1
|
Zhao Y, Cao T, Lin H, Jiao W, Wang M, Liao J. Copper-Catalyzed Asymmetric Nucleophilic Substitutions of TsSCF 3: Synthesis of Chiral SCF 3-Containing Compounds. J Org Chem 2024; 89:18060-18068. [PMID: 39620404 DOI: 10.1021/acs.joc.4c01803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
By employing electrophilic TsSCF3 as an efficient SCF3 source, we reported Cu/SOP (chiral sulfoxide-phosphine ligand)-catalyzed enantioselective nucleophilic substitutions. Under this protocol, α-pyridyl-α-fluoro esters as latent carbon nucleophiles, compounds containing a C-SCF3 stereocenter along with azacycles and fluorine atoms, were obtained in good yields and enantioselectivities under mild conditions (up to 68% yield, 92% ee).
Collapse
Affiliation(s)
- Yan Zhao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian Cao
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610213, China
| | - Huaxin Lin
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Wei Jiao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Min Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Jian Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Liu P, Geng Y, Zou D, Wu Y, Wu Y. Silver-mediated radical cascade trifluoromethylthiolation/cyclization of benzimidazole derivatives with AgSCF 3. Org Biomol Chem 2024; 22:9361-9365. [PMID: 39494691 DOI: 10.1039/d4ob01582g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
A silver-mediated cascade trifluoromethylthiolation/cyclization of unactivated alkenes has been investigated. This strategy employs AgSCF3 as the trifluoromethylthiolating reagent to obtain a variety of useful trifluoromethylthiolated tricyclic imidazol derivatives in reasonable yields. Preliminary mechanistic studies indicate that the present reaction takes place via a radical process. This method is distinguished by its atom economy, wide functional group compatibility, operational simplicity and product diversity.
Collapse
Affiliation(s)
- Pan Liu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Yang Geng
- Department of Pharmacy, Zhengzhou Railway Vocational and Technical College, Zhengzhou, 451460, People's Republic of China
| | - Dapeng Zou
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Yangjie Wu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Yusheng Wu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
- TYK Medicines, Inc. Huzhou, 313000, People's Republic of China.
- Tetranov International, Inc., 100 Jersey Avenue, Suite A340, New Brunswick, NJ, 08901, USA
| |
Collapse
|
3
|
Wojtkielewicz A, Majewski AD, Łotowski Z. Recent Progress in Steroid C(sp 3)-H Functionalization. CHEM REC 2024; 24:e202400150. [PMID: 39568279 DOI: 10.1002/tcr.202400150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/15/2024] [Indexed: 11/22/2024]
Abstract
Selective C-H functionalization methods could provide a valuable tool for synthesizing different steroid derivatives, which is essential not only in contexts of developing novel synthetic methodology but also as a direct way for gathering the analogues needed for studying the structure-activity relationships and obtaining biologically active compounds. The review discusses recent examples of steroid C-H functionalization to various C-X derivatives (C-O, C-C, C-N, C-S, and C-halogen) using available methods emphasizing their scope and limitations.
Collapse
Affiliation(s)
| | - Adam D Majewski
- Doctoral School, University of Bialystok, Ciolkowskiego 1 K, 15-245, Bialystok, Poland
| | - Zenon Łotowski
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1 K, 15-245, Bialystok, Poland
| |
Collapse
|
4
|
Levet V, Ramesh B, Wang C, Besset T. C-H Trifluoromethylthiolation of aldehyde hydrazones. Beilstein J Org Chem 2024; 20:2883-2890. [PMID: 39559444 PMCID: PMC11571951 DOI: 10.3762/bjoc.20.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024] Open
Abstract
The selective C-H trifluoromethylthiolation of aldehyde hydrazones afforded interesting fluorinated building blocks, which could be used as a synthetic platform. Starting from readily available (hetero)aromatic and aliphatic hydrazones, the formation of a C-SCF3 bond was achieved under oxidative and mild reaction conditions in the presence of the readily available AgSCF3 salt via a one-pot sequential process (28 examples, up to 91% yield). Mechanistic investigations revealed that AgSCF3 was the active species in the transformation.
Collapse
Affiliation(s)
- Victor Levet
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Balu Ramesh
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Congyang Wang
- Beijing National Laboratory for Molecular Sciences CAS key Laboratory of Molecular Recognition and Function CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Tatiana Besset
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| |
Collapse
|
5
|
Poper W, Ma JA, Jasiński M. One-Pot Telescoping S-Transfer and Trifluoromethylation for the Synthesis of 2-CF 3S-Imidazoles with N-Oxides as Convenient Precursors. J Org Chem 2024; 89:15331-15335. [PMID: 39347623 PMCID: PMC11494641 DOI: 10.1021/acs.joc.4c01761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Readily available 2-unsubstituted imidazole N-oxides were examined as starting materials for the preparation of fully substituted 1,4,5-aryl/alkyl 2-trifluoromethylsulfanyl-imidazoles. Whereas activation of the N-oxide function followed by attempted nucleophilic addition of the -SCF3 was in vain, the alternative approach involving "sulfur transfer reaction" and subsequent electrophilic trifluoromethylation with Togni reagent provided target products in high yield via a one-pot procedure. The structure of representative enantiomerically pure imidazol-2-yl trifluoromethyl sulfide was confirmed by X-ray analysis.
Collapse
Affiliation(s)
- Wiktor
K. Poper
- Faculty
of Chemistry, University of Lodz, Tamka 12, Łódź 91403, Poland
| | - Jun-An Ma
- Department
of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences,
Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, People’s Republic of China
| | - Marcin Jasiński
- Faculty
of Chemistry, University of Lodz, Tamka 12, Łódź 91403, Poland
| |
Collapse
|
6
|
Wu JY, Huang LL, Fu JL, Li JY, Lin S, Yang S, Huang ZS, Wang H, Li Q. N-Halosuccinimide enables cascade oxidative trifluorination and halogenative cyclization of tryptamine-derived isocyanides. Nat Commun 2024; 15:8917. [PMID: 39414820 PMCID: PMC11484912 DOI: 10.1038/s41467-024-53271-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Both the pyrroloindoline core and N-CF3 moiety hold significant importance in medicinal chemistry. However, to date, no instances of constructing N-CF3-containing pyrroloindolines have been reported. Herein, we present a robust and operationally simple approach to assembling such intriguing skeletons from tryptamine-derived isocyanides through a cascade sequence, which includes an oxidative trifluorination and a subsequent halogenative cyclization. Key to the success lies in the development of a facile conversion of isocyanides to N-CF3 moiety with commercially available reagents N-halosuccinimide and Et3N·HF. The protocol features mild reaction conditions, broad functional group tolerance, good to excellent yields, and high diastereoselectivities. In addition, we demonstrate that the halide substituent within the products serves as a versatile functional handle for accessing diverse C3-quaternary-substituted N-CF3-pyrroloindolines.
Collapse
Affiliation(s)
- Jun-Yunzi Wu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Long-Ling Huang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jia-Luo Fu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jia-Yi Li
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shuang Lin
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shuang Yang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Shu Huang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Honggen Wang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Qingjiang Li
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
7
|
Garai S, Mallick M, Biswas S, Pal K, Sureshkumar D. Triple Catalysis for the Tandem Transformation of Cyclopropyl Ketones to SCF 3-Substituted Dihydrofurans. Org Lett 2024; 26:8284-8288. [PMID: 39325011 DOI: 10.1021/acs.orglett.4c02959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
In this study, we have developed an effective and general strategy for synthesizing various 4-[(trifluoromethyl)thio]-2,3-dihydrofuran derivatives with high regioselectivity from easily prepared cyclopropyl ketone under mild reaction conditions. By the combination of photoredox, copper, and Lewis acid catalysis into a triple catalytic system, this methodology facilitates the selective cleavage of the carbon-carbon bonds and the formation of new carbon-oxygen and carbon-sulfur bonds. In addition, to enhance the synthetic feasibility of this protocol, we demonstrate its broad applicability across a wide range of substrates and its scalability for large-scale synthesis.
Collapse
Affiliation(s)
- Sumit Garai
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Manasi Mallick
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Sourabh Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Koustav Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Devarajulu Sureshkumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
8
|
Yu J, Xia Y, Dey S, Zhu J, Cheung KS, Geib SJ, Wang YM. Iridium-Catalyzed Enantioselective Propargylic C-H Trifluoromethylthiolation and Related Processes. J Am Chem Soc 2024; 146. [PMID: 39352731 PMCID: PMC11487557 DOI: 10.1021/jacs.4c12093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/03/2024]
Abstract
The trifluoromethylthio group (SCF3) has gained increasing prominence in the field of drug design and development due to its unique electronic properties, remarkable stability, and high lipophilicity, but its derivatives remain challenging to access, especially in an enantioselective manner. In this Communication, we present an enantioselective iridium-catalyzed trifluoromethylthiolation of the propargylic C(sp3)-H bonds of alkynes. This protocol demonstrates its efficacy across a diverse array of alkyne substrates, including B- and Si-protected terminal alkynes as well as those derived from natural products and pharmaceuticals, to give trifluoromethyl thioethers with good to excellent yield and stereoselectivity. Moreover, this protocol could be modified to access enantioenriched difluoromethyl and chlorodifluoromethyl thioethers (SCF2H and SCF2Cl derivatives), significantly expanding the space of synthetically accessible enantioenriched fluoroorganic compounds.
