1
|
Kopczyńska M, Saha U, Romanenko A, Nojima T, Gdula MR, Kamieniarz-Gdula K. Defining gene ends: RNA polymerase II CTD threonine 4 phosphorylation marks transcription termination regions genome-wide. Nucleic Acids Res 2024:gkae1240. [PMID: 39718990 DOI: 10.1093/nar/gkae1240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/06/2024] [Accepted: 12/03/2024] [Indexed: 12/26/2024] Open
Abstract
Defining the beginning of a eukaryotic protein-coding gene is relatively simple. It corresponds to the first ribonucleotide incorporated by RNA polymerase II (Pol II) into the nascent RNA molecule. This nucleotide is protected by capping and maintained in the mature messenger RNA (mRNA). However, in higher eukaryotes, the end of mRNA is separated from the sites of transcription termination by hundreds to thousands of base pairs. Currently used genomic annotations only take account of the end of the mature transcript - the sites where pre-mRNA cleavage occurs, while the regions in which transcription terminates are unannotated. Here, we describe the evidence for a marker of transcription termination, which could be widely applicable in genomic studies. Pol II termination regions can be determined genome-wide by detecting Pol II phosphorylated on threonine 4 of its C-terminal domain (Pol II CTD-T4ph). Pol II in this state pauses before leaving the DNA template. Up to date this potent mark has been underused because the evidence for its place and role in termination is scattered across multiple publications. We summarize the observations regarding Pol II CTD-T4ph in termination regions and present bioinformatic analyses that further support Pol II CTD-T4ph as a global termination mark in animals.
Collapse
Affiliation(s)
- Magda Kopczyńska
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Upasana Saha
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Anastasiia Romanenko
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Takayuki Nojima
- Medical institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Michał R Gdula
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Kinga Kamieniarz-Gdula
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| |
Collapse
|
2
|
Dutta S, Kumar V, Barua A, Vasudevan M. Investigating the differential structural organization and gene expression regulatory networks of lamin A Ig fold domain mutants of muscular dystrophy. Biochem J 2024; 481:1803-1827. [PMID: 39509247 DOI: 10.1042/bcj20240474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/15/2024]
Abstract
Lamins form a proteinaceous meshwork as a major structural component of the nucleus. Lamins, along with their interactors, act as determinants for chromatin organization throughout the nucleus. The major dominant missense mutations responsible for autosomal dominant forms of muscular dystrophies reside in the Ig fold domain of lamin A. However, how lamin A contributes to the distribution of heterochromatin and balances euchromatin, and how it relocates epigenetic marks to shape chromatin states, remains poorly defined, making it difficult to draw conclusions about the prognosis of lamin A-mediated muscular dystrophies. In the first part of this report, we identified the in vitro organization of full-length lamin A proteins due to two well-documented Ig LMNA mutations, R453W and W514R. We further demonstrated that both lamin A/C mutant cells predominantly expressed nucleoplasmic aggregates. Labeling specific markers of epigenetics allowed correlation of lamin A mutations with epigenetic mechanisms. In addition to manipulating epigenetic mechanisms, our proteomic studies traced diverse expressions of transcription regulators, RNA synthesis and processing proteins, protein translation components, and posttranslational modifications. These data suggest severe perturbations in targeting other proteins to the nucleus.
Collapse
Affiliation(s)
- Subarna Dutta
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
- Theomics International Private Limited 28, Income Tax Layout, Sadananda Nagar, NGEF Layout, Bengaluru 560038, India
| | - Vikas Kumar
- UMass Chan Medical School, Mass Spectrometry Facility, 222 Maple Avenue, Shrewsbury, MA 01545, U.S.A
| | - Arnab Barua
- Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Madavan Vasudevan
- Theomics International Private Limited 28, Income Tax Layout, Sadananda Nagar, NGEF Layout, Bengaluru 560038, India
| |
Collapse
|
3
|
Devaiah BN, Singh AK, Mu J, Chen Q, Meerzaman D, Singer DS. Phosphorylation by JNK switches BRD4 functions. Mol Cell 2024; 84:4282-4296.e7. [PMID: 39454579 PMCID: PMC11585421 DOI: 10.1016/j.molcel.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/11/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
Bromodomain 4 (BRD4), a key regulator with pleiotropic functions, plays crucial roles in cancers and cellular stress responses. It exhibits dual functionality: chromatin-bound BRD4 regulates remodeling through its histone acetyltransferase (HAT) activity, while promoter-associated BRD4 regulates transcription through its kinase activity. Notably, chromatin-bound BRD4 lacks kinase activity, and RNA polymerase II (RNA Pol II)-bound BRD4 exhibits no HAT activity. This study unveils one mechanism underlying BRD4's functional switch. In response to diverse stimuli, c-Jun N-terminal kinase (JNK)-mediated phosphorylation of human BRD4 at Thr1186 and Thr1212 triggers its transient release from chromatin, disrupting its HAT activity and potentiating its kinase activity. Released BRD4 directly interacts with and phosphorylates RNA Pol II, PTEFb, and c-Myc, thereby promoting transcription of target genes involved in immune and inflammatory responses. JNK-mediated BRD4 functional switching induces CD8 expression in thymocytes and epithelial-to-mesenchymal transition (EMT) in prostate cancer cells. These findings elucidate the mechanism by which BRD4 transitions from a chromatin regulator to a transcriptional activator.
Collapse
Affiliation(s)
| | - Amit Kumar Singh
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Jie Mu
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Qingrong Chen
- Center for Biomedical Informatics and Information Technology, NCI, NIH, Bethesda, MD 20892, USA
| | - Daoud Meerzaman
- Center for Biomedical Informatics and Information Technology, NCI, NIH, Bethesda, MD 20892, USA
| | - Dinah S Singer
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Linhartova K, Falginella FL, Matl M, Sebesta M, Vácha R, Stefl R. Sequence and structural determinants of RNAPII CTD phase-separation and phosphorylation by CDK7. Nat Commun 2024; 15:9163. [PMID: 39448580 PMCID: PMC11502803 DOI: 10.1038/s41467-024-53305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
The intrinsically disordered carboxy-terminal domain (CTD) of the largest subunit of RNA Polymerase II (RNAPII) consists of multiple tandem repeats of the consensus heptapeptide Y1-S2-P3-T4-S5-P6-S7. The CTD promotes liquid-liquid phase-separation (LLPS) of RNAPII in vivo. However, understanding the role of the conserved heptad residues in LLPS is hampered by the lack of direct biochemical characterization of the CTD. Here, we generated a systematic array of CTD variants to unravel the sequence-encoded molecular grammar underlying the LLPS of the human CTD. Using in vitro experiments and molecular dynamics simulations, we report that the aromaticity of tyrosine and cis-trans isomerization of prolines govern CTD phase-separation. The cis conformation of prolines and β-turns in the SPXX motif contribute to a more compact CTD ensemble, enhancing interactions among CTD residues. We further demonstrate that prolines and tyrosine in the CTD consensus sequence are required for phosphorylation by Cyclin-dependent kinase 7 (CDK7). Under phase-separation conditions, CDK7 associates with the surface of the CTD droplets, drastically accelerating phosphorylation and promoting the release of hyperphosphorylated CTD from the droplets. Our results highlight the importance of conformationally restricted local structures within spacer regions, separating uniformly spaced tyrosine stickers of the CTD heptads, which are required for CTD phase-separation.
Collapse
Affiliation(s)
- Katerina Linhartova
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | | | - Martin Matl
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Marek Sebesta
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia.
| | - Robert Vácha
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia.
| | - Richard Stefl
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czechia.
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia.
| |
Collapse
|
5
|
Oven HC, Yap GPA, Zondlo NJ. Helical twists and β-turns in structures at serine-proline sequences: Stabilization of cis-proline and type VI β-turns via C-H/O interactions. Proteins 2024; 92:1190-1205. [PMID: 38747689 DOI: 10.1002/prot.26701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 10/26/2024]
Abstract
Structures at serine-proline sites in proteins were analyzed using a combination of peptide synthesis with structural methods and bioinformatics analysis of the PDB. Dipeptides were synthesized with the proline derivative (2S,4S)-(4-iodophenyl)hydroxyproline [hyp(4-I-Ph)]. The crystal structure of Boc-Ser-hyp(4-I-Ph)-OMe had two molecules in the unit cell. One molecule exhibited cis-proline and a type VIa2 β-turn (BcisD). The cis-proline conformation was stabilized by a C-H/O interaction between Pro C-Hα and the Ser side-chain oxygen. NMR data were consistent with stabilization of cis-proline by a C-H/O interaction in solution. The other crystallographically observed molecule had trans-Pro and both residues in the PPII conformation. Two conformations were observed in the crystal structure of Ac-Ser-hyp(4-I-Ph)-OMe, with Ser adopting PPII in one and the β conformation in the other, each with Pro in the δ conformation and trans-Pro. Structures at Ser-Pro sequences were further examined via bioinformatics analysis of the PDB and via DFT calculations. Ser-Pro versus Ala-Pro sequences were compared to identify bases for Ser stabilization of local structures. C-H/O interactions between the Ser side-chain Oγ and Pro C-Hα were observed in 45% of structures with Ser-cis-Pro in the PDB, with nearly all Ser-cis-Pro structures adopting a type VI β-turn. 53% of Ser-trans-Pro sequences exhibited main-chain COi•••HNi+3 or COi•••HNi+4 hydrogen bonds, with Ser as the i residue and Pro as the i + 1 residue. These structures were overwhelmingly either type I β-turns or N-terminal capping motifs on α-helices or 310-helices. These results indicate that Ser-Pro sequences are particularly potent in favoring these structures. In each, Ser is in either the PPII or β conformation, with the Ser Oγ capable of engaging in a hydrogen bond with the amide N-H of the i + 2 (type I β-turn or 310-helix; Ser χ1 t) or i + 3 (α-helix; Ser χ1 g+) residue. Non-proline cis amide bonds can also be stabilized by C-H/O interactions.
Collapse
Affiliation(s)
- Harrison C Oven
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Neal J Zondlo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
6
|
Engal E, Sharma A, Aviel U, Taqatqa N, Juster S, Jaffe-Herman S, Bentata M, Geminder O, Gershon A, Lewis R, Kay G, Hecht M, Epsztejn-Litman S, Gotkine M, Mouly V, Eiges R, Salton M, Drier Y. DNMT3B splicing dysregulation mediated by SMCHD1 loss contributes to DUX4 overexpression and FSHD pathogenesis. SCIENCE ADVANCES 2024; 10:eadn7732. [PMID: 38809976 PMCID: PMC11135424 DOI: 10.1126/sciadv.adn7732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/25/2024] [Indexed: 05/31/2024]
Abstract
Structural maintenance of chromosomes flexible hinge domain-containing 1 (SMCHD1) is a noncanonical SMC protein and an epigenetic regulator. Mutations in SMCHD1 cause facioscapulohumeral muscular dystrophy (FSHD), by overexpressing DUX4 in muscle cells. Here, we demonstrate that SMCHD1 is a key regulator of alternative splicing in various cell types. We show how SMCHD1 loss causes splicing alterations of DNMT3B, which can lead to hypomethylation and DUX4 overexpression. Analyzing RNA sequencing data from muscle biopsies of patients with FSHD and Smchd1 knocked out cells, we found mis-splicing of hundreds of genes upon SMCHD1 loss. We conducted a high-throughput screen of splicing factors, revealing the involvement of the splicing factor RBM5 in the mis-splicing of DNMT3B. Subsequent RNA immunoprecipitation experiments confirmed that SMCHD1 is required for RBM5 recruitment. Last, we show that mis-splicing of DNMT3B leads to hypomethylation of the D4Z4 region and to DUX4 overexpression. These results suggest that DNMT3B mis-splicing due to SMCHD1 loss plays a major role in FSHD pathogenesis.
