1
|
Sivakumar G, Suresh AK, Padhy SR, Balaraman E. Double dehydrogenative coupling of amino alcohols with primary alcohols under Mn(I) catalysis. Chem Commun (Camb) 2024. [PMID: 39484689 DOI: 10.1039/d4cc03595j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Herein, we unveil a method for synthesizing substituted pyrrole and pyrazine compounds via a double dehydrogenative coupling of amino alcohols with primary alcohols, facilitated by Mn(I)-PNP catalysis, which uniquely enables the simultaneous formation of C-C and C-N bonds.
Collapse
Affiliation(s)
- Ganesan Sivakumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati - 517507, Andhra Pradesh, India.
| | - Abhijith Karattil Suresh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati - 517507, Andhra Pradesh, India.
| | - Smruti Rekha Padhy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati - 517507, Andhra Pradesh, India.
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati - 517507, Andhra Pradesh, India.
| |
Collapse
|
2
|
Ridgway LM, Das A, Shadrick ML, Demchenko AV. Ferric Chloride Promoted Glycosidation of Alkyl Thioglycosides. Molecules 2024; 29:4845. [PMID: 39459213 PMCID: PMC11510396 DOI: 10.3390/molecules29204845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Reported herein is a new reaction for glycosylation with thioglycosides in the presence of iron(III) chloride. Previously, FeCl3 was used for the activation of thioglycosides as a Lewis acid co-promoter paired with NIS. In the reported process, although 5.0 equiv of FeCl3 are needed to activate thioglycosides most efficiently, no additives were used, and the reactions with reactive glycosyl donors smoothly proceeded to completion in 1 h at 0 °C. This work showcases a new direction in developing glycosylation methods using greener and earth-abundant activators.
Collapse
Affiliation(s)
| | | | | | - Alexei V. Demchenko
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, MO 63103, USA
| |
Collapse
|
3
|
Zhou B, Ih MI, Yao S, Hemming M, Ivlev SI, Chen S, Meggers E. β 3-Tryptophans by Iron-Catalyzed Enantioselective Amination of 3-Indolepropionic Acids. Org Lett 2024; 26:8361-8365. [PMID: 39311759 PMCID: PMC11459507 DOI: 10.1021/acs.orglett.4c03130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024]
Abstract
A straightforward and general strategy for the catalytic asymmetric synthesis of β3-tryptophans by carboxylic-acid-directed intermolecular C-H amination has been developed. The iron-catalyzed C-H amination of 3-indolepropionic acids with BocNHOMs (Boc, tert-butyloxycarbonyl; OMs, methylsulfonate) in the presence of the base piperidine provides N-Boc-protected β3-tryptophans in a single step with high enantiomeric excess (ee) of up to >99%. Mechanistic experiments and density functional theory calculations support a mechanism through carboxylate-directed iron-mediated C(sp3)-H nitrene insertion. The method incorporates two key sustainability criteria: the use of iron as an abundant, non-toxic, and environmentally benign metal, along with the achievement of streamlined enantioselective C-H functionalization.
Collapse
Affiliation(s)
- Bing Zhou
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Marisa I. Ih
- Department
of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United
States
| | - Suyang Yao
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Marcel Hemming
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Sergei I. Ivlev
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Shuming Chen
- Department
of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United
States
| | - Eric Meggers
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| |
Collapse
|
4
|
Zhao JQ, Chen ZP. The Progress of Reductive Coupling Reaction by Iron Catalysis. CHEM REC 2024:e202400108. [PMID: 39289832 DOI: 10.1002/tcr.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/21/2024] [Indexed: 09/19/2024]
Abstract
The transition metal catalyzed coupling reaction has revolutionized the strategies for forging the carbon-carbon bonds. In contrast to traditional cross-coupling methods using pre-prepared nucleophilic organometallic reagents, reductive coupling reactions for the C-C bonds formation provide some advantages. Because both coupling partners are reduced in the final products using a stoichiometric amount of a reductant, this approach not only avoids the need to use sensitive organometallic species, but also provides an orthogonal and complementary access to classical coupling reaction. Notably, the reductive coupling reactions feature readily available fragments, promote good step economy, exhibit high functional group tolerance and unique chemoselectivity, which have propelled their increasingly popular in the organic synthesis. In recent years, due to the low price, minimal toxicity, and environmentally benign character, iron-catalyzed carbon-carbon coupling reactions have garnered significant attention from the organic synthetic chemists and pharmacologists, especially the iron-catalyzed reductive coupling. This review aims to provide an insightful overview of recent advances in iron-catalyzed reductive coupling reactions, and to illustrate their possible reaction mechanisms.
Collapse
Affiliation(s)
- Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Zhang-Pei Chen
- College of Sciences Northeastern University, Shenyang, 110819, China
| |
Collapse
|
5
|
Mhaske K, Gangai S, Taneja N, Narayan R. Two-Fold Oxidative Coupling of Furan with Indole Provides Modular Access to a New Class of Tetra-(Hetero)Arylated Furans with Up to Four Different Substituents. Chemistry 2024:e202402929. [PMID: 39268636 DOI: 10.1002/chem.202402929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Highly arylated propeller-shaped heteroarenes constitute an intriguing class of molecular scaffolds for material science applications. Among these, tetraarylated furans demonstrate differentiated properties as compared to other similar heterocyclic cores. The synthetic complexity to access tetraarylated furans increases significantly with increasing number of different peripheral aryl groups. There are only a very limited number of methodologies available to access furans with four different (hetero)aryl substituents. Notably, none of these involve direct oxidative coupling on the furan core as the method of choice. Herein, we report the first methodology based on a sequential two-fold oxidative C-C coupling of furans with indoles to access bis(indolyl)furans (BIFs) - a new class of 'extremely congested' tetra-(hetero)arylated furans with up to four different substituents. The reaction is mediated by inexpensive, earth-abundant FeCl3⋅6H2O and displays high efficiency, wide substrate scope, modularity and aqueous compatibility. Moreover, we also present the first validation of the distinct aggregation-caused quenching (ACQ) property of the tetraarylated furans beyond only phenyls as peripheral groups and disclose new mechanistic underpinnings for the same.
Collapse
Affiliation(s)
- Krishna Mhaske
- School of Chemical & Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
| | - Shon Gangai
- School of Chemical & Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
| | - Neha Taneja
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Rishikesh Narayan
- School of Chemical & Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
- School of Interdisciplinary Life Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
| |
Collapse
|
6
|
Wang X, He J, Wang YN, Zhao Z, Jiang K, Yang W, Zhang T, Jia S, Zhong K, Niu L, Lan Y. Strategies and Mechanisms of First-Row Transition Metal-Regulated Radical C-H Functionalization. Chem Rev 2024; 124:10192-10280. [PMID: 39115179 DOI: 10.1021/acs.chemrev.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Radical C-H functionalization represents a useful means of streamlining synthetic routes by avoiding substrate preactivation and allowing access to target molecules in fewer steps. The first-row transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) are Earth-abundant and can be employed to regulate radical C-H functionalization. The use of such metals is desirable because of the diverse interaction modes between first-row transition metal complexes and radical species including radical addition to the metal center, radical addition to the ligand of metal complexes, radical substitution of the metal complexes, single-electron transfer between radicals and metal complexes, hydrogen atom transfer between radicals and metal complexes, and noncovalent interaction between the radicals and metal complexes. Such interactions could improve the reactivity, diversity, and selectivity of radical transformations to allow for more challenging radical C-H functionalization reactions. This review examines the achievements in this promising area over the past decade, with a focus on the state-of-the-art while also discussing existing limitations and the enormous potential of high-value radical C-H functionalization regulated by these metals. The aim is to provide the reader with a detailed account of the strategies and mechanisms associated with such functionalization.
