and Faradaic efficiency (FE) value reach 15.6 μg∙mgcat.-1∙h-1 and 15.5%, respectively. It shows excellent recyclability, and no degradations are observed with respect to morphology and porous structure. In this hierarchical porous structure, mesopores are expected to facilitate mass transfer for both electrolyte ions and nitrogen, and hence catalytic active sites (e.g. pyrrolic- and pyridinic-N species) in hierarchically mutually connected pores can be well utilized.
Collapse
Affiliation(s)
- Da-Wei Liu
- School of Chemical Engineering, Northwest University, International Science & Technology Cooperation Base of Most for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, 229 Taibai North Road, Xi'an 710069, PR China
| | - Lei Ji
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Ave., Xi'an 710127, PR China
| | - Yan Nie
- School of Chemical Engineering, Northwest University, International Science & Technology Cooperation Base of Most for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, 229 Taibai North Road, Xi'an 710069, PR China
| | - Yong Li
- Research Center for Fine Chemicals Engineering, Shanxi University, No.92 Wucheng Rd., Taiyuan 030006, PR China
| | - Long Xu
- School of Chemical Engineering, Northwest University, International Science & Technology Cooperation Base of Most for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, 229 Taibai North Road, Xi'an 710069, PR China
| | - Ji-Quan Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Ave., Xi'an 710127, PR China.
| | - Ganglin Xue
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Ave., Xi'an 710127, PR China
| |
Collapse
|
20
|
Jing L, Xie M, Xu Y, Tong C, Song Y, Du X, Zhao H, Zhong N, Li H, Gates ID, Hu J. O-doped and nitrogen vacancies 3D C3N4 activation of peroxydisulfate for pollutants degradation and transfer hydrogenation of nitrophenols with water. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
21
|
Sagadevan S, Rahman MZ, Léonard E, Losic D, Hessel V. Sensor to Electronics Applications of Graphene Oxide through AZO Grafting. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:846. [PMID: 36903724 PMCID: PMC10005793 DOI: 10.3390/nano13050846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Graphene is a two-dimensional (2D) material with a single atomic crystal structure of carbon that has the potential to create next-generation devices for photonic, optoelectronic, thermoelectric, sensing, wearable electronics, etc., owing to its excellent electron mobility, large surface-to-volume ratio, adjustable optics, and high mechanical strength. In contrast, owing to their light-induced conformations, fast response, photochemical stability, and surface-relief structures, azobenzene (AZO) polymers have been used as temperature sensors and photo-switchable molecules and are recognized as excellent candidates for a new generation of light-controllable molecular electronics. They can withstand trans-cis isomerization by conducting light irradiation or heating but have poor photon lifetime and energy density and are prone to agglomeration even at mild doping levels, reducing their optical sensitivity. Graphene derivatives, including graphene oxide (GO) and reduced graphene oxide (RGO), are an excellent platform that, combined with AZO-based polymers, could generate a new type of hybrid structure with interesting properties of ordered molecules. AZO derivatives may modify the energy density, optical responsiveness, and photon storage capacity, potentially preventing aggregation and strengthening the AZO complexes. They are potential candidates for sensors, photocatalysts, photodetectors, photocurrent switching, and other optical applications. This review aimed to provide an overview of the recent progress in graphene-related 2D materials (Gr2MS) and AZO polymer AZO-GO/RGO hybrid structures and their synthesis and applications. The review concludes with remarks based on the findings of this study.
