1
|
Wang D, Ma W, Zhang Y, Wang Y, Sun L, Jiang J, Jiao L, Li R, Zhang Y, Zhang M, Zhou Q. A versatile nanoplatform carrying cascade Pt nanozymes remodeling tumor microenvironment for amplified sonodynamic/chemo therapy of thyroid cancer. Biomaterials 2025; 313:122778. [PMID: 39213978 DOI: 10.1016/j.biomaterials.2024.122778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/06/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Thyroid cancer is increasing globally, with anaplastic thyroid carcinoma (ATC) being the most aggressive type and having a poor prognosis. Current clinical treatments for thyroid cancer present numerous challenges, including invasiveness and the necessity of lifelong medication. Furthermore, a significant portion of patients with ATC experience cancer recurrence and metastasis. To overcome this dilemma, we developed a pH-responsive biomimetic nanocarrier (CLP@HP-A) through the incorporation of Chlorin e6 (Ce6) and Lenvatinib (Len) within hollow polydopamine nanoparticles (HP) that were further modified with platinum nanoparticles (Pt), enabling synergistic chemotherapy and sonodynamic therapy. The CLP@HP-A nanocarriers exhibited specific binding with galectin-3 receptors, facilitating their internalization through receptor-mediated endocytosis for targeted drug delivery. Upon exposure to ultrasound (US) irradiation, Ce6 rapidly generated reactive oxygen species (ROS) to induce significant oxidative stress and trigger apoptosis in tumor cells. Additionally, Pt not only alleviated tumor hypoxia by catalyzing the conversion of H2O2 to oxygen (O2) but also augmented intracellular ROS levels through the production of hydroxyl radicals (•OH), thereby enhancing the efficacy of sonodynamic therapy. Moreover, Len demonstrated a potent cytotoxic effect on thyroid cancer cells through the induction of apoptosis. Transcriptomics analysis findings additionally corroborated that CLP@HP-A effectively triggered cancer cell apoptosis, thereby serving as a crucial mechanism for its cytotoxic effects. In conclusion, the integration of sonodynamic/chemo combination therapy with targeted drug delivery systems offers a novel approach to the management of malignant tumors.
Collapse
Affiliation(s)
- Dan Wang
- Department of Ultrasound, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Wenqi Ma
- Department of Ultrasound, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Yuanyuan Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yufeng Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Lei Sun
- Department of Ultrasound, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Jue Jiang
- Department of Ultrasound, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Lianying Jiao
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Runqing Li
- Department of Radiology, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yujie Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Qi Zhou
- Department of Ultrasound, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China.
| |
Collapse
|
2
|
He Y, Sun H, Bao H, Hou J, Zhou Q, Wu F, Wang X, Sun M, Shi J, Tang G, Bai H. A natural adhesive-based nanomedicine initiates photothermal-directed in situ immunotherapy with durability and maintenance. Biomaterials 2025; 312:122751. [PMID: 39121726 DOI: 10.1016/j.biomaterials.2024.122751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Tumor immunotherapies have emerged as a promising frontier in the realm of cancer treatment. However, challenges persist in achieving localized, durable immunostimulation while counteracting the tumor's immunosuppressive environment. Here, we develop a natural mussel foot protein-based nanomedicine with spatiotemporal control for tumor immunotherapy. In this nanomedicine, an immunoadjuvant prodrug and a photosensitizer are integrated, which is driven by their dynamic bonding and non-covalent assembling with the protein carrier. Harnessing the protein carrier's bioadhesion, this nanomedicine achieves a drug co-delivery with spatiotemporal precision, by which it not only promotes tumor photothermal ablation but also broadens tumor antigen repertoire, facilitating in situ immunotherapy with durability and maintenance. This nanomedicine also modulates the tumor microenvironment to overcome immunosuppression, thereby amplifying antitumor responses against tumor progression. Our strategy underscores a mussel foot protein-derived design philosophy of drug delivery aimed at refining combinatorial immunotherapy, offering insights into leveraging natural proteins for cancer treatment.
Collapse
Affiliation(s)
- Yunhong He
- Institute of Chemical Biology and Pharmaceutical Chemistry, Department of Chemistry, Zhejiang University, 310028 Hangzhou, PR China
| | - Hong Sun
- Institute of Chemical Biology and Pharmaceutical Chemistry, Department of Chemistry, Zhejiang University, 310028 Hangzhou, PR China
| | - Hanxiao Bao
- Institute of Chemical Biology and Pharmaceutical Chemistry, Department of Chemistry, Zhejiang University, 310028 Hangzhou, PR China
| | - Jue Hou
- Institute of Chemical Biology and Pharmaceutical Chemistry, Department of Chemistry, Zhejiang University, 310028 Hangzhou, PR China
| | - Qiaomei Zhou
- Institute of Chemical Biology and Pharmaceutical Chemistry, Department of Chemistry, Zhejiang University, 310028 Hangzhou, PR China; Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310028 Hangzhou, PR China
| | - Fan Wu
- Institute of Chemical Biology and Pharmaceutical Chemistry, Department of Chemistry, Zhejiang University, 310028 Hangzhou, PR China; Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 310028 Hangzhou, PR China
| | | | - Mingli Sun
- Zhejiang Laboratory, 311100 Hangzhou, PR China
| | - Junhui Shi
- Zhejiang Laboratory, 311100 Hangzhou, PR China
| | - Guping Tang
- Institute of Chemical Biology and Pharmaceutical Chemistry, Department of Chemistry, Zhejiang University, 310028 Hangzhou, PR China; Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310028 Hangzhou, PR China
| | - Hongzhen Bai
- Institute of Chemical Biology and Pharmaceutical Chemistry, Department of Chemistry, Zhejiang University, 310028 Hangzhou, PR China.
| |
Collapse
|
3
|
Chen S, Xie Y, Ma K, Wei Z, Ran X, Fu X, Zhang C, Zhao C. Electrospun nanofibrous membranes meet antibacterial nanomaterials: From preparation strategies to biomedical applications. Bioact Mater 2024; 42:478-518. [PMID: 39308550 PMCID: PMC11415839 DOI: 10.1016/j.bioactmat.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/14/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Electrospun nanofibrous membranes (eNFMs) have been extensively developed for bio-applications due to their structural and compositional similarity to the natural extracellular matrix. However, the emergence of antibiotic resistance in bacterial infections significantly impedes the further development and applications of eNFMs. The development of antibacterial nanomaterials substantially nourishes the engineering design of antibacterial eNFMs for combating bacterial infections without relying on antibiotics. Herein, a comprehensive review of diverse fabrication techniques for incorporating antibacterial nanomaterials into eNFMs is presented, encompassing an exhaustive introduction to various nanomaterials and their bactericidal mechanisms. Furthermore, the latest achievements and breakthroughs in the application of these antibacterial eNFMs in tissue regenerative therapy, mainly focusing on skin, bone, periodontal and tendon tissues regeneration and repair, are systematically summarized and discussed. In particular, for the treatment of skin infection wounds, we highlight the antibiotic-free antibacterial therapy strategies of antibacterial eNFMs, including (i) single model therapies such as metal ion therapy, chemodynamic therapy, photothermal therapy, and photodynamic therapy; and (ii) multi-model therapies involving arbitrary combinations of these single models. Additionally, the limitations, challenges and future opportunities of antibacterial eNFMs in biomedical applications are also discussed. We anticipate that this comprehensive review will provide novel insights for the design and utilization of antibacterial eNFMs in future research.
Collapse
Affiliation(s)
- Shengqiu Chen
- Innovation Research Center for Diabetic Foot, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu, 610065, China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Zhiwei Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xingwu Ran
- Innovation Research Center for Diabetic Foot, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Endocrinology and Metabolism, Diabetic Foot Care Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
4
|
Jin S, Yu Y, Zhang T, Xie D, Zheng Y, Wang C, Liu Y, Xia D. Surface modification strategies to reinforce the soft tissue seal at transmucosal region of dental implants. Bioact Mater 2024; 42:404-432. [PMID: 39308548 PMCID: PMC11415887 DOI: 10.1016/j.bioactmat.2024.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Soft tissue seal around the transmucosal region of dental implants is crucial for shielding oral bacterial invasion and guaranteeing the long-term functioning of implants. Compared with the robust periodontal tissue barrier around a natural tooth, the peri-implant mucosa presents a lower bonding efficiency to the transmucosal region of dental implants, due to physiological structural differences. As such, the weaker soft tissue seal around the transmucosal region can be easily broken by oral pathogens, which may stimulate serious inflammatory responses and lead to the development of peri-implant mucositis. Without timely treatment, the curable peri-implant mucositis would evolve into irreversible peri-implantitis, finally causing the failure of implantation. Herein, this review has summarized current surface modification strategies for the transmucosal region of dental implants with improved soft tissue bonding capacities (e.g., improving surface wettability, fabricating micro/nano topographies, altering the surface chemical composition and constructing bioactive coatings). Furthermore, the surfaces with advanced soft tissue bonding abilities can be incorporated with antibacterial properties to prevent infections, and/or with immunomodulatory designs to facilitate the establishment of soft tissue seal. Finally, we proposed future research orientations for developing multifunctional surfaces, thus establishing a firm soft tissue seal at the transmucosal region and achieving the long-term predictability of dental implants.
Collapse
Affiliation(s)
- Siqi Jin
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Yameng Yu
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Ting Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Daping Xie
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-2 Kumamoto, 860-8555, Japan
| | - Chunming Wang
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Dandan Xia
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| |
Collapse
|
5
|
Soman S, Kulkarni S, John J, Vineeth P, Ahmad SF, George SD, Nandakumar K, Mutalik S. Transferrin-conjugated UiO-66 metal organic frameworks loaded with doxorubicin and indocyanine green: A multimodal nanoplatform for chemo-photothermal-photodynamic approach in cancer management. Int J Pharm 2024; 665:124665. [PMID: 39236772 DOI: 10.1016/j.ijpharm.2024.124665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Stimuli-responsive nanoplatforms have been popular in controlled drug delivery research because of their ability to differentiate the tumor microenvironment from the normal tissue environment in a spatiotemporally controllable manner. The synergistic therapeutic approach of combining cancer chemotherapy with photothermal tumor ablation has improved the therapeutic efficacy of cancer therapeutics. In this study, a UiO-66 metal organic framework (MOF)-based system loaded with doxorubicin (DOX), surface decorated with the photothermal agents indocyanine green (ICG) and polydopamine (PDA), and conjugated with transferrin (TF) was successfully designed to operate as a responsive system to pH changes, featuring photothermal capabilities and target specificity for the purpose of treating breast cancer. The synthesized nanoplatform benefits from its uniform size, excellent DOX encapsulation efficiency (91.66 %), and efficient pH/NIR-mediated controlled release of the drug. In vitro photothermal studies indicate excellent photothermal stability of the formulation even after 6 on-off cycles of NIR irradiation. The in vitro cytotoxicity assessment using an NIR laser (808 nm) revealed that the DOX-loaded functionalized UiO-66 nanocarriers had outstanding inhibitory effects on 4T1 cells because of synergistic chemo-photo therapies, with no substantial toxicity by the carriers. In addition, cellular uptake evaluations revealed that UiO-DOX-ICG@PDA-TF could specifically target 4T1 cells on the basis of receptor-mediated internalization of transferrin receptors. Additionally, in vivo toxicity studies in Wistar rats indicated no signs of significant toxicity. The UiO-based nanoformulations effectively inhibited and destroyed cancer cells under 808 nm laser irradiation because of their minimal toxicity, strong biocompatibility, and outstanding synergistic chemo/photothermal/photodynamic treatment.
Collapse
Affiliation(s)
- Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Jeena John
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - P Vineeth
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sajan D George
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
6
|
Tao X, Su M, Chen P, Yan M, Wang D, Xia L, Rao L, Xia Z, Fu Q. Zirconium(IV) coordination-mediated rapid and versatile post-modification of polydopamine coating as stationary phase for open-tubular capillary electrochromatography. J Chromatogr A 2024; 1736:465415. [PMID: 39378618 DOI: 10.1016/j.chroma.2024.465415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
In recent years, mussel-inspired polydopamine (PDA)-based materials have attracted significant attention in the field of open-tubular capillary electrochromatography (OT-CEC) owing to their diverse and appealing properties. However, previously established functionalized PDA coating-based CEC stationary phases predominantly relied on the latent reactivity of PDA with amine/thiol-containing molecules, limiting the types of applicable modifiers and requiring time-consuming reaction processes. Herein, we presented a versatile and efficient method for the facile and rapid fabrication of diverse functionalized PDA coatings as OT-CEC stationary phases through a Zr(IV) coordination-mediated post-modification strategy. Different kinds of modifiers, including octadecylamine (ODA), lauric acid (LA), and perfluorooctanoic acid (PFOA), were rapidly and robustly grafted onto the PDA coating, verified through multiple characterization techniques. The influences of preparation parameters on the grafting efficiency of the functionalized PDA coating were systematically investigated. Utilizing the Zr(IV)-mediated ODA-, LA- and PFOA-functionalized PDA-based OT-CEC columns, we achieved high-efficiency baseline separation of a series of neutral analytes with excellent repeatability, good stability, and long lifetime. Given the strong universality of the Zr(IV) coordination-mediated post-modification approach, our study provides an effective pathway for advancing the development of a wider range of functional PDA-based chromatographic stationary phases.