Collapse
Affiliation(s)
- Eden Engal
- The Lautenberg Center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Department of Military Medicine and “Tzameret”, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Aveksha Sharma
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Uria Aviel
- The Lautenberg Center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Nadeen Taqatqa
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Sarah Juster
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Shiri Jaffe-Herman
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Mercedes Bentata
- The Lautenberg Center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ophir Geminder
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Department of Military Medicine and “Tzameret”, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Adi Gershon
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Reyut Lewis
- The Lautenberg Center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Gillian Kay
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Merav Hecht
- The Lautenberg Center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Silvina Epsztejn-Litman
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Marc Gotkine
- Department of Neurology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Vincent Mouly
- UPMC University Paris 06, Inserm UMRS974, CNRS FRE3617, Center for Research in Myology, Sorbonne University,75252 Paris, France
| | - Rachel Eiges
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Maayan Salton
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Yotam Drier
- The Lautenberg Center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
7
|
Piemontese E, Herfort A, Perevedentseva Y, Möller HM, Seitz O. Multiphosphorylation-Dependent Recognition of Anti-pS2 Antibodies against RNA Polymerase II C-Terminal Domain Revealed by Chemical Synthesis. J Am Chem Soc 2024; 146:12074-12086. [PMID: 38639141 PMCID: PMC11066871 DOI: 10.1021/jacs.4c01902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Phosphorylation is a major constituent of the CTD code, which describes the set of post-translational modifications on 52 repeats of a YSPTSPS consensus heptad that orchestrates the binding of regulatory proteins to the C-terminal domain (CTD) of RNA polymerase II. Phospho-specific antibodies are used to detect CTD phosphorylation patterns. However, their recognition repertoire is underexplored due to limitations in the synthesis of long multiphosphorylated peptides. Herein, we describe the development of a synthesis strategy that provides access to multiphosphorylated CTD peptides in high purity without HPLC purification for immobilization onto microtiter plates. Native chemical ligation was used to assemble 12 heptad repeats in various phosphoforms. The synthesis of >60 CTD peptides, 48-90 amino acids in length and containing up to 6 phosphosites, enabled a detailed and rapid analysis of the binding characteristics of different anti-pSer2 antibodies. The three antibodies tested showed positional selectivity with marked differences in the affinity of the antibodies for pSer2-containing peptides. Furthermore, the length of the phosphopeptides allowed a systematic analysis of the multivalent chelate-type interactions. The absence of multivalency-induced binding enhancements is probably due to the high flexibility of the CTD scaffold. The effect of clustered phosphorylation proved to be more complex. Recognition of pSer2 by anti-pSer2-antibodies can be prevented and, perhaps surprisingly, enhanced by the phosphorylation of "bystander" amino acids in the vicinity. The results have relevance for functional analysis of the CTD in cell biological experiments.
Collapse
Affiliation(s)
- Emanuele Piemontese
- Institut
für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Alina Herfort
- Institut
für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Yulia Perevedentseva
- Institut
für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Golm, Germany
| | - Heiko M. Möller
- Institut
für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Golm, Germany
| | - Oliver Seitz
- Institut
für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| |
Collapse
|
8
|
Lewis BA. The role of O-GlcNAcylation in RNA polymerase II transcription. J Biol Chem 2024; 300:105705. [PMID: 38311176 PMCID: PMC10906531 DOI: 10.1016/j.jbc.2024.105705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Eukaryotic RNA polymerase II (RNAPII) is responsible for the transcription of the protein-coding genes in the cell. Enormous progress has been made in discovering the protein activities that are required for transcription to occur, but the effects of post-translational modifications (PTMs) on RNAPII transcriptional regulation are much less understood. Most of our understanding relates to the cyclin-dependent kinases (CDKs), which appear to act relatively early in transcription. However, it is becoming apparent that other PTMs play a crucial role in the transcriptional cycle, and it is doubtful that any sort of complete understanding of this regulation is attainable without understanding the spectra of PTMs that occur on the transcriptional machinery. Among these is O-GlcNAcylation. Recent experiments have shown that the O-GlcNAc PTM likely has a prominent role in transcription. This review will cover the role of the O-GlcNAcylation in RNAPII transcription during initiation, pausing, and elongation, which will hopefully be of interest to both O-GlcNAc and RNAPII transcription researchers.
Collapse
Affiliation(s)
- Brian A Lewis
- Gene Regulation Section/LP, Center for Cancer Research, National Cancer Institute/NIH, Bethesda, Maryland, USA.
| |
Collapse
|
9
|
Archuleta SR, Goodrich JA, Kugel JF. Mechanisms and Functions of the RNA Polymerase II General Transcription Machinery during the Transcription Cycle. Biomolecules 2024; 14:176. [PMID: 38397413 PMCID: PMC10886972 DOI: 10.3390/biom14020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Central to the development and survival of all organisms is the regulation of gene expression, which begins with the process of transcription catalyzed by RNA polymerases. During transcription of protein-coding genes, the general transcription factors (GTFs) work alongside RNA polymerase II (Pol II) to assemble the preinitiation complex at the transcription start site, open the promoter DNA, initiate synthesis of the nascent messenger RNA, transition to productive elongation, and ultimately terminate transcription. Through these different stages of transcription, Pol II is dynamically phosphorylated at the C-terminal tail of its largest subunit, serving as a control mechanism for Pol II elongation and a signaling/binding platform for co-transcriptional factors. The large number of core protein factors participating in the fundamental steps of transcription add dense layers of regulation that contribute to the complexity of temporal and spatial control of gene expression within any given cell type. The Pol II transcription system is highly conserved across different levels of eukaryotes; however, most of the information here will focus on the human Pol II system. This review walks through various stages of transcription, from preinitiation complex assembly to termination, highlighting the functions and mechanisms of the core machinery that participates in each stage.
Collapse
Affiliation(s)
| | - James A. Goodrich
- Department of Biochemistry, University of Colorado Boulder, 596 UCB, Boulder, CO 80309, USA;
| | - Jennifer F. Kugel
- Department of Biochemistry, University of Colorado Boulder, 596 UCB, Boulder, CO 80309, USA;
| |
Collapse
|
10
|
Kashif M, Kumar B, Bharati AP, Altayeb H, Asalam M, Akhtar MS, Khan MI, Ahmad A, Chaudhary H, Hosawi SB, Zamzami MA, Baothman OA. Association of peptidyl prolyl cis/trans isomerase Rrd1 with C terminal domain of RNA polymerase II. Int J Biol Macromol 2023; 242:124653. [PMID: 37141964 DOI: 10.1016/j.ijbiomac.2023.124653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
The largest subunit of RNAPII extends as the conserved unstructured heptapeptide consensus repeats Y1S2P3T4S5P6S7 and their posttranslational modification, especially the phosphorylation state at Ser2, Ser5 and Ser7 of CTD recruits different transcription factors involved in transcription. In the current study, fluorescence anisotropy, pull down assay and molecular dynamics simulation studies employed to conclude that peptidyl-prolyl cis/trans-isomerase Rrd1 has strong affinity for unphosphorylated CTD rather than phosphorylated CTD for mRNA transcription. Rrd1 preferentially interacts with unphosphorylated GST-CTD in comparison to hyperphosphorylated GST-CTD in vitro. Fluorescence anisotropy revealed that recombinant Rrd1 prefers to bind unphosphorylated CTD peptide in comparison to phosphorylated CTD peptide. In computational studies, the RMSD of Rrd1-unphosphorylated CTD complex was greater than the RMSD of Rrd1-pCTD complex. During 50 ns MD simulation run Rrd1-pCTD complex get dissociated twice viz. 20 ns to 30 ns and 40 ns to 50 ns, while Rrd1-unpCTD complex remain stable throughout the process. Additionally, the Rrd1-unphosphorylated CTD complexes acquire comparatively higher number of H-bonds, water bridges and hydrophobic interactions occupancy than Rrd1-pCTD complex, concludes that the Rrd1 interacts more strongly with the unphosphorylated CTD than the pCTD.
Collapse
Affiliation(s)
- Mohd Kashif
- Department of Biotech, Babasaheb Bhimrao Ambedkar University, Lucknow, India.
| | - Bhupendra Kumar
- Center for Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, U.P., India
| | - Akhilendra Pratap Bharati
- Department Of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, India.
| | - Hisham Altayeb
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Mohd Asalam
- CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Mohd Sohail Akhtar
- CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India.
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Abrar Ahmad
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Hani Chaudhary
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Salman Bakr Hosawi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Mazin A Zamzami
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Othman A Baothman
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
11
|
Rodríguez-Molina JB, West S, Passmore LA. Knowing when to stop: Transcription termination on protein-coding genes by eukaryotic RNAPII. Mol Cell 2023; 83:404-415. [PMID: 36634677 PMCID: PMC7614299 DOI: 10.1016/j.molcel.2022.12.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023]
Abstract
Gene expression is controlled in a dynamic and regulated manner to allow for the consistent and steady expression of some proteins as well as the rapidly changing production of other proteins. Transcription initiation has been a major focus of study because it is highly regulated. However, termination of transcription also plays an important role in controlling gene expression. Transcription termination on protein-coding genes is intimately linked with 3' end cleavage and polyadenylation of transcripts, and it generally results in the production of a mature mRNA that is exported from the nucleus. Termination on many non-coding genes can also result in the production of a mature transcript. Termination is dynamically regulated-premature termination and transcription readthrough occur in response to a number of cellular signals, and these can have varied consequences on gene expression. Here, we review eukaryotic transcription termination by RNA polymerase II (RNAPII), focusing on protein-coding genes.
Collapse
Affiliation(s)
| | - Steven West
- The Living Systems Institute, University of Exeter, Exeter, UK.
| | | |
Collapse
|
12
|
Liu Q, Chung S, Murata MM, Han B, Gao B, Zhang M, Lee TY, Chirshev E, Unternaehrer J, Tanaka H, Giuliano AE, Cui Y, Cui X. TOP1 inhibition induces bifurcated JNK/MYC signaling that dictates cancer cell sensitivity. Int J Biol Sci 2022; 18:4203-4218. [PMID: 35844787 PMCID: PMC9274500 DOI: 10.7150/ijbs.70583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 06/14/2022] [Indexed: 02/05/2023] Open
Abstract
Rationale: Triple-negative breast cancer (TNBC) does not respond to anti-estrogen and anti-HER2 therapies and is commonly treated by chemotherapy. TNBC has a high recurrence rate, particularly within the first 3 years. Thus, there is an urgent clinical need to develop more effective therapies for TNBC. Topoisomerase I (TOP1) inhibitors cause DNA damage, making these drugs desirable for TNBC treatment since DNA repair machinery is defective in this subtype of breast cancer. Among the main molecular subtypes of breast cancer, the TNBC cell lines exhibited the highest TOP1 inhibition sensitivity. However, clinically used TOP1 inhibitors, such as topotecan and irinotecan, have shown limited clinical applications and the reasons remain unclear. Understanding the mechanism of differential responses to TOP1 blockade and identifying the predictive markers for cancer cell sensitivity will help further TOP1-targeted therapy for TNBC treatment and improve the clinical use of TOP1 inhibitors. Methods: Viability assays were used to evaluate breast cancer cell sensitivity to topotecan and other TOP1 inhibitors as well as TOP2 inhibitors. An in vitro-derived topotecan-resistant TNBC cell model and TNBC xenograft models were employed to confirm cancer cell response to TOP1 blockade. RNA-seq was used to identify potential predictive markers for TNBC cell response to TOP1 blockade. Western blotting and qRT-PCR were performed to measure the protein levels and RNA expression. ATAC-seq and luciferase reporter assays were used to examine MYC transcriptional regulations. The effects of MYC and JNK in cancer cell response to TOP1 inhibition were validated via loss-of-function and gain-of-function experiments. Results: We observed two distinct and diverging cancer cell responses - sensitive versus resistant to TOP1 inhibition, which was confirmed by TNBC xenograft mouse models treated by topotecan. TNBC cells exhibited bifurcated temporal patterns of ATR pathway activation upon TOP1 inhibitor treatment. The sensitive TNBC cells showed an "up then down" dynamic pattern of ATR/Chk1 signaling, while the resistant TNBC cells exhibited a "persistently up" profile. On the contrary, opposite temporal patterns of induced expression of MYC, a key regulator and effector of DNA damage, were found in TNBC cells treated by TOP1 inhibitors. Mechanistically, we showed that TOP1-induced JNK signaling upregulated MYC expression. Furthermore, pharmacological inhibition of ATR reversed TNBC cell resistance to topotecan, whereas MYC knockdown and JNK inhibition reduced cancer cell sensitivity. Conclusions: Dynamic temporal profiles of induced ATR/Chk1 and JNK activation as well as MYC expression, may predict cancer cell response to TOP1 inhibitors. JNK activation-mediated constitutive elevation of MYC expression may represent a novel mechanism governing cancer cell sensitivity to TOP1-targeting therapy. Our results may provide implications for identifying TNBC patients who might benefit from the treatment with TOP1 inhibitors.