Collapse
Affiliation(s)
- Suresh Sagadevan
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Md Zillur Rahman
- Department of Mechanical Engineering, Ahsanullah University of Science and Technology, Dhaka 1208, Bangladesh
| | - Estelle Léonard
- Research Center Royallieu, TIMR (Integrated Transformations of Renewable Matter), ESCOM, University de Technologie de Compiegne, CS 60 319, CEDEX, 60 203 Compiegne, France
| | - Dusan Losic
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
- The ARC Graphene Research Hub, School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Volker Hessel
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
- School of Engineering, University of Warwick, Library Rd, Coventry CV4 7AL, UK
| |
Collapse
|
22
|
Jacques A, Devaux A, Rubay C, Pennetreau F, Desmecht A, Robeyns K, Hermans S, Elias B. Polypyridine Iridium(III) and Ruthenium(II) Complexes for Homogeneous and Graphene‐Supported Photoredox Catalysis. ChemCatChem 2023. [DOI: 10.1002/cctc.202201672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Alexandre Jacques
- Institute of Condensed Matter and Nanosciences Molecular Chemistry Materials and Catalysis Division (IMCN/MOST) Université catholique de Louvain (UCLouvain) Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Alexandre Devaux
- Institute of Condensed Matter and Nanosciences Molecular Chemistry Materials and Catalysis Division (IMCN/MOST) Université catholique de Louvain (UCLouvain) Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Christophe Rubay
- Institute of Condensed Matter and Nanosciences Molecular Chemistry Materials and Catalysis Division (IMCN/MOST) Université catholique de Louvain (UCLouvain) Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Florence Pennetreau
- Institute of Condensed Matter and Nanosciences Molecular Chemistry Materials and Catalysis Division (IMCN/MOST) Université catholique de Louvain (UCLouvain) Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Antonin Desmecht
- Institute of Condensed Matter and Nanosciences Molecular Chemistry Materials and Catalysis Division (IMCN/MOST) Université catholique de Louvain (UCLouvain) Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Koen Robeyns
- Institute of Condensed Matter and Nanosciences Molecular Chemistry Materials and Catalysis Division (IMCN/MOST) Université catholique de Louvain (UCLouvain) Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Sophie Hermans
- Institute of Condensed Matter and Nanosciences Molecular Chemistry Materials and Catalysis Division (IMCN/MOST) Université catholique de Louvain (UCLouvain) Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Benjamin Elias
- Institute of Condensed Matter and Nanosciences Molecular Chemistry Materials and Catalysis Division (IMCN/MOST) Université catholique de Louvain (UCLouvain) Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| |
Collapse
|
23
|
Korobova A, Gromov N, Medvedeva T, Lisitsyn A, Kibis L, Stonkus O, Sobolev V, Podyacheva O. Ru Catalysts Supported on Bamboo-like N-Doped Carbon Nanotubes: Activity and Stability in Oxidizing and Reducing Environment. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1465. [PMID: 36837095 PMCID: PMC9964624 DOI: 10.3390/ma16041465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The catalysts with platinum-group metals on nanostructured carbons have been a very active field of research, but the studies were mainly limited to Pt and Pd. Here, Ru catalysts based on nitrogen-doped carbon nanotubes (N-CNTs) have been prepared and thoroughly characterized; Ru loading was kept constant (3 wt.%), while the degree of N-doping was varied (from 0 to 4.8 at.%) to evaluate its influence on the state of supported metal. Using the N-CNTs afforded ultrafine Ru particles (<2 nm) and allowed a portion of Ru to be stabilized in an atomic state. The presence of Ru single atoms in Ru/N-CNTs expectedly increased catalytic activity and selectivity in the formic acid decomposition (FAD) but had no effect in catalytic wet air oxidation (CWAO) of phenol, thus arguing against a key role of single-atom catalysis in the latter case. A remarkable difference between these two reactions was also found in regard to catalyst stability. In the course of FAD, no changes in the support or supported species or reaction rate were observed even at a high temperature (150 °C). In CWAO, although 100% conversions were still achievable in repeated runs, the oxidizing environment caused partial destruction of N-CNTs and progressive deactivation of the Ru surface by carbonaceous deposits. These findings add important new knowledge about the properties and applicability of Ru@C nanosystems.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Olga Podyacheva
- Boreskov Institute of Catalysis SB RAS, Lavrentiev Av. 5, 630090 Novosibirsk, Russia
| |
Collapse
|
24
|
Wang Y, Wang Y, Wang X, Chang M, Zhang G, Mao X, Li Y, Wang J, Wang L. Efficient activation of peroxodisulfate by novel bionic iron-encapsulated biochar: The key roles of electron transfer pathway and reactive oxygen species evolution. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130204. [PMID: 36308934 DOI: 10.1016/j.jhazmat.2022.130204] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/06/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
In this study, a novel iron-encapsulated biochar (Fe@BC) was prepared using the biomass cultivated with an iron-containing solution. The iron in Fe@BC showed the phase change from Fe3O4 to α-Fe, and to CFe15.1, with the increase of pyrolysis temperature (500-900 °C), and a graphene shell formed on the surface of Fe@BC. In addition, the signals assigned to the π-π* shake up, pyridinic N, graphitic N, and defects of Fe@BC were found to be stronger as the pyrolysis temperature increased. The F4@B9 sample, which was prepared at 900 °C, exhibited an excellent performance (98.01 %) to activate peroxydisulfate (PDS) for the degradation of 2,4-dichlorophenol. Electron paramagnetic resonanceand chemical quenching experiments revealed that reactive oxygen radicals (ROS) including sulfate radical (•SO4-), hydroxyl radical (•OH), superoxide radical (•O2-), and singlet oxygen (1O2) existed in the F4@B9/PDS system. Furthermore, the micro-electrolysis process facilitated the generation of •O2- (12.35 %) and 1O2 (6.49 %) compared with the pure PDS system. Density functional theory revealed that, for the F4@B9-activated PDS process, the graphene shell of F4@B9 served as catalytic active sites as well. According to the correlation analysis, the iron specie of CFe15.1 was more favorable for the generation of ROS than α-Fe. Also, π-π* shake up, pyridinic N, graphitic N, and defects participated in the PDS activation. This study provides a new method for the preparation of high-performance catalysts from naturally grown biomass with high iron contents.