Collapse
Affiliation(s)
- Xueping Tao
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Mengting Su
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Panpan Chen
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Meiting Yan
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Dan Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Lan Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Li Rao
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China.
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| | - Qifeng Fu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
7
|
Renno G, Chen D, Zhang QX, Gomila RM, Frontera A, Sakai N, Ward TR, Matile S. Pnictogen-Bonding Enzymes. Angew Chem Int Ed Engl 2024; 63:e202411347. [PMID: 38967094 DOI: 10.1002/anie.202411347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
The objective of this study was to create artificial enzymes that capitalize on pnictogen bonding, a σ-hole interaction that is essentially absent in biocatalysis. For this purpose, stibine catalysts were equipped with a biotin derivative and combined with streptavidin mutants to identify an efficient transfer hydrogenation catalyst for the reduction of a fluorogenic quinoline substrate. Increased catalytic activity from wild-type streptavidin to the best mutants coincides with the depth of the σ hole on the Sb(V) center, and the emergence of saturation kinetic behavior. Michaelis-Menten analysis reveals transition-state recognition in the low micromolar range, more than three orders of magnitude stronger than the millimolar substrate recognition. Carboxylates preferred by the best mutants contribute to transition-state recognition by hydrogen-bonded ion pairing and anion-π interactions with the emerging pyridinium product. The emergence of challenging stereoselectivity in aqueous systems further emphasizes compatibility of pnictogen bonding with higher order systems catalysis.
Collapse
Affiliation(s)
- Giacomo Renno
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering, BPR 1095, Basel, Switzerland
| | - Dongping Chen
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering, BPR 1095, Basel, Switzerland
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Qing-Xia Zhang
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering, BPR 1095, Basel, Switzerland
| | - Rosa M Gomila
- Departament de Química, Universitat de les Illes Balears, 07122, Palma de Mallorca, Spain
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, 07122, Palma de Mallorca, Spain
| | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering, BPR 1095, Basel, Switzerland
| | - Thomas R Ward
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering, BPR 1095, Basel, Switzerland
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering, BPR 1095, Basel, Switzerland
| |
Collapse
|
8
|
Zivari-Ghader T, Rashidi MR, Mehrali M. Biological macromolecule-based hydrogels with antibacterial and antioxidant activities for wound dressing: A review. Int J Biol Macromol 2024; 279:134578. [PMID: 39122064 DOI: 10.1016/j.ijbiomac.2024.134578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Because of the complex symptoms resulting from metabolic dysfunction in the wound microenvironment during bacterial infections, along with the necessity to combat free radicals, achieving prompt and thorough wound healing remains a significant medical challenge that has yet to be fully addressed. Moreover, the misuse of common antibiotics has contributed to the emergence of drug-resistant bacteria, underscoring the need for enhancements in the practical and commonly utilized approach to wound treatment. In this context, hydrogel dressings based on biological macromolecules with antibacterial and antioxidant properties present a promising new avenue for skin wound treatment due to their multifunctional characteristics. Despite the considerable potential of this innovative approach to wound care, comprehensive research on these multifunctional dressings is still insufficient. Consequently, the development of advanced biological macromolecule-based hydrogels, such as chitosan, alginate, cellulose, hyaluronic acid, and others, has been the primary focus of this study. These materials have been enriched with various antibacterial and antioxidant agents to confer multifunctional attributes for wound healing purposes. This review article aims to offer a comprehensive overview of the latest progress in this field, providing a critical theoretical basis for future advancements in the utilization of these advanced biological macromolecule-based hydrogels for wound healing.
Collapse
Affiliation(s)
- Tayebeh Zivari-Ghader
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran.
| | - Mehdi Mehrali
- Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
9
|
Xu L, Guo H, Zhong Y, Zhao YE, Lin L. Exploring the potential of nanoparticles-based polydopamine for effective treatment of refractory keratitis: Mild photothermal loop therapy. Int J Biol Macromol 2024; 279:135479. [PMID: 39255880 DOI: 10.1016/j.ijbiomac.2024.135479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Keratitis is the leading cause of blindness worldwide. In refractory cases, it can even lead to eyeball enucleation. The critical challenges of refractory keratitis are the drug-resistant bacteria and bacterial biofilms formation. Therefore, we established an innovative therapeutic approach for keratitis based on mild photothermal loop (MPL) therapy. First, we analyzed the bactericidal effect of methicillin-resistant Staphylococcus aureus (MRSA) under various loops and temperature durations to determine the optimal condition. Then, RAN-seq was applied to explore the underlying mechanisms. Additionally, we formulated a dual-purpose polyvinyl alcohol-polydopamine (PDA/PVA) hydrogel system and explored its effects on the reactive oxygen species (ROS) scavenging capability, antibacterial properties, and anti-inflammatory properties in vitro, as well as its effect in vivo. The results indicated substantial bactericidal properties after exposure in four loops, each lasting 10 min at 45 °C. RNA-seq revealed the altered genes related to virulence and biofilm formation. In addition to good photothermal performance, the PDA/PVA system could effectively eliminate MRSA, reduce ROS, inhibit biofilm formation, and decrease inflammatory factors expression. Moreover, the in vivo results demonstrated the potential of MPL for bacterial keratitis. This study serves as the first attempt to use MPL therapy for refractory keratitis, offering a new approach for clinical practice.
Collapse
Affiliation(s)
- Liming Xu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hanwen Guo
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yiming Zhong
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yun-E Zhao
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.
| | - Lei Lin
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
10
|
Huang L, Wu T, Sun J, Lin X, Peng Y, Zhang R, Gao Y, Xu S, Sun Y, Zhou Y, Duan B. Biocompatible chitin-based Janus hydrogel membranes for periodontal repair. Acta Biomater 2024:S1742-7061(24)00630-5. [PMID: 39461689 DOI: 10.1016/j.actbio.2024.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/03/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Periodontal defects caused by severe periodontitis are a widespread issue globally. Guided tissue regeneration (GTR) using barrier membranes for alveolar bone repair is a common clinical treatment. However, most commercially available collagen barrier membranes are expensive and lack the antibacterial properties essential for effective bone regeneration. Herein, we report a natural polysaccharide chitin hydrogel barrier membrane with a Janus structure (ChT-PDA-p-HAP), featuring high antibacterial and protein-repelling activity on the outer side and good osteogenesis ability on the inner side. This multifunctional membrane is fabricated though a three-step process: (i) dissolution and regeneration of chitin, (ii) co-deposition with polydopamine (PDA) and poly(sulfobetaine methacrylate) (pSBMA), and (iii) coating with gelatin-hydroxyapatite (gelatin-HAP). In vitro cell experiments demonstrated the membrane's high biocompatibility and significant osteogenic activity. In vivo implantation in rats with periodontal defects revealed that the cemento-enamel junction index of the ChT-PDA-p-HAP membrane (1.165 mm) was superior to that of the commercial Bio-Gide® membrane (1.350 mm). This work presents a method for fabricating a chitin-based Janus barrier membrane, potentially expanding the use of chitin in tissue engineering. STATEMENT OF SIGNIFICANCE: This study introduces a Janus hydrogel membrane based on chitin, tailored for guided tissue regeneration in periodontal defects. By combining antibacterial properties and osteogenic capabilities in a single membrane, the ChT-PDA-p-HAP membrane represents a significant advancement over traditional collagen barriers. Its outer surface, enhanced by Cu2+ and PDA-pSBMA coatings, resists bacterial colonization and protein adhesion effectively, while the inner side, coated with gelatin-HAP, promotes robust bone formation. In vitro experiments demonstrate high biocompatibility and substantial osteogenic differentiation, while in vivo testing in rat models confirms good therapeutic efficacy compared to commercial membranes. This multifunctional approach not only utilizes chitin's abundant natural resource but also integrates simple coating techniques to enhance therapeutic outcomes in periodontal tissue engineering, offering promising avenues for broader biomedical applications.
Collapse
Affiliation(s)
- Lin Huang
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P.R. China; College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan University, Wuhan 430072, China
| | - Tao Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jing Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Research Center of Oral and Maxillofacial Development and Regeneration, Center of Stomatology, Xiangya Hospital, Central South University, Changsha 410000, China
| | - Xinghuan Lin
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan University, Wuhan 430072, China
| | - Yuhao Peng
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan University, Wuhan 430072, China
| | - Rongrong Zhang
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan University, Wuhan 430072, China
| | - Yang Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Shuo Xu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yuxin Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yi Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Bo Duan
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P.R. China; College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
11
|
Sun L, Li X, Hao L, Dong Y, Zhou L, Zhao J, Ye W, Jiang R. Microenvironment-Responsive Hydrogel Enclosed with Bioactive Nanoparticle for Synergistic Postoperative Adhesion Prevention. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39446062 DOI: 10.1021/acsami.4c10238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Postoperative adhesion (PA) is a severe complication of abdominal surgery caused by the inability of clinical physical barriers to cope with diverse pathological factors in the process of PA formation. Herein, we described a multifunctional hydrogel composed of bioactive nanoparticles (BNs) and dual-responsive hydrogel to serve as a combination of physical and pharmacological therapy for preventing PA. Specifically, BNs with pro-inflammatory cell-targeted aggregation were designed by integrating hyaluronic acid onto the polydopamine (PDA)-coated hollow ZrO2 nanoparticles loaded with antimicrobial peptides and platelet lysates that can eliminate bacterial infection and promote tissue repair. PDA can remove the excessive reactive oxygen species (ROS) and thus suppress the oxidative stress damage and accompanying inflammation in the presence of high ROS. The dynamically cross-linked host hydrogel presents injectable yet microenvironment-responsive properties, which enables complete coverage of the uneven tissue and instantly forms a physical barrier to effectively isolate injured tissues and neighboring organs, and synchronously acts as a niche to deliver the BNs in a controlled way. The hydrogel demonstrates a remarkable antiadhesion effect in a rat cecum-abdominal wall adhesion model. Together, this "all-in-one" composite hydrogel strategy capable of a physical barrier capability and pharmacological effects represents a promising clinical solution to prevent PA.
Collapse
Affiliation(s)
- Liwei Sun
- School of Chemistry and Pharmaceutical Engineering & Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| | - Xinmeng Li
- School of Chemistry and Pharmaceutical Engineering & Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| | - Lingwan Hao
- School of Chemistry and Pharmaceutical Engineering & Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| | - Yanhong Dong
- School of Chemistry and Pharmaceutical Engineering & Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| | - Lu Zhou
- School of Chemistry and Pharmaceutical Engineering & Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China
| | - Wei Ye
- Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Rujian Jiang
- School of Chemistry and Pharmaceutical Engineering & Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| |
Collapse
|
12
|
Gong Y, Zhang H, Lu M, Sun J, Jia Y, Yang Y, Liu X, Yin B, Zhou Y, Ling Y. Tuning the Fe-Gd nanoparticles co-functionalized mesoporous carbon from sphere to nanobowl for advanced bioapplications. J Colloid Interface Sci 2024; 679:412-421. [PMID: 39461130 DOI: 10.1016/j.jcis.2024.10.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/24/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Studies on the function-integrated nanocomposites with well-tuned morphologies have received considerable interest. Here, we reported the preparation of mesoporous carbon nanobowl integrated with stoichiometric γ-Fe2O3 and GdPO4 nanoparticles (Fe-Gd/MCN-B) for morphological advantage exploration. Followed by (i) emulsion-induced interface anisotropic assembly of polydopamine, (ii) solvent evaporation-induced sorption of Wells-Dawson-like heterometallic cluster of {Fe6Gd6P6} and (iii) temperature-programmed carbonization, Fe-Gd/MCN-B with the size around 200 nm was isolated. Our in-vitro studies revealed that Fe-Gd/MCN-B showed a 63.0 % amplified photoacoustic (PA) signal intensity as compared with its nanospherical analogue of Fe-Gd/MCN-S owing to the enhanced light harvesting and photothermal conversion on the interface of its nanobowl morphology. Furthermore, the combined magnetic resonance (MR) imagining, drug delivery and photothermal treatment efficacy in Fe-Gd/MCN-B were also validated in-vitro. These results demonstrated that the delicate design of the morphology of function-integrated nanocomposites is an available way for enhanced imaging performance.
