1
|
Wang J, Wang Y, Wu M, Ren C, Zhang R, Li C, Wang H, Wang J, Zhong S, Gao Y, Cui X. Chitosan-based antibacterial AIE luminogens for bioimaging and dual-mode detecting of nitrite in food samples. Int J Biol Macromol 2025; 302:140599. [PMID: 39900160 DOI: 10.1016/j.ijbiomac.2025.140599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
The polysaccharides are abundant in nature and are typically considered harmless. They can be chemically modified to exhibit a diverse range of fluorescent behaviors. Moreover, these characteristics render polysaccharides particularly promising future for the development of environmentally friendly materials, such as chemical sensors. In this study, a chitosan-based dual-mode sensor (CS-DAS) with aggregation-induced emission (AIE) properties was designed for both fluorometric and colorimetric detection of nitrite. The unique AIE property of CS-DAS enables enhanced fluorescence in aggregated states, overcoming conventional quenching limitations. CS-DAS also showed high selectivity and sensitivity for nitrite detection. By fluorescence and colorimetry, the limits of detection were calculated to be 0.021 μM (1.45 mg/kg) and 0.027 μM (1.86 mg/kg), respectively. This sensor was successfully utilized for the detection of nitrite in sausage samples. Additionally, it exhibited significant antibacterial activity against typical Gram-positive and Gram-negative bacteria. Moreover, CS-DAS showed low cytotoxicity, demonstrating its potential as an excellent fluorescent probe for cell imaging applications.
Collapse
Affiliation(s)
- Jingfei Wang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yue Wang
- Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Meiyi Wu
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Chaoyu Ren
- School of Chemistry, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Ruiting Zhang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Chongruihan Li
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Haodong Wang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Jia Wang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Shuangling Zhong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, PR China.
| | - Yan Gao
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
2
|
Tian L, You X, Liu J, Li Y, Li S, Jin X, Li S, Pan F, Yu Z, Zhang T, Du Z. Schiff Base Mediated Food-Derived Peptide Supramolecular Self-Assembly as Curcumin Carriers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2471-2482. [PMID: 39644243 DOI: 10.1021/acs.jafc.4c08256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
The fusion assembly strategy of supramolecular chemistry combined with dynamic covalent chemistry has provided novel insights into the design of precision nutrition and intelligent drug delivery carriers. This work involved the development of a supramolecular self-assembly originating from entropy- and enthalpy-driven dynamic covalent bonding on Schiff bases between egg white-derived peptide Gln-Ile-Gly-Leu-Phe (QIGLF) and glutaraldehyde (GA), denoted QIGLF-GA. The assembly exhibited outstanding assembly characteristics and multiwavelength autofluorescence properties. Benefiting from the potent facilitation of the dynamic covalent interaction of Schiff base on the noncovalent assembly force network, QIGLF-GA was afforded an encapsulation capacity of curcumin (Cur) of more than 22% (≫ 10%) and rationally inhibited P-glycoprotein-mediated cellular efflux and markedly elevated the efficacy of Cur in overcoming the intestinal epithelial absorption barrier to the circulation with the help of endocytosis. Furthermore, QIGLF-GA-Cur features responsive release under weakly acidic conditions, which dramatically contributes to the intracellular bioavailability of Cur.
Collapse
Affiliation(s)
- Longjiang Tian
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xinran You
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yajuan Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Shanglin Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xuemin Jin
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shugang Li
- Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Fei Pan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Zhipeng Yu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
3
|
Bhavsar A, Pati F, Chakraborty P. Supramolecular Conductive Hydrogels for Tissue Engineering Applications. Chembiochem 2025; 26:e202400733. [PMID: 39462202 DOI: 10.1002/cbic.202400733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
Owing to their unique attributes, including reversibility, specificity, directionality, and tunability, supramolecular biomaterials have evolved as an excellent alternative to conventional biomaterials like polymers, ceramics, and metals. Supramolecular hydrogels, in particular, have garnered significant interest because their fibrous architecture, high water content, and interconnected 3D network resemble the extracellular matrix to some extent. Consequently, supramolecular hydrogels have been used to develop biomaterials for tissue engineering. Supramolecular conductive hydrogels combine the advantages of supramolecular soft materials with the electrical properties of metals, making them highly relevant for electrogenic tissue engineering. Given the versatile applications of these hydrogels, it is essential to periodically review high-quality research in this area. In this review, we focus on recent advances in supramolecular conductive hydrogels, particularly their applications in tissue engineering. We discuss the conductive components of these hydrogels and highlight notable reports on their use in cardiac, skin, and neural tissue engineering. Additionally, we outline potential future developments in this field.
Collapse
Affiliation(s)
- Aashwini Bhavsar
- Centre for Interdisciplinary Programs, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| | - Priyadarshi Chakraborty
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| |
Collapse
|
4
|
Yao M, Hsieh JC, Tang KWK, Wang H. Hydrogels in wearable neural interfaces. MED-X 2024; 2:23. [PMID: 39659711 PMCID: PMC11625692 DOI: 10.1007/s44258-024-00040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 12/12/2024]
Abstract
The integration of wearable neural interfaces (WNIs) with the human nervous system has marked a significant progression, enabling progress in medical treatments and technology integration. Hydrogels, distinguished by their high-water content, low interfacial impedance, conductivity, adhesion, and mechanical compliance, effectively address the rigidity and biocompatibility issues common in traditional materials. This review highlights their important parameters-biocompatibility, interfacial impedance, conductivity, and adhesiveness-that are integral to their function in WNIs. The applications of hydrogels in wearable neural recording and neurostimulation are discussed in detail. Finally, the opportunities and challenges faced by hydrogels for WNIs are summarized and prospected. This review aims to offer a thorough examination of hydrogel technology's present landscape and to encourage continued exploration and innovation. As developments progress, hydrogels are poised to revolutionize wearable neural interfaces, offering significant enhancements in healthcare and technological applications. Graphical Abstract
Collapse
Affiliation(s)
- Mengmeng Yao
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Ju-Chun Hsieh
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Kai Wing Kevin Tang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Huiliang Wang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
5
|
Wang J, Wu M, Zhang R, Li C, Li C, Zhong S, Gao Y, Meng Q, Cui X. Carboxymethylcellulose-based aggregation-induced emission antibacterial material for multifunctional applications. Int J Biol Macromol 2024; 283:137740. [PMID: 39551305 DOI: 10.1016/j.ijbiomac.2024.137740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Polysaccharides are ubiquitous in nature, typically harmless, and highly compatible with various tissues in biomedical contexts. These properties make them attractive for use in multifunctional materials. In this study, the aggregation-induced emission (AIE) antibacterial material (PLOCMC) was successfully synthesized by carboxymethylcellulose (CMC) and ε-Poly-Lysine (ε-PL). PLOCMC exhibits not only the AIE property but also a room temperature phosphorescent (RTP) phenomenon. This dual emission behavior enhances its potential applications in chemical sensing and anti-counterfeiting. Notably, PLOCMC shows low cytotoxicity and exhibits antibacterial activity against typical Gram-positive and Gram-negative bacteria, making it a potent agent against a variety of bacterial strains. Additionally, PLOCMC demonstrates specific responsiveness to Fe3+ ions and nitrite, indicating its potential utility in food safety and monitoring applications.
Collapse
Affiliation(s)
- Jingfei Wang
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Meiyi Wu
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Ruiting Zhang
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Chongruihan Li
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Chaoqun Li
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Shuangling Zhong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, PR China
| | - Yan Gao
- College of Chemistry, Jilin University, Changchun, 130012, PR China; State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, PR China; Weihai Institute for Bionics-Jilin University, Weihai 264400, PR China
| | - Qingye Meng
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong 266071, PR China.
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun, 130012, PR China; Weihai Institute for Bionics-Jilin University, Weihai 264400, PR China.
| |
Collapse
|
6
|
Zhu J, Xie F, Qiu Z, Chen L. Effect of active carbonyl-carboxyl ratio on dynamic Schiff base crosslinking and its modulation of high-performance oxidized starch-chitosan hydrogel by hot extrusion 3D printing. Carbohydr Polym 2024; 343:122438. [PMID: 39174083 DOI: 10.1016/j.carbpol.2024.122438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 08/24/2024]
Abstract
The quest to develop 3D starch-based printing hydrogels for the controlled release of active substances with excellent mechanical and printing properties has gained significant attention. This work introduced a facile method based on crosslinking via Schiff base reaction for preparing bicomponent hydrogels. The method involved the utilization of customizable oxidized starch (OS) and chitosan (CS), enabling superior printing performance through the precise control of various active carbonyl-carboxyl ratios (ACR, 2:1, 1:1, and 2:3, respectively) of OS. OS-CS hydrogel (OSC) with an ACR level of 2:1 (OS-2-y%CS) underwent rearrangement during printing environment, fostering increased Schiff base reaction with a higher crosslinking degree and robust high structural recovery (>95 %). However, with decreasing ACR levels (from 2:1 to 2:3), the printing performance and mechanical strength of printed OSC (POSC) declined due to lower Schiff base bonds and increased phase separation. Compared with printed OS, POS-2-2%CS exhibited a remarkable 1250.52 % increase in tensile strength and a substantial 2424.71 % boost in compressive strength, enhanced shape fidelity and notable self-healing properties. Moreover, POS-2-2%CS exhibited stable diffusive drug release, showing potential application in the pH-responsive release of active substances. Overall, controlling the active carbonyl-carboxyl ratios provided an efficient and manageable approach for preparing high-performance 3D-printed hydrogels.
Collapse
Affiliation(s)
- Junchao Zhu
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Fengwei Xie
- School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Zhipeng Qiu
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Ling Chen
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
7
|
Marjanović JS, Petrović N, Kosanić M, Košarić J, Mirić A, Milivojević N, Kostić MD, Divac VM. Tryptamine-Derived Schiff Bases: Potent Antimicrobial Agents and Evaluation of Cytotoxicity, ADME and DNA Binding Properties. Chem Biodivers 2024:e202401699. [PMID: 39467206 DOI: 10.1002/cbdv.202401699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 10/30/2024]
Abstract
Inspired by the fact that the introduction of indole pharmacophore in organic scaffolds could enable interesting pharmacological properties, the series of novel tryptamine-derived Schiff bases was synthetized. Tryptamine was used as a source of indole pattern, as well as an example of biogenic amines which chemical transformations lead to the compounds with prominent biological activities. The obtained results for antimicrobial activity against a range of bacterial and fungal strains and cytotoxic activities have revealed that Schiff base TSB4 combining the tryptamine and p-nitro aryl patterns in the structure showed better antifungal activity at low concentrations than standard drug Fluconazole, while compound TSB6 with molecular scaffold composed from tryptamine and quinoline moieties showed certain cytotoxic effect on HCT-116 cell line with a strongly expressed selectivity about healthy fibroblast cells, MRC-5. For these two selected compounds, additional ADME analysis and DNA interactions were performed. to obtain better insight into their pharmacokinetics and determination of binding mode for DNA molecules. As results suggested, strong binding of examined compounds to CT-DNA was observed, while the ADME screening showed that selected compounds possess suitable physicochemical properties for oral bioavailability and druglikeness.