Collapse
Affiliation(s)
- Yangyang Wang
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China; School of Construction and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, PR China
| | - Ying Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xiaoshu Wang
- School of Construction and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, PR China; The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, PR China
| | - Ming Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Gen Zhang
- School of Construction and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, PR China
| | - Xuhui Mao
- School of Resources and Environmental Science, Wuhan University, Wuhan 430079, PR China
| | - Ye Li
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jinsheng Wang
- School of Construction and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, PR China
| | - Lei Wang
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China; School of Construction and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, PR China; The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, PR China.
| |
Collapse
|
25
|
Dark material with a bright future: carbon as support in future heterogeneous catalysis - a short personal perspective. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
26
|
Mohan TV, Nallagangula M, Kala K, Hernandez-Tamargo CE, De Leeuw NH, Namitharan K, Bhat VT, Sasidharan (LM, Selvam P. Pyridinic-nitrogen on ordered mesoporous carbon: A versatile NAD(P)H mimic for borrowing-hydrogen reactions. J Catal 2023. [DOI: 10.1016/j.jcat.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
27
|
Liu G, Zhan J, Zhang Z, Zhang LH, Yu F. Recent Advances of the Confinement Effects Boosting Electrochemical CO 2 Reduction. Chem Asian J 2023; 18:e202200983. [PMID: 36373345 DOI: 10.1002/asia.202200983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/13/2022] [Indexed: 11/16/2022]
Abstract
Powered by clean and renewable energy, electrocatalytic CO2 reduction reaction (CO2 RR) to chemical feedstocks is an effective way to mitigate the greenhouse effect and artificially close the carbon cycle. However, the performance of electrocatalytic CO2 RR was impeded by the strong thermodynamic stability of CO2 molecules and the high susceptibility to hydrogen evolution reaction (HER) in aqueous phase systems. Moreover, the numerous reaction intermediates formed at very near potentials lead to poor selectivity of reaction products, further preventing the industrialization of CO2 RR. Catalysis in confined space can enrich the reaction intermediates to improve their coverage at the active site, increase local pH to inhibit HER, and accelerate the mass transfer rate of reactants/products and subsequently facilitate CO2 RR performance. Therefore, we summarize the research progress on the application of the confinement effects in the direction of CO2 RR in theoretical and experimental directions. We first analyzed the mechanism of the confinement effect. Subsequently, the confinement effect was discussed in various forms, which can be characterized as an abnormal catalytic phenomenon due to the relative limitation of the reaction region. In specific, based on the physical structure of the catalyst, the confinement effect was divided in four categories: pore structure confinement, cavity structure confinement, active center confinement, and other confinement methods. Based on these discussions, we also have summarized the prospects and challenges in this field. This review aims to stimulate greater interests for the development of more efficient confined strategy for CO2 RR in the future.