Collapse
Affiliation(s)
- Qizhi Liu
- Department of Surgery, Samuel Oschin Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Stacey Chung
- Department of Surgery, Samuel Oschin Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michael M. Murata
- Department of Surgery, Samuel Oschin Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Bingchen Han
- Department of Surgery, Samuel Oschin Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Bowen Gao
- Department of Surgery, Samuel Oschin Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Maoqi Zhang
- Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou University Medical College Cancer Hospital, Shantou 515041, China
| | - Tian-Yu Lee
- Department of Surgery, Samuel Oschin Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Evgeny Chirshev
- Loma Linda University, Department of Basic Sciences, 11085 Campus Street Mortensen Hall 219, Loma Linda, CA 92354, USA
| | - Juli Unternaehrer
- Loma Linda University, Department of Basic Sciences, 11085 Campus Street Mortensen Hall 219, Loma Linda, CA 92354, USA
| | - Hisashi Tanaka
- Department of Surgery, Samuel Oschin Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Armando E. Giuliano
- Department of Surgery, Samuel Oschin Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yukun Cui
- Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou University Medical College Cancer Hospital, Shantou 515041, China
| | - Xiaojiang Cui
- Department of Surgery, Samuel Oschin Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
13
|
Chan J, Kumar A, Kono H. RNAPII driven post-translational modifications of nucleosomal histones. Trends Genet 2022; 38:1076-1095. [PMID: 35618507 DOI: 10.1016/j.tig.2022.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/08/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022]
Abstract
The current understanding of how specific distributions of histone post-translational modifications (PTMs) are achieved throughout the chromatin remains incomplete. This review focuses on the role of RNA polymerase II (RNAPII) in establishing H2BK120/K123 ubiquitination and H3K4/K36 methylation distribution. The rate of RNAPII transcription is mainly a function of the RNAPII elongation and recruitment rates. Two major mechanisms link RNAPII's transcription rate to the distribution of PTMs. First, the phosphorylation patterns of Ser2P/Ser5P in the C-terminal domain of RNAPII change as a function of time, since the start of elongation, linking them to the elongation rate. Ser2P/Ser5P recruits specific histone PTM enzymes/activators to the nucleosome. Second, multiple rounds of binding and catalysis by the enzymes are required to establish higher methylations (H3K4/36me3). Thus, methylation states are determined by the transcription rate. In summary, the first mechanism determines the location of methylations in the gene, while the second mechanism determines the methylation state.
Collapse
Affiliation(s)
- Justin Chan
- Molecular Modelling and Simulation (MMS) Team, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Amarjeet Kumar
- Molecular Modelling and Simulation (MMS) Team, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Hidetoshi Kono
- Molecular Modelling and Simulation (MMS) Team, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan.
| |
Collapse
|
14
|
Wang W, Qiao S, Li G, Cheng J, Yang C, Zhong C, Stovall DB, Shi J, Teng C, Li D, Sui G. A histidine cluster determines YY1-compartmentalized coactivators and chromatin elements in phase-separated enhancer clusters. Nucleic Acids Res 2022; 50:4917-4937. [PMID: 35390165 PMCID: PMC9122595 DOI: 10.1093/nar/gkac233] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/19/2022] [Accepted: 04/05/2022] [Indexed: 12/28/2022] Open
Abstract
As an oncogenic transcription factor, Yin Yang 1 (YY1) regulates enhancer and promoter connection. However, gaps still exist in understanding how YY1 coordinates coactivators and chromatin enhancer elements to assemble enhancers and super-enhancers. Here, we demonstrate that a histidine cluster in YY1’s transactivation domain is essential for its formation of phase separation condensates, which can be extended to additional proteins. The histidine cluster is also required for YY1-promoted cell proliferation, migration, clonogenicity and tumor growth. YY1-rich nuclear puncta contain coactivators EP300, BRD4, MED1 and active RNA polymerase II, and colocalize with histone markers of gene activation, but not that of repression. Furthermore, YY1 binds to the consensus motifs in the FOXM1 promoter to activate its expression. Wild-type YY1, but not its phase separation defective mutant, connects multiple enhancer elements and the FOXM1 promoter to form an enhancer cluster. Consistently, fluorescent in situ hybridization (FISH) assays reveal the colocalization of YY1 puncta with both the FOXM1 gene locus and its nascent RNA transcript. Overall, this study demonstrates that YY1 activates target gene expression through forming liquid-liquid phase separation condensates to compartmentalize both coactivators and enhancer elements, and the histidine cluster of YY1 plays a determinant role in this regulatory mechanism.
Collapse
Affiliation(s)
- Wenmeng Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Shiyao Qiao
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Guangyue Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Jiahui Cheng
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Cuicui Yang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Chen Zhong
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Daniel B Stovall
- College of Arts and Sciences, Winthrop University, Rock Hill, SC 29733, USA
| | - Jinming Shi
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Chunbo Teng
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Guangchao Sui
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
15
|
Zhou M, Ehsan F, Gan L, Dong A, Li Y, Liu K, Min J. Structural basis for the recognition of the S2, S5-phosphorylated RNA polymerase II CTD by the mRNA anti-terminator protein hSCAF4. FEBS Lett 2022; 596:249-259. [PMID: 34897689 DOI: 10.1002/1873-3468.14256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 11/05/2022]
Abstract
The C-terminal domain (CTD) of RNA polymerase II serves as a binding platform for numerous enzymes and transcription factors involved in nascent RNA processing and the transcription cycle. The S2, S5-phosphorylated CTD is recognized by the transcription factor SCAF4, which functions as a transcription anti-terminator by preventing early mRNA transcript cleavage and polyadenylation. Here, we measured the binding affinities of differently modified CTD peptides by hSCAF4 and solved the complex structure of the hSCAF4-CTD-interaction domain (CID) bound to a S2, S5-quadra-phosphorylated CTD peptide. Our results revealed that the S2, S5-quadra-phosphorylated CTD peptide adopts a trans conformation and is located in a positively charged binding groove of hSCAF4-CID. Although hSCAF4-CID has almost the same binding pattern to the CTD as other CID-containing proteins, it preferentially binds to the S2, S5-phosphorylated CTD. Our findings provide insight into the regulatory mechanism of hSCAF4 in transcription termination.
Collapse
Affiliation(s)
- Mengqi Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
- Structural Genomics Consortium, University of Toronto, Canada
| | - Fahad Ehsan
- Structural Genomics Consortium, University of Toronto, Canada
- Department of Physiology, University of Toronto, Canada
| | - Linyao Gan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Canada
| | - Yanjun Li
- Structural Genomics Consortium, University of Toronto, Canada
| | - Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
- Structural Genomics Consortium, University of Toronto, Canada
- Department of Physiology, University of Toronto, Canada
| |
Collapse
|
16
|
Liu Y, Fu L, Wu J, Liu M, Wang G, Liu B, Zhang L. Transcriptional cyclin-dependent kinases: Potential drug targets in cancer therapy. Eur J Med Chem 2021; 229:114056. [PMID: 34942431 DOI: 10.1016/j.ejmech.2021.114056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
In the wake of the development of the concept of cell cycle and its limiting points, cyclin-dependent kinases (CDKs) are considered to play a central role in regulating cell cycle progression. Recent studies have strongly demonstrated that CDKs also has multiple functions, especially in response to extracellular and intracellular signals by interfering with transcriptional events. Consequently, how to inhibit their function has been a hot research topic. It is worth noting that the key role of CDKs in regulating transcription has been explored in recent years, but its related pharmacological targets are less developed, and most inhibitors have not entered the clinical stage. Accordingly, this perspective focus on the biological functions of transcription related CDKs and their complexes, some key upstream and downstream signals, and inhibitors for cancer treatment in recent years. In addition, some corresponding combined treatment strategies will provide a more novel perspective for future cancer remedy.
Collapse
Affiliation(s)
- Yi Liu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Junhao Wu
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China.
| |
Collapse
|
17
|
Jiang Q, Zhang J, Li F, Ma X, Wu F, Miao J, Li Q, Wang X, Sun R, Yang Y, Zhao L, Huang C. POLR2A Promotes the Proliferation of Gastric Cancer Cells by Advancing the Overall Cell Cycle Progression. Front Genet 2021; 12:688575. [PMID: 34899822 PMCID: PMC8655910 DOI: 10.3389/fgene.2021.688575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
RNA polymerase II subunit A (POLR2A) is the largest subunit encoding RNA polymerase II and closely related to cancer progression. However, the biological role and underlying molecular mechanism of POLR2A in gastric cancer (GC) are still unclear. Our study demonstrated that POLR2A was highly expressed in GC tissue and promoted the proliferation of GC in vitro and in vivo. We also found that POLR2A participated in the transcriptional regulation of cyclins and cyclin-dependent kinases (CDKs) at each stage and promoted their expression, indicated POLR2A’s overall promotion of cell cycle progression. Moreover, POLR2A inhibited GC cell apoptosis and promoted GC cell migration. Our results indicate that POLR2A play an oncogene role in GC, which may be an important factor involved in the occurrence and development of GC.
Collapse
Affiliation(s)
- Qiuyu Jiang
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an, China
| | - Jinyuan Zhang
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an, China
| | - Fang Li
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoping Ma
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an, China
| | - Fei Wu
- Department of Oncology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jiyu Miao
- Department of Hematology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Qian Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Xiaofei Wang
- Biomedical Experiment Center, Xian Jiaotong University, Xi'an, China
| | - Ruifang Sun
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an, China
| | - Yang Yang
- Department of Toxicology and Sanitary Analysis, School of Public Health, Xi'an Jiaotong University, Xi'an, China
| | - Lingyu Zhao
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an, China
| | - Chen Huang
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
18
|
Puzanov GA, Senchenko VN. SCP Phosphatases and Oncogenesis. Mol Biol 2021. [DOI: 10.1134/s0026893321030092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
LeBlanc BM, Moreno RY, Escobar EE, Venkat Ramani MK, Brodbelt JS, Zhang Y. What's all the phos about? Insights into the phosphorylation state of the RNA polymerase II C-terminal domain via mass spectrometry. RSC Chem Biol 2021; 2:1084-1095. [PMID: 34458825 PMCID: PMC8341212 DOI: 10.1039/d1cb00083g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/03/2021] [Indexed: 12/31/2022] Open
Abstract
RNA polymerase II (RNAP II) is one of the primary enzymes responsible for expressing protein-encoding genes and some small nuclear RNAs. The enigmatic carboxy-terminal domain (CTD) of RNAP II and its phosphorylation state are critically important in regulating transcription in vivo. Early methods of identifying phosphorylation on the CTD heptad were plagued by issues of low specificity and ambiguous signals. However, advancements in the field of mass spectrometry (MS) have presented the opportunity to gain new insights into well-studied processes as well as explore new frontiers in transcription. By using MS, residues which are modified within the CTD heptad and across repeats are now able to be pinpointed. Likewise, identification of kinase and phosphatase specificity towards residues of the CTD has reached a new level of accuracy. Now, MS is being used to investigate the crosstalk between modified residues of the CTD and may be a critical technique for understanding how phosphorylation plays a role in the new LLPS model of transcription. Herein, we discuss the development of various MS techniques and evaluate their capabilities. By highlighting the pros and cons of each technique, we aim to provide future investigators with a comprehensive overview of how MS can be used to investigate the complexities of RNAP-II mediated transcription.