Collapse
Affiliation(s)
- Jovana S Marjanović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovica 12, 34 000, Kragujevac, Serbia
| | - Nevena Petrović
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, 34 000, Kragujevac, Serbia
| | - Marijana Kosanić
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, 34 000, Kragujevac, Serbia
| | - Jelena Košarić
- University of Kragujevac, Institute for Information Technologies, Jovana, Cvijića, bb 34 000, Kragujevac, Serbia
| | - Ana Mirić
- University of Kragujevac, Institute for Information Technologies, Jovana, Cvijića, bb 34 000, Kragujevac, Serbia
| | - Nevena Milivojević
- University of Kragujevac, Institute for Information Technologies, Jovana, Cvijića, bb 34 000, Kragujevac, Serbia
| | - Marina D Kostić
- University of Kragujevac, Institute for Information Technologies, Jovana, Cvijića, bb 34 000, Kragujevac, Serbia
| | - Vera M Divac
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovica 12, 34 000, Kragujevac, Serbia
| |
Collapse
|
8
|
Li Q, Wu A, Zhang M, Zhang X, Zang H. Adaptive covalently assembled thymopentin/hyaluronic acid based anti-inflammatory drug carrier with injectability and controlled release. Int J Biol Macromol 2024; 282:136923. [PMID: 39490872 DOI: 10.1016/j.ijbiomac.2024.136923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Developing bioactive delivery carriers with anti-inflammatory functions, long-term administration, and controlled release of multiple drugs is highly desirable owing to disease persistence over an extended period. In this study, a dynamically induced covalent assembly approach was used to fabricate thymopentin (TP5)-based carrier particles (TGCP) with biocompatibility and autofluorescence. The size and dispersibility of TGCP can be modulated by non-covalent interactions with hyaluronic acid (HA), endowing the system with excellent injectability and synergistic anti-inflammatory activity. Interestingly, the carrier can load a wide range of guest molecules with varying solubilities and achieve controlled gradient release in pathological and physiological environments. In addition, traditional Chinese-medicine-loaded TGCP/HA can effectively reduce the level of the inflammatory factor IL-6, indicating its potential anti-inflammatory properties. The TP5/HA-based material possesses excellent carrier properties and immunoreactivity, making it attractive for reducing inflammation at disease sites and long-term drug delivery in various chronic diseases.
Collapse
Affiliation(s)
- Qin Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Aoli Wu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Mengqi Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaoming Zhang
- School of Science, Optoelectronics Research Center, Minzu University of China, Beijing 100081, China
| | - Hengchang Zang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
9
|
Boccia AC, Pulvirenti A, Cerruti P, Silvetti T, Brasca M. Antimicrobial starch-based cryogels and hydrogels for dual-active food packaging applications. Carbohydr Polym 2024; 342:122340. [PMID: 39048188 DOI: 10.1016/j.carbpol.2024.122340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 07/27/2024]
Abstract
The present study reports on the valorisation of starch waste biomass to produce dual-active cryogels and hydrogels able to adsorb water and deliver antimicrobial substances for fresh food packaging applications. Starch hydrogels were prepared by oxidation with sodium metaperiodate in water and mild conditions, while cryogels were obtained by freeze-drying process. To explore the role of starch composition on the final properties of materials, two starches differing in amylose/amylopectin ratio, were evaluated. The prepared materials were microstructurally and morphologically characterized by FTIR and NMR spectroscopy (1D, 2D, and DOSY experiments), and SEM microscopy. To provide the materials with active properties, they were loaded with antimicrobial molecules by absorption, or by crosslinking via Schiff-base reaction. All materials demonstrated high water absorption capacity and ability to deliver volatile molecules, including diacetyl and complex mixtures like mint essential oil. The release profiles of the adsorbed molecules were determined through quantitative NMR spectroscopy over time. The antibacterial activity was successfully demonstrated against Gram-positive bacterial strains for unloaded cryogels and hydrogels, and after loading with diacetyl and essential oil. The developed materials can be regarded as part of active pads for food packaging applications capable to control moisture inside the package and inhibit microbial contamination.
Collapse
Affiliation(s)
- Antonella Caterina Boccia
- Institute of Chemical Sciences and Technologies (SCITEC), National Research Council (CNR), Via A. Corti, 12, 20133 Milano, Italy.
| | - Alfio Pulvirenti
- Institute of Chemical Sciences and Technologies (SCITEC), National Research Council (CNR), Via A. Corti, 12, 20133 Milano, Italy
| | - Pierfrancesco Cerruti
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Tiziana Silvetti
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Celoria 2, 20133 Milano, Italy
| | - Milena Brasca
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Celoria 2, 20133 Milano, Italy
| |
Collapse
|
10
|
Zhang X, Liang Y, Huang S, Guo B. Chitosan-based self-healing hydrogel dressing for wound healing. Adv Colloid Interface Sci 2024; 332:103267. [PMID: 39121832 DOI: 10.1016/j.cis.2024.103267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/02/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Skin has strong self-regenerative capacity, while severe skin defects do not heal without appropriate treatment. Therefore, in order to cover the wound sites and hasten the healing process, wound dressings are required. Hydrogels have emerged as one of the most promising candidates for wound dressings because of their hydrated and porous molecular structure. Chitosan (CS) with biocompatibility, oxygen permeability, hemostatic and antimicrobial properties is beneficial for wound treatment and it can generate self-healing hydrogels through reversible crosslinks, from dynamic covalent bonding, such as Schiff base bonds, boronate esters, and acylhydrazone bonds, to physical interactions like hydrogen bonding, electrostatic interaction, ionic bonding, metal-coordination, host-guest interactions, and hydrophobic interaction. Therefore, various chitosan-based self-healing hydrogel dressings have been prepared in recent years to cope with increasingly complex wound conditions. This review's objective is to provide comprehensive information on the self-healing mechanism of chitosan-based hydrogel wound dressings, discuss their advanced functions including antibacterial, conductive, anti-inflammatory, anti-oxidant, stimulus-responsive, hemostatic/adhesive and controlled release properties, further introduce their applications in the promotion of wound healing in two categories: acute and chronic (infected, burn and diabetic) wounds, and finally discuss the future perspective of chitosan-based self-healing hydrogel dressings for wound healing.
Collapse
Affiliation(s)
- Xingyu Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China; State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yongping Liang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shengfei Huang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baolin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China; State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
11
|
S V, Nag A, Das AK. A versatile sensor capable of ratiometric fluorescence detection of trace water and turn-on detection of Cu 2+ modulating the binding interaction of a Cu(II) complex with BSA and DNA complemented by docking studies. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5263-5271. [PMID: 39015041 DOI: 10.1039/d4ay00675e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
A fluorescent molecule, pyridine-coupled bis-anthracene (PBA), has been developed for the selective fluorescence turn-on detection of Cu2+. Interestingly, the ligand PBA also exhibited a red-shifted ratiometric fluorescence response in the presence of water. Thus, a ratiometric water sensor has been utilized as a selective fluorescence turn-on sensor for Cu2+, achieving a 10-fold enhancement in the fluorescence and quantum yield at 446 nm, with a lower detection limit of 0.358 μM and a binding constant of 1.3 × 106 M-1. For practical applications, sensor PBA can be used to detect Cu2+ in various types of soils like clay soil, field soil and sand. The interaction of the PBA-Cu(II) complex with transport proteins like bovine serum albumin (BSA) and ct-DNA has been investigated through fluorescence titration experiments. Additionally, the structural optimization of PBA and the PBA-Cu(II) complex has been demonstrated by DFT, and the interaction of the PBA-Cu(II) complex with BSA and ct-DNA has been analyzed using theoretical docking studies.
Collapse
Affiliation(s)
- Vishnu S
- Department of Chemistry, Christ University, Hosur Road, Bangalore, Karnataka, 560029, India.
| | - Anish Nag
- Department of Life Science, Christ University, Hosur Road, Bangalore, Karnataka, 560029, India
| | - Avijit Kumar Das
- Department of Chemistry, Christ University, Hosur Road, Bangalore, Karnataka, 560029, India.
| |
Collapse
|
12
|
A. H U, Mahesha, K. J P, Harohally NV, Krishnamurthy C, Jathi K, Ahmad A, Alshammari MB, Lokanath NK. Structural Investigation of Schiff Base Ligand and Dinuclear Copper Complex: Synthesis, Crystal Structure, Computational, and Latent Fingerprint Analysis. ACS OMEGA 2024; 9:30109-30119. [PMID: 39035917 PMCID: PMC11256093 DOI: 10.1021/acsomega.3c07536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/23/2024]
Abstract
The structural studies of the fluorinated Schiff base ligand and its copper complex were synthesized and characterized by Fourier transform infrared, UV-visible, and photoluminescence spectroscopy. Single-crystal X-ray diffraction analysis unveils a dinuclear copper complex arising from double bridging acetate anions to copper ions that are chelated by the tridentate Schiff base ligand Cu(LS). The trigonality index τ5 of 0.080 indicates a distorted square pyramidal coordination geometry for the metal. The SL ligand and complex exhibit intra- and intermolecular interactions, leading to unique supramolecular architectures. The structural changes between the free halogenated Schiff base ligand and upon coordination with the metal were extensively studied by experimental and theoretical approaches. The intra- and intermolecular interactions have been analyzed by Hirshfeld surface and quantum theory of atoms in molecules analysis, and the enrichment ratio highlights the most favored interactions in the formation of molecular packing. The chemical and physical properties, such as the HOMO - LUMO energy gap, chemical reactivity, and electron density topology, are studied using density functional theory studies. In addition, the Schiff base ligand compound is used to study the latent fingerprint analysis.