Collapse
Affiliation(s)
- Jiao Yu
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Yue Xia
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Shalini Dey
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Jin Zhu
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Kiu Sui Cheung
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Steven J. Geib
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Yi-Ming Wang
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
9
|
Gao G, Xie K, Shi M, Gao T, Wang Z, Zhang C, Wang Z. Direct trifluoromethylselenolations of electron-rich (hetero)aromatic rings with N-trifluoromethylselenolating saccharin. Org Biomol Chem 2024; 22:7707-7714. [PMID: 39225050 DOI: 10.1039/d4ob01134a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A novel, easily synthesizable, shelf-stable electrophilic trifluoromethylselenolating reagent, N-trifluoromethylselenosaccharin, has been developed. This reagent can be synthesized in good yield by a two-step one-pot reaction from BnSeCF3, SO2Cl2, and silver saccharin. N-Trifluoromethylselenosaccharin proves to be an efficient trifluoromethylselenolating reagent, enabling the direct trifluoromethylselenolation of various electron-rich aromatic and heteroaromatic rings under mild reaction conditions. It exhibits excellent chemoselectivity and excellent compatibility with various functional groups, making it suitable for late-stage trifluoromethylselenolation applications in complex natural product and drug synthesis.
Collapse
Affiliation(s)
- Guiya Gao
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China.
| | - Keyi Xie
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China.
| | - Minghui Shi
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China.
| | - Tao Gao
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China.
| | - Zedong Wang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China.
| | - Congcong Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China.
| | - Zhentao Wang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China.
| |
Collapse
|
10
|
Trujillo-Sierra J, Sansano JM, Pardos J, Tejero T, Merino P, Retamosa MDG. Asymmetric Remote Aldol Cyclization Reaction to Synthesize Trifluoromethylated Heterospirocyclic Frameworks. J Org Chem 2024; 89:13654-13660. [PMID: 39234920 DOI: 10.1021/acs.joc.4c01839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The highly enantioselective organocatalytic synthesis of dihydropyran spirocyclic compounds bearing di- and trifluoromethyl groups by aldol cyclization reaction via trienamine using cyclic 2,5-dienones and different di- and trifluoromethylketones is described. Using a bifunctional aminothiourea catalyst, trifluoromethyl-functionalized dihydropyran spirocyclic products were obtained with good yields and enantioselectivities. Subsequent transformation with H2 and Pd/C has allowed the synthesis of the tetrahydropyran structure with three stereocenters. The plausible reaction mechanism was investigated by computational methods.
Collapse
Affiliation(s)
- José Trujillo-Sierra
- Departamento de Química Orgánica, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Institute of Organic Synthesis, Universidad de Alicante, Ctra. Alicante-San Vicente s/n, 03080 Alicante, Spain
| | - José Miguel Sansano
- Departamento de Química Orgánica, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Institute of Organic Synthesis, Universidad de Alicante, Ctra. Alicante-San Vicente s/n, 03080 Alicante, Spain
| | - Jorge Pardos
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Facultad de Ciencias, Universidad de Zaragoza, Campus San Francisco, 50009 Zaragoza, Spain
| | - Tomás Tejero
- Instituto de Síntesis Química Y Catálisis Homogénea (ISQCH), Facultad de Ciencias, Universidad de Zaragoza-CSIC, Campus San Francisco, 50009 Zaragoza, Spain
| | - Pedro Merino
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Facultad de Ciencias, Universidad de Zaragoza, Campus San Francisco, 50009 Zaragoza, Spain
| | - María de Gracia Retamosa
- Departamento de Química Orgánica, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Institute of Organic Synthesis, Universidad de Alicante, Ctra. Alicante-San Vicente s/n, 03080 Alicante, Spain
| |
Collapse
|
11
|
Li N, Zhao ZY, Huang ZH, Shao YK, Wang ZL, Tu HY, Zhang XG. Pd-Catalyzed Deacylative [4 + 1] Annulation of N-Arylimidoyl Chlorides with β-Keto Esters Leading to 2-Fluoroalkyl Indoles. J Org Chem 2024; 89:13795-13799. [PMID: 39252666 DOI: 10.1021/acs.joc.4c01709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
A palladium-catalyzed [4 + 1] annulation of N-arylimidoyl chlorides with β-keto esters has been developed. In the presence of Pd(OAc)2, PCy3, and K3PO4, a variety of fluoalkyl-containing N-arylimidoyl chlorides smoothly underwent the cascade C-H imidoylation/deacylative Heck-type reactions to afford biologically important 2-fluoroalkyl indoles in moderate to good yields.
Collapse
Affiliation(s)
- Na Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Zhi-Yi Zhao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Zi-Han Huang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yu-Kai Shao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Zhao-Lun Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Hai-Yong Tu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xing-Guo Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
12
|
Yamaguchi M, Shimao H, Hamasaki K, Nishiwaki K, Kashimura S, Matsumoto K. gem-Difluorination of carbon-carbon triple bonds using Brønsted acid/Bu 4NBF 4 or electrogenerated acid. Beilstein J Org Chem 2024; 20:2261-2269. [PMID: 39286791 PMCID: PMC11403803 DOI: 10.3762/bjoc.20.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/08/2024] [Indexed: 09/19/2024] Open
Abstract
gem-Difluorination of carbon-carbon triple bonds was conducted using Brønsted acids, such as Tf2NH and TfOH, combined with Bu4NBF4 as the fluorine source. The electrochemical oxidation of a Bu4NBF4/CH2Cl2 solution containing alkyne substrates could also give the corresponding gem-difluorinated compounds (in-cell method). The ex-cell electrolysis method was also applicable for gem-difluorination of alkynes.
Collapse
Affiliation(s)
- Mizuki Yamaguchi
- Department of Chemistry, School of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Hiroki Shimao
- Department of Chemistry, School of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Kengo Hamasaki
- Department of Chemistry, School of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Keiji Nishiwaki
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Shigenori Kashimura
- Department of Chemistry, School of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Kouichi Matsumoto
- Department of Chemistry, School of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| |
Collapse
|
13
|
Marie N, Ma JA, Tognetti V, Cahard D. Photocatalyzed Cascade Hydrogen Atom Transfers for Assembly of Multi-Substituted α-SCF 3 and α-SCF 2H Cyclopentanones. Angew Chem Int Ed Engl 2024; 63:e202407689. [PMID: 38845586 DOI: 10.1002/anie.202407689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Indexed: 07/23/2024]
Abstract
A photocatalyzed formal (3+2) cycloaddition has been developed to construct original polysubstituted α-SCF3 cyclopentanones in a regio- and diastereoselective manner. This building block approach leverages trifluoromethylthio alkynes and branched/linear aldehydes, as readily available reaction partners, in consecutive hydrogen atom transfers and C-C bond formations. Difluoromethylthio alkynes are also compatible substrates. Furthermore, the potential for telescoped reaction starting from alcohols instead of aldehydes was demonstrated, as well as process automatization and scale-up under continuous microflow conditions. This prompted density functional theory (DFT) calculations to support a radical-mediated cascade process.