Collapse
Affiliation(s)
- Blase M LeBlanc
- Department of Molecular Biosciences, University of Texas Austin USA
| | - R Yvette Moreno
- Department of Molecular Biosciences, University of Texas Austin USA
| | | | | | | | - Yan Zhang
- Department of Molecular Biosciences, University of Texas Austin USA
- Institute of Cellular and Molecular Biology, University of Texas Austin USA
| |
Collapse
|
20
|
Dieci G. Removing quote marks from the RNA polymerase II CTD 'code'. Biosystems 2021; 207:104468. [PMID: 34216714 DOI: 10.1016/j.biosystems.2021.104468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 11/27/2022]
Abstract
In eukaryotes, RNA polymerase II (Pol II) is responsible for the synthesis of all mRNAs and myriads of short and long untranslated RNAs, whose fabrication involves close spatiotemporal coordination between transcription, RNA processing and chromatin modification. Crucial for such a coordination is an unusual C-terminal domain (CTD) of the Pol II largest subunit, made of tandem repetitions (26 in yeast, 52 in chordates) of the heptapeptide with the consensus sequence YSPTSPS. Although largely unstructured and with poor sequence content, the Pol II CTD derives its extraordinary functional versatility from the fact that each amino acid in the heptapeptide can be posttranslationally modified, and that different combinations of CTD covalent marks are specifically recognized by different protein binding partners. These features have led to propose the existence of a Pol II CTD code, but this expression is generally used by authors with some caution, revealed by the frequent use of quote marks for the word 'code'. Based on the theoretical framework of code biology, it is argued here that the Pol II CTD modification system meets the requirements of a true organic code, where different CTD modification states represent organic signs whose organic meanings are biological reactions contributing to the many facets of RNA biogenesis in coordination with RNA synthesis by Pol II. Importantly, the Pol II CTD code is instantiated by adaptor proteins possessing at least two distinct domains, one of which devoted to specific recognition of CTD modification profiles. Furthermore, code rules can be altered by experimental interchange of CTD recognition domains of different adaptor proteins, a fact arguing in favor of the arbitrariness, and thus bona fide character, of the Pol II CTD code. Since the growing family of CTD adaptors includes RNA binding proteins and histone modification complexes, the Pol II CTD code is by its nature integrated with other organic codes, in particular the splicing code and the histone code. These issues will be discussed taking into account fascinating developments in Pol II CTD research, like the discovery of novel modifications at non-consensus sites, the recently recognized CTD physicochemical properties favoring liquid-liquid phase separation, and the discovery that the Pol II CTD, originated before the divergence of most extant eukaryotic taxa, has expanded and diversified with developmental complexity in animals and plants.
Collapse
Affiliation(s)
- Giorgio Dieci
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 23/A, 43124, Parma, Italy.
| |
Collapse
|
21
|
Escobar EE, Venkat Ramani MK, Zhang Y, Brodbelt JS. Evaluating Spatiotemporal Dynamics of Phosphorylation of RNA Polymerase II Carboxy-Terminal Domain by Ultraviolet Photodissociation Mass Spectrometry. J Am Chem Soc 2021; 143:8488-8498. [PMID: 34053220 DOI: 10.1021/jacs.1c03321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The critical role of site-specific phosphorylation in eukaryotic transcription has motivated efforts to decipher the complex phosphorylation patterns exhibited by the carboxyl-terminal domain (CTD) of RNA polymerase II. Phosphorylation remains a challenging post-translational modification to characterize by mass spectrometry owing to the labile phosphate ester linkage and low stoichiometric prevalence, two features that complicate analysis by high-throughput MS/MS methods. Identifying phosphorylation sites represents one significant hurdle in decrypting the CTD phosphorylation, a problem exaggerated by a large number of potential phosphorylation sites. An even greater obstacle is decoding the dynamic phosphorylation pattern along the length of the periodic CTD sequence. Ultraviolet photodissociation (UVPD) is a high-energy ion activation method that provides ample backbone cleavages of peptides while preserving labile post-translational modifications that facilitate their confident localization. Herein, we report a quantitative parallel reaction monitoring (PRM) method developed to monitor spatiotemporal changes in site-specific Ser5 phosphorylation of the CTD by cyclin-dependent kinase 7 (CDK7) using UVPD for sequence identification, phosphosite localization, and differentiation of phosphopeptide isomers. We capitalize on the series of phospho-retaining fragment ions produced by UVPD to create unique transition lists that are pivotal for distinguishing the array of phosphopeptides generated from the CTD.
Collapse
|
22
|
Hwang S, Kim MH, Lee CW. Ssu72 Dual-Specific Protein Phosphatase: From Gene to Diseases. Int J Mol Sci 2021; 22:3791. [PMID: 33917542 PMCID: PMC8038829 DOI: 10.3390/ijms22073791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/22/2022] Open
Abstract
More than 70% of eukaryotic proteins are regulated by phosphorylation. However, the mechanism of dephosphorylation that counteracts phosphorylation is less studied. Phosphatases are classified into 104 distinct groups based on substrate-specific features and the sequence homologies in their catalytic domains. Among them, dual-specificity phosphatases (DUSPs) that dephosphorylate both phosphoserine/threonine and phosphotyrosine are important for cellular homeostasis. Ssu72 is a newly studied phosphatase with dual specificity that can dephosphorylate both phosphoserine/threonine and phosphotyrosine. It is important for cell-growth signaling, metabolism, and immune activation. Ssu72 was initially identified as a phosphatase for the Ser5 and Ser7 residues of the C-terminal domain of RNA polymerase II. It prefers the cis configuration of the serine-proline motif within its substrate and regulates Pin1, different from other phosphatases. It has recently been reported that Ssu72 can regulate sister chromatid cohesion and the separation of duplicated chromosomes during the cell cycle. Furthermore, Ssu72 appears to be involved in the regulation of T cell receptor signaling, telomere regulation, and even hepatocyte homeostasis in response to a variety of stress and damage signals. In this review, we aim to summarize various functions of the Ssu72 phosphatase, their implications in diseases, and potential therapeutic indications.
Collapse
Affiliation(s)
- Soeun Hwang
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (S.H.); (M.-H.K.)
| | - Min-Hee Kim
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (S.H.); (M.-H.K.)
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (S.H.); (M.-H.K.)
- SKKU Institute for Convergence, Sungkyunkwan University, Suwon 16419, Korea
- Curogen Technology, Suwon 16419, Korea
| |
Collapse
|
23
|
Benjamin B, Sanchez AM, Garg A, Schwer B, Shuman S. Structure-function analysis of fission yeast cleavage and polyadenylation factor (CPF) subunit Ppn1 and its interactions with Dis2 and Swd22. PLoS Genet 2021; 17:e1009452. [PMID: 33711009 PMCID: PMC7990198 DOI: 10.1371/journal.pgen.1009452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/24/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Abstract
Fission yeast Cleavage and Polyadenylation Factor (CPF), a 13-subunit complex, executes the cotranscriptional 3' processing of RNA polymerase II (Pol2) transcripts that precedes transcription termination. The three-subunit DPS sub-complex of CPF, consisting of a PP1-type phosphoprotein phosphatase Dis2, a WD-repeat protein Swd22, and a putative phosphatase regulatory factor Ppn1, associates with the CPF core to form the holo-CPF assembly. Here we probed the functional, physical, and genetic interactions of DPS by focusing on the Ppn1 subunit, which mediates association of DPS with the core. Transcriptional profiling by RNA-seq defined limited but highly concordant sets of protein-coding genes that were dysregulated in ppn1Δ, swd22Δ and dis2Δ cells, which included the DPSΔ down-regulated phosphate homeostasis genes pho1 and pho84 that are controlled by lncRNA-mediated transcriptional interference. Essential and inessential modules of the 710-aa Ppn1 protein were defined by testing the effects of Ppn1 truncations in multiple genetic backgrounds in which Ppn1 is required for growth. An N-terminal 172-aa disordered region was dispensable and its deletion alleviated hypomorphic phenotypes caused by deleting C-terminal aa 640-710. A TFIIS-like domain (aa 173-330) was not required for viability but was important for Ppn1 activity in phosphate homeostasis. Distinct sites within Ppn1 for binding to Dis2 (spanning Ppn1 aa 506 to 532) and Swd22 (from Ppn1 aa 533 to 578) were demarcated by yeast two-hybrid assays. Dis2 interaction-defective missense mutants of full-length Ppn1 (that retained Swd22 interaction) were employed to show that binding to Dis2 (or its paralog Sds21) was necessary for Ppn1 biological activity. Ppn1 function was severely compromised by missense mutations that selectively affected its binding to Swd22.
Collapse
Affiliation(s)
- Bradley Benjamin
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York, United States of America
| | - Ana M. Sanchez
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York, United States of America
| | - Angad Garg
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
| | - Beate Schwer
- Dept. of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail: (BS); (SS)
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
- * E-mail: (BS); (SS)
| |
Collapse
|
24
|
Garg A, Sanchez AM, Schwer B, Shuman S. Transcriptional profiling of fission yeast RNA polymerase II CTD mutants. RNA (NEW YORK, N.Y.) 2021; 27:rna.078682.121. [PMID: 33579781 PMCID: PMC8051263 DOI: 10.1261/rna.078682.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/11/2021] [Indexed: 05/08/2023]
Abstract
The carboxyl-terminal domain (CTD) of RNA polymerase II (Pol2) consists of tandem repeats of a consensus heptapeptide Y1 S2 P3 T4 S5 P6 S7 The CTD recruits numerous proteins that drive or regulate gene expression. The trafficking of CTD-interacting proteins is orchestrated by remodeling CTD primary structure via Ser/Thr/Tyr phosphorylation and proline cis-trans isomerization, which collectively inscribe a CTD code. The fission yeast CTD consists of 29 heptad repeats. To decipher the output of the fission yeast CTD code, we genetically manipulated CTD length and amino acid content and then gauged the effects of these changes on gene expression. Whereas deleting 11 consensus heptads has no obvious effect on fission yeast growth, RNA-seq revealed that 25% of the protein-coding transcripts were dysregulated by CTD truncation. We profiled the transcriptomes of full-length CTD mutants, in which: all Tyr1 residues were replaced by Phe; all Ser2, Thr4, or Ser7 positions were changed to Ala; and half of the essential CTD code "letters" Pro3, Ser5, and Pro6 were mutated to Ala. Overlapping RNA-seq profiles suggested that a quarter of the complement of up-regulated mRNAs and half of the down-regulated mRNAs seen in full-length CTD mutants might be attributable to a decrement in wild-type CTD heptad number. Concordant mutant-specific transcriptional profiles were observed for Y1F, S2A, and T4A cells, and for P6•P6A and S5•S5A cells, suggesting that Tyr1-Ser2-Thr4 and Ser5-Pro6 comprise distinct "words" in the fission yeast CTD code. The phosphate regulon, which is repressed by lncRNA-mediated transcription interference, is de-repressed by CTD mutations P6•P6A and S5•S5A. De-repression of pho1 in P6•P6A and S5•S5A cells depends on cleavage and polyadenylation factor subunits Swd22 and Ppn1 and transcription termination factor Rhn1, signifying that Pro6 and Ser5 mutations elicit precocious lncRNA 3'-processing/termination.