Collapse
Affiliation(s)
- Udaya
Kumar A. H
- Department
of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, Karnataka, India
| | - Mahesha
- Department
of Physics, SJCE, JSS Science and Technology
University, Mysore 57006, Karnataka, India
| | - Pampa K. J
- Department
of Biotechnology, University of Mysore, Manasagangotri, Mysuru 570 006, Karnataka, India
| | | | - Chethan Krishnamurthy
- Department
of Chemistry, Jnanasahyadri, Kuvempu University, Shivamogg 577451, Karnataka, India
| | - Keshavayya Jathi
- Department
of Chemistry, Jnanasahyadri, Kuvempu University, Shivamogg 577451, Karnataka, India
| | - Akil Ahmad
- Department
of Chemistry, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University Al-Kharj, Al-Kharj, 11892, Saudi Arabia
| | - Mohammed B. Alshammari
- Department
of Chemistry, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University Al-Kharj, Al-Kharj, 11892, Saudi Arabia
| | | |
Collapse
|
13
|
Pourshahrestani S, Zeimaran E, Fauzi MB. Antibacterial polylysine-containing hydrogels for hemostatic and wound healing applications: preparation methods, current advances and future perspectives. Biomater Sci 2024; 12:3293-3320. [PMID: 38747970 DOI: 10.1039/d3bm01792c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The treatment of various types of wounds such as dermal wounds, multidrug resistant bacteria-infected wounds, and chronic diabetic wounds is one of the critical challenges facing healthcare systems. Delayed wound healing can impose a remarkable burden on patients and health care professionals. In this case, given their unique three-dimensional porous structure, biocompatibility, high hydrophilicity, capability to provide a moist environment while absorbing wound exudate, permeability to both gas and oxygen, and tunable mechanical properties, hydrogels with antibacterial function are one of the most promising candidates for wound healing applications. Polylysine is a cationic polymer with the advantages of inherent antibacterial properties, biodegradability, and biocompatibility. Therefore, its utilization to engineer antibacterial hydrogels for accelerating wound healing is of great interest. In this review, we initially discuss polylysine properties, and then focus on the most recent advances in polylysine-containing hydrogels (since 2016) prepared using various chemical and physical crosslinking methods for hemostasis and wound healing applications. Finally, the challenges and future directions in the engineering of these antibacterial hydrogels for wound healing are discussed.
Collapse
Affiliation(s)
- Sara Pourshahrestani
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia.
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Ehsan Zeimaran
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia.
| |
Collapse
|
14
|
Yang FF, Zhao TT, Milaneh S, Zhang C, Xiang DJ, Wang WL. Small molecule targeted therapies for endometrial cancer: progress, challenges, and opportunities. RSC Med Chem 2024; 15:1828-1848. [PMID: 38911148 PMCID: PMC11187550 DOI: 10.1039/d4md00089g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/10/2024] [Indexed: 06/25/2024] Open
Abstract
Endometrial cancer (EC) is a common malignancy among women worldwide, and its recurrence makes it a common cause of cancer-related death. Surgery and external radiation, chemotherapy, or a combination of strategies are the cornerstone of therapy for EC patients. However, adjuvant treatment strategies face certain drawbacks, such as resistance to chemotherapeutic drugs; therefore, it is imperative to explore innovative therapeutic strategies to improve the prognosis of EC. With the development of pathology and pathophysiology, several biological targets associated with EC have been identified, including PI3K/Akt/mTOR, PARP, GSK-3β, STAT-3, and VEGF. In this review, we summarize the progress of small molecule targeted therapies in terms of both basic research and clinical trials and provide cases of small molecules combined with fluorescence properties in the clinical applications of integrated diagnosis and treatment. We hope that this review will facilitate the further understanding of the regulatory mechanism governing the dysregulation of oncogenic signaling in EC and provide insights into the possible future directions of targeted therapeutic regimens for EC treatment by developing new agents with fluorescence properties for the clinical applications of integrated diagnosis and treatment.
Collapse
Affiliation(s)
- Fei-Fei Yang
- Yixing People's Hospital Yixing Jiangsu 214200 China
| | - Tian-Tian Zhao
- School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 China
| | - Slieman Milaneh
- School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 China
- Department of Pharmaceutical and Chemical Industries, Higher Institute of Applied Science and Technology Damascus Syria
| | - Chun Zhang
- School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 China
| | - Da-Jun Xiang
- Xishan People's Hospital of Wuxi City Wuxi Jiangsu 214105 China
| | - Wen-Long Wang
- Yixing People's Hospital Yixing Jiangsu 214200 China
- School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 China
| |
Collapse
|
15
|
Yin C, Ye H, Hai Y, Zou H, You L. Aromatic-Carbonyl Interactions as an Emerging Type of Non-Covalent Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310337. [PMID: 38561959 PMCID: PMC11165483 DOI: 10.1002/advs.202310337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/23/2024] [Indexed: 04/04/2024]
Abstract
Aromatic-carbonyl (Ar···C═O) interactions, attractive interactions between the arene plane and the carbon atom of carbonyl, are in the infancy as one type of new supramolecular bonding forces. Here the study and functionalization of aromatic-carbonyl interactions in solution is reported. A combination of aromatic-carbonyl interactions and dynamic covalent chemistry provided a versatile avenue. The stabilizing role and mechanism of arene-aldehyde/imine interactions are elucidated through crystal structures, NMR studies, and computational evidence. The movement of imine exchange equilibria further allowed the quantification of the interplay between arene-aldehyde/imine interactions and dynamic imine chemistry, with solvent effects offering another handle and matching the electrostatic feature of the interactions. Moreover, arene-aldehyde/imine interactions enabled the reversal of kinetic and thermodynamic selectivity and sorting of dynamic covalent libraries. To show the functional utility diverse modulation of fluorescence signals is realized with arene-aldehyde/imine interactions. The results should find applications in many aspects, including molecular recognition, assemblies, catalysis, and intelligent materials.
Collapse
Affiliation(s)
- Chaowei Yin
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
- University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100049China
| | - Hebo Ye
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
| | - Yu Hai
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
| | - Hanxun Zou
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
| | - Lei You
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
- University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100049China
| |
Collapse
|
16
|
Khan H, Jan F, Shakoor A, Khan A, AlAsmari AF, Alasmari F, Ullah S, Al-Harrasi A, Khan M, Ali S. Design, synthesis, molecular docking study, and α-glucosidase inhibitory evaluation of novel hydrazide-hydrazone derivatives of 3,4-dihydroxyphenylacetic acid. Sci Rep 2024; 14:11410. [PMID: 38762658 PMCID: PMC11102520 DOI: 10.1038/s41598-024-62034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/13/2024] [Indexed: 05/20/2024] Open
Abstract
A series of novel Schiff base derivatives (1-28) of 3,4-dihydroxyphenylacetic acid were synthesized in a multi-step reaction. All the synthesized Schiff bases were obtained in high yields and their structures were determined by 1HNMR, 13CNMR, and HR-ESI-MS spectroscopy. Except for compounds 22, 26, 27, and 28, all derivatives show excellent to moderate α-glucosidase inhibition. Compounds 5 (IC50 = 12.84 ± 0.52 µM), 4 (IC50 = 13.64 ± 0.58 µM), 12 (IC50 = 15.73 ± 0.71 µM), 13 (IC50 = 16.62 ± 0.47 µM), 15 (IC50 = 17.40 ± 0.74 µM), 3 (IC50 = 18.45 ± 1.21 µM), 7 (IC50 = 19.68 ± 0.82 µM), and 2 (IC50 = 20.35 ± 1.27 µM) shows outstanding inhibition as compared to standard acarbose (IC50 = 873.34 ± 1.67 µM). Furthermore, a docking study was performed to find out the interaction between the enzyme and the most active compounds. With this research work, 3,4-dihydroxyphenylacetic acid Schiff base derivatives have been introduced as a potential class of α-glucosidase inhibitors that have remained elusive till now.
Collapse
Affiliation(s)
- Hammad Khan
- Organic Synthesis and Catalysis Research Laboratory, Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Faheem Jan
- Shenyang National Laboratory for Materials Science, Institute of Metal Research Chinese Academy of Sciences, Shenyang, 110016, Liaoning, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, Liaoning, China
| | - Abdul Shakoor
- Department of Chemistry, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, PO Box 33, 616, Birkat Al Mauz, Nizwa, Oman
| | - Abdullah F AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, PO Box 33, 616, Birkat Al Mauz, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, PO Box 33, 616, Birkat Al Mauz, Nizwa, Oman.
| | - Momin Khan
- Department of Chemistry, Abdul Wali Khan University, Mardan, 23200, Pakistan.
| | - Shaukat Ali
- Organic Synthesis and Catalysis Research Laboratory, Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
17
|
Xiong W, Han Z, Ding S, Wang H, Du Y, Cui W, Zhang M. In Situ Remodeling of Efferocytosis via Lesion-Localized Microspheres to Reverse Cartilage Senescence. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400345. [PMID: 38477444 PMCID: PMC11109622 DOI: 10.1002/advs.202400345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/19/2024] [Indexed: 03/14/2024]
Abstract
Efferocytosis, an intrinsic regulatory mechanism to eliminate apoptotic cells, will be suppressed due to the delayed apoptosis process in aging-related diseases, such as osteoarthritis (OA). In this study, cartilage lesion-localized hydrogel microspheres are developed to remodel the in situ efferocytosis to reverse cartilage senescence and recruit endogenous stem cells to accelerate cartilage repair. Specifically, aldehyde- and methacrylic anhydride (MA)-modified hyaluronic acid hydrogel microspheres (AHM), loaded with pro-apoptotic liposomes (liposomes encapsulating ABT263, A-Lipo) and PDGF-BB, namely A-Lipo/PAHM, are prepared by microfluidic and photo-cross-linking techniques. By a degraded porcine cartilage explant OA model, the in situ cartilage lesion location experiment illustrated that aldehyde-functionalized microspheres promote affinity for degraded cartilage. In vitro data showed that A-Lipo induced apoptosis of senescent chondrocytes (Sn-chondrocytes), which can then be phagocytosed by the efferocytosis of macrophages, and remodeling efferocytosis facilitated the protection of normal chondrocytes and maintained the chondrogenic differentiation capacity of MSCs. In vivo experiments confirmed that hydrogel microspheres localized to cartilage lesion reversed cartilage senescence and promoted cartilage repair in OA. It is believed this in situ efferocytosis remodeling strategy can be of great significance for tissue regeneration in aging-related diseases.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Foot and Ankle SurgeryBeijing Tongren HospitalCapital Medical UniversityBeijing100730P. R. China
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Zeyu Han
- Department of Foot and Ankle SurgeryBeijing Tongren HospitalCapital Medical UniversityBeijing100730P. R. China
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Sheng‐Long Ding
- Department of Foot and Ankle SurgeryBeijing Tongren HospitalCapital Medical UniversityBeijing100730P. R. China
| | - Haoran Wang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Yawei Du
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Ming‐Zhu Zhang
- Department of Foot and Ankle SurgeryBeijing Tongren HospitalCapital Medical UniversityBeijing100730P. R. China
| |
Collapse
|
18
|
Ahchouch H, Chaouiki A, Al-Moubaraki AH, Al-Ahmari JM, Al-Ghamdi AA, Bammou L, Belkhaouda M, Chafiq M, Ko YG. Fabrication of Protective Organic Layer Using Schiff-Base Metal Complex Responsible for Excellent Corrosion Performance: Experimental and Theoretical Perspectives. ACS OMEGA 2024; 9:15015-15029. [PMID: 38585106 PMCID: PMC10993390 DOI: 10.1021/acsomega.3c09097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/19/2024] [Accepted: 03/08/2024] [Indexed: 04/09/2024]
Abstract
The effectiveness of a copper(II) complex with a Schiff base derived from 2-amino-4-phenyl-5-methylthiazole and salicylaldehyde (APMS) as a corrosion inhibitor for XC18 steel in an HCl solution was investigated. Experimental findings indicated a slight negative correlation between inhibition efficiencies in 1 M HCl and temperature but a positive correlation with both inhibitor concentration and immersion time, respectively. The weight loss measurement revealed that APMS achieved a maximum inhibition rate of 92.07% at 303 K. A fitting analysis demonstrated that APMS adheres to the Langmuir adsorption isotherm. The electrochemical results revealed an enhanced inhibitive performance of APMS, with the efficiency increasing as concentrations increased, ultimately reaching a peak of 94.47% at 5 × 10-3 mol L-1. Potentiodynamic polarization measurements revealed that APMS acted as a mixed-type inhibitor without affecting the corrosion mechanism. Scanning electron microscopy investigations of the metal surfaces corroborated the presence of an adsorbed organic layer. Advanced theoretical calculations utilizing density functional theory and first-principles density-functional tight-binding were conducted to gain insights into the behavior of APMS on the metal surface. APMS derives its advantages from crucial inter- and intramolecular interactions, resulting in the formation of a resilient adsorption layer, in line with the experimental findings. It is found that the presence of the APMS-based inhibitor exhibits a significant synergistic corrosion inhibition effect. The current study offers a design direction for enhancing the structural characteristics of Schiff base metal complexes, laying the groundwork for multifunctional frameworks to minimize corrosion rates with considerations for real-world use and cost-efficiency. The ability to replace harmful, expensive constituents with sustainable, and cost-effective organic alternatives represents a significant outcome of this study.