Collapse
Affiliation(s)
- Guomeng Liu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Jiauyu Zhan
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Zisheng Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Lu-Hua Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Fengshou Yu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| |
Collapse
|
28
|
Lepre E, Rat S, Cavedon C, Seeberger PH, Pieber B, Antonietti M, López-Salas N. Catalytic Properties of High Nitrogen Content Carbonaceous Materials. Angew Chem Int Ed Engl 2023; 62:e202211663. [PMID: 36303469 PMCID: PMC10107103 DOI: 10.1002/anie.202211663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 11/07/2022]
Abstract
The influence of structural modifications on the catalytic activity of carbon materials is poorly understood. A collection of carbonaceous materials with different pore networks and high nitrogen content was characterized and used to catalyze four reactions to deduce structure-activity relationships. The CO2 cycloaddition and Knoevenagel reaction depend on Lewis basic sites (electron-rich nitrogen species). The absence of large conjugated carbon domains resulting from the introduction of large amounts of nitrogen in the carbon network is responsible for poor redox activity, as observed through the catalytic reduction of nitrobenzene with hydrazine and the catalytic oxidation of 3,3',5,5'-tetramethylbenzidine using hydroperoxide. The material with the highest activity towards Lewis acid catalysis (in the hydrolysis of (dimethoxymethyl)benzene to benzaldehyde) is the most effective for small molecule activation and presents the highest concentration of electron-poor nitrogen species.
Collapse
Affiliation(s)
- Enrico Lepre
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Sylvain Rat
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Cristian Cavedon
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Bartholomäus Pieber
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Nieves López-Salas
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
29
|
Li J, Liu H, An Z, Kong Y, Huang L, Duan D, Long R, Yang P, Jiang YY, Liu J, Zhang J, Wan T, Fu J, Pan R, Wang X, Vlachos DG. Nitrogen-doped carbon for selective pseudo-metal-free hydrodeoxygenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran: Importance of trace iron impurity. J Catal 2023. [DOI: 10.1016/j.jcat.2022.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
30
|
Synthesis of Oxygenated Hydrocarbons from Ethanol over Sulfided KCoMo-Based Catalysts: Influence of Novel Fiber- and Powder-Activated Carbon Supports. Catalysts 2022. [DOI: 10.3390/catal12121497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Ethanol has become a viable feedstock for basic organic synthesis. The catalytic conversion of ethanol provides access to such chemicals as diethyl ether, ethyl acetate, and acetaldehyde. Carbonaceous materials are extensively studied as supports for heterogeneous catalysts due to their chemical and thermal stability, high surface area, and tunable texture. In this paper, ethanol conversion over K10Co3.7Mo12S-catalysts supported on novel activated carbon (AC) materials (i.e., novel powder-AC (DAS and YPK-1), fiber non-woven AC material (AHM), and fabric active sorption (TCA)) was investigated. The catalysts were prepared by the incipient wetness co-impregnation method followed by sulfidation. The catalysts were characterized by employing N2 adsorption–desorption measurements, TEM, SEM/EDX, UV–Vis spectroscopy, and XRF. Catalytic performance was assessed in a fixed-bed down-flow reactor operating at 320 °C, 2.5 MPa, and with continuous ethanol feeding in an He atmosphere. Activity is highly dependent on the support type and catalyst’s textural properties. The activity of the fiber-supported catalysts was found to be greater than the powder-supported catalysts. Ethanol conversion at T = 320 °C, P = 2.5 MPa, and GHSV = 760 L h−1 kgcat−1 increased as follows: (38.7%) KCoMoS2/YPK-1 < (49.5%) KCoMoS2/DAS < (58.2%) KCoMoS2/TCA < (67.1%) KCoMoS2/AHM. Catalysts supported by powder-AC enhanced the formation of MoS2-crystallites, whereas the high acidity of fiber-AC seemed to inhibit the formation of MoS2-crystallites. Simultaneously, a high surface area and a microporous catalytic structure enhance the formation of oxygenates from hydrocarbons. The dehydration and dehydrogenation reactions, which led to the creation of ethene and acetaldehyde, were shown to require a highly acidic catalyst, while the synthesis of ethyl acetate and higher alcohols required a less acidic catalyst.