Collapse
|
25
|
Abstract
The passage of mRNAs through the nuclear pores into the cytoplasm is essential in all eukaryotes. For regulation, mRNA export is tightly connected to the full machinery of nuclear mRNA processing, starting at transcription. Export competence of pre-mRNAs gradually increases by both transient and permanent interactions with multiple RNA processing and export factors. mRNA export is best understood in opisthokonts, with limited knowledge in plants and protozoa. Here, I review and compare nuclear mRNA processing and export between opisthokonts and Trypanosoma brucei. The parasite has many unusual features in nuclear mRNA processing, such as polycistronic transcription and trans-splicing. It lacks several nuclear complexes and nuclear-pore-associated proteins that in opisthokonts play major roles in mRNA export. As a consequence, trypanosome mRNA export control is not tight and export can even start co-transcriptionally. Whether trypanosomes regulate mRNA export at all, or whether leakage of immature mRNA to the cytoplasm is kept to a low level by a fast kinetics of mRNA processing remains to be investigated. mRNA export had to be present in the last common ancestor of eukaryotes. Trypanosomes are evolutionary very distant from opisthokonts and a comparison helps understanding the evolution of mRNA export.
Collapse
|
26
|
Badjatia N, Rossi MJ, Bataille AR, Mittal C, Lai WKM, Pugh BF. Acute stress drives global repression through two independent RNA polymerase II stalling events in Saccharomyces. Cell Rep 2021; 34:108640. [PMID: 33472084 PMCID: PMC7879390 DOI: 10.1016/j.celrep.2020.108640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/23/2020] [Accepted: 12/21/2020] [Indexed: 11/30/2022] Open
Abstract
In multicellular eukaryotes, RNA polymerase (Pol) II pauses transcription ~30-50 bp after initiation. While the budding yeast Saccharomyces has its transcription mechanisms mostly conserved with other eukaryotes, it appears to lack this fundamental promoter-proximal pausing. However, we now report that nearly all yeast genes, including constitutive and inducible genes, manifest two distinct transcriptional stall sites that are brought on by acute environmental signaling (e.g., peroxide stress). Pol II first stalls at the pre-initiation stage before promoter clearance, but after DNA melting and factor acquisition, and may involve inhibited dephosphorylation. The second stall occurs at the +2 nucleosome. It acquires most, but not all, elongation factor interactions. Its regulation may include Bur1/Spt4/5. Our results suggest that a double Pol II stall is a mechanism to downregulate essentially all genes in concert.
Collapse
Affiliation(s)
- Nitika Badjatia
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew J Rossi
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Alain R Bataille
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Chitvan Mittal
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - William K M Lai
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - B Franklin Pugh
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
27
|
Eyboulet F, Jeronimo C, Côté J, Robert F. The deubiquitylase Ubp15 couples transcription to mRNA export. eLife 2020; 9:e61264. [PMID: 33226341 PMCID: PMC7682988 DOI: 10.7554/elife.61264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
Nuclear export of messenger RNAs (mRNAs) is intimately coupled to their synthesis. pre-mRNAs assemble into dynamic ribonucleoparticles as they are being transcribed, processed, and exported. The role of ubiquitylation in this process is increasingly recognized but, while a few E3 ligases have been shown to regulate nuclear export, evidence for deubiquitylases is currently lacking. Here we identified deubiquitylase Ubp15 as a regulator of nuclear export in Saccharomyces cerevisiae. Ubp15 interacts with both RNA polymerase II and the nuclear pore complex, and its deletion reverts the nuclear export defect of E3 ligase Rsp5 mutants. The deletion of UBP15 leads to hyper-ubiquitylation of the main nuclear export receptor Mex67 and affects its association with THO, a complex coupling transcription to mRNA processing and involved in the recruitment of mRNA export factors to nascent transcripts. Collectively, our data support a role for Ubp15 in coupling transcription to mRNA export.
Collapse
Affiliation(s)
- Fanny Eyboulet
- Institut de recherches cliniques de MontréalMontréalCanada
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Axe Oncologie du Centre de Recherche du CHU de Québec-Université LavalQuébec CityCanada
| | - Célia Jeronimo
- Institut de recherches cliniques de MontréalMontréalCanada
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Axe Oncologie du Centre de Recherche du CHU de Québec-Université LavalQuébec CityCanada
| | - François Robert
- Institut de recherches cliniques de MontréalMontréalCanada
- Département de Médecine, Faculté de Médecine, Université de MontréalMontréalCanada
| |
Collapse
|
28
|
Garg A, Shuman S, Schwer B. A genetic screen for suppressors of hyper-repression of the fission yeast PHO regulon by Pol2 CTD mutation T4A implicates inositol 1-pyrophosphates as agonists of precocious lncRNA transcription termination. Nucleic Acids Res 2020; 48:10739-10752. [PMID: 33010152 PMCID: PMC7641756 DOI: 10.1093/nar/gkaa776] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/03/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022] Open
Abstract
Fission yeast phosphate homeostasis genes are repressed in phosphate-rich medium by transcription of upstream lncRNAs that interferes with activation of the flanking mRNA promoters. lncRNA control of PHO gene expression is influenced by the Thr4 phospho-site in the RNA polymerase II CTD and the 3′ processing/termination factors CPF and Rhn1, mutations of which result in hyper-repression of the PHO regulon. Here, we performed a forward genetic screen for mutations that de-repress Pho1 acid phosphatase expression in CTD-T4A cells. Sequencing of 18 independent STF (Suppressor of Threonine Four) isolates revealed, in every case, a mutation in the C-terminal pyrophosphatase domain of Asp1, a bifunctional inositol pyrophosphate (IPP) kinase/pyrophosphatase that interconverts 5-IP7 and 1,5-IP8. Focused characterization of two STF strains identified 51 coding genes coordinately upregulated vis-à-vis the parental T4A strain, including all three PHO regulon genes (pho1, pho84, tgp1). Whereas these STF alleles—asp1-386(Stop) and asp1-493(Stop)—were lethal in a wild-type CTD background, they were viable in combination with mutations in CPF and Rhn1, in which context Pho1 was also de-repressed. Our findings implicate Asp1 pyrophosphatase in constraining 1,5-IP8 or 1-IP7 synthesis by Asp1 kinase, without which 1-IPPs can accumulate to toxic levels that elicit precocious termination by CPF/Rhn1.
Collapse
Affiliation(s)
- Angad Garg
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
29
|
Transcriptional cyclin-dependent kinases as the mediators of inflammation-a review. Gene 2020; 769:145200. [PMID: 33031895 DOI: 10.1016/j.gene.2020.145200] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/18/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022]
Abstract
Cyclin-dependent kinases (CDKs) belong to the serine/threonine kinase family, and their unique interactions with a variety of cyclin complexes influence its catalytic activity to ensure unimpaired cell cycle progression. In addition to their cell cycle regulatory roles, it is becoming increasingly clear that the CDKs can have multiple functional roles like transcription, epigenetic regulation, metabolism, stem cell self-renewal, neuronal functions, and in spermatogenesis. Further in addition, recent reports suggest that CDKs have a remarkable regulatory role in influencing the pro-inflammatory functions of various cytokines during the clinical inflammatory responses. CDKs initiate the inflammatory responses by triggering the activity of prominent pro-inflammatory transcription factors such as nuclear factor kappa B (NF-kB), signal transducer and activator of transcription 3 (STAT3), and activator protein 1 (AP-1). The transcriptional CDKs (tCDKs) is crucial for organizing various transcription events and associated processes such as RNA capping, splicing, 3' end formation, and chromatin remodeling. Although the in-depth mechanism of certain mammalian CDKs is explored with respect to inflammation, the role of other tCDKs or any synergistic play among the members still remains unexplored. Until today, there is only supportive and palliative care available most of the inflammatory disorders, and thus it is the right time to explore novel pharmacological targets. In this regard, we focus on the pathophysiological role of CDK7, CDK8 and CDK9 and their impact on the development of inflammatory disorders within the mammals. Additionally, we discuss the potential trends of having tCDKs as a therapeutic target for fine-tuning inflammatory disorders.
Collapse
|
30
|
Marak BN, Dowarah J, Khiangte L, Singh VP. A comprehensive insight on the recent development of Cyclic Dependent Kinase inhibitors as anticancer agents. Eur J Med Chem 2020; 203:112571. [DOI: 10.1016/j.ejmech.2020.112571] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022]
|
31
|
A review on kinases phosphorylating the carboxyl-terminal domain of RNA polymerase II-Biological functions and inhibitors. Bioorg Chem 2020; 104:104318. [PMID: 33142427 DOI: 10.1016/j.bioorg.2020.104318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/18/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022]
Abstract
RNA polymerase II (RNA Pol II) plays a major role in gene transcription for eukaryote. One of the major modes of regulation in eukaryotes is the phosphorylation of the carboxyl-terminal domain (CTD) of RNA Pol II. The current study found that the phosphorylation of Ser2, Ser5, Ser7, Thr4 and Tyr1 among the heptapeptide repeats of CTD plays a key role in the transcription process. We therefore review the biological functions and inhibitors of kinases that phosphorylate these amino acid residues including transcriptional cyclin-dependent protein kinases (CDKs), bromodomain-containing protein 4 (BRD4), Polo-like kinases 3 (Plk3) and Abelson murine leukemia viral oncogene 1 and 2 (c-Abl1/2).
Collapse
|
32
|
Sanchez AM, Garg A, Shuman S, Schwer B. Genetic interactions and transcriptomics implicate fission yeast CTD prolyl isomerase Pin1 as an agent of RNA 3' processing and transcription termination that functions via its effects on CTD phosphatase Ssu72. Nucleic Acids Res 2020; 48:4811-4826. [PMID: 32282918 PMCID: PMC7229847 DOI: 10.1093/nar/gkaa212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 01/05/2023] Open
Abstract
The phosphorylation pattern of Pol2 CTD Y1S2P3T4S5P6S7 repeats comprises an informational code coordinating transcription and RNA processing. cis-trans isomerization of CTD prolines expands the scope of the code in ways that are not well understood. Here we address this issue via analysis of fission yeast peptidyl-prolyl isomerase Pin1. A pin1Δ allele that does not affect growth per se is lethal in the absence of cleavage-polyadenylation factor (CPF) subunits Ppn1 and Swd22 and elicits growth defects absent CPF subunits Ctf1 and Dis2 and termination factor Rhn1. Whereas CTD S2A, T4A, and S7A mutants thrive in combination with pin1Δ, a Y1F mutant does not, nor do CTD mutants in which half the Pro3 or Pro6 residues are replaced by alanine. Phosphate-acquisition genes pho1, pho84 and tgp1 are repressed by upstream lncRNAs and are sensitive to changes in lncRNA 3' processing/termination. pin1Δ hyper-represses PHO gene expression and erases the de-repressive effect of CTD-S7A. Transcriptional profiling delineated sets of 56 and 22 protein-coding genes that are down-regulated and up-regulated in pin1Δ cells, respectively, 77% and 100% of which are downregulated/upregulated when the cis-proline-dependent Ssu72 CTD phosphatase is inactivated. Our results implicate Pin1 as a positive effector of 3' processing/termination that acts via Ssu72.