Collapse
Affiliation(s)
- Yimin Gong
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Hui Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Mingzhu Lu
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Jiayu Sun
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E14NS, United Kingdom
| | - Yu Jia
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Yannan Yang
- Institute of Optoelectronics, Fudan University, Shanghai 200433, China; South Australian immunoGENomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Xiaofeng Liu
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Bo Yin
- Department of Radiology, Huashan Hospital North, Fudan University, Shanghai, 201907, China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Yaming Zhou
- Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Yun Ling
- Department of Chemistry, Fudan University, Shanghai 200433, China.
| |
Collapse
|
13
|
Huang Y, Guo W, Wang X, Chang J, Lu B. An acidity-triggered aggregation nanoplatform based on degradable mesoporous organosilica nanoparticles for precise drug delivery and phototherapy of focal bacterial infection. Dalton Trans 2024. [PMID: 39431576 DOI: 10.1039/d4dt02111h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
It is crucial to precisely strike the bacterially infected area and avoid damaging healthy tissue in bacterial infection treatment. Herein, we report an acidity-triggered aggregation antibacterial nanoplatform based on biodegradable mesoporous organic silica nanoparticles (MON NPs). The surface of MON NPs modified with polydopamine (PDA) encapsulated ciprofloxacin (CIP) and methylene blue (MB) and was then further grafted with glycol chitosan to obtain MB/CIP@MON-PDA-GCS NPs (MCMPG NPs). In the bacterial infection environment with acidic characteristics, glycol chitosan (GCS) becomes positively charged. Consequently, the positively charged acidity-triggered GCS enables MCMPG NPs to accumulate on the negatively charged bacterial surfaces in the infected area and not in healthy tissue. The targeted method allows for the precise release of CIP and MB, ensuring the spatial accuracy of photodynamic therapy (PDT) and photothermal therapy (PTT) for effective bacteria-specific treatment.
Collapse
Affiliation(s)
- Yunhan Huang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China.
| | - Wei Guo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China.
| | - Xinyu Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China.
| | - Jingrui Chang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China.
| | - Bo Lu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, P. R. China.
| |
Collapse
|
14
|
Zheng Y, Chen X, Wang Y, Chen Z, Wu D. Phenolic-enabled nanotechnology: a new strategy for central nervous system disease therapy. J Zhejiang Univ Sci B 2024; 25:890-913. [PMID: 39420524 PMCID: PMC11494163 DOI: 10.1631/jzus.b2300839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/30/2024] [Indexed: 10/19/2024]
Abstract
Polyphenolic compounds have received tremendous attention in biomedicine because of their good biocompatibility and unique physicochemical properties. In recent years, phenolic-enabled nanotechnology (PEN) has become a hotspot of research in the medical field, and many promising studies have been reported, especially in the application of central nervous system (CNS) diseases. Polyphenolic compounds have superior anti-inflammatory and antioxidant properties, and can easily cross the blood‒brain barrier, as well as protect the nervous system from metabolic damage and promote learning and cognitive functions. However, although great advances have been made in this field, a comprehensive review regarding PEN-based nanomaterials for CNS therapy is lacking. A systematic summary of the basic mechanisms and synthetic strategies of PEN-based nanomaterials is beneficial for meeting the demand for the further development of novel treatments for CNS diseases. This review systematically introduces the fundamental physicochemical properties of PEN-based nanomaterials and their applications in the treatment of CNS diseases. We first describe the different ways in which polyphenols interact with other substances to form high-quality products with controlled sizes, shapes, compositions, and surface chemistry and functions. The application of PEN-based nanomaterials in the treatment of CNS diseases is then described, which provides a reference for subsequent research on the treatment of CNS diseases.
Collapse
Affiliation(s)
- Yuyi Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China. ,
- Zhejiang Rehabilitation Medical Center, the Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310009, China. ,
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China. ,
| | - Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
15
|
Zhang Y, Zhang J, Yang Q, Song Y, Pan M, Kan Y, Xiang L, Li M, Zeng H. Tuning interfacial molecular asymmetry to engineer protective coatings with superior surface anchoring, antifouling and antibacterial properties. Acta Biomater 2024:S1742-7061(24)00598-1. [PMID: 39395705 DOI: 10.1016/j.actbio.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Multifunctional robust protective coatings that combine biocompatibility, antifouling and antimicrobial properties play an essential role in reducing host reactions and infection on invasive medical devices. However, developing these protective coatings generally faces a paradox: coating materials capable of achieving robust adhesion to substrates via spontaneous deposition inevitably initiate continuous biofoulant adsorption, while those employing strong hydration capability to resist biofoulant attachment have limited substrate binding ability and durability under wear. Herein, we designed a multifunctional terpolymer of poly(dopamine methyacrylamide-co-2-methacryloyloxyethyl phoasphorylcholine-co-2-(dimethylamino)-ethyl methacrylate) (P(DMA-co-MPC-co-DMAEMA)), which integrates desired yet traditionally incompatible functions (i.e., robust adhesion, antifouling, lubrication, and antimicrobial properties). Direct normal and lateral force measurements, dynamic adsorption tests, surface ion conductance mapping were applied to comprehensively investigate the nanomechanics of coating-biofloulant interactions. Catechol groups of DMA act as basal anchors for robust substrate deposition, while the highly hydrated zwitterion of MPC provides apical protection to resist biofouling and wear. Moreover, the antimicrobial property is conferred through the protonation of tertiary amine groups on DMAEMA, inhibiting infection under physiological conditions. This work provides an effective strategy for harmonizing demanded yet incompatible properties in one coating material, with significant implications for the development of multifunctional surfaces towards the advancement of invasive biomedical devices. STATEMENT OF SIGNIFICANCE: Multifunctional robust protective coatings have been widely utilized in invasive medical devices to mitigate host responses and infection. However, modified surface coatings often encounter a trade-off between robust adhesion to substrates and strong hydration capability for antifouling and antimicrobial properties. We propose a universal strategy for surface modification by dopamine-assisted co-deposition with a multifunctional terpolymer of P(DMA-co-MPC-co-DMAEMA) that simultaneously achieves robust adhesion, antifouling, and antimicrobial properties. Through elucidating the nanomechanics with fundamentally understanding the interactions between the coating and biomacromolecules, we highlight the role of DMA for substrate adhesion, MPC for biofouling resistance, and DMAEMA for antimicrobial activity. This approach presents a promising strategy for constructing multifunctional coatings on minimally invasive medical devices by tuning interfacial molecular asymmetricity to reconcile incompatible properties within one coating.
Collapse
Affiliation(s)
- Yuhao Zhang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Jiawen Zhang
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Qiang Yang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Yao Song
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostic, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Mingfei Pan
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostic, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Yajing Kan
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Li Xiang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China.
| | - Mei Li
- National Demonstration Center for Experimental Basic Medical Education, Nanjing Medical University, Nanjing 211166, China.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
16
|
Zhou Z, Zhou C, Liu J, Yuan Y, Yao C, Liu M, Deng L, Sun J, Chen Z, Wang L, Wang Z. Tumor specific in situ synthesis of therapeutic agent for precision cancer therapy. J Nanobiotechnology 2024; 22:612. [PMID: 39385273 PMCID: PMC11465910 DOI: 10.1186/s12951-024-02825-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/31/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Traditional chemotherapeutic agents suffer from a lack of selectivity, poor targeting ability, and drug resistance. Developing tumor-specific therapies is crucial for precisely eliminating tumors while circumventing toxicity to normal tissues. Disulfiram (DSF), an FDA-approved drug for treating alcohol dependence, exhibits antitumor effect by forming complexes with copper ions (Cu(DDC)2). Here, we developed a Cu-doped polydopamine-based nanosystem (DSF@CuPDA-PEGM) to achieve in situ generation of toxic Cu(DDC)2. RESULTS In cancer cells with elevated H2O2 contents, CuPDA responsively degrades to release Cu ions and DSF, allowing on-site synthesis of Cu(DDC)2 with potent antitumor activity. DSF@CuPDA-PEGM exhibits excellent therapeutic efficacy against both drug-sensitive and drug-resistant cancer cells while minimizing toxicity to noncancerous cells. Moreover, DSF@CuPDA-PEGM promotes the immune response by inducing cancer cell immunogenic death, thereby augmenting anti-PD-1-based immune checkpoint blockade therapy. CONCLUSION A tumor-specifically degradable Cu-doped polydopamine-based nanosystem is developed to achieve in situ synthesis of antitumor compounds, providing a promising approach to precisely eliminate tumors and heighten chemo-immunotherapy.
Collapse
Affiliation(s)
- Zhixin Zhou
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng Zhou
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Ye Yuan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chundong Yao
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Miaodeng Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lixue Deng
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia Sun
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zuoyu Chen
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
17
|
Wang Z, Zhang M, Du X. Construction of Yolk@shell Nanocomposite Particles with Controlled Multisized Pore Structures by Monomicelle Confined Assembly. ACS NANO 2024; 18:27511-27523. [PMID: 39320116 DOI: 10.1021/acsnano.4c08285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Hollow nanoparticles with tunable structures and spatial and chemical specificity are considered as promising carriers. However, it remains a formidable challenge to endow hollow nanomaterials with precisely controlled multisized macro/mesoporous structures up to now. This paper demonstrates a "polydopamine (PDA) expansion-shrinkage" strategy combined with a monomicelle interfacial confined assembly method to achieve the highly controllable preparation of a series of yolk@shell PDA@SiO2 composite nanoparticles with structural asymmetry and a tunable multisized pore in the shell. The strategy allows systematic manipulation of the average pore size of large slit pores in the range of 15.4-86.5 nm by adjusting the reaction temperature. Benefiting from advantages such as an asymmetric structure and multilevel porosity, they exhibit excellent performance in the applications of on-demand loading of dual-sized cargoes, dual-propelled nanomotors, and particle size-selected encapsulation and separation. These findings provide inspiration for the construction of asymmetric yolk@shell structures with tunable multisized pores for a wide range of biological and chemical applications.
Collapse
Affiliation(s)
- Zhiming Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Meiqin Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Xin Du
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China
| |
Collapse
|
18
|
Li R, Wei Z, Li P, Qiu Y, Wang C, Wang C, Ren LF, Shao J, He Y. Novel visible-light activated photocatalytic ultrafiltration membrane for simultaneous separation and degradation of emerging contaminants. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135634. [PMID: 39182300 DOI: 10.1016/j.jhazmat.2024.135634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Emerging contaminants (ECs) in secondary effluent of wastewater treatment plants (WWTPs) have received increasing attention due to their adverse effects on aquatic ecosystems and human health. Herein, visible-light responsive photocatalyst TM (TiO2 @NH2-MIL-101(Fe)) and resultant photocatalytic ultrafiltration (PUF, PVDF/TM) membrane were prepared to remove 32 typical compounds of antibiotics, 296 compounds of antibiotic resistance genes (ARGs), and their corresponding bacterial hosts. The construction of heterojunction photocatalyst promoted the electron transfer from NH2-MIL-101(Fe) to TiO2 and the formation of N-TiO2, enhancing visible-light (λ ≥ 420 nm) photocatalytic activity. With highly-hydrophilic surface and delicately-regulated pore structure, the initial water permeance of optimal PUF membrane significantly increased to 3912.2 L/m2/h at 1.0 bar. Meanwhile, membrane retention (via adsorption, electrostatic interaction, and steric hindrance) was improved due to the narrowed pore size, highly-negative surface charge and abundant functional groups. Additionally, hydroxyl radical (•OH) was the dominant active reactive oxygen species (ROS) for ECs degradation, and the narrowed pore structure could serve as microreactors to increase ROS concentration and reduce migration distance. Consequently, the removal efficiencies of antibiotics, bacteria and ARGs were 86.5 %, 91.4 % and 91.8 %, respectively. Overall, this novel visible-light-activated PUF membrane expands membrane application, and has great potential in ECs treatment.
Collapse
Affiliation(s)
- Ran Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Zhidong Wei
- College of Smart Energy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Peng Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Yangbo Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Chengyi Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Chao Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Long-Fei Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Institute for Ecological Research and Pollution Control of Plateau Lakes, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan 650504, PR China.
| | - Jiahui Shao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Institute for Ecological Research and Pollution Control of Plateau Lakes, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan 650504, PR China.
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| |
Collapse
|
19
|
Heo Y, Lee J, Kim H, Ryu CY, Kim I, Choi I, Kim M, Kang SM. N-Alkylation of Dopamine and Its Impact on Surface Coating Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20692-20699. [PMID: 39287557 DOI: 10.1021/acs.langmuir.4c02771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Surface coating with dopamine (DA) has received significant attention over the past decade due to its compatibility with other surface coating techniques and versatility, making it applicable to solid surfaces regardless of substrate and shape. Much effort has been made to elucidate the origin of its surface coating capability, and as a result, many important factors affecting the coating properties have been determined. For example, it has been reported that the length of the carbon chain between catechol and amino groups, the attachment of specific functional groups to the catechol ring and amino group, and the replacement of the amino group with another functional group can affect the surface coating properties of DA. Despite these various attempts, there are still many factors that remain unknown. In this study, we investigate the effect of N-alkylation on DA coating. N-Ethyl-DA, N-propyl-DA, and N-isopropyl-DA are newly synthesized through simple organic reactions, and the coating efficiency of DA derivatives is compared with nucleophilicity and steric bulkiness. As a result, the coating efficiency of N-ethyl-DA and N-propyl-DA is lower than for pristine DA and N-methyl-DA, but it is possible to coat solid surfaces with alkyl-functionalized DA. In contrast, the coating with sterically bulky N-isopropyl-DA is almost unsuccessful.