Collapse
Affiliation(s)
- Xinghua Wang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jing He
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ya-Nan Wang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
| | - Zhenyan Zhao
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kui Jiang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wei Yang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Tao Zhang
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan 451162, P. R. China
| | - Shiqi Jia
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kangbao Zhong
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Linbin Niu
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yu Lan
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
7
|
Demirel N, Dawor M, Nadler G, Ivlev SI, Meggers E. Stereogenic-at-iron mesoionic carbene complex for enantioselective C-H amidation. Chem Sci 2024:d4sc03504f. [PMID: 39268214 PMCID: PMC11385695 DOI: 10.1039/d4sc03504f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
Electronically tuned C 2-symmetric stereogenic-at-iron complexes, featuring strongly σ-donating 1,2,3-triazolin-5-ylidene mesoionic carbene (MIC) ligands, exhibit enhanced catalytic efficiency compared to conventional imidazol-2-ylidene analogs, as demonstrated in nitrene-mediated ring-closing C(sp3)-H amidation reactions. Furthermore, a chiral pinene-derived pyridyl triazole ligand enables a highly diastereoselective synthesis of a non-racemic chiral iron catalyst, thereby controlling the absolute configuration at the metal center, as confirmed by NMR and X-ray crystallography. This pinene-modified stereogenic-at-iron MIC complex demonstrates high catalytic activity and a respectable asymmetric induction in the ring-closing C(sp3)-H amination of N-benzoyloxyurea, yielding 2-imidazolidinones with enantiomeric ratios of up to 92 : 8. These findings reflect the profound potential of this new class of mesoionic carbene iron complexes in further understanding and tuning the reactivity of iron-based catalysts.
Collapse
Affiliation(s)
- Nemrud Demirel
- Fachbereich Chemie, Philipps-Universität Marburg Hans-Meerwein-Strasse 4 35043 Marburg Germany
| | - Mahiob Dawor
- Fachbereich Chemie, Philipps-Universität Marburg Hans-Meerwein-Strasse 4 35043 Marburg Germany
| | - Greta Nadler
- Fachbereich Chemie, Philipps-Universität Marburg Hans-Meerwein-Strasse 4 35043 Marburg Germany
| | - Sergei I Ivlev
- Fachbereich Chemie, Philipps-Universität Marburg Hans-Meerwein-Strasse 4 35043 Marburg Germany
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg Hans-Meerwein-Strasse 4 35043 Marburg Germany
| |
Collapse
|
8
|
Ma Z, Kuloor C, Kreyenschulte C, Bartling S, Malina O, Haumann M, Menezes PW, Zbořil R, Beller M, Jagadeesh RV. Development of Iron-Based Single Atom Materials for General and Efficient Synthesis of Amines. Angew Chem Int Ed Engl 2024; 63:e202407859. [PMID: 38923207 DOI: 10.1002/anie.202407859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Earth abundant metal-based heterogeneous catalysts with highly active and at the same time stable isolated metal sites constitute a key factor for the advancement of sustainable and cost-effective chemical synthesis. In particular, the development of more practical, and durable iron-based materials is of central interest for organic synthesis, especially for the preparation of chemical products related to life science applications. Here, we report the preparation of Fe-single atom catalysts (Fe-SACs) entrapped in N-doped mesoporous carbon support with unprecedented potential in the preparation of different kinds of amines, which represent privileged class of organic compounds and find increasing application in daily life. The optimal Fe-SACs allow for the reductive amination of a broad range of aldehydes and ketones with ammonia and amines to produce diverse primary, secondary, and tertiary amines including N-methylated products as well as drugs, agrochemicals, and other biomolecules (amino acid esters and amides) utilizing green hydrogen.
Collapse
Affiliation(s)
- Zhuang Ma
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | - Chakreshwara Kuloor
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | - Carsten Kreyenschulte
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | - Stephan Bartling
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | - Ondrej Malina
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacky University Olomouc, Olomouc, Czech Republic
| | - Michael Haumann
- Physics Department, Freie Universität Berlin, Berlin, Germany
| | - Prashanth W Menezes
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
- Department of Chemistry, Technical University of Berlin, Berlin, Germany
| | - Radek Zbořil
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacky University Olomouc, Olomouc, Czech Republic
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | - Rajenahally V Jagadeesh
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic
| |
Collapse
|
9
|
Parrales GM, Hollin NC, Song F, Lyu Y, Martin AMO, Strom AE. Mechanism of Iron-Catalyzed Oxidative α-Amination of Ketones with Sulfonamides. J Org Chem 2024; 89:12462-12466. [PMID: 39149957 PMCID: PMC11382155 DOI: 10.1021/acs.joc.4c01401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
We report the mechanism of the iron-catalyzed oxidative α-amination of ketones with sulfonamides. Using linear free energy relationships, competition experiments, and identification of reaction intermediates, we have found that the mechanism of this reaction proceeds through rate-limiting electron transfer to 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) from an iron enolate in the process of forming an α-DDQ adduct. The adduct then serves as the electrophile for substitution with sulfonamide nucleophiles, accelerated by iron and additional DDQ. This mechanistic study rules out formation of an α-carbocation intermediate and purely radical mechanistic hypotheses.
Collapse
Affiliation(s)
- Gloria M Parrales
- Department of Chemistry, Smith College, Northampton, Massachusetts 01063, United States
| | - Nina C Hollin
- Department of Chemistry, Smith College, Northampton, Massachusetts 01063, United States
| | - Fubin Song
- Department of Chemistry, Smith College, Northampton, Massachusetts 01063, United States
| | - Yangyang Lyu
- Department of Chemistry, Smith College, Northampton, Massachusetts 01063, United States
| | - Anne-Marie O Martin
- Department of Chemistry, Smith College, Northampton, Massachusetts 01063, United States
| | - Alexandra E Strom
- Department of Chemistry, Smith College, Northampton, Massachusetts 01063, United States
| |
Collapse
|
10
|
Satyanarayana ANV, Chatterjee T. HFIP-Mediated, Highly Chemo-, Regio-, and Stereoselective Hydrofunctionalizations of Ynamides: Access to Stereodefined Alkenes Bearing Drugs and Natural Products. J Org Chem 2024; 89:12439-12451. [PMID: 39120065 DOI: 10.1021/acs.joc.4c01373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
We disclose a sustainable and versatile synthetic strategy for the highly chemo-, regio-, and stereoselective hydrofunctionalizations of ynamides, through its activation by a solvent, HFIP, to access a wide variety of stereodefined ketene N,N, N,O, N,S, and N,Se acetals in high yield at room temperature. The reaction proceeded through the formation of the reactive keteniminium ion intermediate, formed via protonation at the β-carbon of ynamide by HFIP, followed by an attack of a nucleophile (syn-addition) at the α-carbon. When ynamides are treated with only HFIP at room temperature, the HFIP addition products of ynamides are formed in a 100% atom-economic fashion; however, in the presence of a stronger N-/O-/S-/Se-based nucleophile, the corresponding syn-hydroheterofunctionalized products are formed. Notably, HFIP played multiple roles, such as a reagent, in particular, a Brønsted acid, nucleophile, as well as solvent. Interestingly, HFIP is found to be unique for this transformation. Notably, this strategy is utilized for the late-stage functionalization of several marketed drugs and natural products, and it also enables the connection of two different drugs or a drug and a natural product through chemical bonds. Significantly, HFIP was recovered after the reaction and reused for consecutive reactions.
Collapse
Affiliation(s)
- Appanapalli N V Satyanarayana
- Department of Chemistry, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad Campus, Jawahar Nagar, Hyderabad, Telangana 500078, India
| | - Tanmay Chatterjee
- Department of Chemistry, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad Campus, Jawahar Nagar, Hyderabad, Telangana 500078, India
| |
Collapse
|
11
|
Ahmed H, Ghosh B, Breitenlechner S, Feßner M, Merten C, Bach T. Intermolecular Enantioselective Amination Reactions Mediated by Visible Light and a Chiral Iron Porphyrin Complex. Angew Chem Int Ed Engl 2024; 63:e202407003. [PMID: 38695376 DOI: 10.1002/anie.202407003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Indexed: 06/15/2024]
Abstract
In the presence of 1 mol % of a chiral iron porphyrin catalyst, various 3-arylmethyl-substituted 2-quinolones and 2-pyridones underwent an enantioselective amination reaction (20 examples; 93-99 % ee). The substrates were used as the limiting reagents, and fluorinated aryl azides (1.5 equivalents) served as nitrene precursors. The reaction is triggered by visible light which allows a facile dediazotation at ambient temperature. The selectivity of the reaction is governed by a two-point hydrogen bond interaction between the ligand of the iron catalyst and the substrate. Hydrogen bonding directs the amination to a specific hydrogen atom within the substrate that is displaced by the nitrogen substituent either in a concerted fashion or by a rebound mechanism.