Collapse
Affiliation(s)
- Nicolas Marie
- CNRS, UMR 6014 COBRA, Univ Rouen Normandie, INSA Rouen Normandie, Normandie Univ, INC3M FR 3038, F-76000, Rouen, France
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Vincent Tognetti
- CNRS, UMR 6014 COBRA, Univ Rouen Normandie, INSA Rouen Normandie, Normandie Univ, INC3M FR 3038, F-76000, Rouen, France
| | - Dominique Cahard
- CNRS, UMR 6014 COBRA, Univ Rouen Normandie, INSA Rouen Normandie, Normandie Univ, INC3M FR 3038, F-76000, Rouen, France
| |
Collapse
|
14
|
Xiao Y, Zhou H, Shi P, Zhao X, Liu H, Li X. Clickable tryptophan modification for late-stage diversification of native peptides. SCIENCE ADVANCES 2024; 10:eadp9958. [PMID: 38985871 PMCID: PMC11235173 DOI: 10.1126/sciadv.adp9958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
As the least abundant residue in proteins, tryptophan widely exists in peptide drugs and bioactive natural products and contributes to drug-target interactions in multiple ways. We report here a clickable tryptophan modification for late-stage diversification of native peptides, via catalyst-free C2-sulfenylation with 8-quinoline thiosulfonate reagents in trifluoroacetic acid (TFA). A wide range of groups including trifluoromethylthio (SCF3), difluoromethylthio (SCF2H), (ethoxycarbonyl)difluoromethylthio (SCF2CO2Et), alkylthio, and arylthio were readily incorporated. The rapid reaction kinetics of Trp modification and full tolerance with other 19 proteinogenic amino acids, as well as the super dissolving capability of TFA, render this method suitable for all kinds of Trp-containing peptides without limitations from sequences, hydrophobicity, and aggregation propensity. The late-stage modification of 15 therapeutic peptides (1.0 to 7.6 kilodaltons) and the improved bioactivity and serum stability of SCF3- and SCF2H-modified melittin analogs illustrated the effectiveness of this method and its potential in pharmacokinetic property improvement.
Collapse
Affiliation(s)
- Yisa Xiao
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Haiyan Zhou
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong Province 515063, P. R. China
| | - Pengfei Shi
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Xueqian Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, P. R. China
| | - Han Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| |
Collapse
|
15
|
Hoque IU, Samanta A, Pramanik S, Chowdhury SR, Lo R, Maity S. Photocascade chemoselective controlling of ambident thio(seleno)cyanates with alkenes via catalyst modulation. Nat Commun 2024; 15:5739. [PMID: 38982050 PMCID: PMC11233607 DOI: 10.1038/s41467-024-49279-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/28/2024] [Indexed: 07/11/2024] Open
Abstract
Controlling the ambident reactivity of thiocyanates in reaction manifolds has been a long-standing and formidable challenge. We report herein a photoredox strategy for installing thiocyanates and isothiocyanates in a controlled chemoselective fashion by manipulating the ambident-SCN through catalyst modulation. The methodology allows redox-, and pot-economical 'on-demand' direct access to both hydrothiophene and pyrrolidine heterocycles from the same feedstock alkenes and bifunctional thiocyanomalonates in a photocascade sequence. Its excellent chemoselectivity profile was further expanded to access Se- and N-heterocycles by harnessing selenonitriles. Redox capability of the catalysts, which dictates the substrates to participate in a single or cascade catalytic cycle, was proposed as the key to the present chemodivergency of this process. In addition, detailed mechanistic insights are provided by a conjugation of extensive control experiments and dispersion-corrected density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Injamam Ul Hoque
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, JH, 826004, India
| | - Apurba Samanta
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, JH, 826004, India
| | - Shyamal Pramanik
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, JH, 826004, India
| | - Soumyadeep Roy Chowdhury
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, JH, 826004, India
| | - Rabindranath Lo
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo námĕstí 542/2, Prague, 160 000, Czech Republic
| | - Soumitra Maity
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, JH, 826004, India.
| |
Collapse
|
16
|
Veth L, Windhorst AD, Vugts DJ. Synthesis of 18F-labeled Aryl Trifluoromethyl Sulfones, -Sulfoxides, and -Sulfides for Positron Emission Tomography. Angew Chem Int Ed Engl 2024; 63:e202404278. [PMID: 38656696 DOI: 10.1002/anie.202404278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Positron emission tomography (PET) is becoming increasingly important in nuclear medicine and drug discovery. To date, the development of many potential PET tracers is hampered by the lack of suitable synthetic pathways for their preparation. This is particularly true for the highly desired radiolabeling of compounds bearing [18F]CF3-groups. For instance, S(O)nCF3-groups (n=0, 1, 2) serve as structural motif in a range of biologically active compounds, but their radiosynthesis remains largely unprecedented (for n=1, 2). Herein, we describe general methods for the radiosynthesis of 18F-labeled aryl trifluoromethyl sulfones, -sulfoxides, and -sulfides. All three methods are operationally straightforward, start from widely available precursors, i.e., sulfonyl fluorides and thiophenols, and make use of the recently established [18F]Ruppert-Prakash reagent. Further, the syntheses display good functional group tolerance as demonstrated by the 18F-labeling of more than 40 compounds. The applicability of the new method is demonstrated by the radiolabeling of three bioactive molecules, optionally to be used as PET tracers. In a broader context, this work presents a substantial expansion of the chemical space of radiofluorinated structural motifs to be used for the development of new PET tracers.
Collapse
Affiliation(s)
- Lukas Veth
- Dept. of Radiology & Nuclear Medicine, Amsterdam UMC, location, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Dept. of Radiology & Nuclear Medicine, Amsterdam UMC, location, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Danielle J Vugts
- Dept. of Radiology & Nuclear Medicine, Amsterdam UMC, location, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Ying J, Zhou T, Liu Y, Zhou L, Wan JP. Transition-Metal-Free C-H Trifluoromethylthiolation of N,N-Disubstituted Enaminones To Access CF 3S-Functionalized Enaminones and Their Application in the Synthesis of CF 3S-Heteroaryls. J Org Chem 2024; 89:9078-9085. [PMID: 38830227 DOI: 10.1021/acs.joc.4c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The α-C-H trifluoromethylthiolation of N,N-disubstituted enaminones has been achieved with simple and cheap CF3SO2Na as the CF3S source. The reactions were run at mild temperature (0 °C to rt) using POCl3 as the only reducing reagent. The work represents the first example on the synthesis of α-trifluoromethylthio enaminones via direct C-H functionalization. In addition, the resulting CF3S-functionalized enaminones have been proven as useful building blocks in the synthesis of various CF3S-functionalized heteroaromatic compounds by simple annulation reactions.
Collapse
Affiliation(s)
- Jinbiao Ying
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330033, China
| | - Tao Zhou
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330033, China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330033, China
| | - Liyun Zhou
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330033, China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330033, China
| |
Collapse
|
18
|
Kojima Y, Nishii Y, Hirano K. Asymmetric Synthesis of SCF 3-Substituted Alkylboronates by Copper-Catalyzed Hydroboration of 1-Trifluoromethylthioalkenes. Angew Chem Int Ed Engl 2024; 63:e202403337. [PMID: 38472112 DOI: 10.1002/anie.202403337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
A synthetic method for preparation of optically active trifluoromethylthio (SCF3) compounds by a copper-catalyzed regio- and enantioselective hydroboration of 1-trifluoromethylthioalkenes with H-Bpin has been developed. The enantioselective hydrocupration of an in situ generated CuH species and subsequent boration reaction generate a chiral SCF3-containing alkylboronate, of which Bpin moiety can be further transformed to deliver various optically active SCF3 molecules. Computational studies suggest that the SCF3 group successfully controls the regioselectivity in the reaction.
Collapse
Affiliation(s)
- Yuki Kojima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuji Nishii
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
19
|
Petcu AS, Lázaro-Milla C, Alonso JM, Almendros P. Unveiling the Use of 1,1-Bis(triflyl)ethylene as CF 3SO 2CH═CH 2 Source with the Assistance of ( n-Bu) 4NF: Synthesis of 3-[(Trifluoromethyl)sulfonyl]cyclobut-1-enes. Org Lett 2024; 26:4560-4565. [PMID: 38767989 PMCID: PMC11148847 DOI: 10.1021/acs.orglett.4c01514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Allylic sulfone-embedded cyclobutenes have been prepared in one pot from alkynes. The carbocycle and the alkenyl sulfone moieties were installed through consecutive bis(triflyl)cyclobutenylation of a triple bond and tetra-n-butylammonium fluoride (TBAF)-assisted hydrodesulfonylation of an allylic bis(sulfone). It is noteworthy that 1,1-bis(triflyl)ethylene acts as a CF3SO2CH═CH2 source for the first time.