Collapse
Affiliation(s)
- Yoonji Heo
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Jinwoo Lee
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Haein Kim
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Chae Young Ryu
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Inho Kim
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Isaac Choi
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Min Kim
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Sung Min Kang
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
20
|
Qiu YL, Li Y, Zhang GL, Hao H, Hou HM, Bi J. Effects of quaternization sites and crossing methods on the slow-release and antibacterial effects of hydroxypropyltrimethyl ammonium chloride chitosan/dialdehyde chitosan-based film. Int J Biol Macromol 2024; 278:134683. [PMID: 39147345 DOI: 10.1016/j.ijbiomac.2024.134683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
In this study, the active food packaging film were prepared using hydroxypropyltrimethyl ammonium chloride chitosan with different substitution sites (O-HACC & N-HACC) and dialdehyde chitosan (DCS) grafted with protocatechuic acid (PA). To explore the effect of chitosan quaternization positions and crosslinking approaches on the slow-release and antibacterial properties, the double-crosslinked film were fabricated through the self-coupling reaction of PA and Schiff base reaction between amino groups on HACC and aldehyde groups on DCS. The HACC/DCS-based film exhibited stable porous three-dimensional networks with high nisin loading ratios (>90 %). With the participation of the catechol-catechol structure, the dense double-crosslinked film effectively restricted the diffusion of the water molecules, resulting in excellent slow-release properties fitting with the Korsmeyer-Peppas kinetic model. Especially, O-HACC/PA-g-DCS film, which had more reaction sites for Schiff base crosslinking than N-HACC, exhibited the equilibrium swelling ratio of 800 % at 60 h and could sustainably release nisin via non-Fickian diffusion behavior until 48 h. Moreover, the HACC/DCS-based double-crosslinked film performed good long-time antibacterial activity and preservation effects on salmon. On the 10th day of storage, the TVBN of N-HACC/PA-g-DCS and O-HACC/PA-g-DCS groups were only 28.26 ± 1.93 and 29.06 ± 1.68 mg/100 g and still lower than the thresholds.
Collapse
Affiliation(s)
- Yu-Long Qiu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yixi Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Gong-Liang Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hongshun Hao
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hong-Man Hou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jingran Bi
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
21
|
Cui D, Guo W, Chang J, Fan S, Bai X, Li L, Yang C, Wang C, Li M, Fei J. Polydopamine-coated polycaprolactone/carbon nanotube fibrous scaffolds loaded with basic fibroblast growth factor for wound healing. Mater Today Bio 2024; 28:101190. [PMID: 39221197 PMCID: PMC11364907 DOI: 10.1016/j.mtbio.2024.101190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Image 1.
Collapse
Affiliation(s)
- Dapeng Cui
- Hepatobiliary Surgery Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, 075000, China
| | - Wei Guo
- Emergency Department, Peking University People's Hospital, Beijing, 100044, China
| | - Jing Chang
- Trauma Medicine Center, National Center for Trauma Medicine, Key Laboratory of Trauma and Neural Regeneration (Peking University, Ministry of Education), Peking University People's Hospital, Beijing, 100044, China
| | - Shuang Fan
- Hepatobiliary Surgery Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, 075000, China
| | - Xiaochen Bai
- Hepatobiliary Surgery Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, 075000, China
| | - Lei Li
- Hepatobiliary Surgery Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, 075000, China
| | - Chen Yang
- Hepatobiliary Surgery Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, 075000, China
| | - Chuanlin Wang
- Trauma Medicine Center, National Center for Trauma Medicine, Key Laboratory of Trauma and Neural Regeneration (Peking University, Ministry of Education), Peking University People's Hospital, Beijing, 100044, China
| | - Ming Li
- Trauma Medicine Center, National Center for Trauma Medicine, Key Laboratory of Trauma and Neural Regeneration (Peking University, Ministry of Education), Peking University People's Hospital, Beijing, 100044, China
| | - Jiandong Fei
- Hepatobiliary Surgery Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, 075000, China
| |
Collapse
|
22
|
Hou Y, Zhang Z, Harrisson S, Sèbe G. SI-ATRP grafting of polymers from polydopamine-modified cellulose nanocrystals. Carbohydr Polym 2024; 341:122346. [PMID: 38876716 DOI: 10.1016/j.carbpol.2024.122346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/02/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024]
Abstract
This work reports on the possibility of using polydopamine (PDA) as a tool to immobilize bromoisobutyryl moieties at the surface of cellulose nanocrystals (CNCs) and initiate Surface Intitiated Atom Transfer Radical Polymerization (SI-ATRP) reactions from these sites. Two different strategies based on i) the stepwise modification of the CNCs with dopamine (DA) and α-bromoisobutyryl bromide (BiBB) (Protocol 1) and ii) the one-step treatment of the CNCs with a mixture of DA and BiBB-modified DA (Protocol 2), were compared. Only the CNC particles treated according to Protocol 1 guaranteed efficient anchoring of the SI-ATRP initiating sites in our experimental conditions (with limited impact on the CNCs crystalline structure), the coated layer being leached out by certain solvents in the case of Protocol 2. The brominated particles displaying the best performances were subsequently tested as potential ATRP macroinitiators, using methyl methacrylate (MMA) and styrene (St) as model monomers. Polymer-grafted particles were successfully obtained, with a grafting density twice as high for Sty as for MMA, demonstrating the validity of this strategy.
Collapse
Affiliation(s)
- Yelin Hou
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Zhen Zhang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.
| | - Simon Harrisson
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Gilles Sèbe
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France.
| |
Collapse
|
23
|
Xiong R, Zhu X, Zhao J, Ling G, Zhang P. Nanozymes-Mediated Cascade Reaction System for Tumor-Specific Diagnosis and Targeted Therapy. SMALL METHODS 2024; 8:e2301676. [PMID: 38480992 DOI: 10.1002/smtd.202301676] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/02/2024] [Indexed: 10/18/2024]
Abstract
Cascade reactions are described as efficient and versatile tools, and organized catalytic cascades can significantly improve the efficiency of chemical interworking between nanozymes. They have attracted great interest in many fields such as chromogenic detection, biosensing, tumor diagnosis, and therapy. However, how to selectively kill tumor cells by enzymatic reactions without harming normal cells, as well as exploring two or more enzyme-engineered nanoreactors for cascading catalytic reactions, remain great challenges in the field of targeted and specific cancer diagnostics and therapy. The latest research advances in nanozyme-catalyzed cascade processes for cancer diagnosis and therapy are described in this article. Here, various sensing strategies are summarized, for tumor-specific diagnostics. Targeting mechanisms for tumor treatment using cascade nanozymes are classified and analyzed, "elements" and "dimensions" of cascade nanozymes, types, designs of structure, and assembly modes of highly active and specific cascade nanozymes, as well as a variety of new strategies of tumor targeting based on the cascade reaction of nanozymes. Finally, the integrated application of the cascade nanozymes systems in tumor-targeted and specific diagnostic therapy is summarized, which will lay the foundation for the design of more rational, efficient, and specific tumor diagnostic and therapeutic modalities in the future.
Collapse
Affiliation(s)
- Ruru Xiong
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Xiaoguang Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Jiuhong Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| |
Collapse
|
24
|
Liu Y, Wei X, Yang T, Wang X, Li T, Sun M, Jiao K, Jia W, Yang Y, Yan Y, Wang S, Wang C, Liu L, Dai Z, Jiang Z, Jiang X, Li C, Liu G, Cheng Z, Luo Y. Hyaluronic acid methacrylate/Pluronic F127 hydrogel enhanced with spermidine-modified mesoporous polydopamine nanoparticles for efficient synergistic periodontitis treatment. Int J Biol Macromol 2024; 281:136085. [PMID: 39353520 DOI: 10.1016/j.ijbiomac.2024.136085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Bacterial infection, reactive oxygen species (ROS) accumulation, and persistent inflammation pose significant challenges in the treatment of periodontitis. However, the current single-modal strategy makes achieving the best treatment effect difficult. Herein, we developed a double-network hydrogel composed of Pluronic F127 (PF-127) and hyaluronic acid methacrylate (HAMA) loaded with spermidine-modified mesoporous polydopamine nanoparticles (M@S NPs). The PF-127/HAMA/M@S (PH/M@S) hydrogel was injectable and exhibited thermosensitivity and photocrosslinking capabilities, which enable it to adapt to the irregular shape of periodontal pockets. In vitro, the PH/M@S displayed multiple therapeutic effects, such as photothermal antibacterial activity, a high ROS scavenging capacity, and anti-inflammatory effects, which are beneficial for the multimodal treatment of periodontitis. The underlying anti-inflammatory mechanism of this hydrogel involves suppression of the extracellular regulated protein kinase 1/2 and nuclear factor kappa-B signalling pathways. Furthermore, in lipopolysaccharide-stimulated macrophage conditioned media, the PH/M@S effectively restored the osteogenic differentiation potential. In a rat model of periodontitis, the PH/M@S effectively reduced the bacterial load, relieved local inflammation and inhibited alveolar bone resorption. Collectively, these findings highlight the versatile functions of the PH/M@S, including photothermal antibacterial activity, ROS scavenging, and anti-inflammatory effects, indicating that this hydrogel is a promising multifunctional filling material for the treatment of periodontitis.
Collapse
Affiliation(s)
- Yun Liu
- Stomatology Center of Jingyue Campus, The First Hospital of Jilin University, Jilin University, Changchun 130021, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China
| | - Xue Wei
- Ultrasound Diagnostic Center (Doctor of excellence program), The First Hospital of Jilin University, Changchun 130021, China
| | - Tao Yang
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Xi Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Ting Li
- Department of Gastroenterology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130000, China
| | - Maolei Sun
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; Department of Stomatology, The Second Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Kun Jiao
- Stomatology Center of Jingyue Campus, The First Hospital of Jilin University, Jilin University, Changchun 130021, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China
| | - Wenyuan Jia
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; Department of Orthopedics, The Second Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Yuheng Yang
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; Department of Orthopedics, The Second Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Yongzheng Yan
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; Department of Orthopedics, The Second Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Shaoru Wang
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Chang Wang
- Stomatology Center of Jingyue Campus, The First Hospital of Jilin University, Jilin University, Changchun 130021, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China
| | - Liping Liu
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Zhihui Dai
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Zhen Jiang
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Xuanzuo Jiang
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; Department of Orthopedics, The Second Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Chiyu Li
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; Department of Orthopedics, The Second Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Guomin Liu
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; Department of Orthopedics, The Second Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Zhiqiang Cheng
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China; College of Resources and Environment, Jilin Agriculture University, Changchun 130118, China
| | - Yungang Luo
- Stomatology Center of Jingyue Campus, The First Hospital of Jilin University, Jilin University, Changchun 130021, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China.
| |
Collapse
|
25
|
Kong X, He X, He F, Li Y, Feng Y, Li Y, Luo Z, Shen JW, Duan Y. Sandwich Layer-Modified Ω-Shaped Fiber-Optic LSPR Enables the Development of an Aptasensor for a Cytosensing-Photothermal Therapy Circuit. ACS Sens 2024; 9:4637-4645. [PMID: 39120046 DOI: 10.1021/acssensors.4c00841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The metastasis of cancer cells is a principal cause of morbidity and mortality in cancer. The combination of a cytosensor and photothermal therapy (PTT) cannot completely eliminate cancer cells at one time. Hence, this study aimed to design a localized surface plasmonic resonance (LSPR)-based aptasensor for a circuit of cytosensing-PTT (COCP). This was achieved by coating a novel sandwich layer of polydopamine/gold nanoparticles/polydopamine (PDA/AuNPs/PDA) around the Ω-shaped fiber-optic (Ω-FO). The short-wavelength peak of the sandwich layer with strong resonance exhibited a high refractive index sensitivity (RIS). The modification with the T-shaped aptamer endowed FO-LSPR with unique characteristics of time-dependent sensitivity enhancement behavior for a sensitive cytosensor with the lowest limit of detection (LOD) of 13 cells/mL. The long-wavelength resonance peak in the sandwich layer appears in the near-infrared region. Hence, the rate of increased localized temperature of FO-LSPR was 160 and 30-fold higher than that of the bare and PDA-coated FO, indicating strong photothermal conversion efficiency. After considering the localized temperature distribution around the FO under the flow environment, the FO-LSPR-enabled aptasensor killed 77.6% of cancer cells in simulated blood circulation after five cycles of COCP. The FO-LSPR-enabled aptasensor improved the efficiency of the cytosensor and PTT to effectively kill cancer cells, showing significant potential for application in inhibiting cancer metastasis.