Collapse
|
31
|
A Review on Chemoselective Reduction of Nitroarenes for Wastewater Remediation Using Biochar Supported Metal Catalysts: Kinetic and Mechanistic Studies. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00534-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Room-temperature hydrogenation of halogenated nitrobenzenes over metal—organic-framework-derived ultra-dispersed Ni stabilized by N-doped carbon nanoneedles. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2220-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
V V, Alsawalha M, Alomayri T, Allehyani S, Hu YB, Fu ML, Yuan B. MWCNT supported V 2O 5 quantum dot nanoparticles decorated Bi 2O 3 nanosheets hybrid system: Efficient visible light driven photocatalyst for degradation of ciprofloxacin. CHEMOSPHERE 2022; 306:135505. [PMID: 35779680 DOI: 10.1016/j.chemosphere.2022.135505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/28/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
A novel composite of multiwall carbon nanotube (MWCNT) supported V2O5 quantum dots decorated Bi2O3 hybrid was prepared by the simple wet-impregnation method, and the photocatalytic performance of the prepared samples was investigated against the photodegradation of ciprofloxacin (CIP). Herein, different samples of pristine, V2O5/Bi2O3 and MWCNT@V2O5/Bi2O3 hybrid photocatalyst were prepared and systematically characterized by various physicochemical techniques. The characterization results demonstrated that the introduction of MWCNT can change the energy band gap of V2O5/Bi2O3, and the band energies vary with a constituent of MWCNT@V2O5/Bi2O3 catalyst, in which MWCNT@V2O5/Bi2O3-5 (0.05 g@0.50 g:0.50 g) has the optimal band gap energy of 2.46 eV. The photocatalytic test demonstrates that the MWCNT@V2O5/Bi2O3-5 hybrid composites exhibited enhanced photocatalytic activity in CIP degradation compared to that pure and other photocatalyst and its degradation efficiency did not decrease significantly even after five cyclic experiments. The enhanced photocatalytic activity was due to the formation of heterojunction among MWCNT, V2O5 and Bi2O3, which distinctly improved the separation efficiency of the photogenerated charge carrier, thus increasing the degradation performance. This work gives a new approach to designing an efficient photocatalyst for contaminants degradation.
Collapse
Affiliation(s)
- Vasanthakumar V
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Murad Alsawalha
- Department of Chemical Engineering, Industrial Chemistry Division, Jubail Industrial College, P.O. Box 10099, Jubail, 31961, Saudi Arabia
| | - Thamer Alomayri
- Department of Physics, Faculty of Applied Science, Umm Al-Qura University, PO.Box 21955, Makkah, Saudi Arabia
| | - Saud Allehyani
- Department of Physics, Faculty of Applied Science, Umm Al-Qura University, PO.Box 21955, Makkah, Saudi Arabia
| | - Yi-Bo Hu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Ming-Lai Fu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Baoling Yuan
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China.
| |
Collapse
|
34
|
Feng F, Zhang H, Chu S, Zhang Q, Wang C, Wang G, Wang F, Bing L, Han D. Recent progress on the traditional and emerging catalysts for propane dehydrogenation. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Catalytic ozonation performance of calcium-loaded catalyst (Ca-C/Al2O3) for effective treatment of high salt organic wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
36
|
Wu Z, Xia Y, Liu L, Sun Q, Sun J, Zhong F, Zhang M, Duan H. Preparation and Gas Sensing Properties of Hair-Based Carbon Sheets. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3512. [PMID: 36234640 PMCID: PMC9565493 DOI: 10.3390/nano12193512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/24/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Waste human hair was carbonized into carbon sheets by a simple carbonization method, which was studied as gas sensing materials for the first time. The effect of carbonization temperature on the structure and gas sensing properties of hair-based carbon sheet was studied by scanning electron microscope, X-ray diffraction, infrared spectrum, Raman spectrum, and gas-sensitive tester. The results showed that the carbonization temperature had a significant effect on the structure and gas sensing performance of carbon sheets, which were doped with K, N, P, and S elements during carbonization. However, the sensor of the carbon sheet does not show good selectivity among six target gases. Fortunately, the carbon sheets prepared at different temperatures have different responses to the target gases. The sensor array constructed by the carbon sheets prepared at different temperatures can realize the discriminative detection of a variety of target gases. For the optimized carbon sheet, the theoretical limit of detection of hydrogen peroxide is 0.83 ppm. This work provides a reference for the resource utilization of waste protein and the development of gas sensors.