Collapse
Affiliation(s)
- Hamid Ahchouch
- Laboratory
of Applied Chemistry and Environment, ENSA,
University Ibn Zohr, P.O. Box 1136, Agadir 80000, Morocco
| | - Abdelkarim Chaouiki
- Materials
Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Aisha H. Al-Moubaraki
- Department
of Chemistry, Faculty of Sciences-Alfaisaliah Campus, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Jamilah M. Al-Ahmari
- Department
of Chemistry, Faculty of Sciences-Alfaisaliah Campus, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Azza A. Al-Ghamdi
- Department
of Chemistry, Faculty of Sciences-Alfaisaliah Campus, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Lahcen Bammou
- Laboratory
of Applied Chemistry and Environment, ENSA,
University Ibn Zohr, P.O. Box 1136, Agadir 80000, Morocco
- Higher
School of Education and Training, Agadir 80000, Morocco
| | - M’hammed Belkhaouda
- Laboratory
of Applied Chemistry and Environment, ENSA,
University Ibn Zohr, P.O. Box 1136, Agadir 80000, Morocco
- Laboratory
of Sciences and Didactic of Sciences, CRMEF, Inzegane 80000, Morocco
| | - Maryam Chafiq
- Materials
Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Young Gun Ko
- Materials
Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
19
|
Yang Y, Wang J, Huang S, Li M, Chen J, Pei D, Tang Z, Guo B. Bacteria-responsive programmed self-activating antibacterial hydrogel to remodel regeneration microenvironment for infected wound healing. Natl Sci Rev 2024; 11:nwae044. [PMID: 38440214 PMCID: PMC10911815 DOI: 10.1093/nsr/nwae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/04/2024] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
There is still an urgent need to develop hydrogels with intelligent antibacterial ability to achieve on-demand treatment of infected wounds and accelerate wound healing by improving the regeneration microenvironment. We proposed a strategy of hydrogel wound dressing with bacteria-responsive self-activating antibacterial property and multiple nanozyme activities to remodel the regeneration microenvironment in order to significantly promote infected wound healing. Specifically, pH-responsive H2O2 self-supplying composite nanozyme (MSCO) and pH/enzyme-sensitive bacteria-responsive triblock micelles encapsulated with lactate oxidase (PPEL) were prepared and encapsulated in hydrogels composed of L-arginine-modified chitosan (CA) and phenylboronic acid-modified oxidized dextran (ODP) to form a cascade bacteria-responsive self-activating antibacterial composite hydrogel platform. The hydrogels respond to multifactorial changes of the bacterial metabolic microenvironment to achieve on-demand antibacterial and biofilm eradication through transformation of bacterial metabolites, and chemodynamic therapy enhanced by nanozyme activity in conjunction with self-driven nitric oxide (NO) release. The composite hydrogel showed 'self-diagnostic' treatment for changes in the wound microenvironment. Through self-activating antibacterial therapy in the infection stage to self-adaptive oxidative stress relief and angiogenesis in the post-infection stage, it promotes wound closure, accelerates wound collagen deposition and angiogenesis, and completely improves the microenvironment of infected wound regeneration, which provides a new method for the design of intelligent wound dressings.
Collapse
Affiliation(s)
- Yutong Yang
- State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and Technology, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiaxin Wang
- State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and Technology, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shengfei Huang
- State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and Technology, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Meng Li
- State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and Technology, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jueying Chen
- State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and Technology, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dandan Pei
- State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and Technology, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhen Tang
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and Technology, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
20
|
Li M, Li N, Shao F, Wang R, Chen M, Liu YJ, Zhao Y, Li R. Synthesis of a super-low detection limit fluorescent probe for Al 3+ and its application in fluorescence imaging of zebrafish and cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123676. [PMID: 38039642 DOI: 10.1016/j.saa.2023.123676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
A novel fluorescent probe N'-(2-hydroxybenzylidene)-indole-3-formylhydrazine (JHK) was designed and synthesized based on the condensation reaction of indole-3-formylhydrazine and salicylaldehyde. The probe JHK solution could highly selectively recognize Al3+ by the obvious fluorescence enhancement (288-fold) after adding Al3+. And the probe solution with Al3+ had a very high fluorescence quantum yield (89.29 %). The detection limit was calculated to be 1.135 nM, which was significantly lower than many reported detection limits, indicating that the probe JHK had pretty good sensitivity. The ratio of JHK to Al3+ (1:1) and the sensing mechanism were determined by Job's plot, 1H NMR spectra, FTIR spectra, ESI-MS and Gaussian calculation. The probe solution and medium-speed filter paper were successfully used to make test papers for more convenient detection of Al3+. Furthermore, the probe JHK had been successfully applied to the detection of Al3+ in real water, zebrafish and living cells.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, PR China
| | - Na Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, PR China
| | - Feng Shao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, PR China
| | - Rui Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, PR China
| | - Miao Chen
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, PR China
| | - Yuan-Jun Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, PR China
| | - Yu Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, PR China.
| | - Rong Li
- Qingdao Women and Children 's Hospital, No. 217 Liaoyang West Road, Qingdao, Shandong 226034, PR China.
| |
Collapse
|
21
|
Zhang R, Huang X, Wu Q, Chu S, Bai X, Zhou Y, You J, Yang C, Tan H. Multifunctional gelatin nanoparticle stabilized-Pickering emulsion hydrogel based on dextran and amikacin with controlled drug release and enhanced antibacterial capability for promoting infected wound healing. Int J Biol Macromol 2024; 262:130172. [PMID: 38360230 DOI: 10.1016/j.ijbiomac.2024.130172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Plant essential oils possess broad-spectral antimicrobial property, but the applications are impeded by their insolubility in water, extreme volatility, and strong irritation. Nanoparticle-stabilized emulsion (Pickering emulsion) gels are colloidal systems with ability to accommodate two immiscible phases in one system. The thick adsorption nanoparticle layers and the cross-linked networks in continuous phase could provide protective barriers for antibacterial oil and achieve on-demand controlled release. An emulsion hydrogel templated from gelatin nanoparticle-stabilized emulsion is one-pot constructed by conducting a tunable cross-linking process between oxidized dextran (Odex) and amikacin in the continuous phase and concomitantly trapping tea tree essential oil (TO) droplets in the three-dimensional network. The resulted emulsion hydrogel presents tunable gelation time, adequate mechanical strength, fascinating injectability, and self-healing capability. It is pH-responsiveness and presents controlled release of amikacin and TO, exhibiting a long-term bacteriostasis of 144 h. The emulsion hydrogel facilitates the outstanding wound healing efficiency in 14 days (95.2 ± 0.8 % of wound closure), accompanied with enhanced collagen deposition and angiogenic activities. The incorporation of TO into emulsion hydrogel system reduced its irritation and improved its biosafety, showing potential application in bacteria inhibition even as implants in vivo.
Collapse
Affiliation(s)
- Ruiyun Zhang
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Xiao Huang
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Qiaoli Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Shirun Chu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Xue Bai
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Yuanyuan Zhou
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Jing You
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Chen Yang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Huan Tan
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China.
| |
Collapse
|
22
|
Jiang M, Zhu Y, Li Q, Liu W, Dong A, Zhang L. 2D nanomaterial-based 3D network hydrogels for anti-infection therapy. J Mater Chem B 2024; 12:916-951. [PMID: 38224023 DOI: 10.1039/d3tb02244g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Two-dimensional nanomaterials (2D NMs) refer to nanomaterials that possess a planar topography with a thickness of one or several atomic layers. Due to their large specific surface areas, atomic thickness, rough edges, and electron confinement in two dimensions, they have emerged as promising antimicrobial agents over antibiotics in combating bacterial infections. However, 2D NMs encounter issues such as low bio-safety, easy aggregation, and limited tissue penetration efficiency. To address these concerns, hydrogels with three-dimensional (3D) networks have been developed to encapsulate 2D NMs, aiming to enhance their biocompatibility, biodegradability, and ability to regulate and remodel the tissue microenvironment at the infected site. This review systematically summarizes the current studies on 2D NM-based antibacterial hydrogels with 3D network structures (named 2N3Hs). Firstly, we introduce the emerging types of 2N3Hs and describe their antibacterial actions. Subsequently, we discuss the applications of 2N3Hs in three biomedical fields, including wound dressing, cancer treatment, and bone regeneration. Finally, we conclude the review with current challenges and future developments for 2N3Hs, highlighting their potential as a promising choice for next-generation biomedical devices, particularly in the field of tissue engineering and regenerative medicine. This review aims to provide a comprehensive and panoramic overview of anti-infective 2N3Hs for various biomedical applications.
Collapse
Affiliation(s)
- Mingji Jiang
- Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Yingnan Zhu
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Qingsi Li
- Tianjin University, Tianjin, P. R. China.
| | - Wenxin Liu
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, P. R. China.
| | - Alideertu Dong
- Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Lei Zhang
- Tianjin University, Tianjin, P. R. China.
| |
Collapse
|
23
|
Diao SJ, Lin CG, Zhang J, Zhang FD, Chu JF, Song YF. A pseudo-Double-Network Hydrogel Built upon Layered Double Hydroxides with Self-Strengthening Properties. Chemistry 2023:e202303092. [PMID: 38057492 DOI: 10.1002/chem.202303092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
While great achievements have been made in the development of mechanically robust nanocomposite hydrogels, incorporating multiple interactions on the bases of two demensional inorganic cross-linkers to construct self-strengthening hydrogels has rarely been investigated. To this end, we propose here a new method for the coupling the dynamic covalent bonds and non-covalent interactions within a pseudo double-network system. The pseudo first network, formed through the Schiff Base reation between Tris-modified layered double hydroxides (Tris-LDHs) and oxidized dextran (ODex), is linked to the second network built upon non-covalent interactions between Tris-LDHs and poly(acrylamide-co-2-acrylamido-2-methyl-propanesulfonate) (p-(AM-co-AMPS). The swelling and mechanical properties of the resulting hydrogels have been investigated as a function of the ODex and AMPS contents. The as-prepared hydrogel can swell to 420 times of its original size and retain more than 99.9 wt.% of water. Mechanical tests show that the hydrogel can bear 90 % of compression and is able to be stretched to near 30 times of its original length. Cyclic tensile tests reveal that the hydrogels are capable of self-strengthening after mechanical training. The unique energy dissipation mechanism based on the dynamic covalent and non-covalent interactions is considered to be responsible for the outstanding swelling and mechanical performances.