Collapse
Affiliation(s)
- A. Sonia Petcu
- Instituto
de Química Orgánica General, IQOG, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
- Grupo
de Lactamas y Heterociclos Bioactivos, Departamento de Química
Orgánica, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Carlos Lázaro-Milla
- Grupo
de Lactamas y Heterociclos Bioactivos, Departamento de Química
Orgánica, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - José M. Alonso
- Grupo
de Lactamas y Heterociclos Bioactivos, Departamento de Química
Orgánica, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Pedro Almendros
- Instituto
de Química Orgánica General, IQOG, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
20
|
Dong L, Wang W, Zhou L, Yang W, Xu Z, Cheng J, Shao X, Xu X, Li Z. Design, Synthesis, and Bioactivity of Trifluoroethylthio-Substituted Phenylpyrazole Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11949-11957. [PMID: 38757770 DOI: 10.1021/acs.jafc.4c00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
As the first marketed phenylpyrazole insecticide, fipronil exhibited remarkable broad-spectrum insecticidal activity. However, it poses a significant threat to aquatic organisms and bees due to its high toxicity. Herein, 35 phenylpyrazole derivatives containing a trifluoroethylthio group on the 4 position of the pyrazole ring were designed and synthesized. The predicted physicochemical properties of all of the compounds were within a reasonable range. The biological assay results revealed that compound 7 showed 69.7% lethality against Aedes albopictus (A. albopictus) at the concentration of 0.125 mg/L. Compounds 7, 7g, 8d, and 10j showed superior insecticidal activity for the control of Plutella xylostella (P. xylostella). Notably, compound 7 showed similar insecticidal activity against Aphis craccivora (A. craccivora) compared with fipronil. Potential surface calculation and molecular docking suggested that different lipophilicity and binding models to the Musca domestica (M. domestica) gamma-aminobutyric acid receptors may be responsible for the decreased activity of the tested derivatives. Toxicity tests indicated that compound 8d (LC50 = 14.28 mg/L) induced obviously 14-fold lower toxicity than fipronil (LC50 = 1.05 mg/L) on embryonic-juvenile zebrafish development.
Collapse
Affiliation(s)
- Lefeng Dong
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weiguo Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Liqi Zhou
- Shanghai GreenTech Laboratory Co. Ltd, 650 Shunqing Road, Shanghai 100093, China
| | - Wulin Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
21
|
Wang B, Shen C, Dong K. Ligand-Controlled Regiodivergent Alkoxycarbonylation of Trifluoromethylthiolated Internal Alkynes. Org Lett 2024; 26:3628-3633. [PMID: 38652586 DOI: 10.1021/acs.orglett.4c01113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Controlling the regioselectivity for the alkoxycarbonylation of unsymmetric internal alkynes is challenging. Herein, a palladium-catalyzed ligand-controlled regiodivergent alkoxycarbonylation of internal trifluoromethylthiolated alkynes was achieved. A series of α- or β-SCF3 acrylates from the same trifluoromethylthiolated alkyne were obtained with moderate to high yield and regioselectivity.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Chaoren Shen
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Kaiwu Dong
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
22
|
Singh G, Marupalli SS, Arockiaraj M, Rajeshkumar V. I 2-Cs 2CO 3 Mediated Intramolecular C2-Amination and Oxidative Rearrangement Cascade of C-3 Phenylthio Indoles: A Route to Synthesize Thiosulfonate-Embedded 2-Iminoindolin-3-ones. J Org Chem 2024; 89:5861-5870. [PMID: 38552213 DOI: 10.1021/acs.joc.4c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
An efficient, transition-metal-free protocol employing I2/Cs2CO3 for the synthesis of thiosulfonate containing 2-iminoindolin-3-ones motifs has been developed from C-3 phenylthio indoles. The reaction proceeded through intramolecular cyclization involving C-N bond formation, leading to the formation of indole-fused benzothiazines as a key intermediate. Remarkably, Cs2CO3 played a crucial role in the reaction as an oxygen source, enabling oxidative rearrangement with [1,4]-sulfonyl migration to furnish the final products with the formation of multiple functional groups such as C═O, C═N, and S-SO2.
Collapse
Affiliation(s)
- Gargi Singh
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda - 506004, Telangana, India
| | - Sasi Sree Marupalli
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda - 506004, Telangana, India
| | - Mariyaraj Arockiaraj
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda - 506004, Telangana, India
| | - Venkatachalam Rajeshkumar
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda - 506004, Telangana, India
| |
Collapse
|
23
|
Rehpenn A, Hindelang S, Truong KN, Pöthig A, Storch G. Enhancing Flavins Photochemical Activity in Hydrogen Atom Abstraction and Triplet Sensitization through Ring-Contraction. Angew Chem Int Ed Engl 2024; 63:e202318590. [PMID: 38339882 DOI: 10.1002/anie.202318590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
The isoalloxazine heterocycle of flavin cofactors reacts with various nucleophiles to form covalent adducts with important functions in enzymes. Molecular flavin models allow for the characterization of such adducts and the study of their properties. A fascinating set of reactions occurs when flavins react with hydroxide base, which leads to imidazolonequinoxalines, ring-contracted flavins, with so far unexplored activity. We report a systematic study of the photophysical properties of this new chromophore by absorption and emission spectroscopy as well as cyclic voltammetry. Excited, ring-contracted flavins are significantly stronger hydrogen atom abstractors when compared to the parent flavins, which allowed the direct trifluoromethylthiolation of aliphatic methine positions (bond dissociation energy (BDE) of 400.8 kJ mol-1). In an orthogonal activity, their increased triplet energy (E(S0←T1)=244 kJ mol-1) made sensitized reactions possible which exceeded the power of standard flavins. Combining both properties, ring-contracted flavin catalysts enabled the one-pot, five-step transformation of α-tropolone into trans-3,4-disubstituted cyclopentanones. We envision this new class of flavin-derived chromophores to open up new modes of reactivity that are currently impossible with unmodified flavins.
Collapse
Affiliation(s)
- Andreas Rehpenn
- Technical University of Munich (TUM), School of Natural Sciences and Catalysis Research Center (CRC), Lichtenbergstr. 4, 85747, Garching, Germany
| | - Stephan Hindelang
- Technical University of Munich (TUM), School of Natural Sciences and Catalysis Research Center (CRC), Lichtenbergstr. 4, 85747, Garching, Germany
| | - Khai-Nghi Truong
- Rigaku Europe SE, Hugenottenallee 167, 63263, Neu-Isenburg, Germany
| | - Alexander Pöthig
- Technical University of Munich (TUM), School of Natural Sciences and Catalysis Research Center (CRC), Lichtenbergstr. 4, 85747, Garching, Germany
| | - Golo Storch
- Technical University of Munich (TUM), School of Natural Sciences and Catalysis Research Center (CRC), Lichtenbergstr. 4, 85747, Garching, Germany
| |
Collapse
|
24
|
Hu DD, Nie TM, Xiao X, Li K, Li YB, Gao Q, Bi YX, Wang XS. Enantioselective Construction of C-SCF 3 Stereocenters via Nickel Catalyzed Asymmetric Negishi Coupling Reaction. Angew Chem Int Ed Engl 2024; 63:e202400308. [PMID: 38299744 DOI: 10.1002/anie.202400308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
The construction of the SCF3-containing 1,1-diaryl tertiary carbon stereocenters with high enantioselectivities is reported via a nickel-catalyzed asymmetric C-C coupling strategy. This method demonstrates simple operations, mild conditions and excellent functional group tolerance, with newly designed SCF3-containing synthon, which can be easily obtained from commercially available benzyl bromide and trifluoromethylthio anion in a two-step manner. Further substrate exploration indicated that the reaction system could be extended to diverse perfluoroalkyl sulfide (SC2F5, SC3F7, SC4F9, SCF2CO2Et)-substituted 1,1-diaryl compounds with excellent enantioselectivities. The synthetic utility of this transformation was further demonstrated by convenient derivatization to optical SCF3-containing analogues of bioactive compounds without an apparent decrease in enantioselectivity.
Collapse
Affiliation(s)
- Duo-Duo Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Tian-Mei Nie
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Xi Xiao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Kuiliang Li
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Yuan-Bo Li
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Qian Gao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yu-Xiang Bi
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Xi-Sheng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
25
|
Xie X, Dong S, Hong K, Huang J, Xu X. Catalytic Asymmetric Difluoroalkylation Using In Situ Generated Difluoroenol Species as the Privileged Synthon. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307520. [PMID: 38318687 PMCID: PMC11005710 DOI: 10.1002/advs.202307520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/29/2023] [Indexed: 02/07/2024]
Abstract
A robust and practical difluoroalkylation synthon, α,α-difluoroenol species, which generated in situ from trifluoromethyl diazo compounds and water in the presence of dirhodium complex, is disclosed. As compared to the presynthesized difluoroenoxysilane and in situ formed difluoroenolate under basic conditions, this difluoroenol intermediate displayed versatile reactivity, resulting in dramatically improved enantioselectivity under mild conditions. As demonstrated in catalytic asymmetric aldol reaction and Mannich reactions with ketones or imines in the presence of chiral organocatalysts, quinine-derived urea, and chiral phosphoric acid (CPA), respectively, this relay catalysis strategy provides an effective platform for applying asymmetric fluorination chemistry. Moreover, this method features a novel 1,2-difunctionalization process via installation of a carbonyl motif and an alkyl group on two vicinal carbons, which is a complementary protocol to the metal carbene gem-difunctionalization reaction.