Collapse
Affiliation(s)
- Hussayn Ahmed
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Biki Ghosh
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Stefan Breitenlechner
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Malte Feßner
- Ruhr-Universität Bochum, Faculty for Chemistry and Biochemistry, Universitätsstraße 150, D-44801, Bochum
| | - Christian Merten
- Ruhr-Universität Bochum, Faculty for Chemistry and Biochemistry, Universitätsstraße 150, D-44801, Bochum
| | - Thorsten Bach
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstraße 4, 85747, Garching, Germany
| |
Collapse
|
12
|
Cattani S, Pandit NK, Buccio M, Balestri D, Ackermann L, Cera G. Iron-Catalyzed C-H Alkylation/Ring Opening with Vinylbenzofurans Enabled by Triazoles. Angew Chem Int Ed Engl 2024; 63:e202404319. [PMID: 38785101 DOI: 10.1002/anie.202404319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
We report an unprecedented iron-catalyzed C-H annulation using readily available 2-vinylbenzofurans as the reaction pattern. The redox-neutral strategy, based on cheap, non-toxic, and earth-abundant iron catalysts, exploits triazole assistance to promote a cascade C-H alkylation, benzofuran ring-opening and insertion into a Fe-N bond, to form highly functionalized isoquinolones. Detailed mechanistic studies supported by DFT calculations fully disclosed the manifold of the iron catalysis.
Collapse
Affiliation(s)
- Silvia Cattani
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze17/A, 43124, Parma, Italy
| | - Neeraj Kumar Pandit
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Michele Buccio
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze17/A, 43124, Parma, Italy
| | - Davide Balestri
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze17/A, 43124, Parma, Italy
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Gianpiero Cera
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze17/A, 43124, Parma, Italy
| |
Collapse
|
13
|
Ghosh T, Ren P, Franck P, Tang M, Jaworski A, Barcaro G, Monti S, Chouhan L, Rabeah J, Skorynina A, Silvestre-Albero J, Simonelli L, Rokicińska A, Debroye E, Kuśtrowski P, Bals S, Das S. A robust Fe-based heterogeneous photocatalyst for the visible-light-mediated selective reduction of an impure CO 2 stream. Chem Sci 2024; 15:11488-11499. [PMID: 39055026 PMCID: PMC11268485 DOI: 10.1039/d4sc02773f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024] Open
Abstract
The transformation of CO2 into value-added products from an impure CO2 stream, such as flue gas or exhaust gas, directly contributes to the principle of carbon capture and utilization (CCU). Thus, we have developed a robust iron-based heterogeneous photocatalyst that can convert the exhaust gas from the car into CO with an exceptional production rate of 145 μmol g-1 h-1. We characterized this photocatalyst by PXRD, XPS, ssNMR, EXAFS, XANES, HR-TEM, and further provided mechanistic experiments, and multi-scale/level computational studies. We have reached a clear understanding of its properties and performance that indicates that this highly robust photocatalyst could be used to design an efficient visible-light-mediated reduction strategy for the transformation of impure CO2 streams into value-added products.
Collapse
Affiliation(s)
- Topi Ghosh
- Department of Chemistry, University of Antwerp Antwerp Belgium
| | - Peng Ren
- Department of Chemistry, University of Antwerp Antwerp Belgium
- Department of Chemistry, University of Bayreuth Bayreuth Germany
| | - Philippe Franck
- Department of Chemistry, University of Antwerp Antwerp Belgium
| | - Min Tang
- EMAT and NANO Lab Center of Excellence, Department of Physics, University of Antwerp Antwerp Belgium
| | - Aleksander Jaworski
- Department of Materials and Environmental Chemistry, Stockholm University Stockholm Sweden
| | - Giovanni Barcaro
- CNR-IPCF, Institute for Chemical and Physical Processes via G. Moruzzi 1 56124 Pisa Italy
| | - Susanna Monti
- CNR-ICCOM, Institute of Chemistry of Organometallic Compounds via G. Moruzzi 1 56124 Pisa Italy
| | - Lata Chouhan
- Department of Chemistry, KU Leuven Leuven Belgium
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse e. V Albert-Einstein-Straße 29a 18059 Rostock Germany
| | | | - Joaquin Silvestre-Albero
- Departamento de Quimica Inorganica-Instituto Universitario de Materiales, Universidad de Alicante Alicante E-03080 Spain
| | | | | | - Elke Debroye
- Department of Chemistry, KU Leuven Leuven Belgium
| | | | - Sara Bals
- EMAT and NANO Lab Center of Excellence, Department of Physics, University of Antwerp Antwerp Belgium
| | - Shoubhik Das
- Department of Chemistry, University of Antwerp Antwerp Belgium
- Department of Chemistry, University of Bayreuth Bayreuth Germany
| |
Collapse
|
14
|
Cao X, You J, Wang Y, Yu Y, Wu W, Liang Y. Synthesis of New Isoxazolidine Derivatives Utilizing the Functionality of N-Carbonylpyrazol-Linked Isoxazolidines. Molecules 2024; 29:3454. [PMID: 39124860 PMCID: PMC11314590 DOI: 10.3390/molecules29153454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Abstract
Using Ni(II) as the catalyst, electron-deficient 3,5-dimethylacryloylpyrazole olefin was reacted with C,N-diarylnitrones alone for 10 min to prepare novel five-member heterocyclic products, 4-3,5-dimethylacryloylpyrazole isoxazolidines with 100% regioselectivity and up to 99% yield. And then, taking these cycloadducts as substrates, six kinds of derivatization reactions, like ring-opening, nucleophilic substitution, addition-elimination and reduction, were studied. Experimental results showed that all kinds of transformations could obtain the target products at a high conversion rate under mild conditions, a finding which provided the basic methods for organic synthesis methodology research based on an isoxazolidine skeleton.
Collapse
Affiliation(s)
| | - Jun You
- Key Laboratory of Green Chemical Engineering and Technology of Heilongjiang Province, College of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China; (X.C.); (Y.W.); (Y.Y.); (W.W.)
| | | | | | | | - Yifang Liang
- Key Laboratory of Green Chemical Engineering and Technology of Heilongjiang Province, College of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China; (X.C.); (Y.W.); (Y.Y.); (W.W.)
| |
Collapse
|
15
|
Baruah MJ, Dutta R, Zaki MEA, Bania KK. Heterogeneous Iron-Based Catalysts for Organic Transformation Reactions: A Brief Overview. Molecules 2024; 29:3177. [PMID: 38999129 PMCID: PMC11243350 DOI: 10.3390/molecules29133177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Iron (Fe) is considered to be one of the most significant elements due to its wide applications. Recent years have witnessed a burgeoning interest in Fe catalysis as a sustainable and cost-effective alternative to noble metal catalysis in organic synthesis. The abundance and low toxicity of Fe, coupled with its competitive reactivity and selectivity, underscore its appeal for sustainable synthesis. A lot of catalytic reactions have been performed using heterogeneous catalysts of Fe oxide hybridized with support systems like aluminosilicates, clays, carbonized materials, metal oxides or polymeric matrices. This review provides a comprehensive overview of the latest advancements in Fe-catalyzed organic transformation reactions. Highlighted areas include cross-coupling reactions, C-H activation, asymmetric catalysis, and cascade processes, showcasing the versatility of Fe across a spectrum of synthetic methodologies. Emphasis is placed on mechanistic insights, elucidating the underlying principles governing iron-catalyzed reactions. Challenges and opportunities in the field are discussed, providing a roadmap for future research endeavors. Overall, this review illuminates the transformative potential of Fe catalysis in driving innovation and sustainability in organic chemistry, with implications for drug discovery, materials science, and beyond.
Collapse
Affiliation(s)
- Manash J Baruah
- Department of Chemistry, DCB Girls' College, Jorhat 785001, Assam, India
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Rupjyoti Dutta
- CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Magdi E A Zaki
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Kusum K Bania
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, Assam, India
| |
Collapse
|
16
|
Mari G, De Crescentini L, Favi G, Mantellini F, Olivieri D, Santeusanio S. Challenge N- versus O-six-membered annulation: FeCl 3-catalyzed synthesis of heterocyclic N, O-aminals. Beilstein J Org Chem 2024; 20:1412-1420. [PMID: 38952961 PMCID: PMC11216082 DOI: 10.3762/bjoc.20.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/14/2024] [Indexed: 07/03/2024] Open
Abstract
A new class of heterocyclic N,O-aminal and hemiaminal scaffolds was successfully obtained by means of a three-component reaction (3-CR) of 1,2-diaza-1,3-dienes (DDs), α-aminoacetals and iso(thio)cyanates. These stable imine surrogates are generated from key-substituted (thio)hydantoin intermediates through selective FeCl3-catalyzed intramolecular N-annulation.