Collapse
Affiliation(s)
- Xinyu Kong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Xingliang He
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Fan He
- School of Physics, Northwest University, Xi'an 710069, Shaanxi, China
| | - Yu Li
- School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Yanting Feng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Ji-Wei Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
26
|
Li S, Jia C, Han H, Yang Y, Xiaowen Y, Chen Z. Characterization and biocompatibility of a bilayer PEEK-based scaffold for guiding bone regeneration. BMC Oral Health 2024; 24:1138. [PMID: 39334225 PMCID: PMC11438270 DOI: 10.1186/s12903-024-04909-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Polyetheretherketone (PEEK) is well known for its excellent physical-chemical properties and biosafety. The study aimed to open up a new method for clinical application of PEEK to reconstruct large-scale bone defects. METHODS A bilayer scaffold for bone regeneration was prepared by combining a sulfonated PEEK barrier framework (SPEEK) with a hydrogel layer loaded with aspirin (ASA) and nano-hydroxyapatite (nHAP) by the wet-bonding of Polydopamine (PDA). RESULTS The hydrogel was successfully adhered to the surface of SPEEK, resulting in significant changes including the introduction of bioactive groups, improved hydrophilicity, and altered surface morphology. Subsequent tests confirmed that the bilayer scaffold exhibited enhanced compression resistance and mechanical compatibility with bone compared to a single hydrogel scaffold. Additionally, the bilayer scaffold showed stable and reliable bonding properties, as well as excellent biosafety verified by cell proliferation and viability experiments using mouse embryo osteoblast precursor (MC3T3-E1) cells. CONCLUSION The bilayer bone regeneration scaffold prepared in this study showed promising potential in clinical application for bone regeneration.
Collapse
Affiliation(s)
- Shaoping Li
- Key Laboratory of Stomatology in Hebei Province, Hospital of Stomatology Hebei Medical University, Shijiazhuang, China
| | - Cancan Jia
- Key Laboratory of Stomatology in Hebei Province, Hospital of Stomatology Hebei Medical University, Shijiazhuang, China
| | - Haitong Han
- Key Laboratory of Stomatology in Hebei Province, Hospital of Stomatology Hebei Medical University, Shijiazhuang, China
| | - Yuqing Yang
- Key Laboratory of Stomatology in Hebei Province, Hospital of Stomatology Hebei Medical University, Shijiazhuang, China
| | - Yundeng Xiaowen
- Key Laboratory of Stomatology in Hebei Province, Hospital of Stomatology Hebei Medical University, Shijiazhuang, China
| | - Zhiyu Chen
- College of Stomatology, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
27
|
Lai Y, Jiang M, Zhang X, Zhang L, Chen Z, Du Y, Wang S, Zhao J, Li Z. Novel endoscopic tattooing dye based on polyvinylpyrrolidone-modified polydopamine nanoparticles for labeling gastrointestinal lesions. J Mater Chem B 2024; 12:9345-9356. [PMID: 39171740 DOI: 10.1039/d4tb01298d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Endoscopic tattooing is a localization technique that is particularly important for identifying gastrointestinal lesions for follow-up and subsequent treatment. However, the dyes currently used for endoscopic tattooing have a short tattooing time, high cost, and many side effects. Herein, we designed and prepared polydopamine (PDA) nanoparticles modified with polyvinylpyrrolidone (PVP) for endoscopic tattooing using a physical encapsulation method. PDA has good stability and high adhesion properties, and its stability was further enhanced after PVP modification. In vitro and in vivo tests demonstrated that PDA/PVP has good biosafety. Endoscopic tattooing with PDA/PVP in a porcine model showed that the dye could be stabilized in the digestive tract for at least 60 days. Furthermore, our research results demonstrated that PDA/PVP has excellent reactive oxygen species (ROS) and reactive nitrogen species (RNS) scavenging ability and can promote wound healing. Overall, the strategy proposed herein will lead to the use of an innovative dye for endoscopic tattooing of gastrointestinal lesions.
Collapse
Affiliation(s)
- Yongkang Lai
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
- Department of Gastroenterology, Ganzhou People's Hospital, Jiangxi Medical College, Nanchang University, Ganzhou 341000, China
| | - Mengni Jiang
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Xinyuan Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Liang Zhang
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Zheng Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yiqi Du
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital; National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, China.
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Jiulong Zhao
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Zhaoshen Li
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
28
|
Wu Z, Mo L, Wang Z, Song L, Kobatake E, Ito Y, Wang Y, Zhang P. Biointerface engineering through amalgamation of gene technology and site-specific growth factor conjugation for efficient osteodifferentiation. Biotechnol Bioeng 2024. [PMID: 39300684 DOI: 10.1002/bit.28852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/21/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
The development of bone implants through bioinspired immobilization of growth factors remains a key issue in the generation of biological interfaces, especially in enhancing osteodifferentiation ability. In this study, we developed a strategy for surface functionalization of poly(lactide-glycolide) (PLGA) and hydroxyapatite (HA) composite substrates through site-specific conjugation of bone morphogenetic protein 2 containing 3,4-hydroxyphenalyalanine (DOPA-BMP2) mediated by tyrosinase and sortase A (SrtA). Firstly, the growth factor BMP2-LPETG containing LPETG motif was successfully expressed in Escherichia coli through recombinant DNA technology. The excellent binding affinity of binding growth factor (DOPA-BMP2) was achieved by converting the tyrosine residue (Y) of YKYKY-GGG peptide into DOPA (X) by tyrosinase, which bound to the substrates. Then its GGG motif was specifically bound to the end of BMP2-LPETG mediated by SrtA. Therefore, the generated bioactive DOPA-BMP2/PLGA/HA substrates significantly promoted the osteogenic differentiation of MC3T3-E1 cells. Thanks to this microbial-assisted engineering approach, our work presents a facile and highly site-specific strategy to engineer biomimetic materials for orthopedics and dentistry by effectively delivering growth factors, peptides, and other biomacromolecules.
Collapse
Affiliation(s)
- Zhenxu Wu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
| | - Li Mo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
| | - Liangsong Song
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Eiry Kobatake
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8502, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan
| | - Yi Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
| |
Collapse
|
29
|
Sheng W, Li A, Yue Y, Wang Q, Yu F, Weng J, Lin J, Chen Y, Zeng H, Wang D, Yang J, Liu P. A Novel Curcumin-Loaded Nanoplatform Alleviates Osteoarthritis by Inhibiting Chondrocyte Ferroptosis. Macromol Rapid Commun 2024:e2400495. [PMID: 39292816 DOI: 10.1002/marc.202400495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/22/2024] [Indexed: 09/20/2024]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by the degradation of articular cartilage. Recent studies have demonstrated that chondrocyte ferroptosis plays a crucial role in the progression of OA. Consequently, developing nanomedicines that suppress chondrocyte ferroptosis is a promising strategy for OA treatment. However, there are few reports on nanomedicines specifically targeting chondrocyte ferroptosis for OA therapy. In this study, Curcumin-loaded nanoparticles (Cur-NPs) are fabricated to suppress chondrocyte ferroptosis by regulating reactive oxygen species (ROS), ferrous ion (Fe2⁺), and Acyl-CoA Synthetase Long-Chain Family Member 4 (ACSL4) levels of chondrocyte. This is achieved by combining the functions of curcumin and an amphiphilic block copolymer with ROS scavenging and iron-chelating properties. The in vitro anti-ferroptotic effects of Cur-NPs are thoroughly investigated. The findings indicate that Cur-NPs decrease the expression of ferroptosis markers such as ROS, Fe2⁺, and ACSL4, while protecting the mitochondrial membrane potential of chondrocytes. Additionally, Cur-NPs attenuated lipid peroxidation in chondrocytes. Furthermore, Cur-NPs significantly reduced the expression of the catabolic factor Matrix Metallopeptidase 13 (MMP13) and increased the expression of the anabolic factor Collagen type II (Col II) in vitro. This study demonstrates that Cur-NPs exhibit enhanced chondroprotective effects through anti-ferroptotic actions, presenting a promising approach for inhibiting chondrocyte ferroptosis using bioactive nanomaterials in OA treatment.
Collapse
Affiliation(s)
- Weibei Sheng
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Shenzhen Key Laboratory of Orthopedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Aikang Li
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Shenzhen Key Laboratory of Orthopedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Yaohang Yue
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Shenzhen Key Laboratory of Orthopedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Qichang Wang
- Shenzhen Xinhua Hospital, Shenzhen, 518028, China
| | - Fei Yu
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Shenzhen Key Laboratory of Orthopedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Jian Weng
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Shenzhen Key Laboratory of Orthopedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Jianjing Lin
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518035, China
| | - Yingqi Chen
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Shenzhen Key Laboratory of Orthopedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Hui Zeng
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Deli Wang
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Shenzhen Key Laboratory of Orthopedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Jun Yang
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Peng Liu
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Shenzhen Key Laboratory of Orthopedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| |
Collapse
|
30
|
Jackulin F, Senthil Kumar P, Boobalan C, Rangasamy G. Degradation of Remazol Brilliant Blue Dye Using Persulfate Activated by Fe 3O 4@PDA Nanoparticles: Kinetic Studies, Radical Determination, and Phytotoxicity Test. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39268767 DOI: 10.1021/acs.langmuir.4c02476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
In the current research work, an advanced oxidation process was applied to the degradation of Remazol brilliant blue dye (RBBD) using a sulfate radical. Fe3O4@PDA nanoparticles were synthesized using coprecipitation and self-polymerization techniques. Nanoparticle formation was confirmed by XRD, FTIR, FESEM-EDX, VSM, and XPS analyses. The crystalline nature of the material showed that it possessed a spherical shape with an Ms value of 58 emu/g. The elemental composition and binding energy from EDX and XPS analyses showed successful doping. Batch studies were conducted, and experimental studies showed that the optimum condition for degradation of 90 ppm of RBBD was 0.3 g/L of nanomaterial, 20 mM PS at pH 3, achieving 91.35% degradation. The kinetic model suitable for this study was a pseudo-second-order kinetic model with R2 value >0.9. From the radical identification tests, sulfate radicals played a dominant role in degradation, and to confirm it, EPR analysis was conducted using DMPO. A stability test was performed for 5 cycles in which the degradation efficiency was reduced appreciably. From XPS, XRD, and EDX analyses, the elemental composition and oxidation state of the recycled material used in the fifth cycle showed variation in a negligible manner when compared to the fresh catalyst used in the first cycle of the degradation experiment. Intermediate identification was done by GCMS analysis, and it disclosed the formation of aliphatic products from the degradation of RBBD with less toxicity. Phytotoxicity analysis was conducted using green grams for 10 days, and it proved that intermediates formed in the solution were nontoxic to the plants. Additionally, TOC and COD removal % were attained to be 80.021 and 80.903%, respectively, which confirm the mineralization efficacy. Hence, this research work proved the efficient performance of the catalyst for RBBD degradation with less formation of intermediates, and therefore, this technique is most suitable for the reduction of water pollution.
Collapse
Affiliation(s)
- Fetcia Jackulin
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India
- Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India
| | - Ponnusamy Senthil Kumar
- Centre for Pollution Control and Environmental Engineering, School of Engineering and Technology, Pondicherry University, Kalapet, Puducherry 605014, India
| | - Chitra Boobalan
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India
- Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India
| | - Gayathri Rangasamy
- Department of Civil Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore 641021, Tamil Nadu, India
| |
Collapse
|
31
|
Qiu W, Lin X, Nagl S. In Situ Live Monitoring of Extracellular Acidosis near Cancer Cells Using Digital Microfluidics with an Integrated Optical pH Sensor Film. Anal Chem 2024; 96:14456-14463. [PMID: 39171737 DOI: 10.1021/acs.analchem.4c02319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
We demonstrate the live monitoring of extracellular acidification on digital microfluidics using a chip-integrated fluorescent pH sensor film. The metabolism of various types of live cells including cancer and healthy cells were investigated through recording the extracellular pH (pHe) change. An optical pH sensor array was integrated onto a digital microfluidic (DMF) interface with a diameter of 2 mm per pH-sensing spot. Miniaturized, label-free, and noninvasive monitoring of extracellular acidosis on DMF was realized within a pH range of 5.0-8.0 with good sensitivity and rapid response. The pH sensitive probe fluorescein-5-isothiocyanate was covalently bound to poly-2-hydroxyethyl methacrylate and immobilized on a circularly exposed indium tin oxide interface on the DMF top plate. The surface of the fabricated pH sensor spots was modified with polydopamine via self-polymerization. Direct cell attachment on the sensor surfaces enabled rapid pH detection near the cell membranes. Automatic medium exchange on cell-attached pH sensing sites was achieved though solution passive dispensing on DMF. The developed DMF platform was used to monitor the pHe decrease during MCF-7 and A549 cancer cell proliferation due to abnormal glycolysis metabolism. A rapid pH decrease at the pH sensing area in the presence of cancer cells could be detected within 2 min after fresh medium exchange, while no obvious pHe change was observed with HUVEC healthy cells. Real-time detection of cell acidification and cellular response to different metabolic conditions such as higher glucose levels or administered anticancer drugs was possible.