Collapse
Affiliation(s)
- Xiongda Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Shanliang Dong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Kemiao Hong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Jingjing Huang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Xinfang Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
26
|
Yu F, Wang W, Wang S. Copper-Catalyzed, Interrupted Remote Fluoromethylthiolation of Unactivated C(sp3)-H Bonds. Org Lett 2024; 26:2068-2072. [PMID: 38426710 DOI: 10.1021/acs.orglett.4c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
An efficient copper-catalyzed selective fluoromethylthiolation of an inert δ-C(sp3)-H bond in sulfonamides was reported. In the presence of a copper catalyst and PhSO2SRf, the radical generated through 1,5-hydrogen atom transfer (HAT) was sufficiently trapped by PhSO2SRf, instead of copper, which was prevalent in metal-catalyzed radical-relay processes, incorporating a fluoromethylthio group into molecules. The general substrate scope and mild conditions endowed the method with wide potential applications in pharmaceuticals and agrochemicals.
Collapse
Affiliation(s)
- Fan Yu
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Wengui Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Shoufeng Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| |
Collapse
|
27
|
Zhang W, Tian Y, Liu XD, Luan C, Liu JR, Gu QS, Li ZL, Liu XY. Copper-Catalyzed Enantioselective C(sp 3 )-SCF 3 Coupling of Carbon-Centered Benzyl Radicals with (Me 4 N)SCF 3. Angew Chem Int Ed Engl 2024; 63:e202319850. [PMID: 38273811 DOI: 10.1002/anie.202319850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 01/27/2024]
Abstract
In contrast with the well-established C(sp2 )-SCF3 cross-coupling to forge the Ar-SCF3 bond, the corresponding enantioselective coupling of readily available alkyl electrophiles to forge chiral C(sp3 )-SCF3 bond has remained largely unexplored. We herein disclose a copper-catalyzed enantioselective radical C(sp3 )-SCF3 coupling of a range of secondary/tertiary benzyl radicals with the easily available (Me4 N)SCF3 reagent. The key to the success lies in the utilization of chiral phosphino-oxazoline-derived anionic N,N,P-ligands through tuning electronic and steric effects for the simultaneous control of the reaction initiation and enantioselectivity. This strategy can successfully realize two types of asymmetric radical reactions, including enantioconvergent C(sp3 )-SCF3 cross-coupling of racemic benzyl halides and three-component 1,2-carbotrifluoromethylthiolation of arylated alkenes under mild reaction conditions. It therefore provides a highly flexible platform for the rapid assembly of an array of enantioenriched SCF3 -containing molecules of interest in organic synthesis and medicinal chemistry.
Collapse
Affiliation(s)
- Wei Zhang
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yu Tian
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiao-Dong Liu
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Cheng Luan
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ji-Ren Liu
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhong-Liang Li
- School of Physical Sciences, Great Bay University, Dongguan, 523000, China
| | - Xin-Yuan Liu
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
28
|
Zhang J, Xiong D, Jiang Z, Chen S, Huang GB, Li J, Wang Z, Yang J. Synthesis of gem-Difluoro-3,4-dihydro-2 H-pyrans via a TfOH-Catalyzed [4 + 2] Annulation of Difluoroenoxysilanes with α-Cyano Chalcones. Org Lett 2024; 26:1447-1451. [PMID: 38353475 DOI: 10.1021/acs.orglett.4c00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Difluoroenoxysilane, a commonly used difluoroallylating reagent, has attracted considerable attention in recent years. However, its application in the annulation reaction for the construction of fluorinated heterocyclic compounds remains relatively limited. Presented here is the Brønsted acid-catalyzed efficient formal [4 + 2] annulation of difluoroenoxysilanes with α-cyano chalcones. The developed protocol demonstrates tolerance to various substituents under mild reaction conditions, providing a reliable approach to construct gem-difluoro-3,4-dihydro-2H-pyrans in good to excellent yields with high diastereoselectivities.
Collapse
Affiliation(s)
- Jing Zhang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Daokai Xiong
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Zhiwei Jiang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Shuaiting Chen
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Guo-Bo Huang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Jinshan Li
- Hainan Provincial Key Lab of Fine Chem, School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, P. R. China
| | - Zhiming Wang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Jianguo Yang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| |
Collapse
|
29
|
Ye S, Wang H, Liang G, Hu Z, Wan K, Zhang L, Peng B. ortho-Cyanomethylation of aryl fluoroalkyl sulfoxides via a sulfonium-Claisen rearrangement. Org Biomol Chem 2024; 22:1495-1499. [PMID: 38293848 DOI: 10.1039/d3ob02102e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
We hereby report the ortho-cyanomethylation of aryl fluoroalkyl sulfoxides with acetonitrile through a sulfonium-Claisen-type rearrangement. This reaction enables the incorporation of two valuable functional groups, such as the cyanomethyl group and the fluoroalkylthio group, into arenes. Remarkably, fluoroalkylthio groups, such as SCFH2 and SCF2H, bearing active hydrogen, are well tolerated by the reaction. The success of the reaction relies on the use of an excess amount of acetonitrile and the electronegative effect of fluoroalkyl substituents, both of which promote the electrophilic assembly of sulfoxides with acetonitrile. Consequently, the sulfonium-Claisen rearrangement reaction tolerates a wide variety of fluoroalkyl sulfoxides bearing functional groups including halides, nitriles, ketones, sulfones, and amides, which are appealing for subsequent elaboration and exploration.
Collapse
Affiliation(s)
- Sheng Ye
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China.
| | - Huanhuan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China.
| | - Guoqing Liang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China.
| | - Zhengkai Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China.
| | - Kun Wan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China.
| | - Lei Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China.
| | - Bo Peng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
30
|
Waddell LN, Wilson C, Sutherland A. Trifluoromethylthiolation of Arenes Using Lewis Acid and Lewis Base Dual Catalysis. J Org Chem 2024; 89:1275-1284. [PMID: 38156642 PMCID: PMC10804413 DOI: 10.1021/acs.joc.3c02571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
Incorporation of the highly lipophilic trifluoromethanesulfenyl group into bioactive molecules facilitates transport through lipid membranes, and thus, CF3S-containing compounds are important for drug discovery. Although reagents and procedures have been reported for arene trifluoromethylthiolation, methods are still required that are applicable to a diverse substrate scope and can be performed under mild conditions. Here, we describe a rapid and efficient approach for the trifluoromethylthiolation of arenes by catalytic activation of N-trifluoromethylthiosaccharin using a combination of iron(III) chloride and diphenyl selenide. This dual catalytic process allowed regioselective functionalization of a wide range of arenes and N-heterocycles under mild conditions and was used for the trifluoromethylthiolation of bioactive compounds such as tyrosine and estradiol.
Collapse
Affiliation(s)
- Lachlan
J. N. Waddell
- School of Chemistry, The
Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Claire Wilson
- School of Chemistry, The
Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Andrew Sutherland
- School of Chemistry, The
Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K.
| |
Collapse
|
31
|
Dong J, Tang Z, Zou L, Zhou Y, Chen J. Visible light-induced hydrogen atom transfer trifluoromethylthiolation of aldehydes with bismuth catalyst. Chem Commun (Camb) 2024; 60:742-745. [PMID: 38116589 DOI: 10.1039/d3cc05048c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
By using a combination of BiCl3 and TBACl as a ligand-to-metal charge transfer (LMCT) photocatalyst, hydrogen atom transfer trifluoromethylthiolation of aldehydes was achieved under visible light irradiation. The present method provides economical and operationally simple access to trifluoromethylthioesters using low toxicity and cost-effective bismuth catalysts under mild reaction conditions. Based on the radical trapping experiments, the direct conversion of aldehydes to acyl radicals via chlorine radicals as HAT reagents was proposed as the reaction mechanism.
Collapse
Affiliation(s)
- Jun Dong
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Yuehua Street, Kunming, 650504, China.
| | - Zhuang Tang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Yuehua Street, Kunming, 650504, China.
| | - Luqian Zou
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Yuehua Street, Kunming, 650504, China.
| | - Yongyun Zhou
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Yuehua Street, Kunming, 650504, China.
| | - Jingchao Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Yuehua Street, Kunming, 650504, China.
- Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Yuehua Street, Kunming, 650504, China.
| |
Collapse
|
32
|
Cen M, Yang X, Zhang S, Gan L, Liu L, Chen T. Synthesis of acyl fluorides through deoxyfluorination of carboxylic acids. Org Biomol Chem 2023; 21:9372-9378. [PMID: 37975303 DOI: 10.1039/d3ob01557b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A direct deoxyfluorination of carboxylic acids by utilizing inorganic potassium fluoride (KF) as a safe and inexpensive fluoride source has been developed. Both aryl carboxylic acids and cinnamyl carboxylic acids could be efficiently transformed into valuable acyl fluorides in moderate to high yields with good functional group tolerance. A scale-up reaction could be carried out smoothly under solvent-free conditions, which further demonstrated the practicality of this reaction in organic synthesis.