Collapse
Affiliation(s)
- Shu-Jing Diao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chang-Gen Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jie Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fen-Di Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jin-Feng Chu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- School of Chemical Engineering, Qinghai University, Qinghai, 810016, P. R. China
| |
Collapse
|
24
|
Norouzi M, Noormoradi N, Mohammadi M. Nanomagnetic tetraaza (N 4 donor) macrocyclic Schiff base complex of copper(ii): synthesis, characterizations, and its catalytic application in Click reactions. NANOSCALE ADVANCES 2023; 5:6594-6605. [PMID: 38024320 PMCID: PMC10662036 DOI: 10.1039/d3na00580a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
In this research, a novel nanomagnetic tetra-azamacrocyclic Schiff base complex of copper(ii) was produced via a post-synthetic surface modification of an Fe3O4 surface by a silane-coupling agent that contains acetylacetone functionalities at the end of its chain. Moreover, the target Cu complex that involves a tetradentate Schiff base ligand was obtained from a template reaction with o-phenylenediamine and Cu(NO3)2·3H2O. Furthermore, the prepared complex was nominated as [Fe3O4@TAM-Schiff-base-Cu(II)]. The Fourier-transform infrared (FT-IR) analysis indicates the presence of a Schiff-base-Cu complex in the catalyst. X-ray spectroscopy (EDS) and TGA analysis reveal that approximately 6-7% of the target catalyst comprises hydrocarbon moieties. The scanning electron microscope (SEM) and transmission electron microscopy (TEM) images demonstrate the presence of uniformly shaped particles, nearly spherical in nature, with sizes ranging from 9 to 18 nm. [Fe3O4@TAM-Schiff-base-Cu(II)] was applied as a catalyst for the click synthesis of a diverse range of 5-substituted-1H-tetrazoles in PEG-400 as a green medium. Regarding the electrical properties of the Cu(ii) complex, the presence of a tetra-aza (N4 donor) macrocyclic Schiff base as an N-rich ligand was reasonable - leading to its excellent capacity to catalyze these organic transformations. Finally, the high magnetization value (44.92 emu g-1) of [Fe3O4@TAM-Schiff-base-Cu(II)] enables its recycling at least four times without compromising the catalytic efficiency.
Collapse
Affiliation(s)
- Masoomeh Norouzi
- Department of Chemistry, Faculty of Science, Ilam University P.O. Box 69315516 Ilam Iran
| | - Nasim Noormoradi
- Department of Chemistry, Faculty of Science, Ilam University P.O. Box 69315516 Ilam Iran
| | - Masoud Mohammadi
- Department of Chemistry, Faculty of Science, Ilam University P.O. Box 69315516 Ilam Iran
| |
Collapse
|
25
|
Xu HB, Chen HY, Lv J, Chen BB, Zhou ZR, Chang S, Gao YT, Huang WF, Ye MJ, Cheng ZJ, Hafez ME, Qian RC, Li DW. Schiff Base Reaction in a Living Cell: In Situ Synthesis of a Hollow Covalent Organic Polymer To Regulate Biological Functions. Angew Chem Int Ed Engl 2023; 62:e202311002. [PMID: 37714815 DOI: 10.1002/anie.202311002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/17/2023]
Abstract
Artificially performing chemical reactions in living biosystems to attain various physiological aims remains an intriguing but very challenging task. In this study, the Schiff base reaction was conducted in cells using Sc(OTf)3 as a catalyst, enabling the in situ synthesis of a hollow covalent organic polymer (HCOP) without external stimuli. The reversible Schiff base reaction mediated intracellular Oswald ripening endows the HCOP with a spherical, hollow porous structure and a large specific surface area. The intracellularly generated HCOP reduced cellular motility by restraining actin polymerization, which consequently induced mitochondrial deactivation, apoptosis, and necroptosis. The presented intracellular synthesis system inspired by the Schiff base reaction has strong potential to regulate cell fate and biological functions, opening up a new strategic possibility for intervening in cellular behavior.
Collapse
Affiliation(s)
- Han-Bin Xu
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Hua-Ying Chen
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jian Lv
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Bin-Bin Chen
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen City, Guangdong, 518172, P. R. China
| | - Ze-Rui Zhou
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Shuai Chang
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ya-Ting Gao
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wen-Fei Huang
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ming-Jie Ye
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zi-Jian Cheng
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Mahmoud Elsayed Hafez
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
26
|
Kaur K, Murphy CM. Advances in the Development of Nano-Engineered Mechanically Robust Hydrogels for Minimally Invasive Treatment of Bone Defects. Gels 2023; 9:809. [PMID: 37888382 PMCID: PMC10606921 DOI: 10.3390/gels9100809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023] Open
Abstract
Injectable hydrogels were discovered as attractive materials for bone tissue engineering applications given their outstanding biocompatibility, high water content, and versatile fabrication platforms into materials with different physiochemical properties. However, traditional hydrogels suffer from weak mechanical strength, limiting their use in heavy load-bearing areas. Thus, the fabrication of mechanically robust injectable hydrogels that are suitable for load-bearing environments is of great interest. Successful material design for bone tissue engineering requires an understanding of the composition and structure of the material chosen, as well as the appropriate selection of biomimetic natural or synthetic materials. This review focuses on recent advancements in materials-design considerations and approaches to prepare mechanically robust injectable hydrogels for bone tissue engineering applications. We outline the materials-design approaches through a selection of materials and fabrication methods. Finally, we discuss unmet needs and current challenges in the development of ideal materials for bone tissue regeneration and highlight emerging strategies in the field.
Collapse
Affiliation(s)
- Kulwinder Kaur
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland;
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Ciara M. Murphy
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland;
- Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin (TCD), D02 PN40 Dublin, Ireland
- Trinity Centre for Bioengineering, Trinity College Dublin (TCD), D02 PN40 Dublin, Ireland
| |
Collapse
|
27
|
Kaur N. Insight into the binding interactions of fluorenone-pendent Schiff base with calf thymus DNA. Anal Biochem 2023:115216. [PMID: 37353067 DOI: 10.1016/j.ab.2023.115216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
A novel fluorenone appended Schiff base (L) has been synthesized and utilized for studying the binding interactions with Calf Thymus DNA (ct-DNA). The mechanism of binding with ct-DNA was explored by employing various spectroscopic techniques viz. UV-Vis absorption spectroscopy, fluorescence emission spectroscopy, gel-electrophoresis, circular dichroism (CD), melting studies, viscosity arrays and molecular modelling methodology. The interpretation of UV-vis absorbance spectra pointed to binding of L within minor groove of ct-DNA with the binding constant of Kb = 0.15 × 104 M-1. Dye-displacement studies with Rhodamine-B (RhB) and Ethylene Bromide (EB) in fluorescence spectroscopy verified the groove binding mode of interaction between L and ct-DNA. Melting studies, circular dichroism, and viscosity studies further elucidated the binding modes of L with ct-DNA. Thermodynamic variable measurements taken at various temperatures such as ΔG⁰, ΔH⁰, and ΔS⁰ revealed that hydrophobic forces played a significant role in the binding process. The meticulous computational interaction demonstrated by molecular docking confirmed the minor groove binding of L with ct-DNA.
Collapse
Affiliation(s)
- Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
28
|
Hashmi K, Gupta S, Siddique A, Khan T, Joshi S. Medicinal applications of vanadium complexes with Schiff bases. J Trace Elem Med Biol 2023; 79:127245. [PMID: 37406475 DOI: 10.1016/j.jtemb.2023.127245] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023]
Abstract
Many transition metal complexes have been explored for their therapeutic properties after the discovery of cisplatin. Schiff bases have an efficient complexation tendency with the transition metals and several medicinal properties have been reported. However, fewer studies have reported the medicinal utility of vanadium and its Schiff base complexes. This paper provides a comprehensive overview of vanadium complexes with Schiff bases along with their mechanistic insight. Vanadium complexes in + 4 and + 5 oxidation states have exhibited well-defined geometry and found to be thermodynamically stable. The studies have reported the G0/G1 phase cell cycle arrest and decreased delta psi m, inducing mitochondrial membrane depolarization in cancer cell lines along with the alterations in the metabolism of the cancer cells upon dosing with the vanadium complexes. Cancer cell invasion and growth are also found to be markedly reduced by peroxo complexes of vanadium. The studies included in the review paper have been taken from leading indexing databases and focus was laid on recent reports in literature. The biological potential of vanadium complexes of Schiff bases opens new horizons for future interdisciplinary studies and investigation focussed on understanding the biochemistry of these complexes, along with designing new complexes which have better bioavailability, solubility and low or non-toxicity.
Collapse
Affiliation(s)
- Kulsum Hashmi
- Department of Chemistry, Isabella Thoburn College, Lucknow, UP 226007, India
| | - Sakshi Gupta
- Department of Chemistry, Isabella Thoburn College, Lucknow, UP 226007, India
| | - Armeen Siddique
- Department of Chemistry, Isabella Thoburn College, Lucknow, UP 226007, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Lucknow, UP 226026, India
| | - Seema Joshi
- Department of Chemistry, Isabella Thoburn College, Lucknow, UP 226007, India.
| |
Collapse
|
29
|
Hasanzadeh E, Seifalian A, Mellati A, Saremi J, Asadpour S, Enderami SE, Nekounam H, Mahmoodi N. Injectable hydrogels in central nervous system: Unique and novel platforms for promoting extracellular matrix remodeling and tissue engineering. Mater Today Bio 2023; 20:100614. [PMID: 37008830 PMCID: PMC10050787 DOI: 10.1016/j.mtbio.2023.100614] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/23/2023] [Accepted: 03/16/2023] [Indexed: 04/04/2023] Open
Abstract
Repairing central nervous system (CNS) is difficult due to the inability of neurons to recover after damage. A clinically acceptable treatment to promote CNS functional recovery and regeneration is currently unavailable. According to recent studies, injectable hydrogels as biodegradable scaffolds for CNS tissue engineering and regeneration have exceptionally desirable attributes. Hydrogel has a biomimetic structure similar to extracellular matrix, hence has been considered a 3D scaffold for CNS regeneration. An interesting new type of hydrogel, injectable hydrogels, can be injected into target areas with little invasiveness and imitate several aspects of CNS. Injectable hydrogels are being researched as therapeutic agents because they may imitate numerous properties of CNS tissues and hence reduce subsequent injury and regenerate neural tissue. Because of their less adverse effects and cost, easier use and implantation with less pain, and faster regeneration capacity, injectable hydrogels, are more desirable than non-injectable hydrogels. This article discusses the pathophysiology of CNS and the use of several kinds of injectable hydrogels for brain and spinal cord tissue engineering, paying particular emphasis to recent experimental studies.