Collapse
Affiliation(s)
- Zhaofeng Wu
- Xinjiang Key Laboratory of Solid State Physics and Devices, Urumqi 830046, China
- School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Yidan Xia
- Xinjiang Key Laboratory of Solid State Physics and Devices, Urumqi 830046, China
- School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Lixiang Liu
- Xinjiang Key Laboratory of Solid State Physics and Devices, Urumqi 830046, China
- School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Qihua Sun
- Xinjiang Key Laboratory of Solid State Physics and Devices, Urumqi 830046, China
- School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Jun Sun
- Xinjiang Key Laboratory of Solid State Physics and Devices, Urumqi 830046, China
- School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Furu Zhong
- School of Physics and Electronic Science, Zunyi Normal College, Zunyi 563006, China
| | - Min Zhang
- Xinjiang Key Laboratory of Solid State Physics and Devices, Urumqi 830046, China
- School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Haiming Duan
- Xinjiang Key Laboratory of Solid State Physics and Devices, Urumqi 830046, China
- School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
37
|
Design of zero-dimensional graphene quantum dots based nanostructures for the detection of organophosphorus pesticides in food and water: A review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Liu Z, Li B, Feng Y, Jia D, Li C, Zhou Y. N-Doped sp 2 /sp 3 Carbon Derived from Carbon Dots to Boost the Performance of Ruthenium for Efficient Hydrogen Evolution Reaction. SMALL METHODS 2022; 6:e2200637. [PMID: 35892250 DOI: 10.1002/smtd.202200637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/05/2022] [Indexed: 06/15/2023]
Abstract
The structure and properties of the carrier significantly affect the catalytic activity of the active centers for supported electrocatalysts. Therefore, elaborate design and regulation of the physicochemical properties of carbon carriers are essential to improve the activity and stability of the carbon-supported ruthenium-based catalysts. Herein, enlightened by the unique characteristics of coexisting sp2 and sp3 carbon nuclei in N-doped carbon dots (NCDs), a hybrid structure of N-doped carbon substrates featuring N-doped sp2 /sp3 carbon interfaces loaded with Ru nanoparticles (Ru/NCDs) is obtained. Spectroscopic analysis and density functional theory calculations illustrate that the interaction between Ru and NCDs effectively modulates the electronic structure of the active center Ru, and the formed N-doped sp2 /sp3 carbon interface lowers the energy barrier of the intermediates in hydrogen evolution reaction (HER) and balances the hydrogen adsorption and desorption and, thereby, greatly improves the activity of Ru/NCDs. Remarkably, Ru/NCDs exhibit excellent HER activity and stability in comparison to Pt/C, which merely requires overpotentials as low as 37 and 14 mV at 10 mA cm-2 in alkaline and acidic electrolytes, respectively. This finding will provide more thoughts about the influence of substrate properties on the catalytic activity and rational design of carbon-loaded electrocatalysts.
Collapse
Affiliation(s)
- Zonglin Liu
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
- MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Baoqiang Li
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
- MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Yujie Feng
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
| | - Dechang Jia
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
- MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Caicai Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yu Zhou
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China
- MIIT Key Laboratory of Advanced Structural-Functional Integration Materials & Green Manufacturing Technology, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
39
|
Propane dehydrogenation to propylene over Co@N-doped carbon: Structure-activity-selectivity relationships. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
40
|
Ziccarelli I, Mancuso R, Giacalone F, Calabrese C, La Parola V, De Salvo A, Della Ca' N, Gruttadauria M, Gabriele B. Heterogenizing palladium tetraiodide catalyst for carbonylation reactions. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
41
|
Virus-like Cage Hybrid: Covalent Organic Cages Attached to Metal Organic Cage. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A well-defined virus-like cage hybrid (VCH) with 24 covalent organic cages (COCs) attached to one metal organic cage (MOC) is presented here. The quantitative assembly of VCH was completed through coordination between soluble anisotropic COC bearing one bipyridine moiety and Pd(II) ions. The obtained VCH exhibited discrete, uniform and stable structures with good solubility and was well characterized by NMR, FT-IR, TEM, AFM, DLS, TGA, and so on. This designable cage hybrid promotes a new strategy to expand the structural and functional complexities of porous molecular cages.