Collapse
Affiliation(s)
- Mengjie Cen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemical, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Xi Yang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemical, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Shanshan Zhang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemical, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Liguang Gan
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemical, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemical, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Laboratory of Fine Chemical, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China.
| |
Collapse
|
33
|
Li JH, Jiang M, Liu JT. The perfluoroalkylthiolation/decarbonylation reaction of 1,3-diketones with perfluoroalkanesulfenic acids. Org Biomol Chem 2023; 21:9416-9421. [PMID: 37987339 DOI: 10.1039/d3ob01482g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The perfluoroalkylthiolation/decarbonylation reactions of 1,3-dicarbonyl compounds with in situ formed perfluoroalkanesulfenic acids were achieved. Using trifluoromethanesulfonic acid as an additive, a series of α-perfluoroalkylthiolated arylethanones were obtained in moderate to good yields. A possible mechanism was proposed based on the reaction results and control experiments.
Collapse
Affiliation(s)
- Jia-Hui Li
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China.
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Min Jiang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jin-Tao Liu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China.
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
34
|
Pal K, Chandu P, Das D, Jinilkumar AV, Mallick M, Sureshkumar D. Organophotocatalyzed Mono- and Bis-Alkyl/Difluoroalkylative Thio/Selenocyanation of Alkenes. J Org Chem 2023. [PMID: 37988569 DOI: 10.1021/acs.joc.3c02102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Organophotocatalyzed three-component 1,2-difluoroacetyl/alkyl/perfluoroalkylative thio/selenocyanation of styrene derivatives under stoichiometric, transition metal-, oxidant-, and additive-free, and mild redox-neutral conditions is reported. Organophotocatalyst 4CzIPN operates the overall radical-polar-crossover mechanistic cycle via initial oxidative luminescence quenching, and the key intermediates were experimentally detected. Selective mono-alkylative thiocyanation of alkenes using dibromoalkanes is also demonstrated. This one-pot synthetic methodology is suitable for primary, secondary, and tertiary alkyl halides and also extended for double alkylative thiocyanation of the dibromoalkanes with excellent yields.
Collapse
Affiliation(s)
- Koustav Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Palasetty Chandu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Debabrata Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Aliya V Jinilkumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Manasi Mallick
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Devarajulu Sureshkumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
35
|
Yang Y, Ma J, Zhang J, Cai H, Xu W. Umpolung trifluoromethylthiolation of alcohols. Org Biomol Chem 2023; 21:8663-8666. [PMID: 37881895 DOI: 10.1039/d3ob01535a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Herein we develop a metal-free umpolung dehydroxytrifluoromethylthiolation of alcohols with commercially available PPh3 and N-trifluoromethylthiophthalimide within 30 minutes. This protocol shows excellent functional group tolerance and high regioselectivity. The dehydroxytrifluoromethylthiolation of a series of natural products and drugs further demonstrates its practicality. Preliminary mechanistic studies suggest that PPh3 is responsible for deoxygenation and the key trifluoromethylthiophosphonium ion may be hydrolyzed by H2O in solvent.
Collapse
Affiliation(s)
- Ye Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Jiemin Ma
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Jiaxiang Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Hu Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Wentao Xu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
36
|
Cao WX, Zhu L, He Y, Wang R, Liu M, Ouyang Q, Xiao Q. Copper-Catalyzed Aryne Insertion into the Carbon-Iodine Bond of Heteroaryl Iodides. Angew Chem Int Ed Engl 2023; 62:e202305146. [PMID: 37571857 DOI: 10.1002/anie.202305146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/13/2023]
Abstract
Aryne insertions into the carbon-iodine bond of heteroaryl iodides has been achieved for the first time. This novel reaction provides an efficient pathway for the synthesis of valuable building blocks 2-iodoheterobiaryls from heteroaryl iodides and o-silylaryl triflates in excellent regioselectivity. The copper(I) catalyst, which bears a N-heterocyclic carbene (NHC) ligand, is essential to accomplish the reaction. Control reactions and DFT calculations indicate that the coordination of copper, as a Lewis acid, with nitrogen atoms of heteroaryl iodides mediates the insertion of arynes into heteroaryl carbon-iodine bonds.
Collapse
Affiliation(s)
- Wen-Xuan Cao
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| | - Lei Zhu
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| | - Yiyi He
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| | - Run Wang
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| | - Ming Liu
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| | - Qin Ouyang
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| | - Qing Xiao
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| |
Collapse
|
37
|
Raji Reddy C, Fatima S, Kolgave DH, Sridhar B. Radical-mediated sulfonylative/thiolative cyclization of biaryl enones to phenanthrone derivatives. Org Biomol Chem 2023; 21:7327-7338. [PMID: 37646289 DOI: 10.1039/d3ob01068f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
An approach for the assembly of phenanthrone derivatives bearing all carbon quaternary centres has been developed through visible light-promoted tandem sulfonylation/intramolecular-arylation of biaryl enones with sulfonyl chlorides. A series of sulfonylated 10,10-dialkylphenanthrones were obtained in good yields. In addition, the approach has been extended to thiotrifluoromethyl (SCF3) and thiocyanato (SCN) radicals to obtain the corresponding phenanthrones under oxidative conditions. The synthetic utility was also illustrated by the scalability and further transformations of the product.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Sana Fatima
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Dattahari H Kolgave
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Balasubramanian Sridhar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
- Centre for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| |
Collapse
|
38
|
Gregorc J, Lensen N, Chaume G, Iskra J, Brigaud T. Trifluoromethylthiolation of Tryptophan and Tyrosine Derivatives: A Tool for Enhancing the Local Hydrophobicity of Peptides. J Org Chem 2023; 88:13169-13177. [PMID: 37672679 PMCID: PMC10507666 DOI: 10.1021/acs.joc.3c01373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 09/08/2023]
Abstract
The incorporation of fluorinated groups into peptides significantly affects their biophysical properties. We report herein the synthesis of Fmoc-protected trifluoromethylthiolated tyrosine (CF3S-Tyr) and tryptophan (CF3S-Trp) analogues on a gram scale (77-93% yield) and demonstrate their use as highly hydrophobic fluorinated building blocks for peptide chemistry. The developed methodology was successfully applied to the late-stage regioselective trifluoromethylthiolation of Trp residues in short peptides (66-80% yield) and the synthesis of various CF3S-analogues of biologically active monoamines. To prove the concept, Fmoc-(CF3S)Tyr and -Trp were incorporated into the endomorphin-1 chain (EM-1) and into model tripeptides by solid-phase peptide synthesis. A remarkable enhancement of the local hydrophobicity of the trifluoromethylthiolated peptides was quantified by the chromatographic hydrophobicity index determination method, demonstrating the high potential of CF3S-containing amino acids for the rational design of bioactive peptides.
Collapse
Affiliation(s)
- Jure Gregorc
- Chair
of Organic Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana 1000, Slovenia
- CY
Cergy Paris Université, CNRS, BioCIS, Cergy Pontoise 95000, France
- Université
Paris-Saclay, CNRS, BioCIS, Orsay 91400, France
| | - Nathalie Lensen
- CY
Cergy Paris Université, CNRS, BioCIS, Cergy Pontoise 95000, France
- Université
Paris-Saclay, CNRS, BioCIS, Orsay 91400, France
| | - Grégory Chaume
- CY
Cergy Paris Université, CNRS, BioCIS, Cergy Pontoise 95000, France
- Université
Paris-Saclay, CNRS, BioCIS, Orsay 91400, France
| | - Jernej Iskra
- Chair
of Organic Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana 1000, Slovenia
| | - Thierry Brigaud
- CY
Cergy Paris Université, CNRS, BioCIS, Cergy Pontoise 95000, France
- Université
Paris-Saclay, CNRS, BioCIS, Orsay 91400, France
| |
Collapse
|
39
|
Béke F, Csenki JT, Novák Z. Fluoroalkylations and Fluoroalkenylations with Iodonium Salts. CHEM REC 2023; 23:e202300083. [PMID: 37129578 DOI: 10.1002/tcr.202300083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Synthesis and applications of fluoroalkyl and fluoroalkenyliodonium salts are summarized in this account article, focusing preferably to the reagents designed in our laboratory in the last decade. Among these reagents trifluoroethyl(aryl)iodonium salts have been used most frequently to build carbon-carbon and carbon-heteroatom bonds in simple nucleophilic substitutions and through transition metal catalyzed coupling reactions. Iodonium salts equipped with unsaturated fluorinated function showed diverse reactivity due to their electron deficient character, and these molecular motifs enable cycloadditions and nucleophilic additions to prepare fluorinated carbo- and heterocyclic molecules. Beyond the overview of existing transformations, with the presented collection, we aim to inspire future developments of iodonium reagents and their application in organic synthesis.