Collapse
Affiliation(s)
- Giacomo Mari
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University "Carlo Bo" of Urbino, Via Ca' le Suore 2-4, 61029, Urbino (PU), Italy
| | - Lucia De Crescentini
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University "Carlo Bo" of Urbino, Via Ca' le Suore 2-4, 61029, Urbino (PU), Italy
| | - Gianfranco Favi
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University "Carlo Bo" of Urbino, Via Ca' le Suore 2-4, 61029, Urbino (PU), Italy
| | - Fabio Mantellini
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University "Carlo Bo" of Urbino, Via Ca' le Suore 2-4, 61029, Urbino (PU), Italy
| | - Diego Olivieri
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University "Carlo Bo" of Urbino, Via Ca' le Suore 2-4, 61029, Urbino (PU), Italy
| | - Stefania Santeusanio
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University "Carlo Bo" of Urbino, Via Ca' le Suore 2-4, 61029, Urbino (PU), Italy
| |
Collapse
|
17
|
Pandey PK, Patra M, Ranjan P, Kumar Pal N, Choudhary S, Bera JK. A Single Terminal [Ni II-OH] Catalyst for Direct Julia-Type Olefination and α-Alkylation Involving Sulfones and Alcohols. Chemistry 2024; 30:e202400337. [PMID: 38644351 DOI: 10.1002/chem.202400337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/08/2024] [Accepted: 04/21/2024] [Indexed: 04/23/2024]
Abstract
A terminal [NiII-OH] complex 1, supported by triflamide-functionalized NHC ligands, showed divergent reactivity for the reaction of sulfone with alcohol, contingent on base concentration, temperature, and time. Julia-type olefination of alcohols with sulfones was achieved using one equiv. of base, whereas lowering base loading to 0.5 equiv. afforded α-alkylated sulfones. Besides excellent substrate scope and selectivity, biologically active stilbene derivatives DMU-212, pinosylvin, resveratrol, and piceatannol were synthesized in high yield under Julia-type olefination conditions. An extensive array of controlled experiments and DFT calculations provide valuable insight on the reaction pathway.
Collapse
Affiliation(s)
- Prabhakar K Pandey
- Department of Chemistry and Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Moumita Patra
- Department of Chemistry and Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Prabodh Ranjan
- Department of Chemistry and Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Nilay Kumar Pal
- Department of Chemistry and Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Sanjay Choudhary
- Department of Chemistry and Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Jitendra K Bera
- Department of Chemistry and Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
18
|
Munda M, Chatterjee D, Majhi M, Biswas S, Pal D, Bisai A. Total synthesis of naturally occurring abietane diterpenoids via a late-stage Fe(iii)- bTAML catalysed Csp 3-H functionalization. RSC Adv 2024; 14:20420-20424. [PMID: 38932981 PMCID: PMC11200212 DOI: 10.1039/d4ra03791j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The synthesis of diverse trans-fused decalins, including the abietane diterpenoids scaffold, using an efficient selective oxidation strategy is described. The abietane core was demonstrated to be a versatile scaffold that can be site-selectively functionalized. The utility of this novel oxidation strategy was showcased in a concise total synthesis of six abietane congeners.
Collapse
Affiliation(s)
- Mintu Munda
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri Bhopal-462 066 Madhya Pradesh India
| | - Debasmita Chatterjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur Nadia-741 246 West Bengal India
| | - Moumita Majhi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur Nadia-741 246 West Bengal India
| | - Souvik Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur Nadia-741 246 West Bengal India
| | - Debopam Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur Nadia-741 246 West Bengal India
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri Bhopal-462 066 Madhya Pradesh India
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur Nadia-741 246 West Bengal India
| |
Collapse
|
19
|
Tseng CC, Ding YW, Chen ZY, Lan HY, Li HJ, Cheng YS, Kuo TS, Chen PL, Wu WC, Shi FK, Yang T, Liu HJ. A Bis-Cyclopentadienyl Ligand-Supported Di-Iron Trihydride Motif as a Synthon for Access to Heterobimetallic Trinuclear Complexes. Inorg Chem 2024; 63:11361-11368. [PMID: 38815165 PMCID: PMC11190976 DOI: 10.1021/acs.inorgchem.4c01420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
Herein, we report the synthesis of a flexible bis-cyclopentadienyl ligand L (the doubly deprotonated form of H2L (1,3-bis(2,4-di-tert-butylcyclopentadienyldimethylsilyl)benzene)), demonstrating its ability to stabilize a series of di-iron hydrido complexes. Notably, this ligand facilitates the isolation of an unprecedented anionic cyclopentadienyl ligand-supported di-iron trihydride complex, LFe2(μ-H)3Li(THF) (2), functioning as a synthon for the [Fe2(μ-H)3]- core and providing access to heterobimetallic complexes 4-6 with coinage metals.
Collapse
Affiliation(s)
- Chung-Ching Tseng
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 Daxue Rd, East District, Hsinchu City 300093, Taiwan
| | - Yi-Wun Ding
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 Daxue Rd, East District, Hsinchu City 300093, Taiwan
| | - Zhong-Yue Chen
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 Daxue Rd, East District, Hsinchu City 300093, Taiwan
| | - Hao-Yuan Lan
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 Daxue Rd, East District, Hsinchu City 300093, Taiwan
| | - Han-Jung Li
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 Daxue Rd, East District, Hsinchu City 300093, Taiwan
| | - You-Song Cheng
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 Daxue Rd, East District, Hsinchu City 300093, Taiwan
| | - Ting-Shen Kuo
- Department
of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Pei-Lin Chen
- Department
of Chemistry, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Wen-Chun Wu
- Rezwave
Technology Inc., 3F-5,
79, Hsin Tai Wu Rd., Sec.1, HsiChih District, New Taipei City 221432, Taiwan
| | - Fong-Ku Shi
- Rezwave
Technology Inc., 3F-5,
79, Hsin Tai Wu Rd., Sec.1, HsiChih District, New Taipei City 221432, Taiwan
| | - Tzuhsiung Yang
- Department
of Chemistry, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Hsueh-Ju Liu
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 1001 Daxue Rd, East District, Hsinchu City 300093, Taiwan
- Center
for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 Daxue Rd, East District, Hsinchu City 300093, Taiwan
| |
Collapse
|
20
|
Tikhomirov E, Franconetti A, Johansson M, Sandström C, Carlsson E, Andersson B, Hailer NP, Ferraz N, Palo-Nieto C. A Simple and Cost-Effective FeCl 3-Catalyzed Functionalization of Cellulose Nanofibrils: Toward Adhesive Nanocomposite Materials for Medical Implants. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30385-30395. [PMID: 38816917 PMCID: PMC11181277 DOI: 10.1021/acsami.4c04351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
In the present work, we explored Lewis acid catalysis, via FeCl3, for the heterogeneous surface functionalization of cellulose nanofibrils (CNFs). This approach, characterized by its simplicity and efficiency, facilitates the amidation of nonactivated carboxylic acids in carboxymethylated cellulose nanofibrils (c-CNF). Following the optimization of reaction conditions, we successfully introduced amine-containing polymers, such as polyethylenimine and Jeffamine, onto nanofibers. This introduction significantly enhanced the physicochemical properties of the CNF-based materials, resulting in improved characteristics such as adhesiveness and thermal stability. Reaction mechanistic investigations suggested that endocyclic oxygen of cellulose finely stabilizes the transition state required for further functionalization. Notably, a nanocomposite, containing CNF and a branched low molecular weight polyethylenimine (CNF-PEI 800), was synthesized using the catalytic reaction. The composite CNF-PEI 800 was thoroughly characterized having in mind its potential application as coating biomaterial for medical implants. The resulting CNF-PEI 800 hydrogel exhibits adhesive properties, which complement the established antibacterial qualities of polyethylenimine. Furthermore, CNF-PEI 800 demonstrates its ability to support the proliferation and differentiation of primary human osteoblasts over a period of 7 days.