Collapse
Affiliation(s)
- Ana M Sanchez
- Dept. of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Angad Garg
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
- To whom correspondence should be addressed. Tel: +1 212 639 7145;
| | - Beate Schwer
- Dept. of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
- Correspondence may also be addressed to Beate Schwer. Tel: +1 212 746 6518;
| |
Collapse
|
33
|
Castañeda AF, Didychuk AL, Louder RK, McCollum CO, Davis ZH, Nogales E, Glaunsinger BA. The gammaherpesviral TATA-box-binding protein directly interacts with the CTD of host RNA Pol II to direct late gene transcription. PLoS Pathog 2020; 16:e1008843. [PMID: 32886723 PMCID: PMC7498053 DOI: 10.1371/journal.ppat.1008843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/17/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
β- and γ-herpesviruses include the oncogenic human viruses Kaposi's sarcoma-associated virus (KSHV) and Epstein-Barr virus (EBV), and human cytomegalovirus (HCMV), which is a significant cause of congenital disease. Near the end of their replication cycle, these viruses transcribe their late genes in a manner distinct from host transcription. Late gene transcription requires six virally encoded proteins, one of which is a functional mimic of host TATA-box-binding protein (TBP) that is also involved in recruitment of RNA polymerase II (Pol II) via unknown mechanisms. Here, we applied biochemical protein interaction studies together with electron microscopy-based imaging of a reconstituted human preinitiation complex to define the mechanism underlying Pol II recruitment. These data revealed that the herpesviral TBP, encoded by ORF24 in KSHV, makes a direct protein-protein contact with the C-terminal domain of host RNA polymerase II (Pol II), which is a unique feature that functionally distinguishes viral from cellular TBP. The interaction is mediated by the N-terminal domain (NTD) of ORF24 through a conserved motif that is shared in its β- and γ-herpesvirus homologs. Thus, these herpesviruses employ an unprecedented strategy in eukaryotic transcription, wherein promoter recognition and polymerase recruitment are facilitated by a single transcriptional activator with functionally distinct domains.
Collapse
Affiliation(s)
- Angelica F. Castañeda
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, United States of America
| | - Allison L. Didychuk
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, United States of America
| | - Robert K. Louder
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
- Biophysics Graduate Group, University of California, Berkeley, CA, United States of America
| | - Chloe O. McCollum
- Department of Molecular and Cell Biology, University of California Berkeley, CA, United States of America
| | - Zoe H. Davis
- Division of Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, CA, United States of America
| | - Eva Nogales
- Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
- Department of Molecular and Cell Biology, University of California Berkeley, CA, United States of America
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, United States of America
- Howard Hughes Medical Institute, Berkeley, CA, United States of America
| | - Britt A. Glaunsinger
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, United States of America
- Department of Molecular and Cell Biology, University of California Berkeley, CA, United States of America
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, United States of America
- Howard Hughes Medical Institute, Berkeley, CA, United States of America
| |
Collapse
|
34
|
Abstract
The human CDK-activating kinase (CAK), a complex composed of cyclin-dependent kinase (CDK) 7, cyclin H, and MAT1, is a critical regulator of transcription initiation and the cell cycle. It acts by phosphorylating the C-terminal heptapeptide repeat domain of the RNA polymerase II (Pol II) subunit RPB1, which is an important regulatory event in transcription initiation by Pol II, and it phosphorylates the regulatory T-loop of CDKs that control cell cycle progression. Here, we have determined the three-dimensional (3D) structure of the catalytic module of human CAK, revealing the structural basis of its assembly and providing insight into CDK7 activation in this context. The unique third component of the complex, MAT1, substantially extends the interaction interface between CDK7 and cyclin H, explaining its role as a CAK assembly factor, and it forms interactions with the CDK7 T-loop, which may contribute to enhancing CAK activity. We have also determined the structure of the CAK in complex with the covalently bound inhibitor THZ1 in order to provide insight into the binding of inhibitors at the CDK7 active site and to aid in the rational design of therapeutic compounds.
Collapse
|
35
|
Ramani MKV, Escobar EE, Irani S, Mayfield JE, Moreno RY, Butalewicz JP, Cotham VC, Wu H, Tadros M, Brodbelt JS, Zhang YJ. Structural Motifs for CTD Kinase Specificity on RNA Polymerase II during Eukaryotic Transcription. ACS Chem Biol 2020; 15:2259-2272. [PMID: 32568517 DOI: 10.1021/acschembio.0c00474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The phosphorylation states of RNA polymerase II coordinate the process of eukaryotic transcription by recruitment of transcription regulators. The individual residues of the repetitive heptad of the C-terminal domain (CTD) of the biggest subunit of RNA polymerase II are phosphorylated temporally at different stages of transcription. Intriguingly, despite similar flanking residues, phosphorylation of Ser2 and Ser5 in CTD heptads play dramatically different roles. The mechanism of how the kinases place phosphorylation on the correct serine is not well understood. In this paper, we use biochemical assays, mass spectrometry, molecular modeling, and structural analysis to understand the structural elements determining which serine of the CTD heptad is subject to phosphorylation. We identified three motifs in the activation/P+1 loops differentiating the intrinsic specificity of CTD in various CTD kinases. We characterized the enzyme specificity of the CTD kinases-CDK7 as Ser5-specific, Erk2 with dual specificity for Ser2 and Ser5, and Dyrk1a as a Ser2-specific kinase. We also show that the specificities of kinases are malleable and can be modified by incorporating mutations in their activation/P+1 loops that alter the interactions of the three motifs. Our results provide an important clue to the understanding of post-translational modification of RNA polymerase II temporally during active transcription.
Collapse
|
36
|
Mayfield JE, Irani S, Zhang Y. Electrophoretic Mobility Shift Assay of in vitro Phosphorylated RNA Polymerase II Carboxyl-terminal Domain Substrates. Bio Protoc 2020; 10:e3648. [PMID: 33659319 DOI: 10.21769/bioprotoc.3648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 11/02/2022] Open
Abstract
Eukaryotic RNA polymerase II transcribes all protein-coding mRNAs and is highly regulated. A key mechanism directing RNA polymerase II and facilitating the co-transcriptional processing of mRNAs is the phosphorylation of its highly repetitive carboxyl-terminal domain (CTD) of its largest subunit, RPB1, at specific residues. A variety of techniques exist to identify and quantify the degree of CTD phosphorylation, including phosphorylation-specific antibodies and mass spectrometry. Electrophoretic mobility shift assays (EMSAs) have been utilized since the discovery of CTD phosphorylation and continue to represent a simple, direct, and widely applicable approach for qualitatively monitoring CTD phosphorylation. We present a standardized method for EMSA analysis of recombinant GST-CTD substrates phosphorylated by a variety of CTD kinases. Strategies to analyze samples under both denatured/reduced and semi-native conditions are provided. This method represents a simple, direct, and reproducible means to monitor CTD phosphorylation in recombinant substrates utilizing equipment common to molecular biology labs and readily applicable to downstream analyses including immunoblotting and mass spectrometry.
Collapse
Affiliation(s)
- Joshua E Mayfield
- Department of Molecular Biosciences, the University of Texas at Austin, Austin, TX, United States
| | - Seema Irani
- Department of Chemical Engineering, the University of Texas at Austin, Austin, TX, United States
| | - Yan Zhang
- Department of Molecular Biosciences, the University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, the University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
37
|
Calvo O. RNA polymerase II phosphorylation and gene looping: new roles for the Rpb4/7 heterodimer in regulating gene expression. Curr Genet 2020; 66:927-937. [PMID: 32508001 DOI: 10.1007/s00294-020-01084-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022]
Abstract
In eukaryotes, cellular RNAs are produced by three nuclear RNA polymerases (RNAPI, II, and III), which are multisubunit complexes. They share structural and functional features, although they are specialized in the synthesis of specific RNAs. RNAPII transcribes the vast majority of cellular RNAs, including mRNAs and a large number of noncoding RNAs. The structure of RNAPII is highly conserved in all eukaryotes, consisting of 12 subunits (Rpb1-12) organized into five structural modules, among which the Rpb4 and Rpb7 subunits form the stalk. Early studies suggested an accessory role for Rpb4, because is required for specific gene transcription pathways. Far from this initial hypothesis, it is now well established that the Rpb4/7 heterodimer plays much wider roles in gene expression regulation. It participates in nuclear and cytosolic processes ranging from transcription to translation and mRNA degradation in a cyclical process. For this reason, Rpb4/7 is considered a coordinator of gene expression. New functions have been added to the list of stalk functions during transcription, which will be reviewed herein: first, a role in the maintenance of proper RNAPII phosphorylation levels, and second, a role in the establishment of a looped gene architecture in actively transcribed genes.
Collapse
Affiliation(s)
- Olga Calvo
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, C/ Zacarías González 2, Salamanca, 37007, España.
| |
Collapse
|
38
|
Dreer M, Blondzik S, Straub E, Iftner T, Stubenrauch F. Contribution of HDAC3 to transcriptional repression by the human papillomavirus 31 E8^E2 protein. J Gen Virol 2020; 101:751-759. [PMID: 32421493 DOI: 10.1099/jgv.0.001438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human papillomaviruses (HPV) such as HPV16 and HPV31 encode an E8^E2 protein that acts as a repressor of viral replication and transcription. E8^E2's repression activities are mediated via the interaction with host-cell NCoR (nuclear receptor corepressor)/SMRT (silencing mediator of retinoid and thyroid receptors) corepressor complexes, which consist of NCoR, its homologue SMRT, GPS2 (G-protein pathway suppressor 2), HDAC3 (histone deacetylase 3), TBL1 (transducin b-like protein 1) and its homologue TBLR1 (TBL1-related protein 1). We now provide evidence that transcriptional repression by HPV31 E8^E2 is NCoR/SMRT-dependent but surprisingly always HDAC3-independent when analysing different HPV promoters. This is in contrast to the majority of several cellular transcription factors using NCoR/SMRT complexes whose transcriptional repression activities are both NCoR/SMRT- and HDAC3-dependent. However, NCoR/SMRT-dependent but HDAC3-independent repression has been described for specific cellular genes, suggesting that this may not be specific for HPV promoters but could be a feature of a subset of NCoR/SMRT-HDAC3 regulated genes.
Collapse
Affiliation(s)
- Marcel Dreer
- University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Tuebingen, Germany
| | - Saskia Blondzik
- Present address: Saskia Blondzik: Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany.,University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Tuebingen, Germany
| | - Elke Straub
- University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Tuebingen, Germany
| | - Thomas Iftner
- University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Tuebingen, Germany
| | - Frank Stubenrauch
- University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Tuebingen, Germany
| |
Collapse
|
39
|
Ding L, Cao J, Lin W, Chen H, Xiong X, Ao H, Yu M, Lin J, Cui Q. The Roles of Cyclin-Dependent Kinases in Cell-Cycle Progression and Therapeutic Strategies in Human Breast Cancer. Int J Mol Sci 2020; 21:ijms21061960. [PMID: 32183020 PMCID: PMC7139603 DOI: 10.3390/ijms21061960] [Citation(s) in RCA: 309] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are serine/threonine kinases whose catalytic activities are regulated by interactions with cyclins and CDK inhibitors (CKIs). CDKs are key regulatory enzymes involved in cell proliferation through regulating cell-cycle checkpoints and transcriptional events in response to extracellular and intracellular signals. Not surprisingly, the dysregulation of CDKs is a hallmark of cancers, and inhibition of specific members is considered an attractive target in cancer therapy. In breast cancer (BC), dual CDK4/6 inhibitors, palbociclib, ribociclib, and abemaciclib, combined with other agents, were approved by the Food and Drug Administration (FDA) recently for the treatment of hormone receptor positive (HR+) advanced or metastatic breast cancer (A/MBC), as well as other sub-types of breast cancer. Furthermore, ongoing studies identified more selective CDK inhibitors as promising clinical targets. In this review, we focus on the roles of CDKs in driving cell-cycle progression, cell-cycle checkpoints, and transcriptional regulation, a highlight of dysregulated CDK activation in BC. We also discuss the most relevant CDK inhibitors currently in clinical BC trials, with special emphasis on CDK4/6 inhibitors used for the treatment of estrogen receptor-positive (ER+)/human epidermal growth factor 2-negative (HER2−) M/ABC patients, as well as more emerging precise therapeutic strategies, such as combination therapies and microRNA (miRNA) therapy.