Collapse
Affiliation(s)
- Ferenc Béke
- Catalysis and Organic Synthesis Research Group, Institute of Chemistry., Eötvös Loránd University, Pázmány Péter stny. 1/a, Budapest, 1117, Hungary
| | - János T Csenki
- Catalysis and Organic Synthesis Research Group, Institute of Chemistry., Eötvös Loránd University, Pázmány Péter stny. 1/a, Budapest, 1117, Hungary
| | - Zoltán Novák
- Catalysis and Organic Synthesis Research Group, Institute of Chemistry., Eötvös Loránd University, Pázmány Péter stny. 1/a, Budapest, 1117, Hungary
| |
Collapse
|
40
|
Lin D, Coe M, Krishnamurti V, Ispizua-Rodriguez X, Surya Prakash GK. Recent Advances in Visible Light-Mediated Radical Fluoro-alkylation, -alkoxylation, -alkylthiolation, -alkylselenolation, and -alkylamination. CHEM REC 2023; 23:e202300104. [PMID: 37212421 DOI: 10.1002/tcr.202300104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/20/2023] [Indexed: 05/23/2023]
Abstract
In the last few years, many reagents and protocols have been developed to allow for the efficient fluorofunctionalization of a diverse set of scaffolds ranging from alkanes, alkenes, alkynes, and (hetero)arenes. The concomitant rise of organofluorine chemistry and visible light-mediated synthesis have synergistically expanded the fields and have mutually benefitted from developments in both fields. In this context, visible light driven formations of radicals containing fluorine have been a major focus for the discovery of new bioactive compounds. This review details the recent advances and progress made in visible light-mediated fluoroalkylation and heteroatom centered radical generation.
Collapse
Affiliation(s)
- Daniel Lin
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - Matthew Coe
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - Vinayak Krishnamurti
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - Xanath Ispizua-Rodriguez
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - G K Surya Prakash
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| |
Collapse
|
41
|
Liu L, Gu YC, Zhang CP. Recent Advances in the Synthesis and Transformation of Carbamoyl Fluorides, Fluoroformates, and Their Analogues. CHEM REC 2023; 23:e202300071. [PMID: 37098875 DOI: 10.1002/tcr.202300071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/07/2023] [Indexed: 04/27/2023]
Abstract
Carbamoyl fluorides, fluoroformates, and their analogues are a class of important compounds and have been evidenced as versatile building blocks for the preparation of useful molecules in organic chemistry. While major achievements were made in the synthesis of carbamoyl fluorides, fluoroformates, and their analogues in the last half of 20th century, an increasing number of reports have focused on using O/S/Se=CF2 species or their equivalents as the fluorocarbonylation reagents for the direct construction of these compounds from the parent heteroatom-nucleophiles in recent years. This review mainly summarizes the advances in the synthesis and typical application of carbamoyl fluorides, fluoroformates, and their analogues by the halide exchanges and fluorocarbonylation reactions since 1980.
Collapse
Affiliation(s)
- Lei Liu
- School of Materials Science and Engineering & School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG426EY, UK
| | - Cheng-Pan Zhang
- School of Materials Science and Engineering & School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| |
Collapse
|
42
|
Shabir G, Saeed A, Zahid W, Naseer F, Riaz Z, Khalil N, Muneeba, Albericio F. Chemistry and Pharmacology of Fluorinated Drugs Approved by the FDA (2016-2022). Pharmaceuticals (Basel) 2023; 16:1162. [PMID: 37631077 PMCID: PMC10458641 DOI: 10.3390/ph16081162] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Fluorine is characterized by high electronegativity and small atomic size, which provide this molecule with the unique property of augmenting the potency, selectivity, metabolic stability, and pharmacokinetics of drugs. Fluorine (F) substitution has been extensively explored in drug research as a means of improving biological activity and enhancing chemical or metabolic stability. Selective F substitution onto a therapeutic or diagnostic drug candidate can enhance several pharmacokinetic and physicochemical properties such as metabolic stability and membrane permeation. The increased binding ability of fluorinated drug target proteins has also been reported in some cases. An emerging line of research on F substitution has been addressed by using 18F as a radiolabel tracer atom in the extremely sensitive methodology of positron emission tomography (PET) imaging. This review aims to report on the fluorinated drugs approved by the US Food and Drug Administration (FDA) from 2016 to 2022. It cites selected examples from a variety of therapeutic and diagnostic drugs. FDA-approved drugs in this period have a variety of heterocyclic cores, including pyrrole, pyrazole, imidazole, triazole, pyridine, pyridone, pyridazine, pyrazine, pyrimidine, triazine, purine, indole, benzimidazole, isoquinoline, and quinoline appended with either F-18 or F-19. Some fluorinated oligonucleotides were also authorized by the FDA between 2019 and 2022.
Collapse
Affiliation(s)
- Ghulam Shabir
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Wajeeha Zahid
- Department of Chemistry, Government Graduate College Toba Tek Singh, Punjab 36050, Pakistan; (W.Z.); (F.N.); (Z.R.); (N.K.); (M.)
| | - Fatima Naseer
- Department of Chemistry, Government Graduate College Toba Tek Singh, Punjab 36050, Pakistan; (W.Z.); (F.N.); (Z.R.); (N.K.); (M.)
| | - Zainab Riaz
- Department of Chemistry, Government Graduate College Toba Tek Singh, Punjab 36050, Pakistan; (W.Z.); (F.N.); (Z.R.); (N.K.); (M.)
| | - Nafeesa Khalil
- Department of Chemistry, Government Graduate College Toba Tek Singh, Punjab 36050, Pakistan; (W.Z.); (F.N.); (Z.R.); (N.K.); (M.)
| | - Muneeba
- Department of Chemistry, Government Graduate College Toba Tek Singh, Punjab 36050, Pakistan; (W.Z.); (F.N.); (Z.R.); (N.K.); (M.)
| | - Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
43
|
Ma TT, Yang C, Qian HL, Ma P, Liu T, Yan XP. Trifluoromethyl-Functionalized 2D Covalent Organic Framework for High-Resolution Separation of Isomers. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37367939 DOI: 10.1021/acsami.3c05369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Development of novel functional materials for effective isomer separation is of great significance in environmental science, chemical industry, and life science due to the different functions of isomers. However, the similar physicochemical properties of isomers make their separation greatly challenging. Here, we report the fabrication of trifluoromethyl-functionalized 2D covalent organic framework (COF) TpTFMB with 2,2'-bis(trifluoromethyl)benzidine (TFMB) and 1,3,5-triformylphloroglucinol (Tp) for the separation of isomers. TpTFMB was in situ-grown on the inner surface of a capillary for the high-resolution separation of isomers. The introduction of hydroxyl and trifluoromethyl functional groups with uniform distribution in 2D COFs is a powerful tactic to endow TpTFMB with various functions such as hydrogen bonding, dipole interaction, and steric effect. The prepared TpTFMB capillary column enabled the baseline separation of positional isomers such as ethylbenzene and xylene, chlorotoluene, carbon chain isomers such as butylbenzene and ethyl butanoate, and cis-trans isomers 1,3-dichloropropene. The hydrogen-bonding, dipole, and π-π interactions as well as the structure of COF significantly contribute to the isomer separation. This work provides a new strategy for designing functional 2D COFs for the efficient separation of isomers.
Collapse
Affiliation(s)
- Tian-Tian Ma
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Piming Ma
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
44
|
Li X, Sun F, Shi H, Zhang B, He J, Wu J, Du Y. Intramolecular Heterocyclization/Fluoromethylthiolation of Alkynes Enabled by a Multicomponent Reagent System. Org Lett 2023; 25:3517-3521. [PMID: 37144925 DOI: 10.1021/acs.orglett.3c01095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The BnSRf (Rf = CF2H or CF3)/mCPBA/Tf2O system was found to be an effective multicomponent reagent system for the one-pot synthesis of di/trifluoromethylthiolated heterocycles from alkynes. The reaction was postulated to proceed via a cascade sequence involving the oxidation of BnSRf by mCPBA, activation of the in situ-generated sulfoxide by Tf2O, and intramolecular cyclization/fluoromethylthiolation of the alkyne substrates enabled by the formed electrophilic sulfonium salt to give di/trifluoromethylthiolated heterocycles.