Collapse
|
42
|
Mercadante A, Campisciano V, Morena A, Valentino L, La Parola V, Aprile C, Gruttadauria M, Giacalone F. Catechol‐Functionalized Carbon Nanotubes as Support for Pd Nanoparticles: a Recyclable System for the Heck Reaction. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alessandro Mercadante
- University of Palermo Department of Biological Chemical and Pharmaceutical Science and Technology: Universita degli Studi di Palermo Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) ITALY
| | - Vincenzo Campisciano
- University of Palermo Department of Biological Chemical and Pharmaceutical Science and Technology: Universita degli Studi di Palermo Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) ITALY
| | - Anthony Morena
- University of Palermo Department of Biological Chemical and Pharmaceutical Science and Technology: Universita degli Studi di Palermo Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF) ITALY
| | - Laura Valentino
- University of Palermo Department of Biological Chemical and Pharmaceutical Science and Technology: Universita degli Studi di Palermo Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Palermo ITALY
| | - Valeria La Parola
- ISMN CNR: Istituto per lo studio dei materiali nanostrutturati Consiglio Nazionale delle Ricerche Institute for the Study of Nanostructured Materials ITALY
| | - Carmela Aprile
- Université de Namur: Universite de Namur Department of Chemistry ITALY
| | - Michelangelo Gruttadauria
- University of Palermo Department of Biological Chemical and Pharmaceutical Science and Technology: Universita degli Studi di Palermo Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche Department of Biological, Chemical and Pharmaceutical Sciences and Technologies ITALY
| | - Francesco Giacalone
- University of Palermo Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Viale delle Scienze s/n, Ed. 17 I-90128 Palermo ITALY
| |
Collapse
|
43
|
Brooks A, Jenkins SJ, Wrabetz S, McGregor J, Sacchi M. The dehydrogenation of butane on metal-free graphene. J Colloid Interface Sci 2022; 619:377-387. [DOI: 10.1016/j.jcis.2022.03.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/21/2022] [Accepted: 03/27/2022] [Indexed: 10/18/2022]
|
44
|
Zhang W, Jing P, Du J, Wu S, Yan W, Liu G. Interfacial-interaction-induced fabrication of biomass-derived porous carbon with enhanced intrinsic active sites. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64031-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Ni L, Yu C, Wei Q, Liu D, Qiu J. Pickering Emulsion Catalysis: Interfacial Chemistry, Catalyst Design, Challenges, and Perspectives. Angew Chem Int Ed Engl 2022; 61:e202115885. [PMID: 35524649 DOI: 10.1002/anie.202115885] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Indexed: 12/17/2022]
Abstract
Pickering emulsions are particle-stabilized surfactant-free dispersions composed of two immiscible liquid phases, and emerge as attractive catalysis platform to surpass traditional technique barrier in some cases. In this review, we have comprehensively summarized the development and the catalysis applications of Pickering emulsions since the pioneering work in 2010. The explicit mechanism for Pickering emulsions will be initially discussed and clarified. Then, summarization is given to the design strategy of amphiphilic emulsion catalysts in two categories of intrinsic and extrinsic amphiphilicity. The progress of the unconventional catalytic reactions in Pickering emulsion is further described, especially for the polarity/solubility difference-driven phase segregation, "smart" emulsion reaction system, continuous flow catalysis, and Pickering interfacial biocatalysis. Challenges and future trends for the development of Pickering emulsion catalysis are finally outlined.
Collapse
Affiliation(s)
- Lin Ni
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Chang Yu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Qianbing Wei
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Dongming Liu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Jieshan Qiu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.,State Key Lab of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
46
|
An J, Feng Y, Zhao Q, Wang X, Liu J, Li N. Electrosynthesis of H 2O 2 through a two-electron oxygen reduction reaction by carbon based catalysts: From mechanism, catalyst design to electrode fabrication. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 11:100170. [PMID: 36158761 PMCID: PMC9488048 DOI: 10.1016/j.ese.2022.100170] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen peroxide (H2O2) is an efficient oxidant with multiple uses ranging from chemical synthesis to wastewater treatment. The in-situ H2O2 production via a two-electron oxygen reduction reaction (ORR) will bring H2O2 beyond its current applications. The development of carbon materials offers the hope for obtaining inexpensive and high-performance alternatives to substitute noble-metal catalysts in order to provide a full and comprehensive picture of the current state of the art treatments and inspire new research in this area. Herein, the most up-to-date findings in theoretical predictions, synthetic methodologies, and experimental investigations of carbon-based catalysts are systematically summarized. Various electrode fabrication and modification methods were also introduced and compared, along with our original research on the air-breathing cathode and three-phase interface theory inside a porous electrode. In addition, our current understanding of the challenges, future directions, and suggestions on the carbon-based catalyst designs and electrode fabrication are highlighted.