Collapse
Affiliation(s)
- Evgenii Tikhomirov
- Nanotechnology
and Functional Materials, Department of Materials Science and Engineering, Uppsala University, Uppsala 751 03, Sweden
| | - Antonio Franconetti
- Departamento
de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla 41012, Spain
| | - Mathias Johansson
- Department
of Molecular Sciences, Swedish University
of Agricultural Sciences, Uppsala 756 51, Sweden
| | - Corine Sandström
- Department
of Molecular Sciences, Swedish University
of Agricultural Sciences, Uppsala 756 51, Sweden
| | - Elin Carlsson
- Ortholab,
Department of Surgical Sciences—Orthopaedics, Uppsala University, Uppsala 751 85, Sweden
| | - Brittmarie Andersson
- Ortholab,
Department of Surgical Sciences—Orthopaedics, Uppsala University, Uppsala 751 85, Sweden
| | - Nils P Hailer
- Ortholab,
Department of Surgical Sciences—Orthopaedics, Uppsala University, Uppsala 751 85, Sweden
| | - Natalia Ferraz
- Nanotechnology
and Functional Materials, Department of Materials Science and Engineering, Uppsala University, Uppsala 751 03, Sweden
| | - Carlos Palo-Nieto
- Nanotechnology
and Functional Materials, Department of Materials Science and Engineering, Uppsala University, Uppsala 751 03, Sweden
- Ortholab,
Department of Surgical Sciences—Orthopaedics, Uppsala University, Uppsala 751 85, Sweden
| |
Collapse
|
21
|
Neshat A, Mousavizadeh Mobarakeh A, Yousefshahi MR, Varmaghani F, Dusek M, Eigner V, Kucerakova M. Introducing Novel Redox-Active Bis(phenolate) N-Heterocyclic Carbene Proligands: Investigation of Their Coordination to Fe(II)/Fe(III) and Their Catalytic Activity in Transfer Hydrogenation of Carbonyl Compounds. ACS OMEGA 2024; 9:25135-25145. [PMID: 38882110 PMCID: PMC11170717 DOI: 10.1021/acsomega.4c02602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024]
Abstract
A simple and efficient procedure for synthesizing novel pincer-type tridentate N-heterocyclic carbene bisphenolate ligands is reported. The synthesis of pincer proligands with N,N'-disubstituted imidazoline core, 5 and 6, was carried out via triethylorthoformate-promoted cyclization of either N,N'-bis(2-hydroxy-3,5-di-tert-butylphenyl)cyclohexanediamine, 3, or N,N'-bis(2-hydroxyphenyl)cyclohexanediamine, 4, in the presence of concentrated hydrochloric acid. Cyclic voltammograms of the ligands revealed ligand-centered redox activity, indicating the noninnocent nature of the ligands. The voltammograms of the ligands exhibit two successive one-electron oxidations and two consecutive one-electron reductions. In contrast to previous reports, the redox-active ligands in this study exhibit one-electron oxidation and reduction processes. All products were thoroughly characterized by using 1H and 13C NMR spectroscopy. The base-promoted deprotonation of the proligands and subsequent reaction with iron(II) and iron(III) chlorides yielded compounds 7 and 8. These compounds are binuclear and tetranuclear iron(III) complexes that do not contain carbene functional groups. Complexes 7 and 8 were characterized by using elemental analysis and single-crystal X-ray crystallography. At low catalyst loadings, both 7 and 8 exhibited high catalytic activity in the transfer hydrogenation of selected aldehydes and ketones.
Collapse
Affiliation(s)
- Abdollah Neshat
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Ali Mousavizadeh Mobarakeh
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Mohammad Reza Yousefshahi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Fahimeh Varmaghani
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan 45137-66731, Iran
| | - Michal Dusek
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 18221 Prague 8, The Czech Republic
| | - Vaclav Eigner
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 18221 Prague 8, The Czech Republic
| | - Monika Kucerakova
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 18221 Prague 8, The Czech Republic
| |
Collapse
|
22
|
Ni H, Mao H, Huang Y, Lu Y, Liu Z. Mild Iron-Catalyzed Oxidative Cross-Coupling of Quinoxalinones with Indoles. Molecules 2024; 29:2649. [PMID: 38893523 PMCID: PMC11173961 DOI: 10.3390/molecules29112649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Utilizing iron chloride as a Lewis acid catalyst, we developed a straightforward and mild oxidative cross-coupling reaction between quinoxalinones and indoles, yielding a series of versatile 3-(indol-3-yl)quinoxalin-2-one derivatives. This approach allows for the incorporation of a wide array of functional groups into the final products, demonstrating its synthetic versatility. Notably, the method was successfully scaled up to gram-scale reactions while maintaining high yields. Our mechanistic investigation indicates that iron chloride serves as a catalyst to facilitate the formation of key intermediates which subsequently undergo oxidation to afford the desired products. The merits of this protocol include its cost effectiveness, operational simplicity, and the ease of product isolation via filtration.
Collapse
Affiliation(s)
- Hangcheng Ni
- College of Pharmacy, Jinhua Polytechnic, Jinhua 321007, China
| | - Hui Mao
- College of Pharmacy, Jinhua Polytechnic, Jinhua 321007, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Ying Huang
- College of Pharmacy, Jinhua Polytechnic, Jinhua 321007, China
| | - Yi Lu
- College of Pharmacy, Jinhua Polytechnic, Jinhua 321007, China
| | - Zhenxiang Liu
- College of Pharmacy, Jinhua Polytechnic, Jinhua 321007, China
| |
Collapse
|
23
|
Parte LG, Fernández S, Sandonís E, Guerra J, López E. Transition-Metal-Catalyzed Transformations for the Synthesis of Marine Drugs. Mar Drugs 2024; 22:253. [PMID: 38921564 PMCID: PMC11204618 DOI: 10.3390/md22060253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/27/2024] Open
Abstract
Transition metal catalysis has contributed to the discovery of novel methodologies and the preparation of natural products, as well as new chances to increase the chemical space in drug discovery programs. In the case of marine drugs, this strategy has been used to achieve selective, sustainable and efficient transformations, which cannot be obtained otherwise. In this perspective, we aim to showcase how a variety of transition metals have provided fruitful couplings in a wide variety of marine drug-like scaffolds over the past few years, by accelerating the production of these valuable molecules.
Collapse
Affiliation(s)
- Lucía G. Parte
- Department of Organic Chemistry, Science Faculty, University of Valladolid (UVa), Paseo de Belén 7, 47011 Valladolid, Spain; (L.G.P.); (E.S.)
| | - Sergio Fernández
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London (QMUL), Mile End Road, London E1 4NS, UK;
| | - Eva Sandonís
- Department of Organic Chemistry, Science Faculty, University of Valladolid (UVa), Paseo de Belén 7, 47011 Valladolid, Spain; (L.G.P.); (E.S.)
| | - Javier Guerra
- Department of Organic Chemistry, Science Faculty, University of Valladolid (UVa), Paseo de Belén 7, 47011 Valladolid, Spain; (L.G.P.); (E.S.)
| | - Enol López
- Department of Organic Chemistry, ITAP, School of Engineering (EII), University of Valladolid (UVa), Dr Mergelina, 47002 Valladolid, Spain
| |
Collapse
|
24
|
Lee C, Lee D, Hong SY, Jung B, Seo S. Recent advances in earth-abundant transition metal-catalyzed dihydrosilylation of terminal alkynes. Front Chem 2024; 12:1411140. [PMID: 38860234 PMCID: PMC11163075 DOI: 10.3389/fchem.2024.1411140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 06/12/2024] Open
Abstract
Over the past few years, earth-abundant transition metal-catalyzed hydrosilylation has emerged as an ideal strategy for the synthesis of organosilanes. The success in this area of research has expanded to the advancements of alkyne dihydrosilylation reactions, offering broadened synthetic applications through the selective installation of two silyl groups. In particular, catalysts based on Fe, Co, and Ni have engendered enabling platforms for mild transformations with a range of distinct regioselectivity. This mini-review summarizes recent advances in this research field, highlighting the unique features of each system from both synthetic and mechanistic perspectives.
Collapse
Affiliation(s)
- Chanmi Lee
- Department of Physics and Chemistry, DGIST, Daegu, Republic of Korea
| | - Dohun Lee
- Department of Physics and Chemistry, DGIST, Daegu, Republic of Korea
- School of Undergraduate Studies, DGIST, Daegu, Republic of Korea
| | - Sung You Hong
- Department of Chemistry, UNIST, Ulsan, Republic of Korea
| | - Byunghyuck Jung
- Department of Physics and Chemistry, DGIST, Daegu, Republic of Korea
| | - Sangwon Seo
- Department of Physics and Chemistry, DGIST, Daegu, Republic of Korea
| |
Collapse
|
25
|
He P, Guan MH, Hu MY, Zhou YJ, Huang MY, Zhu SF. Iron-Catalyzed Allylic C(sp 3)-H Silylation: Spin-Crossover-Efficiency-Determined Chemoselectivity. Angew Chem Int Ed Engl 2024; 63:e202402044. [PMID: 38469657 DOI: 10.1002/anie.202402044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
The nuanced role of spin effects remains a critical gap in designing proficient open-shell catalysts. This study elucidates an iron-catalyzed allylic C(sp3)-H silylation/alkyne hydrosilylation reaction, in which the spin state of the open-shell iron catalyst dictates the reaction kinetics and pathway. Specifically, spin crossover led to alkyne hydrosilylation, whereas spin conservation resulted in a novel allylic C(sp3)-H silylation reaction. This chemoselectivity, governed by the spin-crossover efficiency, reveals an unexpected dimension in spin effects and a first in the realm of transition-metal-catalyzed in situ silylation of allylic C(sp3)-H bonds, which had been previously inhibited by the heightened reactivity of alkenes in hydrosilylation reactions. Furthermore, this spin crossover can either accelerate or hinder the reaction at different stages within a single catalytic reaction, a phenomenon scarcely documented. Moreover, we identify a substrate-assisted C-H activation mechanism, a departure from known ligand-assisted processes, offering a fresh perspective on C-H activation strategies.