Collapse
Affiliation(s)
- Wenting Qiu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Xuyan Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Stefan Nagl
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
32
|
Eom T, Ozlu B, Ivanová L, Lee S, Lee H, Krajčovič J, Shim BS. Multifunctional Natural and Synthetic Melanin for Bioelectronic Applications: A Review. Biomacromolecules 2024; 25:5489-5511. [PMID: 39194016 DOI: 10.1021/acs.biomac.4c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Emerging material interest in bioelectronic applications has highlighted natural melanin and its derivatives as promising alternatives to conventional synthetic conductors. These materials, traditionally noted for their adhesive, antioxidant, biocompatible, and biodegradable properties, have barely been used as conductors due to their extremely low electrical activities. However, recent studies have demonstrated good conductive properties in melanin materials that promote electronic-ionic hybrid charge transfer, attributed to the formation of an extended conjugated backbone. This review examines the multifunctional properties of melanin materials, focusing on their chemical and electrochemical synthesis and their resulting structure-property-function relationship. The wide range of bioelectronic applications will also be presented to highlight their importance and potential to expand into new design concepts for high-performance electronic functional materials. The review concludes by addressing the current challenges in utilizing melanin for biodegradable bioelectronics, providing a perspective on future developments.
Collapse
Affiliation(s)
- Taesik Eom
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- Department of Chemical Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- KIURI Center for Hydrogen Based Next Generation Mechanical System, Inha University, 36 Gaetbeol-ro, Yeonsu-gu, Incheon 21999, South Korea
| | - Busra Ozlu
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- Department of Chemical Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
| | - Lucia Ivanová
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, CZ-612 00 Brno, Czech Republic
| | - Seunghyeon Lee
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- Department of Chemical Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
| | - HyeonJeong Lee
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
| | - Jozef Krajčovič
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, CZ-612 00 Brno, Czech Republic
| | - Bong Sup Shim
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- Department of Chemical Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
| |
Collapse
|
33
|
Kong W, Huang C, Zhou L, Gao J, Ma L, Liu Y, Jiang Y. Modularization of Immobilized Multienzyme Cascades for Continuous-Flow Enantioselective C-H Amination. Angew Chem Int Ed Engl 2024; 63:e202407778. [PMID: 38871651 DOI: 10.1002/anie.202407778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
Multienzyme cascades (MECs) have gained much attention in synthetic chemistry but remain far from being a reliable synthetic tool. Here we report a four-enzyme cascade comprising a cofactor-independent and a cofactor self-sustaining bienzymatic modules for the enantioselective benzylic C-H amination of arylalkanes, a challenging transformation from bulk chemicals to high value-added chiral amines. The two modules were subsequently optimized by enzyme co-immobilization with microenvironmental tuning, and finally integrated in a gas-liquid segmented flow system, resulting in simultaneous improvements in enzyme performance, mass transfer, system compatibility, and productivity. The flow system enabled continuous C-H amination of arylalkanes (up to 100 mM) utilizing the sole cofactor NADH (0.5 mM) in >90 % conversion, achieving a high space-time yield (STY) of 3.6 g ⋅ L-1 ⋅ h-1, which is a 90-fold increase over the highest value previously reported.
Collapse
Affiliation(s)
- Weixi Kong
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrong Road, Hongqiao District, 300130, Tianjin, China
| | - Chen Huang
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrong Road, Hongqiao District, 300130, Tianjin, China
| | - Liya Zhou
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrong Road, Hongqiao District, 300130, Tianjin, China
| | - Jing Gao
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrong Road, Hongqiao District, 300130, Tianjin, China
| | - Li Ma
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrong Road, Hongqiao District, 300130, Tianjin, China
| | - Yunting Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrong Road, Hongqiao District, 300130, Tianjin, China
| | - Yanjun Jiang
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrong Road, Hongqiao District, 300130, Tianjin, China
| |
Collapse
|
34
|
Wang S, Su Y, Li J, Wang T, Pan H, Pan W. Membrane-camouflaged biomimetic nanoplatform with arsenic complex for synergistic reinforcement of liver cancer therapy. Nanomedicine (Lond) 2024; 19:2187-2210. [PMID: 39229815 PMCID: PMC11485747 DOI: 10.1080/17435889.2024.2393076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024] Open
Abstract
Aim: Arsenic has excellent anti-advanced liver cancer effects through a variety of pathways, but its severe systemic toxicity forces the need for a safe and effective delivery strategy.Methods: Based on the chelating metal ion properties of polydopamine (PDA), arsenic was immobilized on an organic carrier, and a M1-like macrophage cell membrane (MM)-camouflaged manganese-arsenic complex mesoporous polydopamine (MnAsOx@MP@M) nanoplatform was successfully constructed. MnAsOx@MP@M was evaluated at the cellular level for tumor inhibition and tumor localization, and in vivo for its anti-liver cancer effect in a Hepa1-6 tumor-bearing mouse model.Results: The nanoplatform targeted the tumor site through the natural homing property of MM, completely degraded and released drugs to kill tumor cells in an acidic environment, while playing an immunomodulatory role in promoting tumor-associated macrophages (TAMs) repolarization.Conclusion: MnAsOx@MP@M has synergistically enhanced the targeted therapeutics against liver cancer via nanotechnology and immunotherapy, and it is expected to become a safe and multifunctional treatment platform in clinical oncology.
Collapse
Affiliation(s)
- Shu Wang
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yupei Su
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiayang Li
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Tianyi Wang
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hao Pan
- Liaoning University, Shenyang, 110036, China
- Key Laboratory of Key Technology Research & Evaluation of Chemical Drug Quality Control, Shenyang, Liaoning, China
| | - Weisan Pan
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
35
|
Tiwari G, Patil A, Sethi P, Agrawal A, Ansari VA, Posa MK, Aher VD. Design, optimization, and evaluation of methotrexate loaded and albumin coated polymeric nanoparticles. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2068-2089. [PMID: 38888441 DOI: 10.1080/09205063.2024.2366619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Methotrexate is a potent anticancer drug whose strong efflux is facilitated by the brain's efflux transporter. As an efflux transporter blocker, albumin increased the drug's concentration in the brain. Methotrexate-loaded nanoparticles were produced by evaporating the emulsification fluid. Improvements and analyses were made to the following aspects of the generated nanoparticles: size, polydispersity, zeta potential, entrapment efficiency, percentage yield, scanning electron microscopy, in vitro drug release studies, and sterilization. The particle size was determined to be in the nano range, and homogeneity of particle size was suggested by a low polydispersity index result. Particle diameters of 168 nm were observed in the F5 preparation, and zeta potential values of -1.5 mV suggested that the preparation produced adequate repulsive interactions between the nanoparticles. Albumin and dopamine HCl were employed to coat the methotrexate-loaded nanoparticles to guarantee that the brain received an adequate amount of them. The homogeneity of albumin coated nanoparticles was demonstrated by the low% PDI values of 0.129 and 0.122 for albumin coated nanoparticles (MNPs-Alb) and polymerized dopamine HCl and albumin coated nanoparticles (MNPs-PMD-Alb), respectively. After 48 h of incubation, the cell viability measured at the same drug concentration (5 mg) decreased for the F5, albumin coated nanoparticles, polymerized dopamine HCl coated nanoparticles, and polymerized dopamine HCl and albumin coated nanoparticles, respectively. Our primary findings demonstrate that the albumin nanoparticles containing methotrexate are designed to deliver the drug gradually. With minimal cytotoxicity, the intended preparation might give the brain an appropriate dosage of methotrexate.
Collapse
Affiliation(s)
- Gaurav Tiwari
- Department of Pharmacy, PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, U.P, India
| | - Anasuya Patil
- Department of Pharmaceutics, KLE College of Pharmacy, II Block Rajajinagar, Bengaluru, Karnataka, India
| | - Pranshul Sethi
- Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University affiliation, Gajraula, India
| | - Ankur Agrawal
- Department of Pharmacy, Jai Institute of Pharmaceutical Sciences and Research, Gwalior, M.P, India
| | - Vaseem A Ansari
- Department of Pharmacy, Faculty of Pharmacy, Integral University Lucknow, India
| | - Mahesh Kumar Posa
- Department of Pharmacology, School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - Vaibhav Dagaji Aher
- Department of Pharmaceutical Medicine, Maharashtra University of Health Sciences, Nashik, Maharashtra, India
| |
Collapse
|
36
|
Wang H, Hsu JC, Song W, Lan X, Cai W, Ni D. Nanorepair medicine for treatment of organ injury. Natl Sci Rev 2024; 11:nwae280. [PMID: 39257435 PMCID: PMC11384914 DOI: 10.1093/nsr/nwae280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/24/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024] Open
Abstract
Organ injuries, such as acute kidney injury, ischemic stroke, and spinal cord injury, often result in complications that can be life-threatening or even fatal. Recently, many nanomaterials have emerged as promising agents for repairing various organ injuries. In this review, we present the important developments in the field of nanomaterial-based repair medicine, herein referred to as 'nanorepair medicine'. We first introduce the disease characteristics associated with different types of organ injuries and highlight key examples of relevant nanorepair medicine. We then provide a summary of existing strategies in nanorepair medicine, including organ-targeting methodologies and potential countermeasures against exogenous and endogenous pathologic risk factors. Finally, we offer our perspectives on current challenges and future expectations for the advancement of nanomedicine designed for organ injury repair.
Collapse
Affiliation(s)
- Han Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jessica C Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Wenyu Song
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430073, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430073, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430073, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430073, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
37
|
Liu Y, Gao Z, Yu X, Lin W, Lian H, Meng Z. Recent Advances in the Fabrication and Performance Optimization of Polyvinyl Alcohol Based Vascular Grafts. Macromol Biosci 2024; 24:e2400093. [PMID: 38801024 DOI: 10.1002/mabi.202400093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/11/2024] [Indexed: 05/29/2024]
Abstract
Cardiovascular disease is one of the diseases with the highest morbidity and mortality rates worldwide, and coronary artery bypass grafting (CABG) is a fast and effective treatment. More researchers are investigating in artificial blood vessels due to the limitations of autologous blood vessels. Despite the availability of large-diameter vascular grafts (Ø > 6 mm) for clinical use, small-diameter vascular grafts (Ø < 6 mm) have been a challenge for researchers to overcome in recent years. Vascular grafts made of polyvinyl alcohol (PVA) and PVA-based composites have excellent biocompatibility and mechanical characteristics. In order to gain a clearer and more specific understanding of the progress in PVA vascular graft research, particularly regarding the preparation methods, principles, and functionality of PVA vascular graft, this article discusses the mechanical properties, biocompatibility, blood compatibility, and other properties of PVA vascular graft prepared or enhanced with different blends using various techniques that mimic natural blood vessels. The findings reveal the feasibility and promising potential of PVA or PVA-based composite materials as vascular grafts.
Collapse
Affiliation(s)
- Yixuan Liu
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zichun Gao
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xinrong Yu
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wenjiao Lin
- Qingmao Technology (Shenzhen) Co., LTD, Shenzhen, China
| | - He Lian
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhaoxu Meng
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
38
|
Krysztofik A, Warżajtis M, Pochylski M, Boecker M, Yu J, Marchesi D'Alvise T, Puła P, Majewski PW, Synatschke CV, Weil T, Graczykowski B. Multi-responsive poly-catecholamine nanomembranes. NANOSCALE 2024; 16:16227-16237. [PMID: 39140363 DOI: 10.1039/d4nr01050g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The contraction of nanomaterials triggered by stimuli can be harnessed for micro- and nanoscale energy harvesting, sensing, and artificial muscles toward manipulation and directional motion. The search for these materials is dictated by optimizing several factors, such as stimulus type, conversion efficiency, kinetics and dynamics, mechanical strength, compatibility with other materials, production cost and environmental impact. Here, we report the results of studies on bio-inspired nanomembranes made of poly-catecholamines such as polydopamine, polynorepinephrine, and polydextrodopa. Our findings reveal robust mechanical features and remarkable multi-responsive properties of these materials. In particular, their immediate contraction can be triggered globally by atmospheric moisture reduction and temperature rise and locally by laser or white light irradiation. For each scenario, the process is fully reversible, i.e., membranes spontaneously expand upon removing the stimulus. Our results unveil the universal multi-responsive nature of the considered polycatecholamine membranes, albeit with distinct differences in their mechanical features and response times to light stimulus. We attribute the light-triggered contraction to photothermal heating, leading to water desorption and subsequent contraction of the membranes. The combination of multi-responsiveness, mechanical robustness, remote control via light, low-cost and large-scale fabrication, biocompatibility, and low-environment impact makes polycatecholamine materials promising candidates for advancing technologies.