Collapse
Affiliation(s)
- Jingkun An
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin, 150090, China
| | - Qian Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Jia Liu
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Nan Li
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| |
Collapse
|
47
|
Zhang H, Liu W, Cao D, Cheng D. Carbon-based material-supported single-atom catalysts for energy conversion. iScience 2022; 25:104367. [PMID: 35620439 PMCID: PMC9127225 DOI: 10.1016/j.isci.2022.104367] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In recent years, single-atom catalysts (SACs) with unique electronic structure and coordination environment have attracted much attention due to its maximum atomic efficiency in the catalysis fields. However, it is still a great challenge to rationally regulate the coordination environments of SACs and improve the loading of metal atoms for SACs during catalysis progress. Generally, carbon-based materials with excellent electrical conductivity and large specific surface area are widely used as catalyst supports to stabilize metal atoms. Meanwhile, carbon-based material-supported SACs have also been extensively studied and applied in various energy conversion reactions, such as hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), and nitrogen reduction reaction (NRR). Herein, rational synthesis methods and advanced characterization techniques were introduced and summarized in this review. Then, the theoretical design strategies and construction methods for carbon-based material-supported SACs in electrocatalysis applications were fully discussed, which are of great significance for guiding the coordination regulation and improving the loading of SACs. In the end, the challenges and future perspectives of SACs were proposed, which could largely contribute to the development of single atom catalysts at the turning point.
Collapse
Affiliation(s)
- Huimin Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Wenhao Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Dong Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Daojian Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| |
Collapse
|
48
|
Chen Z, Zeng X, Wang S, Cheng A, Zhang Y. Advanced Carbon-Based Nanocatalysts and their Application in Catalytic Conversion of Renewable Platform Molecules. CHEMSUSCHEM 2022; 15:e202200411. [PMID: 35366059 DOI: 10.1002/cssc.202200411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/30/2022] [Indexed: 06/14/2023]
Abstract
The transformation of renewable platform molecules to produce value-added fuels and fine-chemicals is a promising strategy to sustainably meet future demands. Owing to their finely modified electronic and geometric properties, carbon-based nanocatalysts have shown great capability to regulate their catalytic activity and stability. Their well-defined and uniform structures also provide both the opportunity to explore intrinsic reaction mechanisms and the site-requirement for valorization of renewable platform molecules to advanced fuels and chemicals. This Review highlights the progress achieved in carbon-based nanocatalysts, mainly by using effective regulation approaches such as heteroatom anchoring, bimetallic synergistic effects, and carbon encapsulation to enhance catalyst performance and stability, and their applications in renewable platform molecule transformations. The foundation for understanding the structure-performance relationship of carbon-based catalysts has been established by investigating the effect of these regulation methods on catalyst performance. Finally, the opportunities, challenges and potential applications of carbon-based nanocatalysts are discussed.
Collapse
Affiliation(s)
- Zemin Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, Anhui Province Key Laboratory for Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiang Zeng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, Anhui Province Key Laboratory for Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shenyu Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, Anhui Province Key Laboratory for Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Aohua Cheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, Anhui Province Key Laboratory for Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ying Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, Anhui Province Key Laboratory for Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
49
|
Cheng Z, Wang Y, Jin D, Liu J, Wang W, Gu Y, Ni W, Feng Z, Wu M. Petroleum pitch-derived porous carbon as a metal-free catalyst for direct propane dehydrogenation to propylene. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
50
|
Shang S, Li Y, Lv Y, DAI WEN. Metal‐free Heterogeneous Catalytic Aromatization of N‐Heterocycles and Hydrocarbons by Carbocatalyst. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sensen Shang
- Chinese Academy of Sciences Dalian Institute of Chemical Physics Fine Chemicals CHINA
| | - Yingguang Li
- Chinese Academy of Sciences Dalian Institute of Chemical Physics Fine Chemicals CHINA
| | - Ying Lv
- Chinese Academy of Sciences Dalian Institute of Chemical Physics Fine Chemicals CHINA
| | - WEN DAI
- Chinese Academy of Sciences Dalian Institute of Chemical Physics Fine Chemicals 457 Zhongshan Road 116023 Dalian CHINA
| |
Collapse
|