Collapse
Affiliation(s)
- Xuemin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Fengxia Sun
- Research Center for Chemical Safety & Security and Verification Technology and College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Haofeng Shi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Beibei Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jiaxin He
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jialiang Wu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
45
|
Petcu AS, Lázaro-Milla C, Rodríguez FJ, Iriepa I, Bautista-Aguilera ÓM, Aragoncillo C, Alonso JM, Almendros P. Straightforward Synthesis of Bis[(trifluoromethyl)sulfonyl]ethylated Isocoumarins from 2-Ethynylbenzoates. J Org Chem 2023. [PMID: 37133251 DOI: 10.1021/acs.joc.3c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Herein, we report a facile isocoumarin and isoquinolone preparation by taking advantage of an initial bis(triflyl)ethylation [triflyl = (trifluoromethyl)sulfonyl] reaction, followed by heterocyclization, which contrasts with our previous results on cyclobutene formation. The efficiency of the catalyst- and irradiation-free heterocyclization/bis(triflyl)ethylation sequence showed exquisite dependence on the electronic nature of the substituents at the 2-ethynylbenzoate(benzamide) precursors. Molecular docking of model bis(triflyl)ethylated isocoumarins on human acetylcholinesterase (hAChE) revealed promising biological activities through selective coordination on both the catalytic active site and peripheral active site.
Collapse
Affiliation(s)
- A Sonia Petcu
- Instituto de Química Orgánica General, IQOG, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Carlos Lázaro-Milla
- Grupo de Lactamas y Heterociclos Bioactivos, Departamento de Química Orgánica, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - F Javier Rodríguez
- Grupo de Lactamas y Heterociclos Bioactivos, Departamento de Química Orgánica, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Isabel Iriepa
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, 28805 Alcalá de Henares, Madrid, Spain
- Instituto de Investigación Química Andrés M. del Río (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | - Óscar M Bautista-Aguilera
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, 28805 Alcalá de Henares, Madrid, Spain
- Instituto de Investigación Química Andrés M. del Río (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | - Cristina Aragoncillo
- Grupo de Lactamas y Heterociclos Bioactivos, Departamento de Química Orgánica, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - José M Alonso
- Grupo de Lactamas y Heterociclos Bioactivos, Departamento de Química Orgánica, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Pedro Almendros
- Instituto de Química Orgánica General, IQOG, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
46
|
Monsigny L, Doche F, Besset T. Transition-metal-catalyzed C-H bond activation as a sustainable strategy for the synthesis of fluorinated molecules: an overview. Beilstein J Org Chem 2023; 19:448-473. [PMID: 37123090 PMCID: PMC10130906 DOI: 10.3762/bjoc.19.35] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
The last decade has witnessed the emergence of innovative synthetic tools for the synthesis of fluorinated molecules. Among these approaches, the transition-metal-catalyzed functionalization of various scaffolds with a panel of fluorinated groups (XRF, X = S, Se, O) offered straightforward access to high value-added compounds. This review will highlight the main advances made in the field with the transition-metal-catalyzed functionalization of C(sp2) and C(sp3) centers with SCF3, SeCF3, or OCH2CF3 groups among others, by C-H bond activation. The scope and limitations of these transformations are discussed in this review.
Collapse
Affiliation(s)
- Louis Monsigny
- Normandie University, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Floriane Doche
- Normandie University, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Tatiana Besset
- Normandie University, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| |
Collapse
|
47
|
Li A, Wang X, Liu Y, Hao D, Zhao X, Lu K. Copper-catalyzed ring-opening trifluoromethylthiolation/trifluoromethylselenolation of cyclopropanols with TsSCF 3 or Se-(trifluoromethyl) 4-methoxybenzenesulfonoselenoate. Org Biomol Chem 2023; 21:3675-3683. [PMID: 37067868 DOI: 10.1039/d3ob00228d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
We report a ring-opening trifluoromethylthiolation of cyclopropanols with TsSCF3 by using Cu(OAc)2 as the catalyst. Moreover, by using this strategy, the trifluoromethylselenolation of cyclopropanols with Se-(trifluoromethyl) 4-methoxybenzenesulfonoselenoate to access β-SeCF3-substituted carbonyl compounds is achieved for the first time. The broad substrate scope, readily accessible reagents and cheap catalyst make this protocol an alternative and efficient method for the synthesis of β-SCF3-substituted or β-SeCF3-substituted carbonyl compounds.
Collapse
Affiliation(s)
- Ankun Li
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China.
| | - Xiaoxing Wang
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China.
| | - Yuqing Liu
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China.
| | - Delong Hao
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China.
| | - Xia Zhao
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China.
| | - Kui Lu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
48
|
Uppalabat T, Hassa N, Sawektreeratana N, Leowanawat P, Janthakit P, Nalaoh P, Promarak V, Soorukram D, Reutrakul V, Kuhakarn C. Cascade Oxidative Trifluoromethylthiolation and Cyclization of 3-Alkyl-1-(2-(alkynyl)phenyl)indoles. J Org Chem 2023; 88:5403-5419. [PMID: 37019432 DOI: 10.1021/acs.joc.2c03045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Persulfate-promoted radical cascade trifluoromethylthiolation and cyclization of 3-alkyl-1-(2-(alkynyl)phenyl)indoles with AgSCF3 were investigated. This protocol provides a novel route to CF3S-substituted indolo[1,2-a]quinoline-7-carbaldehydes and CF3S-substituted indolo[1,2-a]quinoline-7-methanone derivatives via the formation of the C-SCF3 bond and C-C bond and benzylic carbon oxidation in a single step. This reaction can accommodate a broad range of functional groups. The single-crystal X-ray diffraction data confirm the chemical structure of the product. A scale-up experiment and radical inhibition experiments were operated in the reaction system. Photophysical properties of some selected 5-((trifluoromethyl)thio)indolo[1,2-a]quinoline-7-carbaldehydes were studied by UV-visible and fluorescence spectroscopy.
Collapse
Affiliation(s)
- Thikhamporn Uppalabat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Nattawoot Hassa
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Natthapat Sawektreeratana
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Pawaret Leowanawat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Pattarapapa Janthakit
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Phattananawee Nalaoh
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Vinich Promarak
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Darunee Soorukram
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Vichai Reutrakul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Chutima Kuhakarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| |
Collapse
|
49
|
Chen SY, Zheng YC, Liu XG, Song JL, Xiao L, Zhang SS. Synthesis of Indole-Substituted Trifluoromethyl Sulfonium Ylides by Cp*Rh(III)-Catalyzed Diazo-carbenoid Addition to Trifluoromethylthioether. J Org Chem 2023; 88:5512-5519. [PMID: 37011236 DOI: 10.1021/acs.joc.3c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
The indole-substituted trifluoromethyl sulfonium ylide has been developed via Cp*Rh(III)-catalyzed diazo-carbenoid addition to trifluoromethylthioether and is the first example of an Rh(III)-catalyzed diazo-carbenoid addition reaction with trifluoromethylthioether. Several kinds of indole-substituted trifluoromethyl sulfonium ylide were constructed under mild reaction conditions. The reported method exhibited high functional group compatibility and broad substrate scope. In addition, the protocol was found to be complementary to the method disclosed by a Rh(II) catalyst.
Collapse
Affiliation(s)
- Shao-Yong Chen
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Yi-Chuan Zheng
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Xu-Ge Liu
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Jia-Lin Song
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Lin Xiao
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Shang-Shi Zhang
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| |
Collapse
|
50
|
Zhou X, Pyle D, Zhang Z, Dong G. Deacylative Thiolation by Redox-Neutral Aromatization-Driven C-C Fragmentation of Ketones. Angew Chem Int Ed Engl 2023; 62:e202213691. [PMID: 36800315 PMCID: PMC10240504 DOI: 10.1002/anie.202213691] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/05/2022] [Accepted: 02/17/2023] [Indexed: 02/18/2023]
Abstract
Herein we report the development of deacylative thiolation of diverse methyl ketones. The reaction is redox-neutral, and heavy-metal-free, which provides a new way to introduce thioether groups site-specifically to unactivated aliphatic positions. It also features excellent functional group tolerance and broad substrate scope, thus allowing late-stage derivatization. The process benefits from efficient condensation between the activation reagent and ketone substrates, which triggers aromatization-driven C-C fragmentation and rapid radical coupling with thiosulfonates. Experimental and computational mechanistic studies suggest the involvement of a radical chain pathway.
Collapse
Affiliation(s)
- Xukai Zhou
- Department of Chemistry, The University of Chicago, 5735 S Ellis Ave, Chicago, IL, 60637, USA
| | - Daniel Pyle
- Department of Chemistry, The University of Chicago, 5735 S Ellis Ave, Chicago, IL, 60637, USA
| | - Zining Zhang
- Department of Chemistry, The University of Chicago, 5735 S Ellis Ave, Chicago, IL, 60637, USA
| | - Guangbin Dong
- Department of Chemistry, The University of Chicago, 5735 S Ellis Ave, Chicago, IL, 60637, USA
| |
Collapse
|