Collapse
Affiliation(s)
- Peng He
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Mu-Han Guan
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Meng-Yang Hu
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yuan-Jun Zhou
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Ming-Yao Huang
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shou-Fei Zhu
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
26
|
Pacholski R, Durka K, Buchalski P. Synthesis and crystal structure of an iron triazole complex resulting from the unexpected ligand cleavage of a triazolium carbene precursor. Acta Crystallogr C Struct Chem 2024; 80:148-152. [PMID: 38607673 DOI: 10.1107/s2053229624002973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024] Open
Abstract
Typically reactions of N-heterocyclic carbenes with transition metals are straightforward and require a carbene salt, a base strong enough to deprotonate such a salt and a metal. Yet when carbene precursors are in the form of triazolium salts, reaction may not proceed as easily as expected. In our work, we intended to obtain a triazolylidene complex of iron(II) chloride, but due to the presence of small amounts of water in the tetrahydrofuran solvent used, bis(acetonitrile)tetrakis(1-benzyl-1H-1,2,4-triazole-κN4)iron(II) μ-oxido-bis[trichloridoferrate(III)] acetonitrile disolvate, [Fe(C9H9N3)4(CH3CN)2][Fe2Cl6O]·2CH3CN - an interesting anion with a linear geometry of the O atom - was formed instead of the iron carbene complex. Reaction proceeded via cleavage of the alkyl N-substituent of the triazolium salt. The formation of the product was confirmed by X-ray crystallography. The crystal structure and possible reaction pathways are discussed.
Collapse
Affiliation(s)
- Roman Pacholski
- Organic Chemistry Department, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Krzysztof Durka
- Organic Chemistry Department, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Piotr Buchalski
- Organic Chemistry Department, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
27
|
Zhang ZJ, Jacob N, Bhatia S, Boos P, Chen X, DeMuth JC, Messinis AM, Jei BB, Oliveira JCA, Radović A, Neidig ML, Wencel-Delord J, Ackermann L. Iron-catalyzed stereoselective C-H alkylation for simultaneous construction of C-N axial and C-central chirality. Nat Commun 2024; 15:3503. [PMID: 38664372 PMCID: PMC11045758 DOI: 10.1038/s41467-024-47589-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
The assembly of chiral molecules with multiple stereogenic elements is challenging, and, despite of indisputable advances, largely limited to toxic, cost-intensive and precious metal catalysts. In sharp contrast, we herein disclose a versatile C-H alkylation using a non-toxic, low-cost iron catalyst for the synthesis of substituted indoles with two chiral elements. The key for achieving excellent diastereo- and enantioselectivity was substitution on a chiral N-heterocyclic carbene ligand providing steric hindrance and extra represented by noncovalent interaction for the concomitant generation of C-N axial chirality and C-stereogenic center. Experimental and computational mechanistic studies have unraveled the origin of the catalytic efficacy and stereoselectivity.
Collapse
Affiliation(s)
- Zi-Jing Zhang
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Nicolas Jacob
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute-Alsace, ECPM, 67087, Strasbourg, France
| | - Shilpa Bhatia
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA
| | - Philipp Boos
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Xinran Chen
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Joshua C DeMuth
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA
| | - Antonis M Messinis
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Becky Bongsuiru Jei
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - João C A Oliveira
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Aleksa Radović
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA
| | - Michael L Neidig
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute-Alsace, ECPM, 67087, Strasbourg, France.
- Institut für Organische Chemie, Universität Würzburg, 97074 Würzburg, Germany.
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany.
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
28
|
Sun NX, Wang LC, Fang Z, Wang CS, Guo K, Wu XF. Iron-Catalyzed Aminoalkylative Carbonylative Cyclization of Alkenes toward α-Tetralones. Org Lett 2024; 26:3140-3144. [PMID: 38563571 DOI: 10.1021/acs.orglett.4c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Carbonylative multifunctionalization of alkenes is an efficient approach to introduce multiple functional groups into one molecule from easily available materials. Herein, we developed an iron-catalyzed radical relay carbonylative cyclization of alkenes with acetamides. Various α-tetralones can be constructed in moderate yields from readily available substrates with an earth-abundant iron salt as the catalyst.
Collapse
Affiliation(s)
- Nai-Xian Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning China
| | - Le-Cheng Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning China
- Leibniz-Institut für Katalyse e.V., 18059, Rostock, Germany
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chang-Sheng Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning China
- Leibniz-Institut für Katalyse e.V., 18059, Rostock, Germany
| |
Collapse
|
29
|
Chen W, Wen LQ, Lu XB, Zhou H. Iron-catalyzed selective construction of indole derivatives via oxidative C(sp 3)-H functionalization of indolin-2-ones. Org Biomol Chem 2024; 22:3073-3079. [PMID: 38563186 DOI: 10.1039/d4ob00133h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Considering the importance of developing powerful catalysts and the pharmacophore characteristics of indole derivatives, we describe a switchable approach for the iron-catalyzed oxidative C(sp3)-H functionalization of indolin-2-ones. Selective transformations displayed excellent activity and chemoselectivity using FeCl2 as the catalyst, air as the oxidant, and alcohol as the solvent. By manipulating the reaction conditions, particularly the choice of solvent, catalyst loading, and reaction sequence, a series of valuable indole derivatives, including isatins and symmetrical and nonsymmetrical isoindigos, were selectively synthesized in good to excellent yields. Furthermore, the gram-scale synthesis of compounds with biological anticancer activity under simple conditions highlights their great potential in practical applications.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| | - Lang-Qi Wen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| | - Hui Zhou
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
30
|
Mendelsohn LN, MacNeil CS, Esposito MR, Pabst TP, Leahy DK, Davies IW, Chirik PJ. Asymmetric Hydrogenation of Indazole-Containing Enamides Relevant to the Synthesis of Zavegepant Using Neutral and Cationic Cobalt Precatalysts. Org Lett 2024; 26:2718-2723. [PMID: 37270693 DOI: 10.1021/acs.orglett.3c01364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The cobalt-catalyzed asymmetric hydrogenation of indazole-containing enamides relevant to the synthesis of the calcitonin gene-related peptide (CGRP) receptor antagonist, zavegepant (1), approved for the treatment of migraines, is described. Both neutral bis(phosphine)cobalt(II) and cationic bis(phosphine)cobalt(I) complexes served as efficient precatalysts for the enamide hydrogenation reactions, providing excellent yield and enantioselectivities (up to >99.9%) for a range of related substrates, though key reactivity differences were observed. Hydrogenation of indazole-containing enamide, methyl (Z)-2-acetamido-3-(7-methyl-1H-indazol-5-yl)acrylate, was performed on a 20 g scale.
Collapse
Affiliation(s)
- Lauren N Mendelsohn
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Connor S MacNeil
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Madison R Esposito
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Tyler P Pabst
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - David K Leahy
- Biohaven, LTD, New Haven, Connecticut 06510, United States
| | - Ian W Davies
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
31
|
Li LJ, Zhang JC, Li WP, Zhang D, Duanmu K, Yu H, Ping Q, Yang ZP. Enantioselective Construction of Quaternary Stereocenters via Cooperative Photoredox/Fe/Chiral Primary Amine Triple Catalysis. J Am Chem Soc 2024; 146:9404-9412. [PMID: 38504578 DOI: 10.1021/jacs.4c01842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The catalytic and enantioselective construction of quaternary (all-carbon substituents) stereocenters poses a formidable challenge in organic synthesis due to the hindrance caused by steric factors. One conceptually viable and potentially versatile approach is the coupling of a C-C bond through an outer-sphere mechanism, accompanied by the realization of enantiocontrol through cooperative catalysis; however, examples of such processes are yet to be identified. Herein, we present such a method for creating different compounds with quaternary stereocenters by photoredox/Fe/chiral primary amine triple catalysis. This approach facilitates the connection of an unactivated alkyl source with a tertiary alkyl moiety, which is also rare. The scalable process exhibits mild conditions, does not necessitate the use of a base, and possesses a good functional-group tolerance. Preliminary investigations into the underlying mechanisms have provided valuable insights into the reaction pathway.