Collapse
Affiliation(s)
- Elham Hasanzadeh
- Immunogenetics Research Center, Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd, Nanoloom Ltd, & Liberum Health Ltd), London BioScience Innovation Centre, 2 Royal College Street, London, UK
| | - Amir Mellati
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Jamileh Saremi
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Shiva Asadpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Houra Nekounam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Mahmoodi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Hu Y, Lyu C, Teng L, Wu A, Zhu Z, He Y, Lu J. Glycopolypeptide hydrogels with adjustable enzyme-triggered degradation: A novel proteoglycans analogue to repair articular-cartilage defects. Mater Today Bio 2023; 20:100659. [PMID: 37229212 PMCID: PMC10205498 DOI: 10.1016/j.mtbio.2023.100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Proteoglycans (PGs), also known as a viscous lubricant, is the main component of the cartilage extracellular matrix (ECM). The loss of PGs is accompanied by the chronic degeneration of cartilage tissue, which is an irreversible degeneration process that eventually develops into osteoarthritis (OA). Unfortunately, there is still no substitute for PGs in clinical treatments. Herein, we propose a new PGs analogue. The Glycopolypeptide hydrogels in the experimental groups with different concentrations were prepared by Schiff base reaction (Gel-1, Gel-2, Gel-3, Gel-4, Gel-5 and Gel-6). They have good biocompatibility and adjustable enzyme-triggered degradability. The hydrogels have a loose and porous structure suitable for the proliferation, adhesion, and migration of chondrocytes, good anti-swelling, and reduce the reactive oxygen species (ROS) in chondrocytes. In vitro experiments confirmed that the glycopolypeptide hydrogels significantly promoted ECM deposition and up-regulated the expression of cartilage-specific genes, such as type-II collagen, aggrecan, and glycosaminoglycans (sGAG). In vivo, the New Zealand rabbit knee articular cartilage defect model was established and the hydrogels were implanted to repair it, the results showed good cartilage regeneration potential. It is worth noting that the Gel-3 group, with a pore size of 122 ± 12 μm, was particularly prominent in the above experiments, and provides a theoretical reference for the design of cartilage-tissue regeneration materials in the future.
Collapse
Affiliation(s)
- Yinghan Hu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chengqi Lyu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Lin Teng
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Anqian Wu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zeyu Zhu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - YuShi He
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiayu Lu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
31
|
Nghia NN, Huy BT, Khanh DNN, Van Cuong N, Li H, Lee YI. Straightforward smartphone assay for quantifying tannic acid in beverages based on colour change of Eu 3+/polyethyleneimine complex. Food Chem 2023; 410:135466. [PMID: 36646032 DOI: 10.1016/j.foodchem.2023.135466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Tannic acid (TA)-a natural product-is a polyphenol derivative that occurs in certain kinds of beverages. A large amount of TA could give rise to an unpleasant flavour and could negatively affect the human body by causing stomach irritation, abdominal pain, nausea, vomiting, and even death. Thus, the need exists for a simple TA detection procedure that meets specific criteria such as on-site analysis, portability, and affordability. Herein, we present a new TA assay, which is based on the fluorescent quenching effect of an efficient fluorophore, and which comprises a smartphone-integrated homemade reader system. The fluorescent polyethyleneimine-derivatised polymer (FP), a strong emitter at 510 nm, was synthesised with the aid of a facile sonication method. In the presence of Eu3+ ions, TA quenches the fluorescence of the FP via electrostatic interaction. A smartphone was used to capture an image of the FP undergoing fluorescence for conversion to RGB values. The blue channel was chosen for further analysis because it offered the highest R2-value compared to the red and green channels. We verified these results using a commercial spectrofluorometer and calculated the limit of detection of this assay as 87 nM and 20 nM for the homemade reader and spectrofluorometer, respectively. The detection range for TA with the proposed assay is 0.16-66.66 μM. The application of the proposed method to real beverage samples for TA detection demonstrates its analytical applicability.
Collapse
Affiliation(s)
- Nguyen Ngoc Nghia
- Department of Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Bui The Huy
- Department of Chemistry, Changwon National University, Changwon 51140, Republic of Korea; Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Dang Nguyen Nha Khanh
- National Institute of Applied Mechanics and Informatics, Vietnam Academy of Science and Technology, Ho Chi Minh City, Viet Nam
| | - Nguyen Van Cuong
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Hongchang Li
- Department of Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Yong-Ill Lee
- Department of Chemistry, Changwon National University, Changwon 51140, Republic of Korea; Department of Pharmacy, Pharmaceutical Technical University, Tashkent 100084, Uzbekistan.
| |
Collapse
|
32
|
Muddassir M, Alarifi A, Abduh NAY, Saeed WS, Karami AM, Afzal M. Multifunctional Zn(II) Coordination Polymer as Highly Selective Fluorescent Sensor and Adsorbent for Dyes. Int J Mol Sci 2023; 24:ijms24108512. [PMID: 37239860 DOI: 10.3390/ijms24108512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
A new Zn(II)-based coordination polymer (1) comprising the Schiff base ligand obtained by the condensation of 5-aminosalicylic acid and salicylaldehyde has been synthesized. This newly synthesized compound has been characterized by analytical and spectroscopic methods, and finally, by single-crystal X-ray diffraction technique in this study. The X-ray analysis reveals a distorted tetrahedral environment around the central Zn(II) center. This compound has been used as a sensitive and selective fluorescent sensor for acetone and Ag+ cations. The photoluminescence measurements indicate that in the presence of acetone, the emission intensity of 1 displays quenching at room temperature. However, other organic solvents caused meagre changes in the emission intensity of 1. Additionally, the fluorescence intensity of 1 has been examined in the presence of different ketones viz. cyclohexanone, 4-heptanone, and 5-nonanone, to assess the interaction between the C=O group of the ketones and the molecular framework of 1. Moreover, 1 displays a selective recognition of Ag+ in the aqueous medium by an enhancement in its fluorescence intensity, representing its high sensitivity for the detection of Ag+ ions in a water sample. Additionally, 1 displays the selective adsorption of cationic dyes (methylene blue and rhodamine B). Hence, 1 showcases its potential as an excellent luminescent probe to detect acetone, other ketones, and Ag+ with an exceptional selectivity, and displaying a selective adsorption of cationic dye molecules.
Collapse
Affiliation(s)
- Mohd Muddassir
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Alarifi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naaser A Y Abduh
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Waseem Sharaf Saeed
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Mohd Afzal
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
33
|
Li Q, Yang J, Yu W, He L, Zhou R, Nie C, Liao L, Xiao X. Two Fe(III)/Eu(III) Salophen complex-based optical sensors for determination of organophosphorus pesticide monocrotophos. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2334-2342. [PMID: 37140268 DOI: 10.1039/d3ay00255a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Monocrotophos (MP), an organophosphorus pesticide, poses a serious threat to human health, so a rapid and simple technique is needed to detect it. In this study, two novel optical sensors for MP detection were created using the Fe(III) Salophen complex and Eu(III) Salophen complex, respectively. One sensor is an Fe(III) Salophen complex (I-N-Sal), which can bind MP selectively and form a supramolecule, resulting in a strong resonance light scattering (RLS) signal at 300 nm. Under the optimum conditions, the detection limit was 30 nM, the linear range was 0.1-1.1 μM, the correlation coefficient R2 = 0.9919, and the recovery rate range was 97.0-103.1%. Interaction properties between the sensor I-N-Sal and MP and the RLS mechanism were investigated using density functional theory (DFT). And another sensor is based on the Eu(III) Salophen complex and 5-aminofluorescein derivatives. The Eu(III) Salophen complex was immobilized on the surface of amino-silica gel (Sigel-NH2) particles as the solid phase receptor (ESS) of MP and 5-aminofluorescein derivatives as the fluorescent (FL)-labeled receptor (N-5-AF) of MP, which can selectively bind the MP and form a sandwich-type supramolecule. Under the optimum conditions, the detection limit was 0.4 μM, the linear range was 1.3-7.0 μM, the correlation coefficient R2 = 0.9983, and the recovery rate range was 96.6-101.1%. Interaction properties between the sensor and MP were investigated by UV-vis, FT-IR, and XRD. Both sensors were successfully applied to the determination of MP content in tap water and camellia.
Collapse
Affiliation(s)
- Qian Li
- School of Chemistry and Chemical Engineering, Hunan Province Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang 421001, P. R. China
| | - Jing Yang
- Hengyang Market Supervision, Inspection and Testing Center, Hengyang City 421001, P. R. China
| | - Wenzhan Yu
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, P. R. China
| | - Liqiong He
- Department of Public Health and Laboratory Science, School of Public Health, University of South China, Hengyang 421001, P. R. China
| | - Renlong Zhou
- Department of Public Health and Laboratory Science, School of Public Health, University of South China, Hengyang 421001, P. R. China
| | - Changming Nie
- School of Chemistry and Chemical Engineering, Hunan Province Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang 421001, P. R. China
| | - Lifu Liao
- School of Chemistry and Chemical Engineering, Hunan Province Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang 421001, P. R. China
| | - Xilin Xiao
- School of Chemistry and Chemical Engineering, Hunan Province Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang 421001, P. R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, China.
| |
Collapse
|
34
|
Aziz R, Falanga M, Purenovic J, Mancini S, Lamberti P, Guida M. A Review on the Applications of Natural Biodegradable Nano Polymers in Cardiac Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1374. [PMID: 37110959 PMCID: PMC10145986 DOI: 10.3390/nano13081374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
As cardiac diseases, which mostly result in heart failure, are increasing rapidly worldwide, heart transplantation seems the only solution for saving lives. However, this practice is not always possible due to several reasons, such as scarcity of donors, rejection of organs from recipient bodies, or costly medical procedures. In the framework of nanotechnology, nanomaterials greatly contribute to the development of these cardiovascular scaffolds as they provide an easy regeneration of the tissues. Currently, functional nanofibers can be used in the production of stem cells and in the regeneration of cells and tissues. The small size of nanomaterials, however, leads to changes in their chemical and physical characteristics that could alter their interaction and exposure to stem cells with cells and tissues. This article aims to review the naturally occurring biodegradable nanomaterials that are used in cardiovascular tissue engineering for the development of cardiac patches, vessels, and tissues. Moreover, this article also provides an overview of cell sources used for cardiac tissue engineering, explains the anatomy and physiology of the human heart, and explores the regeneration of cardiac cells and the nanofabrication approaches used in cardiac tissue engineering as well as scaffolds.