Collapse
Affiliation(s)
- Lei Ding
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Jiaqi Cao
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Wen Lin
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Hongjian Chen
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Xianhui Xiong
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Hongshun Ao
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Min Yu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Jie Lin
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Qinghua Cui
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
- Correspondence:
| |
Collapse
|
40
|
Hu A, Li J, Tang W, Liu G, Zhang H, Liu C, Chen X. Anthralin Suppresses the Proliferation of Influenza Virus by Inhibiting the Cap-Binding and Endonuclease Activity of Viral RNA Polymerase. Front Microbiol 2020; 11:178. [PMID: 32132985 PMCID: PMC7040080 DOI: 10.3389/fmicb.2020.00178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/24/2020] [Indexed: 11/23/2022] Open
Abstract
Influenza virus RNA-dependent RNA polymerase (vRdRp) does not have capping activity and relies on the capped RNAs produced by the host RNA polymerase II (RNAPII). The viral polymerases process the capped RNAs to produce short capped RNA fragments that are used as primers to initiate the transcription of viral mRNAs. This process, known as cap-snatching, can be targeted by antiviral therapeutics. Here, anthralin was identified as an inhibitor against influenza a virus (IAV) infection by targeting the cap-snatching activity of the viral polymerase. Anthralin, an FDA-approved drug used in the treatment of psoriasis, shows antiviral activity against IAV infection in vitro and in vivo. Importantly, anthralin significantly reduces weight loss, lung injury, and mortality caused by IAV infection in mice. The mechanism of action study revealed that anthralin inhibits the cap-binding function of PB2 subunit and endonuclease activity of PA. As a result, viral mRNA transcription is blocked, leading to the decreases in viral RNA replication and viral protein expression. In conclusion, anthralin has been demonstrated to have the potential of an alternative antiviral against influenza virus infection. Also, targeting the captive pocket structure that includes the N-terminus of PA endonuclease domain and the C-terminal of PB2 cap-binding domain of IAV RdRp may be an excellent strategy for developing anti-influenza drugs.
Collapse
Affiliation(s)
- Ao Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Tang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ge Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Haiwei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Chunlan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xulin Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| |
Collapse
|
41
|
Hou S, Qu D, Li Y, Zhu B, Liang D, Wei X, Tang W, Zhang Q, Hao J, Guo W, Wang W, Zhao S, Wang Q, Azam S, Khan M, Zhao H, Zhang L, Lei H. XAB2 depletion induces intron retention in POLR2A to impair global transcription and promote cellular senescence. Nucleic Acids Res 2019; 47:8239-8254. [PMID: 31216022 PMCID: PMC6735682 DOI: 10.1093/nar/gkz532] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 01/10/2023] Open
Abstract
XAB2 is a multi-functional protein participating processes including transcription, splicing, DNA repair and mRNA export. Here, we report POLR2A, the largest catalytic subunit of RNA polymerase II, as a major target gene down-regulated after XAB2 depletion. XAB2 depletion led to severe splicing defects of POLR2A with significant intron retention. Such defects resulted in substantial loss of POLR2A at RNA and protein levels, which further impaired global transcription. Treatment of splicing inhibitor madrasin induced similar reduction of POLR2A. Screen using TMT-based quantitative proteomics identified several proteins involved in mRNA surveillance including Dom34 with elevated expression. Inhibition of translation or depletion of Dom34 rescued the expression of POLR2A by stabilizing its mRNA. Immuno-precipitation further confirmed that XAB2 associated with spliceosome components important to POLR2A expression. Domain mapping revealed that TPR motifs 2–4 and 11 of XAB2 were critical for POLR2A expression by interacting with SNW1. Finally, we showed POLR2A mediated cell senescence caused by XAB2 deficiency. Depletion of XAB2 or POLR2A induced cell senescence by up-regulation of p53 and p21, re-expression of POLR2A after XAB2 depletion alleviated cellular senescence. These data together support that XAB2 serves as a guardian of POLR2A expression to ensure global gene expression and antagonize cell senescence.
Collapse
Affiliation(s)
- Shuai Hou
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Dajun Qu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Yue Li
- Breast Disease and Reconstruction Center, Breast Cancer Key Lab of Dalian, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Baohui Zhu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Dapeng Liang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Xinyue Wei
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Wei Tang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qian Zhang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Jiaojiao Hao
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Wei Guo
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Weijie Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Siqi Zhao
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Qi Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Sikandar Azam
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Misbah Khan
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Haidong Zhao
- Breast Disease and Reconstruction Center, Breast Cancer Key Lab of Dalian, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Liye Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Haixin Lei
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| |
Collapse
|
42
|
Sampathi S, Acharya P, Zhao Y, Wang J, Stengel KR, Liu Q, Savona MR, Hiebert SW. The CDK7 inhibitor THZ1 alters RNA polymerase dynamics at the 5' and 3' ends of genes. Nucleic Acids Res 2019; 47:3921-3936. [PMID: 30805632 PMCID: PMC6486546 DOI: 10.1093/nar/gkz127] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 02/22/2019] [Indexed: 01/01/2023] Open
Abstract
The t(8;21) is one of the most frequent chromosomal translocations associated with acute myeloid leukemia (AML). We found that t(8;21) AML were extremely sensitive to THZ1, which triggered apoptosis after only 4 h. We used precision nuclear run-on transcription sequencing (PROseq) to define the global effects of THZ1 and other CDK inhibitors on RNA polymerase II dynamics. Inhibition of CDK7 using THZ1 caused wide-spread loss of promoter-proximal paused RNA polymerase. This loss of 5′ pausing was associated with accumulation of polymerases in the body of a large number of genes. However, there were modest effects on genes regulated by ‘super-enhancers’. At the 3′ ends of genes, treatment with THZ1 suppressed RNA polymerase ‘read through’ at the end of the last exon, which resembled a phenotype associated with a mutant RNA polymerase with slower elongation rates. Consistent with this hypothesis, polyA site-sequencing (PolyA-seq) did not detect differences in poly A sites after THZ1 treatment. PROseq analysis after short treatments with THZ1 suggested that these 3′ effects were due to altered CDK7 activity at the 5′ end of long genes, and were likely to be due to slower rates of elongation.
Collapse
Affiliation(s)
- Shilpa Sampathi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Pankaj Acharya
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yue Zhao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jing Wang
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kristy R Stengel
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Michael R Savona
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37027.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37027
| |
Collapse
|
43
|
Burkholder NT, Sipe SN, Escobar EE, Venkatramani M, Irani S, Yang W, Wu H, Matthews WM, Brodbelt JS, Zhang Y. Mapping RNAPII CTD Phosphorylation Reveals That the Identity and Modification of Seventh Heptad Residues Direct Tyr1 Phosphorylation. ACS Chem Biol 2019; 14:2264-2275. [PMID: 31553563 DOI: 10.1021/acschembio.9b00610] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The C-terminal domain (CTD) of the largest subunit in eukaryotic RNA polymerase II has a repetitive heptad sequence of Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 which is responsible for recruiting transcriptional regulatory factors. The seventh heptad residues in mammals are less conserved and subject to various post-translational modifications, but the consequences of such variations are not well understood. In this study, we use ultraviolet photodissociation mass spectrometry, kinetic assays, and structural analyses to dissect how different residues or modifications at the seventh heptad position alter Tyr1 phosphorylation. We found that negatively charged residues in this position promote phosphorylation of adjacent Tyr1 sites, whereas positively charged residues discriminate against it. Modifications that alter the charges on seventh heptad residues such as arginine citrullination negate such distinctions. Such specificity can be explained by conserved, positively charged pockets near the active sites of ABL1 and its homologues. Our results reveal a novel mechanism for variations or modifications in the seventh heptad position directing subsequent phosphorylation of other CTD sites, which can contribute to the formation of various modification combinations that likely impact transcriptional regulation.
Collapse
|
44
|
Mayfield JE, Irani S, Escobar EE, Zhang Z, Burkholder NT, Robinson MR, Mehaffey MR, Sipe SN, Yang W, Prescott NA, Kathuria KR, Liu Z, Brodbelt JS, Zhang Y. Tyr1 phosphorylation promotes phosphorylation of Ser2 on the C-terminal domain of eukaryotic RNA polymerase II by P-TEFb. eLife 2019; 8:48725. [PMID: 31385803 PMCID: PMC6715403 DOI: 10.7554/elife.48725] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/05/2019] [Indexed: 12/18/2022] Open
Abstract
The Positive Transcription Elongation Factor b (P-TEFb) phosphorylates Ser2 residues of the C-terminal domain (CTD) of the largest subunit (RPB1) of RNA polymerase II and is essential for the transition from transcription initiation to elongation in vivo. Surprisingly, P-TEFb exhibits Ser5 phosphorylation activity in vitro. The mechanism garnering Ser2 specificity to P-TEFb remains elusive and hinders understanding of the transition from transcription initiation to elongation. Through in vitro reconstruction of CTD phosphorylation, mass spectrometry analysis, and chromatin immunoprecipitation sequencing (ChIP-seq) analysis, we uncover a mechanism by which Tyr1 phosphorylation directs the kinase activity of P-TEFb and alters its specificity from Ser5 to Ser2. The loss of Tyr1 phosphorylation causes an accumulation of RNA polymerase II in the promoter region as detected by ChIP-seq. We demonstrate the ability of Tyr1 phosphorylation to generate a heterogeneous CTD modification landscape that expands the CTD’s coding potential. These findings provide direct experimental evidence for a combinatorial CTD phosphorylation code wherein previously installed modifications direct the identity and abundance of subsequent coding events by influencing the behavior of downstream enzymes. DNA contains the instructions for making proteins, which build and maintain our cells. So that the information encoded in DNA can be used, a molecular machine called RNA polymerase II makes copies of specific genes. These copies, in the form of a molecule called RNA, convey the instructions for making proteins to the rest of the cell. To ensure that RNA polymerase II copies the correct genes at the correct time, a group of regulatory proteins are needed to control its activity. Many of these proteins interact with RNA polymerase II at a region known as the C-terminal domain, or CTD for short. For example, before RNA polymerase can make a full copy of a gene, a small molecule called a phosphate group must first be added to CTD at specific units known as Ser2. The regulatory protein P-TEFb was thought to be responsible for phosphorylating Ser2. However, it was previously not known how P-TEFb added this phosphate group, and why it did not also add phosphate groups to other positions in the CTD domain that are structurally similar to Ser2. To investigate this, Mayfield, Irani et al. mixed the CTD domain with different regulatory proteins, and used various biochemical approaches to examine which specific positions of the domain had phosphate groups attached. These experiments revealed a previously unknown aspect of P-TEFb activity: its specificity for Ser2 increased dramatically if a different regulatory protein first added a phosphate group to a nearby location in CTD. This additional phosphate group directed P-TEFb to then add its phosphate specifically at Ser2. To confirm the activity of this mechanism in living human cells, Mayfield, Irani et al. used a drug that prevented the first phosphate from being added. In the drug treated cells, RNA polymerase II was found more frequently ‘stalled’ at positions on the DNA just before a gene starts. This suggests that living cells needs this two-phosphate code system in order for RNA polymerase II to progress and make copies of specific genes. These results are a step forward in understanding the complex control mechanisms cells use to make proteins from their DNA. Moreover, the model presented here – one phosphate addition priming a second specific phosphate addition – provides a template that may underlie similar regulatory processes.