Collapse
Affiliation(s)
- Lian-Jie Li
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Jun-Chun Zhang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Wei-Peng Li
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Dan Zhang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Kaining Duanmu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Hui Yu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Ze-Peng Yang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| |
Collapse
|
32
|
Cai J, Zhao B, Zhang Q, Wang AH, Zhang JH, Liu B, Zeng MH. Mn(II) Promoted Divergent-Convergent Domino Reaction Giving Dinuclear Tetrasubstituted Pyrrole Complex. Chemistry 2024; 30:e202303553. [PMID: 38251274 DOI: 10.1002/chem.202303553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 01/23/2024]
Abstract
Domino reaction of benzo[d]thiazole-2-methylamine (S1) has been developed in the presence of MnCl2 ⋅ 4H2O, leading to tetrasubstituted pyrrole coordinated dinuclear Mn(II) complex 1 ([MnClP]2, P-=2,3,4,5-tetrakis(benzo[d]thiazol-2-yl)pyrrol-1-ide). The reaction process has been studied by assigning a series of intermediates based on time-dependent mass spectrometry, control experiments, crystallography, and density functional theory (DFT) theoretical calculation. A plausible mechanism involving an unprecedented divergent-convergent domino sequence has been proposed. Compound S1 could be activated by MnCl2 ⋅ 4H2O via coordination, which divergently produces two intermediates imine II (1-(benzo[d]thiazol-2-yl)-N-(benzo[d]thiazol-2-ylmethyl)methanimine) and alkene C (1,2-bis(benzo[d]thiazol-2-yl)ethene) through oxidative self-condensation and free radical coupling followed by elimination, respectively. They could then react with each other convergently via formal [3+2] cycloaddition to give deprotonated tetrasubstituted pyrrole coordinated intermediate [MnClP] after aromatization. Dimerization of [MnClP] produces the final product 1. Three C-C bonds and one C-N bond are formed through this six-step domino sequence. The corresponding organic skeleton (HP: 2,2',2'',2'''-(1H-pyrrole-2,3,4,5-tetrayl)tetrakis(benzo[d]thiazole)) has been obtained from 1 and shows a higher fluorescent quantum yield (52 %) than the reported 3,4-diphenyl substituted analogue 2,2'-(3,4-diphenyl-1H-pyrrole-2,5-diyl)bis(benzo[d]thiazole) (DPB) (42 %).
Collapse
Affiliation(s)
- Jin Cai
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Bing Zhao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Qi Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Ao-Hua Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Jia-Hao Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Bin Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Ming-Hua Zeng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, 541004, P. R. China
- College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, 343000, P. R. China
| |
Collapse
|
33
|
Xian P, Huang H, Zhang R, Geng S, Feng Z. Protocol for iron-catalyzed cross-electrophile coupling of aryl chlorides with unactivated alkyl chlorides. STAR Protoc 2024; 5:102846. [PMID: 38265939 PMCID: PMC10835013 DOI: 10.1016/j.xpro.2024.102846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
Organochlorides are a crucial class of electrophiles in organic synthesis. Here, we present a protocol for the cross-electrophile coupling of aryl chlorides with unactivated alkyl chlorides, facilitated by an iron/B2pin2 catalytic system. We describe steps for the coupling of aryl chlorides with alkyl chlorides, followed by purification of products. This protocol can produce alkylated products with up to 81% yield. For complete details on the use and execution of this protocol, please refer to Zhang et al.1.
Collapse
Affiliation(s)
- Pengjie Xian
- Department of Science and Technology, North Sichuan Medical College, Nanchong, Sichuan 637100, P.R. China.
| | - Hong Huang
- Department of Science and Technology, North Sichuan Medical College, Nanchong, Sichuan 637100, P.R. China
| | - Ruichen Zhang
- Department of Science and Technology, North Sichuan Medical College, Nanchong, Sichuan 637100, P.R. China
| | - Shasha Geng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Zhang Feng
- Department of Science and Technology, North Sichuan Medical College, Nanchong, Sichuan 637100, P.R. China; Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P.R. China.
| |
Collapse
|
34
|
Ma Y. Computational Research on Ag(I)-Catalyzed Cubane Rearrangement: Mechanism, Metal and Counteranion Effect, Ligand Engineering, and Post-Transition-State Desymmetrization. J Org Chem 2024; 89:3430-3440. [PMID: 38375633 DOI: 10.1021/acs.joc.3c02891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Ag(I) salts have demonstrated superior catalytic activity in the cubane-cuneane rearrangement. This research presents a comprehensive mechanistic investigation using high-level computations. The reaction proceeds via oxidative addition (OA) of Ag(I) to the C-C bond, followed by C-Ag bond cleavage and subsequent dynamically concerted carbocation rearrangement. The OA of Ag(I) exhibits significant more electrophilic nature than classical transition metal-induced OA, and the superior catalytic activity of Ag(I) is attributed to the accessibility of a highly electrophilic "bare" Ag+ center and a relatively weak Ag-C bond. However, the highly Lewis acidic nature of the Ag(I) center limits the substrate scope. To address this problem, ligand and counteranion screening was conducted, revealing that chiral biarylether ligands in combination with BF4- as the counteranion offer both enhanced reactivity and improved chemoselectivity while suppressing the Lewis acidity. Additionally, quasi-classical molecular dynamics simulations indicate the possibility of a novel desymmetrization pathway through post-transition-state dynamics in the biarylether-Ag(I)-BF4- system, thereby providing a potential avenue for enantioselective cuneane synthesis.
Collapse
Affiliation(s)
- Yumiao Ma
- BSJ Institute, Haidian, Beijing 100084, People's Republic of China
- Hangzhou Yanqu Information Technology Co., Ltd., Xihu District, Hangzhou City, Zhejiang Province 310003, People's Republic of China
| |
Collapse
|
35
|
Wowk V, Bauer AK, Radovic A, Chamoreau LM, Neidig ML, Lefèvre G. Divergent Fe-Mediated C-H Activation Paths Driven by Alkali Cations. JACS AU 2024; 4:512-524. [PMID: 38425937 PMCID: PMC10900209 DOI: 10.1021/jacsau.3c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 03/02/2024]
Abstract
The association of the ferrous complex FeIICl2(dmpe)2 (1) with alkali bases M(hmds) (M = Li, Na, K) proves to be an efficient platform for the activation of Ar-H bonds. Two mechanisms can be observed, leading to either Ar-FeII species by deprotonative ferration or hydrido species Ar-FeII-H by oxidative addition of transient Fe0(dmpe)2 generated by reduction of 1. Importantly, the nature of the alkali cation in M(hmds) has a strong influence on the preferred path. Starting from the same iron precursor, diverse catalytic applications can be explored by a simple modulation of the MI cation. Possible strategies enabling cross-coupling using arenes as pro-nucleophiles, reductive dehydrocoupling, or deuteration of B-H bonds are discussed.
Collapse
Affiliation(s)
- Vincent Wowk
- CNRS,
Institute of Chemistry for Life and Health Sciences, CSB2D, Chimie
ParisTech, PSL University, 75005 Paris, France
| | - Alexis K. Bauer
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Aleksa Radovic
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Lise-Marie Chamoreau
- CNRS,
Institut Parisien de Chimie Moléculaire, Sorbonne Université, F-75252 Paris, France
| | - Michael L. Neidig
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.
| | - Guillaume Lefèvre
- CNRS,
Institute of Chemistry for Life and Health Sciences, CSB2D, Chimie
ParisTech, PSL University, 75005 Paris, France
| |
Collapse
|
36
|
Mhaske K, Gangai S, Fernandes R, Kamble A, Chowdhury A, Narayan R. Aerobic Catalytic Cross-Dehydrogenative Coupling of Furans with Indoles Provides Access to Fluorophores with Large Stokes Shift. Chemistry 2024; 30:e202302929. [PMID: 38175849 DOI: 10.1002/chem.202302929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Indexed: 01/06/2024]
Abstract
Sustainability in chemical processes is a crucial aspect in contemporary chemistry with sustainable catalysis as a vital parameter of the same. There has been a renewed focus on utilizing earth-abundant metal catalysts to expand the repertoire of organic reactions. Furan is a versatile heterocycle of natural origin used for multiple applications. However, it has scarcely been used in cross-dehydrogenative coupling. In this work, we have explored the cross-dehydrogentive coupling of furans with indoles using commonly available, inexpensive FeCl3 ⋅ 6H2 O (<0.25 $/g) as catalyst in the presence of so called 'ultimate oxidant' - oxygen, without the need for any external ligand or additive. The reactions were found to be scalable and to work even under partially aqueous conditions. This makes the reaction highly economical, practical, operationally simple and sustainable. The methodology provides direct access to π-conjugated short oligomers consisting of furan, thiophene and indole. These compounds were found to show interesting fluorescence properties with remarkably large Stokes shift (up to 205 nm). Mechanistic investigations reveal that the reaction proceeds through chemoselective oxidation of indole by the metal catalyst followed by nucleophilic trapping by furan.