Collapse
Affiliation(s)
- Rabia Aziz
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, 84084 Fisciano, Italy; (M.F.); (S.M.); (P.L.); (M.G.)
- Consiglio Nazionale Delle Ricerche (CNR)-Istituto Officina dei Materiali (IOM), Area Science Park Basovizza S.S. 14-Km. 163, 5-34149 Trieste, Italy
| | - Mariarosaria Falanga
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, 84084 Fisciano, Italy; (M.F.); (S.M.); (P.L.); (M.G.)
| | - Jelena Purenovic
- Department of Physics and Materials, Faculty of Sciences at Cacak, University of Kragujevac, 32000 Cacak, Serbia;
| | - Simona Mancini
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, 84084 Fisciano, Italy; (M.F.); (S.M.); (P.L.); (M.G.)
| | - Patrizia Lamberti
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, 84084 Fisciano, Italy; (M.F.); (S.M.); (P.L.); (M.G.)
- Italian Interuniversity Research Center on Interaction between Electromagnetic Fields and Biosystems (ICEmB), Università Degli Studi di Genova, DITEN, Via all’Opera Pia 11/a, 16145 Genova, Italy
- Interdepartmental Research Centre for Nanomaterials and Nanotechnology at the University of Salerno (NanoMates), Department of Physics, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Michele Guida
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, 84084 Fisciano, Italy; (M.F.); (S.M.); (P.L.); (M.G.)
- Italian Interuniversity Research Center on Interaction between Electromagnetic Fields and Biosystems (ICEmB), Università Degli Studi di Genova, DITEN, Via all’Opera Pia 11/a, 16145 Genova, Italy
| |
Collapse
|
35
|
Li X, Zhou Z, Wang Y, Dong J, Jia X, Hu Z, Wei Q, Zhang W, Jiang Y, Zhang J, Dong Y. Schiff base modified starch: A promising biosupport for palladium in Suzuki cross-coupling reactions. Int J Biol Macromol 2023; 233:123596. [PMID: 36773881 DOI: 10.1016/j.ijbiomac.2023.123596] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/18/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Starch can be used in diverse fields because it is a readily available, non-toxic polysaccharide with adaptable functionality and biodegradability. In this study, taking the aforementioned characteristics into consideration, we designed a modified starch (Starch-SB), which serves as supporting material for palladium stabilization. This new air and moisture-stable robust palladium composite [Starch-SB-Pd(II)] was characterized by FT-IR, XRD, TGA, XPS, SEM, EDX, TEM, CP/MAS 13C NMR, and ICP-MS analytical techniques. The catalytic studies exhibit high activity (up to 99 %) and stability in Suzuki cross-coupling reactions for this starch supported catalytic system under mild conditions (lower reaction temperature and green solvents) because of the cooperative interactions of multifunctional capturing sites on starch (Schiff base, hydroxy and amine groups) with palladium species. The experiments on reusability demonstrate that Starch-SB-Pd(II), which was prepared from functionalized starch, could be readily recycled several cycles through centrifugation. Moreover, we proposed a possibly multifunctional complex structure. This work presents an appealing and intriguing pathway for the utilization of polysaccharide as crucial support in green chemical transformations.
Collapse
Affiliation(s)
- Xinjuan Li
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China.
| | - Zhangquan Zhou
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Yanan Wang
- Xinxiang NO.1 Middle School, Xinxiang 45300, PR China
| | - Jiaxin Dong
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Xianbin Jia
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Zhiguo Hu
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Qingcong Wei
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Weiwei Zhang
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Yuqin Jiang
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Jiaojiao Zhang
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Yahao Dong
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China.
| |
Collapse
|
36
|
Asha S, Thomas A, Suma S, K R, Sandhya K, Siddlingeshwar B, Sudarsanakumar M. STRUCTURAL STUDIES OF A NOVEL TAUTOMERIC SCHIFF BASE DERIVED FROM 4-(N,N’-DIETHYLAMINO)SALICYLALDEHYDE AND 2-AMINO-4-METHYL PHENOL: AN EXPERIMENTAL AND THEORETICAL STUDY. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
37
|
A new ionic Schiff base macrocycle as highly selective and sensitive colorimetric chemo-sensor for S2- detection. J CHEM SCI 2023. [DOI: 10.1007/s12039-023-02133-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
38
|
Gurusamy S, Sankarganesh M, Nandini Asha R, Mathavan A. Biologically active oxovanadium(IV) Schiff base metal complex: antibacterial, antioxidant, biomolecular interaction and molecular docking studies. J Biomol Struct Dyn 2023; 41:599-610. [PMID: 34889705 DOI: 10.1080/07391102.2021.2009916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The oxovanadium(IV) Schiff base metal complex (ISNPV) have been synthesized as well as characterized by using micro analytical and traditional spectroscopic techniques. The spectral findings were utilized to validate the formation of ISNPV with structure exhibited square pyramidal geometry. The in vitro antibacterial activities of ISNPV were investigated to five different bacterial stains such as S. aureus, S. epidermidis, B. cereus, B. amyloliquefaciens and B. subtilis. The obtained result have suggested that the ISNPV has highest antibacterial activity against S. aureus than the other bacterial stains. The in vitro antioxidant activity like DPPH free radical scavenging assay method was studied by ISNPV in DMSO medium. Because it scavenges all free radicals, the ISNPV possesses higher antioxidant activity than the free ligand. UV-visible absorption and emission spectral techniques were used to investigate the binding of CT-DNA to the ISNPV. Both the spectral data indicate that the ISNPV binds the double helix structure of CT-DNA via an intercalation mode. Additionally, investigate the interactions of ISNPV with the protein molecules like BSA/HAS has been investigated using absorption and emission techniques. The absorption intensity of metal complex increases as well as the emission intensity of protein molecules ability decreases due to the binding nature of ISNPV with BSA/HSA protein molecules. The binding nature of ISNPV with bio molecules such as CT-DNA, BSA and HSA was also validated using molecular docking approach.
Collapse
Affiliation(s)
- Shunmugasundaram Gurusamy
- Department of Chemistry, V.O. Chidambaram College, Tuticorin, Tamil Nadu, India.,Affiliated to Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India
| | - Murugesan Sankarganesh
- Department of Chemistry, Saveetha School of Engineeing, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamilnadu, India
| | | | - Alagarsamy Mathavan
- Department of Chemistry, V.O. Chidambaram College, Tuticorin, Tamil Nadu, India
| |
Collapse
|
39
|
Zhao WZ. Crystal structure of 4-((6-bromohexyl)oxy)-2-hydroxybenzaldehyde, C 13H 17BrO 3. Z KRIST-NEW CRYST ST 2023. [DOI: 10.1515/ncrs-2022-0598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Abstract
C13H17BrO3, triclinic,
P
1
‾
$P\overline{1}$
(no. 2), a = 8.5759(12) Å, b = 9.1690(12) Å, c = 9.9698(12) Å, α = 81.677(4)°, β = 76.029(4)°, γ = 63.441(4)°, V = 679.87(16) Å3, Z = 2, R
gt(F) = 0.0433, wR
ref(F
2) = 0.1253, T = 302(2) K.
Collapse
Affiliation(s)
- Wen-Ze Zhao
- Shandong Vocational College of Industry , Zibo , Shandong , 550025 , P. R. China
| |
Collapse
|
40
|
Zhu M, Wang Q, Gu T, Han Y, Zeng X, Li J, Dong J, Huang H, Qian P. Hydrogel-based microenvironment engineering of haematopoietic stem cells. Cell Mol Life Sci 2023; 80:49. [PMID: 36690903 PMCID: PMC11073069 DOI: 10.1007/s00018-023-04696-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/06/2022] [Accepted: 01/08/2023] [Indexed: 01/25/2023]
Abstract
Haematopoietic Stem cells (HSCs) have the potential for self-renewal and multilineage differentiation, and their behaviours are finely tuned by the microenvironment. HSC transplantation (HSCT) is widely used in the treatment of haematologic malignancies while limited by the quantity of available HSCs. With the development of tissue engineering, hydrogels have been deployed to mimic the HSC microenvironment in vitro. Engineered hydrogels influence HSC behaviour by regulating mechanical strength, extracellular matrix microstructure, cellular ligands and cytokines, cell-cell interaction, and oxygen concentration, which ultimately facilitate the acquisition of sufficient HSCs. Here, we review recent advances in the application of hydrogel-based microenvironment engineering of HSCs, and provide future perspectives on challenges in basic research and clinical practice.
Collapse
Affiliation(s)
- Meng Zhu
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Qiwei Wang
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Tianning Gu
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yingli Han
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Xin Zeng
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Jinxin Li
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Jian Dong
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - He Huang
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Pengxu Qian
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
| |
Collapse
|
41
|
Liu Y, Xing R, Li J, Yan X. Covalently triggered self-assembly of peptide-based nanodrugs for cancer theranostics. iScience 2023; 26:105789. [PMID: 36594020 PMCID: PMC9804138 DOI: 10.1016/j.isci.2022.105789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Covalently triggered peptide self-assembly is achieved through sequential integration of spontaneous covalent reaction and noncovalent interactions, thus both enhancing the physiological stability and extending unexpected functionality of the resulting peptide-based assemblies, different from popular supramolecular peptide self-assembly merely associated with noncovalent interactions. This review summarizes the recent progress on the development of covalently triggered peptide self-assembly for cancer theranostics. Especially, we propose the fundamental design principle of covalently triggered peptide self-assembly for constructing a variety of peptide-based assemblies including nanoparticles, nanofibers, hollow nanospheres, and other nanoarchitectures. Subsequently, the discussion is anchored in an overview of representative covalently assembled peptide-based nanodrugs for the cancer theranostics. Finally, the challenges and perspectives on the clinical potential of the covalently assembled peptide-based nanodrugs are highlighted. This review will provide new insights into construction of peptide-based nanodrugs through combination of covalent reaction and noncovalent self-assembly and prompt their clinical applications in cancer diagnosis and therapeutics.
Collapse
Affiliation(s)
- Yamei Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
42
|
Shi L, Zhou X, Guo Y, Li Y, Yan C, Han Q, Zhang L, Zhang W. Designing of 3D MnO 2-graphene catalyst on sponge for abatement temperature removal of formaldehyde. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129836. [PMID: 36088878 DOI: 10.1016/j.jhazmat.2022.129836] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The Mn-based catalysts, with low cost and high activity, are believed to be the effective composites for eliminating in-door formaldehyde (HCHO), while the powdered form nanosized catalysts are hardly to apply for practical application. Herein, hetero-structure of nanosheets manganese oxide (MnO2) encapsulating N-doping graphene sphere (GS) were deposited in network-like sponge for constructing 3D catalyst. The prepared MnO2-GS-Sponge composite catalyst exhibited excellent performance for removing HCHO at room temperature compared with GS and commercial MnO2. The MnO2-GS with larger specific surface area (209.1 m2·g-1) was dispersed evenly in 3D network of sponge, which facilitated exposing more activate sites and achieving fast transport kinetics accelerating catalytic reaction for converting 97.1 % of 100 ppm of HCHO continuously to CO2 for 120 h. Moreover, rely on the chemisorption of amino groups on N-doping GS surface, HCHO could be enriched even at low concentrations and efficient elimination (from 1000 ppb to12 ppb, at 35 ℃ in 48 h). The average oxidation state and infrared spectra analysis suggested that abundant oxygen vacancies on MnO2-GS-Sponge could be identified as surface-active sites of converting HCHO into the intermediates of dioxymethylene and formate. This work might inspire the designing 3D composite material for potential application in other fields of environmental engineering or energy industrial.