Collapse
Affiliation(s)
- Joshua E Mayfield
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| | - Seema Irani
- Department of Chemical Engineering, University of Texas at Austin, Austin, United States
| | - Edwin E Escobar
- Department of Chemistry, University of Texas at Austin, Austin, United States
| | - Zhao Zhang
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, United States
| | - Nathaniel T Burkholder
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| | - Michelle R Robinson
- Department of Chemistry, University of Texas at Austin, Austin, United States
| | - M Rachel Mehaffey
- Department of Chemistry, University of Texas at Austin, Austin, United States
| | - Sarah N Sipe
- Department of Chemistry, University of Texas at Austin, Austin, United States
| | - Wanjie Yang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| | - Nicholas A Prescott
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| | - Karan R Kathuria
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| | - Zhijie Liu
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, United States
| | - Yan Zhang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States.,Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
| |
Collapse
|
45
|
Lorton BM, Shechter D. Cellular consequences of arginine methylation. Cell Mol Life Sci 2019; 76:2933-2956. [PMID: 31101937 PMCID: PMC6642692 DOI: 10.1007/s00018-019-03140-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/22/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
Arginine methylation is a ubiquitous post-translational modification. Three predominant types of arginine-guanidino methylation occur in Eukarya: mono (Rme1/MMA), symmetric (Rme2s/SDMA), and asymmetric (Rme2a/ADMA). Arginine methylation frequently occurs at sites of protein-protein and protein-nucleic acid interactions, providing specificity for binding partners and stabilization of important biological interactions in diverse cellular processes. Each methylarginine isoform-catalyzed by members of the protein arginine methyltransferase family, Type I (PRMT1-4,6,8) and Type II (PRMT5,9)-has unique downstream consequences. Methylarginines are found in ordered domains, domains of low complexity, and in intrinsically disordered regions of proteins-the latter two of which are intimately connected with biological liquid-liquid phase separation. This review highlights discoveries illuminating how arginine methylation affects genome integrity, gene transcription, mRNA splicing and mRNP biology, protein translation and stability, and phase separation. As more proteins and processes are found to be regulated by arginine methylation, its importance for understanding cellular physiology will continue to grow.
Collapse
Affiliation(s)
- Benjamin M Lorton
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
46
|
Calvo O, Grandin N, Jordán-Pla A, Miñambres E, González-Polo N, Pérez-Ortín JE, Charbonneau M. The telomeric Cdc13-Stn1-Ten1 complex regulates RNA polymerase II transcription. Nucleic Acids Res 2019; 47:6250-6268. [PMID: 31006804 PMCID: PMC6614848 DOI: 10.1093/nar/gkz279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/18/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022] Open
Abstract
Specialized telomeric proteins have an essential role in maintaining genome stability through chromosome end protection and telomere length regulation. In the yeast Saccharomyces cerevisiae, the evolutionary conserved CST complex, composed of the Cdc13, Stn1 and Ten1 proteins, largely contributes to these functions. Here, we report genetic interactions between TEN1 and several genes coding for transcription regulators. Molecular assays confirmed this novel function of Ten1 and further established that it regulates the occupancies of RNA polymerase II and the Spt5 elongation factor within transcribed genes. Since Ten1, but also Cdc13 and Stn1, were found to physically associate with Spt5, we propose that Spt5 represents the target of CST in transcription regulation. Moreover, CST physically associates with Hmo1, previously shown to mediate the architecture of S-phase transcribed genes. The fact that, genome-wide, the promoters of genes down-regulated in the ten1-31 mutant are prefentially bound by Hmo1, leads us to propose a potential role for CST in synchronizing transcription with replication fork progression following head-on collisions.
Collapse
Affiliation(s)
- Olga Calvo
- Instituto de Biología Funcional y Genómica, CSIC-USAL, Salamanca, Spain
| | - Nathalie Grandin
- GReD laboratory, CNRS UMR6293, INSERM U1103, Faculty of Medicine, University Clermont-Auvergne, 28 place Henri Dunant, BP 38, 63001 Clermont-Ferrand Cedex, France
| | - Antonio Jordán-Pla
- ERI Biotecmed, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain
| | | | | | - José E Pérez-Ortín
- ERI Biotecmed, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain
| | - Michel Charbonneau
- GReD laboratory, CNRS UMR6293, INSERM U1103, Faculty of Medicine, University Clermont-Auvergne, 28 place Henri Dunant, BP 38, 63001 Clermont-Ferrand Cedex, France
| |
Collapse
|
47
|
Irani S, Sipe SN, Yang W, Burkholder NT, Lin B, Sim K, Matthews WL, Brodbelt JS, Zhang Y. Structural determinants for accurate dephosphorylation of RNA polymerase II by its cognate C-terminal domain (CTD) phosphatase during eukaryotic transcription. J Biol Chem 2019; 294:8592-8605. [PMID: 30971428 DOI: 10.1074/jbc.ra119.007697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/03/2019] [Indexed: 12/31/2022] Open
Abstract
The C-terminal domain (CTD) of RNA polymerase II contains a repetitive heptad sequence (YSPTSPS) whose phosphorylation states coordinate eukaryotic transcription by recruiting protein regulators. The precise placement and removal of phosphate groups on specific residues of the CTD are critical for the fidelity and effectiveness of RNA polymerase II-mediated transcription. During transcriptional elongation, phosphoryl-Ser5 (pSer5) is gradually dephosphorylated by CTD phosphatases, whereas Ser2 phosphorylation accumulates. Using MS, X-ray crystallography, protein engineering, and immunoblotting analyses, here we investigated the structure and function of SSU72 homolog, RNA polymerase II CTD phosphatase (Ssu72, from Drosophila melanogaster), an essential CTD phosphatase that dephosphorylates pSer5 at the transition from elongation to termination, to determine the mechanism by which Ssu72 distinguishes the highly similar pSer2 and pSer5 CTDs. We found that Ssu72 dephosphorylates pSer5 effectively but only has low activities toward pSer7 and pSer2 The structural analysis revealed that Ssu72 requires that the proline residue in the substrate's SP motif is in the cis configuration, forming a tight β-turn for recognition by Ssu72. We also noted that residues flanking the SP motif, such as the bulky Tyr1 next to Ser2, prevent the formation of such configuration and enable Ssu72 to distinguish among the different SP motifs. The phosphorylation of Tyr1 further prohibited Ssu72 binding to pSer2 and thereby prevented untimely Ser2 dephosphorylation. Our results reveal critical roles for Tyr1 in differentiating the phosphorylation states of Ser2/Ser5 of CTD in RNA polymerase II that occur at different stages of transcription.
Collapse
Affiliation(s)
- Seema Irani
- Department of Chemical Engineering, The University of Texas, Austin, Texas 78712; Department of Molecular Biosciences, The University of Texas, Austin, Texas 78712
| | - Sarah N Sipe
- Department of Chemistry, The University of Texas, Austin, Texas 78712
| | - Wanjie Yang
- Department of Molecular Biosciences, The University of Texas, Austin, Texas 78712
| | | | - Brian Lin
- Department of Molecular Biosciences, The University of Texas, Austin, Texas 78712
| | - Kelly Sim
- Department of Molecular Biosciences, The University of Texas, Austin, Texas 78712
| | - Wendy L Matthews
- Department of Molecular Biosciences, The University of Texas, Austin, Texas 78712
| | | | - Yan Zhang
- Department of Molecular Biosciences, The University of Texas, Austin, Texas 78712; Institute for Cellular and Molecular Biology, The University of Texas, Austin, Texas 78712.
| |
Collapse
|
48
|
Tian Y, Zheng H, Zhang F, Wang S, Ji X, Xu C, He Y, Ding Y. PRC2 recruitment and H3K27me3 deposition at FLC require FCA binding of COOLAIR. SCIENCE ADVANCES 2019; 5:eaau7246. [PMID: 31032401 PMCID: PMC6482009 DOI: 10.1126/sciadv.aau7246] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 03/14/2019] [Indexed: 05/18/2023]
Abstract
The cold-induced antisense transcript COOLAIR represses FLOWERING LOCUS C (FLC) transcription with increased H3K27me3 and decreased H3K36me3 levels in response to cold temperatures. However, the molecular connection between COOLAIR and histone modification factors in the absence of cold treatment remains unclear. We report that the RNA binding protein FCA interacts with the PRC2 subunit CURLY LEAF (CLF) and binds nascent COOLAIR transcripts to allow deposition of H3K27me3 at FLC. Loss of COOLAIR function results in a reduction in FCA and CLF enrichment, which, in turn, decreases H3K27me3 levels at FLC. The Arabidopsis protein phosphatase SSU72 physically interacts with the RRM1 motif of FCA to antagonize FCA binding with COOLAIR. Mutations in SSU72 caused early flowering, reduced FLC transcription, increased CLF enrichment and H3K27me3, and enhanced affinity between FCA and COOLAIR. Our results suggest that FCA binding of COOLAIR and SSU72 is critical for PRC2 enrichment and H3K27me3 deposition in Arabidopsis.
Collapse
Affiliation(s)
- Yongke Tian
- Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, and Division of Molecular Cell Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui 230027, China
| | - Han Zheng
- Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, and Division of Molecular Cell Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui 230027, China
| | - Fei Zhang
- Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, and Division of Molecular Cell Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui 230027, China
| | - Shiliang Wang
- Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, and Division of Molecular Cell Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui 230027, China
| | - Xiaoru Ji
- Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, and Division of Molecular Cell Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui 230027, China
| | - Chao Xu
- School of Life Sciences, University of Science and Technology of China, and Division of Molecular Cell Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui 230027, China
| | - Yuehui He
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, CAS, Shanghai 201602, China
- Shanghai Chenshan Plant Science Research Center, CAS, Shanghai 201602, China
| | - Yong Ding
- Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, and Division of Molecular Cell Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui 230027, China
| |
Collapse
|
49
|
Functional interaction of human Ssu72 with RNA polymerase II complexes. PLoS One 2019; 14:e0213598. [PMID: 30901332 PMCID: PMC6430399 DOI: 10.1371/journal.pone.0213598] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/25/2019] [Indexed: 11/19/2022] Open
Abstract
Phosphorylation of the C-terminal domain (CTD) of the large subunit of human RNA polymerase II (Pol II) is regulated during the transcription cycle by the combined action of specific kinases and phosphatases. Pol II enters into the preinitiation complex (PIC) unphosphorylated, but is quickly phosphorylated by Cdk7 during initiation. How phosphatases alter the pattern and extent of CTD phosphorylation at this early stage of transcription is not clear. We previously demonstrated the functional association of an early-acting, magnesium-independent phosphatase with early elongation complexes. Here we show that Ssu72 is responsible for that activity. We found that the phosphatase enters the transcription cycle during the formation of PICs and that Ssu72 is physically associated with very early elongation complexes. The association of Ssu72 with elongation complexes was stable to extensive washing with up to 200 mM KCl. Interestingly, Ssu72 ceased to function on complexes that contained RNA longer than 28 nt. However, when PICs were washed before initiation, the strict cutoff at 28 nt was lost. This suggests that factor(s) are important for the specific regulation of Ssu72 function during the transition between initiation and pausing. Overall, our results demonstrate when Ssu72 can act on early transcription complexes and suggest that Ssu72 may also function in the PIC prior to initiation.
Collapse
|
50
|
Collin P, Jeronimo C, Poitras C, Robert F. RNA Polymerase II CTD Tyrosine 1 Is Required for Efficient Termination by the Nrd1-Nab3-Sen1 Pathway. Mol Cell 2019; 73:655-669.e7. [PMID: 30639244 DOI: 10.1016/j.molcel.2018.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/09/2018] [Accepted: 11/29/2018] [Indexed: 12/15/2022]
Abstract
In Saccharomyces cerevisiae, transcription termination at protein-coding genes is coupled to the cleavage of the nascent transcript, whereas most non-coding RNA transcription relies on a cleavage-independent termination pathway involving Nrd1, Nab3, and Sen1 (NNS). Termination involves RNA polymerase II CTD phosphorylation, but a systematic analysis of the contribution of individual residues would improve our understanding of the role of the CTD in this process. Here we investigated the effect of mutating phosphorylation sites in the CTD on termination. We observed widespread termination defects at protein-coding genes in mutants for Ser2 or Thr4 but rare defects in Tyr1 mutants for this genes class. Instead, mutating Tyr1 led to widespread termination defects at non-coding genes terminating via NNS. Finally, we showed that Tyr1 is important for pausing in the 5' end of genes and that slowing down transcription suppresses termination defects. Our work highlights the importance of Tyr1-mediated pausing in NNS-dependent termination.
Collapse
Affiliation(s)
- Pierre Collin
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Célia Jeronimo
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Christian Poitras
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|