Collapse
Affiliation(s)
- Adam Krysztofik
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland.
| | - Marta Warżajtis
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland.
| | - Mikołaj Pochylski
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland.
| | - Marcel Boecker
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Jiyao Yu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Przemysław Puła
- Faculty of Chemistry, University of Warsaw, Pasteur 1, 02-093 Warsaw, Poland
| | - Paweł W Majewski
- Faculty of Chemistry, University of Warsaw, Pasteur 1, 02-093 Warsaw, Poland
| | | | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Bartlomiej Graczykowski
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland.
| |
Collapse
|
39
|
Ni P, Chen Y, Wan K, Cheng Y, Fang Y, Weng Y, Liu H. Mussel Foot Protein-Inspired Adhesive Tapes with Tunable Underwater Adhesion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45550-45562. [PMID: 39145483 DOI: 10.1021/acsami.4c09709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Instant and strong adhesion to underwater adherends is a big challenge due to the continuous interference of water. Mussel foot protein-bioinspired catechol-based adhesives have garnered great interest in addressing this issue. Herein, a novel self-made catecholic compound with a long aliphatic chain was utilized to prepare thin (∼0.07 mm) and optically transparent (>80%) wet/underwater adhesive tapes by UV-initiated polymerization. Its adhesion activity was water-triggered, fast (<1 min), and strong (adhesion strength to porcine skin: ∼1.99 MPa; interfacial toughness: ∼610 J/m2, burst pressure: ∼1950 mmHg). The effect of the catechol/phenol group and positively charged moiety on the wet/underwater adhesion to abiotic/biotic substrates was investigated. On the wet/underwater adherends, the tape with catechol groups presented much higher interfacial toughness, adhesion strength, and burst pressure than the analogous tape with phenol groups. The tape with both the catechol group and cationic polyelectrolyte chitosan had a more impressive improvement in its adhesion to wet/underwater biological tissues than to abiotic substrates. Therefore, catechol and a positive moiety in the tape would synergistically enhance its wet/underwater adhesion to various substrates, especially to biological tissues. The instant, strong, and noncytotoxic tape may provide applications in underwater adhesion for sealing and wound closure.
Collapse
Affiliation(s)
- Peng Ni
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Yiming Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Kaixuan Wan
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Yishi Cheng
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Yan Fang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Yunxiang Weng
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Haiqing Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Fuzhou, Fujian 350007, China
- Engineering Research Center of Industrial Biocatalysis, Fuzhou, Fujian 350007, China
| |
Collapse
|
40
|
Ünal N, Kiymaci ME, Savluk M, Erdogan H, Seker E. Determination of antibacterial and anti-biofilm activities of Terpinen-4-ol loaded polydopamine nanoparticles against Staphylococcus aureus isolates from cows with subclinical mastitis. Vet Res Commun 2024:10.1007/s11259-024-10514-w. [PMID: 39196492 DOI: 10.1007/s11259-024-10514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Mastitis in cows is one of the most important diseases that give rise to economic losses in dairy farms. Increasing antimicrobial resistance in Staphylococcus aureus, one of the most common causes of mastitis, is a significant health problem. Due to the problems encountered in treating infections caused by resistant strains, developing alternative treatment methods, such as Nanomaterial systems and natural agents, are important. The essential oil of Melaleuca alternifolia is used as an antibacterial and the primary active component is terpinen-4-ol. This study aimed to investigate the antibacterial and anti-biofilm activity of terpinen-4-ol and terpinen-4-ol loaded polydopamine (T-PDA) nanoparticles against S. aureus isolates, which were resistant to at least one group of antibiotics isolated from milk samples of subclinical mastitis cows. The S. aureus strains were identified by biochemical tests and verified with the API Staph kit. The antibiotic susceptibility of the isolates was determined by the disc diffusion method. The broth microdilution method determined the antimicrobial activities of the terpinen-4-ol and T-PDA nanoparticles, and anti-biofilm activities were assessed using the modified crystal violet method. All of the isolates were resistant to benzylpenicillin and susceptible to trimethoprim/sulfamethoxazole. Multi-antibiotic resistance was detected in the 11 S. aureus isolates used in this study. For the terpinen-4-ol and T-PDA nanoparticles, MIC values were determined in the range of 0.125-0.5% (µL/mL) and 0.125-0.25% (µL/mL), respectively. None of the isolates formed biofilms. As a result, it was found that the antibacterial efficacy of the T- PDA nanoparticles was higher against nine of the S. aureus isolates than against the terpinen-4-ol.
Collapse
Affiliation(s)
- Nilgün Ünal
- Department of Pharmaceutical Microbiology, Gülhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey.
| | - Merve Eylul Kiymaci
- Department of Pharmaceutical Microbiology, Gülhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| | - Merve Savluk
- Department of Pharmaceutical Microbiology, Gülhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| | - Hakan Erdogan
- Department of Analytical Chemistry, Gülhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| | - Esra Seker
- Department of Microbiology, Faculty of Veterinary Medicine, University of Afyon Kocatepe, Afyon, Turkey
| |
Collapse
|
41
|
Zhang M, Mi M, Hu Z, Li L, Chen Z, Gao X, Liu D, Xu B, Liu Y. Polydopamine-Based Biomaterials in Orthopedic Therapeutics: Properties, Applications, and Future Perspectives. Drug Des Devel Ther 2024; 18:3765-3790. [PMID: 39219693 PMCID: PMC11363944 DOI: 10.2147/dddt.s473007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Polydopamine is a versatile and modifiable polymer, known for its excellent biocompatibility and adhesiveness. It can also be engineered into a variety of nanoparticles and biomaterials for drug delivery, functional modification, making it an excellent choice to enhance the prevention and treatment of orthopedic diseases. Currently, the application of polydopamine biomaterials in orthopedic disease prevention and treatment is in its early stages, despite some initial achievements. This article aims to review these applications to encourage further development of polydopamine for orthopedic therapeutic needs. We detail the properties of polydopamine and its biomaterial types, highlighting its superior performance in functional modification on nanoparticles and materials. Additionally, we also explore the challenges and future prospects in developing optimal polydopamine biomaterials for clinical use in orthopedic disease prevention and treatment.
Collapse
Affiliation(s)
- Min Zhang
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Man Mi
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Zilong Hu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Lixian Li
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Zhiping Chen
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Xiang Gao
- Stem Cell Research and Cellular Therapy Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
| | - Di Liu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Bilian Xu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Yanzhi Liu
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| |
Collapse
|
42
|
Wu D, Chen M, Zheng N, Lu Y, Wang X, Jiang C, Xu H. The efficacy and safety of pH-responsive and photothermal-sensitive multifunctional nanoparticles loaded with cryptotanshinone for the treatment of gastric cancer. Mol Carcinog 2024. [PMID: 39185663 DOI: 10.1002/mc.23814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024]
Abstract
A multifunctional polydopamine/mesoporous silica nanoparticles loaded cryptotanshinone (PDA/MSN@CTS) was synthesized and subjected to investigating its physicochemical properties and anti-gastric cancer (GC) effects. Utilizing network pharmacology and molecular docking techniques, CTS was identified as our final research target. The structural morphology and physicochemical properties of PDA/MSN@CTS were examined. Near-infrared (NIR) laser was employed to evaluate the photothermal properties of the PDA/MSN@CTS, along with pH-responsive and NIR-triggered release assessments. In vitro experiments evaluated the impact of PDA/MSN@CTS on the malignant behavior of AGS gastric cells. A subcutaneous tumor model was further established to evaluate the in vivo safety of PDA/MSN@CTS. Furthermore, the in vivo photothermal efficacy of PDA/MSN@CTS, in addition to its combined effect with photothermal therapy (PTT), was investigated. Uniform and stable PDA/MSN@CTS had been successfully synthesized and demonstrated efficient release under tumor environment and NIR irradiation. Upon increasing NIR laser conditions, in vivo cytotoxicity, apoptosis rate, reactive oxygen species scavenging ability, and suppression of migration and invasion of AGS cells by PDA/MSN@CTS were significantly enhanced. In vivo assessments revealed excellent blood compatibility and biosafety of PDA/MSN@CTS, alongside robust tumor tissue targeting. Combining nanoparticles with PTT facilitated the anti-GC effects of PDA/MSN@CTS. Compared to free drugs, PDA/MSN@CTS exhibits higher selectivity towards cancer cells, demonstrating effective anticancer activity and biocompatibility both in vitro and in vivo. Furthermore, our nanomaterial possesses excellent photothermal properties, and under NIR conditions, PDA/MSN@CTS exhibits synergistic therapeutic effects.
Collapse
Affiliation(s)
- Dan Wu
- Department of Gastrointestinal Surgery, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - MingHang Chen
- College of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Nan Zheng
- College of Pharmacy, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Ying Lu
- College of Pharmacy, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Xiang Wang
- College of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Chuan Jiang
- Department of Gastrointestinal Surgery, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - HongTao Xu
- Department of Gastrointestinal Surgery, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| |
Collapse
|
43
|
Jiang C, Zhang X, Zhang X, Li X, Xu S, Li Y. Integrating Bioinspired Natural Adhesion Mechanisms into Modified Polyacrylate Latex Pressure-Sensitive Adhesives. Polymers (Basel) 2024; 16:2404. [PMID: 39274038 PMCID: PMC11397013 DOI: 10.3390/polym16172404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
For polyacrylate latex pressure-sensitive adhesives (PSAs), high peel strength is of crucial significance. It is not only a key factor for ensuring the long-lasting and effective adhesive force of polyacrylate latex PSAs but also can significantly expand their application scope in many vital fields, such as packaging, electronics, and medical high-performance composite materials. High peel strength can guarantee that the products maintain stable and reliable adhesive performance under complex and variable environmental conditions. However, at present, the peel strength capacity of polyacrylate latex PSAs is conspicuously insufficient, making it difficult to fully meet the urgent market demand for high peel strength, and severely restricting their application in many cutting-edge fields. Therefore, based on previous experimental studies, and deeply inspired by the adhesion mechanism of natural marine mussels, in this study, a traditional polyacrylate latex PSA was ingeniously graft-modified with 3,4-dihydroxybenzaldehyde (DHBA) through the method of monomer-starved seeded semi-continuous emulsion polymerization, successfully synthesizing novel high-peel-strength polyacrylate latex pressure-sensitive adhesives (HPSAs) with outstanding strong adhesion properties, and the influence of DHBA content on the properties of the HPSAs was comprehensively studied. The research results indicated that the properties of the modified HPSAs were comprehensively enhanced. Regarding the water resistance of the adhesive film, the minimum water absorption rate was 4.33%. In terms of the heat resistance of the adhesive tape, it could withstand heat at 90 °C for 1 h without leaving residue upon tape peeling. Notably, the adhesive properties were significantly improved, and when the DHBA content reached 4.0%, the loop tack and 180° peel strength of HPSA4 significantly increased to 5.75 N and 825.4 gf/25 mm, respectively, which were 2.5 times and 2 times those of the unmodified PSA, respectively. Such superior adhesive performance of HPSAs, on the one hand, should be attributed to the introduction of the bonding functional monomer DHBA with a rich polyphenol structure; on the other hand, the acetal structure formed by the grafting reaction of DHBA with the PSA effectively enhanced the spatial network and crosslink density of the HPSAs. In summary, in this study, the natural biological adhesion phenomenon was ingeniously utilized to increase the peel strength of pressure-sensitive adhesives, providing a highly forward-looking and feasible direct strategy for the development of environmentally friendly polyacrylate latex pressure-sensitive adhesives.
Collapse
Affiliation(s)
- Chunyuan Jiang
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
- College of Materials Science and Engineering, Linyi University, Linyi 276000, China
| | - Xinrui Zhang
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
- College of Materials Science and Engineering, Linyi University, Linyi 276000, China
| | - Xinyue Zhang
- College of Materials Science and Engineering, Linyi University, Linyi 276000, China
| | - Xingjian Li
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
- College of Materials Science and Engineering, Linyi University, Linyi 276000, China
| | - Shoufang Xu
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
- College of Materials Science and Engineering, Linyi University, Linyi 276000, China
| | - Yinwen Li
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
- College of Materials Science and Engineering, Linyi University, Linyi 276000, China
| |
Collapse
|
44
|
Wang R, Du Y, Yan Y, Yan S, Zou Z. Dopamine-Carbonized Coating PtCo Catalyst with Enhanced Durability toward the Oxygen Reduction Reaction. J Phys Chem Lett 2024; 15:8459-8466. [PMID: 39121509 DOI: 10.1021/acs.jpclett.4c01927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Stability is the main challenge for the application of PtCo catalysts because Co tends to leach during the electrochemical reaction. Herein, we immerse and adsorb dopamine to densely coat Pt0.8Co0.2 particles and subsequently thermally carbonize the coating into few-layer nitrogen-doped graphene to produce Pt0.8Co0.2@NC. This coating effectively hinders direct contact between Pt0.8Co0.2 particles and the electrolyte, thereby enhancing the stability of the catalyst by preventing Ostwald ripening and suppressing competitive adsorption of toxic species, while also bolstering its antipoisoning ability. Experimental results indicate that the thin coating does not compromise the oxygen reduction reaction activity of the catalyst, showcasing a half-wave potential of 0.81 V in alkaline electrolytes. Spectroscopic results suggest that a strong bonding interaction between Pt and the pyridinic N of N-doped graphene contributes to the generation of a dense coating. The coating layer does not affect the four-electron reaction mechanism of the Pt0.8Co0.2 alloy, and the coordinatively unsaturated carbon atoms on Pt0.8Co0.2@NC serve as active oxygen reduction reaction centers.