Collapse
Affiliation(s)
- Lei Shi
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Centre, Institute of Applied Chemistry, East China University of Science and Technology, No.130 Meilong Road, Shanghai 200237, PR China
| | - Xudong Zhou
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Yujie Guo
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Yunyu Li
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Chenxu Yan
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Centre, Institute of Applied Chemistry, East China University of Science and Technology, No.130 Meilong Road, Shanghai 200237, PR China
| | - Qifeng Han
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Lingfan Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| | - Wenqing Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
43
|
New N4-Donor Ligands as Supramolecular Guests for DNA and RNA: Synthesis, Structural Characterization, In Silico, Spectrophotometric and Antimicrobial Studies. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010400. [PMID: 36615615 PMCID: PMC9823393 DOI: 10.3390/molecules28010400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023]
Abstract
The present work reports the synthesis of new N4-donor compounds carrying p-xylyl spacers in their structure. Different Schiff base aliphatic N-donors were obtained synthetically and subsequently evaluated for their ability to interact with two models of nucleic acids: calf-thymus DNA (CT-DNA) and the RNA from yeast Saccharomyces cerevisiae (herein simply indicated as RNA). In more detail, by condensing p-xylylenediamine and a series of aldehydes, we obtained the following Schiff base ligands: 2-thiazolecarboxaldehyde (L1), pyridine-2-carboxaldehyde (L2), 5-methylisoxazole-3-carboxaldehyde (L3), 1-methyl-2-imidazolecarboxaldehyde (L4), and quinoline-2-carboxaldehyde (L5). The structural characterisation of the ligands L1-L5 (X-ray, 1H NMR, 13C NMR, elemental analysis) and of the coordination polymers {[CuL1]PF6}n (herein referred to as Polymer1) and {[AgL1]BF4}n, (herein referred to as Polymer2, X-ray, 1H NMR, ESI-MS) is herein described in detail. The single crystal X-ray structures of complexes Polymer1 and Polymer2 were also investigated, leading to the description of one-dimensional coordination polymers. The spectroscopic and in silico evaluation of the most promising compounds as DNA and RNA binders, as well as the study of the influence of the 1D supramolecular polymers Polymer1 and Polymer2 on the proliferation of Escherichia coli bacteria, were performed in view of their nucleic acid-modulating and antimicrobial applications. Spectroscopic measurements (UV-Vis) combined with molecular docking calculations suggest that the thiazolecarboxaldehyde derivative L1 is able to bind CT-DNA with a mechanism different from intercalation involving the thiazole ring in the molecular recognition and shows a binding affinity with DNA higher than RNA. Finally, Polymer2 was shown to slow down the proliferation of bacteria much more effectively than the free Ag(I) salt.
Collapse
|
44
|
Wang Y, Li X, Li T, Wang Y, Jiang J, Zhang X, Huang J, Xia B, Shum HC, Yang Z, Dong W. Ultra-stable pickering emulsions stabilized by zein-cellulose conjugate particles with tunable interfacial affinity. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Shao L, Ma J, Prelesnik JL, Zhou Y, Nguyen M, Zhao M, Jenekhe SA, Kalinin SV, Ferguson AL, Pfaendtner J, Mundy CJ, De Yoreo JJ, Baneyx F, Chen CL. Hierarchical Materials from High Information Content Macromolecular Building Blocks: Construction, Dynamic Interventions, and Prediction. Chem Rev 2022; 122:17397-17478. [PMID: 36260695 DOI: 10.1021/acs.chemrev.2c00220] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hierarchical materials that exhibit order over multiple length scales are ubiquitous in nature. Because hierarchy gives rise to unique properties and functions, many have sought inspiration from nature when designing and fabricating hierarchical matter. More and more, however, nature's own high-information content building blocks, proteins, peptides, and peptidomimetics, are being coopted to build hierarchy because the information that determines structure, function, and interfacial interactions can be readily encoded in these versatile macromolecules. Here, we take stock of recent progress in the rational design and characterization of hierarchical materials produced from high-information content blocks with a focus on stimuli-responsive and "smart" architectures. We also review advances in the use of computational simulations and data-driven predictions to shed light on how the side chain chemistry and conformational flexibility of macromolecular blocks drive the emergence of order and the acquisition of hierarchy and also on how ionic, solvent, and surface effects influence the outcomes of assembly. Continued progress in the above areas will ultimately usher in an era where an understanding of designed interactions, surface effects, and solution conditions can be harnessed to achieve predictive materials synthesis across scale and drive emergent phenomena in the self-assembly and reconfiguration of high-information content building blocks.
Collapse
Affiliation(s)
- Li Shao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jinrong Ma
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - Jesse L Prelesnik
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Yicheng Zhou
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mary Nguyen
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.,Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Mingfei Zhao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Samson A Jenekhe
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.,Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Sergei V Kalinin
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Jim Pfaendtner
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Christopher J Mundy
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - François Baneyx
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
46
|
Maxim C, Ene CD, Nicolau I, Ruta LL, Farcasanu IC. Enantiomeric pairs of copper(II) complexes with tridentate Schiff bases derived from R- and S-methionine: the role of decorating organic groups of the ligand in crystal packing and biological activity. Dalton Trans 2022; 51:18383-18399. [PMID: 36250294 DOI: 10.1039/d2dt02620a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Three enantiomeric pairs consisting of copper(II) complexes with tridentate Schiff bases have been synthesized for employing in biological assessments: 1∞[Cu2(R/S-salmet)2(H2O)] (1-R/S·H2O), 1∞[Cu(R/S-3-HOMe-5-Me-salmet)] (2-R/S), and 1∞[Cu(R/S-3-MeO-salmet)] (3-R/S) (where R/S-salmetH2, R/S-3-HOMe-5-Me-salmetH2, and R/S-3-MeO-salmetH2 result from the condensation of R/S-methionine with salicylaldehyde, 2-hydroxy-3-(hydroxymethyl)-5-methylbenzaldehyde, and 3-methoxy-salicylaldehyde, respectively, in a 1 : 1 molar ratio). The crystal structures of 1-R·H2O and 2-R/S are reported. Moreover, the 1-R/S·H2O enantiomers have been subjected to a single-crystal-to-single-crystal (SC-SC) transformation by heating at 160 °C to afford their dehydrated forms, 1∞[Cu2(R/S-salmet)2] (1-R/S), whose structures have also been crystallographically determined. The coordination polyhedra of the metal centers, the binding modes of the ligands, and the 1-D double chain assemblies generated by the chiral mononuclear units are comparatively described. The diffuse reflectance UV-Vis and circular dichroism (CD) spectra of compounds 1-R/S·H2O, 1-R/S, and 2-R/S are analysed with respect to their structural peculiarities and compared to those of 3-R/S. The UV-Vis and CD spectra of solutions of 1-R/S, 2-R/S, and 3-R/S point to the collapse of the double chains via dissolution. Biological tests performed on the model eukaryote Saccharomyces cerevisiae indicated low toxicity for 1-R/S, 2-R/S, and 3-R, and moderate toxicity for 3-S. The S-type complexes were accumulated by cells in higher quantity compared to their R-type counterparts due to selective transport via the high-affinity S-methionine transporter, Mup1. A chemogenomic analysis of 3-S toxicity performed on a collection of yeast knockout mutants revealed that most of the deleted genes identified in the screen were involved in the cell response to oxidative stress, calcium-mediated response, or metal homeostasis. Altogether, it was concluded that 3-S accumulation may perturb the redox state of the cell, also interfering with the calcium-mediated response to oxidative stress or metal-related oxidative stress.
Collapse
Affiliation(s)
- Catalin Maxim
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Bucharest, Str. Dumbrava Rosie 23, 020464-Bucharest, Romania
| | - Cristian D Ene
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Bucharest, Str. Dumbrava Rosie 23, 020464-Bucharest, Romania.,"Ilie Murgulescu" Institute of Physical Chemistry of the Romanian Academy, Coordination and Supramolecular Chemistry Laboratory, Splaiul Independentei 202, 060021-Bucharest, Romania.
| | - Ioana Nicolau
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Sos. Panduri 90-92, 050663-Bucharest, Romania.
| | - Lavinia L Ruta
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Sos. Panduri 90-92, 050663-Bucharest, Romania.
| | - Ileana C Farcasanu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Sos. Panduri 90-92, 050663-Bucharest, Romania.
| |
Collapse
|
47
|
Zhang Q, Yan Y, Liu J, Wu Y, He Q. Supramolecular colloidal motors via chemical self-assembly. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
48
|
Wei Z, Du Y, Lü XF, Wang W, Del Sole R, Mele G, Jiang ZY. High-performance Fe3O4-terephthalaldehyde magnetic-nanocomposite for removal phenanthrene and 9-phenanthrol: A comprehensive experimental and theoretical analysis. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Design, Synthesis, Characterization, Anti-Microbial, Anti-Oxidant, DNA, HSA, Cytotoxicity and Anti-Inflammatory Studies of Nitrogen-Substituted Chrysin Derivatives and Metal(II) Complexes. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02372-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
50
|
Comprehensive Empirical Model of Substitution—Influence on Hydrogen Bonding in Aromatic Schiff Bases. Int J Mol Sci 2022; 23:ijms232012439. [DOI: 10.3390/ijms232012439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, over 500 structures of tri-ring aromatic Schiff bases with different substitution patterns were investigated to develop a unified description of the substituent effect on the intramolecular hydrogen bridge. Both proximal and distal effects were examined using Density Functional Theory (DFT) in the gas phase and with solvent reaction field (Polarizable Continuum Model (PCM) and water as the solvent). In order to investigate and characterize the non-covalent interactions, a topological analysis was performed using the Quantum Theory of Atoms In Molecules (QTAIM) theory and Non-Covalent Interactions (NCI) index. The obtained results were summarized as the generalized, empirical model of the composite substituent effect, assessed using an additional group of simple ring-based Schiff bases. The composite substituent effect has been divided into separate increments describing the different interactions of the hydrogen bridge and the substituent: the classical substituent effect, involving resonance and induction mediated through the ring, steric increment based on substituent proximity to the bridge elements, and distal increment, derived from substitution on the distal ring.
Collapse
|