Collapse
Affiliation(s)
- Ran Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
| | - Yu Du
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
| | - Yuandong Yan
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
| | - Shicheng Yan
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
| | - Zhigang Zou
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
| |
Collapse
|
45
|
Menichetti A, Mordini D, Montalti M. Melanin as a Photothermal Agent in Antimicrobial Systems. Int J Mol Sci 2024; 25:8975. [PMID: 39201661 PMCID: PMC11354747 DOI: 10.3390/ijms25168975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
Bacterial infection is one of the most problematic issues for human health and the resistance of bacteria to traditional antibiotics is a matter of huge concern. Therefore, research is focusing on the development of new strategies to efficiently kill these microorganisms. Recently, melanin is starting to be investigated for this purpose. Indeed, this very versatile material presents outstanding photothermal properties, already studied for photothermal therapy, which can be very useful for the light-induced eradication of bacteria. In this review, we present antibacterial melanin applications based on the photothermal effect, focusing both on the single action of melanin and on its combination with other antibacterial systems. Melanin, also thanks to its biocompatibility and ease of functionalization, has been demonstrated to be easily applicable as an antimicrobial agent, especially for the treatment of local infections.
Collapse
Affiliation(s)
- Arianna Menichetti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.)
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, 47921 Rimini, Italy
| | - Dario Mordini
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.)
| | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.)
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, 47921 Rimini, Italy
| |
Collapse
|
46
|
Cui G, Guo X, Deng L. Preparation strategies of mussel-inspired chitosan-based biomaterials for hemostasis. Front Pharmacol 2024; 15:1439036. [PMID: 39221147 PMCID: PMC11363193 DOI: 10.3389/fphar.2024.1439036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024] Open
Abstract
Chitosan (CS) has been extensively studied in wound care for its intrinsic hemostatic and antibacterial properties. However, CS has limiting hemostasis applications on account of its drawbacks such as poor adhesion in humid environments and water solubility at neutral pH. CS-based biomaterials, inspired by mussel-adhesive proteins, serve as a suggested platform by biomedical science. The reports show that the mussel-inspired CS-based hemostatic structure has negligible toxicity and excellent adhesiveness. Biomedicine has witnessed significant progress in the development of these hemostatic materials. This review summarizes the methods for the modification of CS by mussel-inspired chemistry. Moreover, the general method for preparation of mussel-inspired CS-based biomaterials is briefly discussed in this review. This work is expected to give a better understanding of opportunities and challenges of the mussel-inspired strategy for the functionalization of CS-based biomaterials in hemostasis and wound healing. This review is hoped to provide an important perspective on the preparation of mussel-inspired CS-based hemostatic materials.
Collapse
Affiliation(s)
- Guihua Cui
- Department of Chemistry, Jilin Medical University, Jilin, China
| | - Xiaoyu Guo
- Jilin Vocational College of Industry and Technology, Jilin, China
| | - Li Deng
- Department of Extracorporeal Life Support, The People’s Hospital of Gaozhou, Gaozhou, China
| |
Collapse
|
47
|
Yu W, Xu Y, Liu Z, Luo F, Sun X, Li X, Duan F, Liang X, Wu L, Xu T. Bioadhesive-Inspired Ionomer for Membrane Electrode Assembly Interface Reinforcement in Fuel Cells. J Am Chem Soc 2024; 146:22590-22599. [PMID: 39082835 DOI: 10.1021/jacs.4c06961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Anion exchange membrane fuel cells promise a sustainable and ecofriendly energy conversion pathway yet suffer from insufficient performance and durability. Drawing inspiration from mussel foot adhesion proteins for the first time, we herein demonstrate catechol-modified ionomers that synergistically reinforce the membrane electrode assembly interface and triple-phase boundary inside catalyst layers. The resulting ionomers present exceptional alkaline stability with only slight ionic conductivity declines after treatment in 2 M NaOH aqueous solution at 80 °C for 2500 h. Adopting catechol-modified ionomer as both anion exchange membrane and binder achieves a single-cell performance increase of 34%, and more importantly, endows fuel cell operation at a current density of 0.4 A cm-2 for over 300 h with negligible performance degradation (with a cell voltage decay rate of 0.03 mV h-1). Combining theoretical and experimental investigations, we reveal the molecular adhesion mechanism between the catechol-modified ionomer and Pt catalyst and illuminate the effect on the catalyst layer microstructure. Of fundamental interest, this bioadhesive-inspired strategy is critical to enabling knowledge-driven ionomer design and is promising for diverse membrane electrode assembly configurational applications.
Collapse
Affiliation(s)
- Weisheng Yu
- A Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yan Xu
- A Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Zhiru Liu
- A Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Fen Luo
- A Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Xu Sun
- A Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Xiaojiang Li
- A Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Fanglin Duan
- A Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Xian Liang
- A Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Applied Engineering Technology Research Center for Functional Membranes, Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China
- School of Chemistry and Material Engineering, Huainan Normal University, Huainan 232001, China
| | - Liang Wu
- A Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Tongwen Xu
- A Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Applied Engineering Technology Research Center for Functional Membranes, Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
48
|
Doronin IV, Zyablovsky AA, Andrianov ES, Kalmykov AS, Gritchenko AS, Khlebtsov BN, Wang SP, Kang B, Balykin VI, Melentiev PN. Quantum engineering of the radiative properties of a nanoscale mesoscopic system. NANOSCALE 2024; 16:14899-14910. [PMID: 39040019 DOI: 10.1039/d4nr01233j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Despite the recent advances in quantum technology, the problem of controlling the light emission properties of quantum emitters used in numerous applications remains: a large spectral width, low intensity, blinking, photodegradation, biocompatibility, etc. In this work, we present the theoretical and experimental investigation of quantum light sources - mesoscopic systems consisting of fluorescent molecules in a thin polydopamine layer coupled with metallic or dielectric nanoparticles. Polydopamines possess many attractive adhesive and optical properties that promise their use as host media for dye molecules. However, numerous attempts to incorporate fluorescent molecules into polydopamines have failed, as polydopamine has been shown to be a very efficient fluorescence quencher through Förster resonance energy transfer and/or photoinduced electron transfer. Using the system as an example, we demonstrate new insights into the interactions between molecules and electromagnetic fields by carefully shaping its energy levels through strong matter-wave coupling of molecules to metallic nanoparticles. We show that the strong coupling effectively suppresses the quenching of fluorescent molecules in polydopamine, opening new possibilities for imaging.
Collapse
Affiliation(s)
- I V Doronin
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - A A Zyablovsky
- Moscow Institute of Physics and Technology, Moscow, Russia
- Institute for Theoretical and Applied Electromagnetics, Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Moscow, Russia
| | - E S Andrianov
- Moscow Institute of Physics and Technology, Moscow, Russia
- Institute for Theoretical and Applied Electromagnetics, Moscow, Russia
| | - A S Kalmykov
- Institute of Spectroscopy RAS, Moscow, Troitsk 108840, Russia
| | - A S Gritchenko
- Institute of Spectroscopy RAS, Moscow, Troitsk 108840, Russia
| | - B N Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, Saratov, Russia
| | - S-P Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, P. R. China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, P. R. China
| | | | - Pavel N Melentiev
- Institute of Spectroscopy RAS, Moscow, Troitsk 108840, Russia
- National Research University, Moscow, Russia.
| |
Collapse
|
49
|
Fornal M, Krawczyńska A, Belcarz A. Comparison of the Impact of NaIO 4-Accelerated, Cu 2+/H 2O 2-Accelerated, and Novel Ion-Accelerated Methods of Poly(l-DOPA) Coating on Collagen-Sealed Vascular Prostheses: Strengths and Weaknesses. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40515-40530. [PMID: 39044622 PMCID: PMC11310904 DOI: 10.1021/acsami.4c05979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Sensitive biomaterials subjected to surface modification require delicate methods to preserve their structures and key properties. These include collagen-sealed polyester vascular prostheses. For their functionalization, coating with polycatecholamines (PCAs) can be used. PCAs change some important biological properties of biomaterials, e.g., hydrophilicity, bioactivity, antibacterial activity, and drug binding. The coating process can be stimulated by oxidants, organic solvents, or process conditions. However, these factors may change the properties of the PCA layer and the matrix itself. In this work, collagen-sealed vascular grafts were functionalized with a poly(l-DOPA) (PLD) layer using novel seawater-inspired ion combination as an accelerator, compared to the sodium periodate, Cu2+/H2O2 mixture, and accelerator-free reference methods. Then, poly(l-DOPA) was used as the interface for antibiotic binding. The coated prostheses were characterized (SEM, FIB-SEM, FTIR, UV/vis), and their important functional parameters (mechanical, antioxidant, hemolytic, and prothrombotic properties, bioactivity, stability in human blood and simulated body fluid (SBF), antibiotic binding, release, and antibacterial activity) were compared. It was found that although sodium periodate increased the strength and drug-binding capacity of the prosthesis, it also increased the blood hemolysis risk. Cu2+/H2O2 destabilized the mechanical properties of the coating and the graft. The seawater-inspired ion-accelerated method was efficient, stable, and matrix- and human blood-friendly, and it stimulated hydroxyapatite formation on the prosthesis surface. The results lead to the conclusion that selection of the PCA formation accelerator should be based on a careful analysis of the biological properties of medical devices. They also suggest that the ion-accelerated method of PLD coating on medical devices may be highly effective and safer than the oxidant-accelerated coating method.
Collapse
Affiliation(s)
- Michał Fornal
- Chair
and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Agnieszka Krawczyńska
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, 141 Wołoska, 02-507 Warsaw, Poland
| | - Anna Belcarz
- Chair
and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| |
Collapse
|
50
|
Wang X, Li Z, Wu X, Liu B, Tian T, Ding Y, Zhang H, Li Y, Liu Y, Dai C. Self-Floating Polydopamine/Polystyrene Composite Porous Structure via a NaCl Template Method for Solar-Driven Interfacial Water Evaporation. Polymers (Basel) 2024; 16:2231. [PMID: 39125258 PMCID: PMC11314940 DOI: 10.3390/polym16152231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Solar energy, as a clean and renewable energy source, holds significant promise for addressing water shortages. Utilizing solar energy for water evaporation is seen as an effective solution in this regard. While many existing interfacial photothermal water evaporation systems rely on nanoparticles or graphene as photothermal or support materials, this study introduced polydopamine (PDA) as a photothermal material due to its environmental friendliness and excellent photon absorption characteristics that closely match the solar spectrum. Polystyrene (PS) was also introduced as a support material for its porous structure and density similar to water, enabling it to float on water. The resulting PS-PDA composite porous structure solar evaporator exhibited a photothermal conversion efficiency comparable to nanoparticles (over 75%), yet with lower production costs and minimal environmental impact. This innovative approach offers a scalable solution for water-scarce regions, providing a cost-effective and efficient means to address water scarcity. The use of PDA and PS in this context highlights the potential for utilizing common materials in novel ways to meet pressing environmental challenges.
Collapse
Affiliation(s)
- Xiao Wang
- School of Undergraduate Education, Shenzhen Polytechnic University, Shenzhen 518055, China;
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China; (T.T.); (Y.D.); (H.Z.); (Y.L.); (Y.L.)
| | - Zhen Li
- Advanced Materials and Energy Center, Academy of Aerospace Science and Innovation, Beijing 100088, China;
| | - Xiaojing Wu
- School of Undergraduate Education, Shenzhen Polytechnic University, Shenzhen 518055, China;
| | - Bingjie Liu
- Beijing Institute of Space Mechanics & Electricity, Beijing 100094, China;
| | - Tian Tian
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China; (T.T.); (Y.D.); (H.Z.); (Y.L.); (Y.L.)
| | - Yi Ding
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China; (T.T.); (Y.D.); (H.Z.); (Y.L.); (Y.L.)
- Advanced Materials and Energy Center, Academy of Aerospace Science and Innovation, Beijing 100088, China;
| | - Haibo Zhang
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China; (T.T.); (Y.D.); (H.Z.); (Y.L.); (Y.L.)
| | - Yuanli Li
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China; (T.T.); (Y.D.); (H.Z.); (Y.L.); (Y.L.)
| | - Ye Liu
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China; (T.T.); (Y.D.); (H.Z.); (Y.L.); (Y.L.)
| | - Chunai Dai
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China; (T.T.); (Y.D.); (H.Z.); (Y.L.); (Y.L.)
| |
Collapse
|