Collapse
Affiliation(s)
- Krishna Mhaske
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
| | - Shon Gangai
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
| | - Rushil Fernandes
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
| | - Angulimal Kamble
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
| | - Arkaprava Chowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, Maharashtra, India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
- School of Interdisciplinary Life Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
| |
Collapse
|
37
|
Pennamuthiriyan A, Rengan R. Nickel Pincer Complexes Catalyzed Sustainable Synthesis of 3,4-Dihydro-2 H-1,2,4-benzothiadiazine-1,1-dioxides via Acceptorless Dehydrogenative Coupling of Primary Alcohols. J Org Chem 2024; 89:2494-2504. [PMID: 38326039 DOI: 10.1021/acs.joc.3c02508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
We report the atom-economic and sustainable synthesis of biologically important 3,4-dihydro-2H-1,2,4-benzothiadiazine-1,1-dioxide (DHBD) derivatives from readily available aromatic primary alcohols and 2-aminobenzenesulfonamide catalyzed by nickel(II)-N∧N∧S pincer-type complexes. The synthesized nickel complexes have been well-studied by elemental and spectroscopic (FT-IR, NMR, and HRMS) analyses. The solid-state molecular structure of complex 2 has been authenticated by a single-crystal X-ray diffraction study. Furthermore, a series of 3,4-dihydro-2H-1,2,4-benzothiadiazine-1,1-dioxide derivatives have been synthesized (24 examples) utilizing a 3 mol % Ni(II) catalyst through acceptorless dehydrogenative coupling of benzyl alcohols with benzenesulfonamide. Gratifyingly, the catalytic protocol is highly selective with the yield up to 93% and produces eco-friendly water/hydrogen gas as byproducts. The control experiments and plausible mechanistic investigations indicate that the coupling of the in situ generated aldehyde with benzenesulfonamide leads to the desired product. In addition, a large-scale synthesis of one of the thiadiazine derivatives unveils the synthetic usefulness of the current methodology.
Collapse
Affiliation(s)
- Anandaraj Pennamuthiriyan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| | - Ramesh Rengan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| |
Collapse
|
38
|
Thiyagarajan S, Diskin-Posner Y, Montag M, Milstein D. Manganese-catalyzed base-free addition of saturated nitriles to unsaturated nitriles by template catalysis. Chem Sci 2024; 15:2571-2577. [PMID: 38362414 PMCID: PMC10866344 DOI: 10.1039/d3sc04935c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
The coupling of mononitriles into dinitriles is a desirable strategy, given the prevalence of nitrile compounds and the synthetic and industrial utility of dinitriles. Herein, we present an atom-economical approach for the heteroaddition of saturated nitriles to α,β- and β,γ-unsaturated mononitriles to generate glutaronitrile derivatives using a catalyst based on earth-abundant manganese. A broad range of such saturated and unsaturated nitriles were found to undergo facile heteroaddition with excellent functional group tolerance, in a reaction that proceeds under mild and base-free conditions using low catalyst loading. Mechanistic studies showed that this unique transformation takes place through a template-type pathway involving an enamido complex intermediate, which is generated by addition of a saturated nitrile to the catalyst, and acts as a nucleophile for Michael addition to unsaturated nitriles. This work represents a new application of template catalysis for C-C bond formation.
Collapse
Affiliation(s)
- Subramanian Thiyagarajan
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 7610001 Israel
| | - Yael Diskin-Posner
- Department of Chemical Research Support, Weizmann Institute of Science Rehovot 7610001 Israel
| | - Michael Montag
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 7610001 Israel
| | - David Milstein
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 7610001 Israel
| |
Collapse
|
39
|
He P, Hu MY, Li JH, Qiao TZ, Lu YL, Zhu SF. Spin effect on redox acceleration and regioselectivity in Fe-catalyzed alkyne hydrosilylation. Natl Sci Rev 2024; 11:nwad324. [PMID: 38314400 PMCID: PMC10837105 DOI: 10.1093/nsr/nwad324] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/07/2023] [Accepted: 11/06/2023] [Indexed: 02/06/2024] Open
Abstract
Iron catalysts are ideal transition metal catalysts because of the Earths abundant, cheap, biocompatible features of iron salts. Iron catalysts often have unique open-shell structures that easily undergo spin crossover in chemical transformations, a feature rarely found in noble metal catalysts. Unfortunately, little is known currently about how the open-shell structure and spin crossover affect the reactivity and selectivity of iron catalysts, which makes the development of iron catalysts a low efficient trial-and-error program. In this paper, a combination of experiments and theoretical calculations revealed that the iron-catalyzed hydrosilylation of alkynes is typical spin-crossover catalysis. Deep insight into the electronic structures of a set of well-defined open-shell active formal Fe(0) catalysts revealed that the spin-delocalization between the iron center and the 1,10-phenanthroline ligand effectively regulates the iron center's spin and oxidation state to meet the opposite electrostatic requirements of oxidative addition and reductive elimination, respectively, and the spin crossover is essential for this electron transfer process. The triplet transition state was essential for achieving high regioselectivity through tuning the nonbonding interactions. These findings provide an important reference for understanding the effect of catalyst spin state on reaction. It is inspiring for the development of iron catalysts and other Earth-abundant metal catalysts, especially from the point of view of ligand development.
Collapse
Affiliation(s)
- Peng He
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Meng-Yang Hu
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Jin-Hong Li
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Tian-Zhang Qiao
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Yi-Lin Lu
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Shou-Fei Zhu
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
40
|
Aghi A, Sau S, Kumar A. Fe(III)-catalyzed stereoselective synthesis of deoxyglycosides using stable bifunctional deoxy-phenylpropiolate glycoside donors. Carbohydr Res 2024; 536:109051. [PMID: 38325069 DOI: 10.1016/j.carres.2024.109051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Herein, we report a mild and economical route for the stereoselective synthesis of 2-deoxy and 2,6-dideoxyglycosides via FeCl3-catalyzed activation of bench stable deoxy-phenylpropiolate glycosyl donors (D-PPGs). Optimized reaction conditions work well under additive-free conditions to afford the corresponding 2-deoxy and 2,6-dideoxyglycosides in good yields with high α-anomeric selectivity by reacting with sugar and non-sugar-based acceptors. The optimized conditions were also extended for disarmed D-PPG donors. In addition, the developed strategy is amenable to high-scale-up synthesis.
Collapse
Affiliation(s)
- Anjali Aghi
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Bihar, 801106, India
| | - Sankar Sau
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Bihar, 801106, India
| | - Amit Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Bihar, 801106, India.
| |
Collapse
|
41
|
Liang S, Zhou Y, Yu W. Iron-Catalyzed Denitrogenative Annulation Reactions between α-Azido Acetamides and Cyclic Ketones. Org Lett 2024; 26:613-618. [PMID: 38215045 DOI: 10.1021/acs.orglett.3c03883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
We report an FeCl2-catalyzed annulation reaction between α-azido acetamides and cyclic ketones. Two types of α,β-unsaturated γ-lactam products can be obtained, depending on the reaction conditions. When α-azido acetamides were reacted with cyclohexanone, 8-amino-5,6,7,8-tetrahydro-1H-indol-2(4H)-ones were obtained when a primary amine was present in the reaction system; conducting the reaction in the presence of 2-aminobenzenesulfonic acid, on the contrary, resulted in the formation of 5,6-dihydro-1H-indol-2(4H)-ones. Cycloheptanone and cyclooctanone reacted in the same way as cyclohexanone. The reactions proceed via the intermediacy of 2-iminoacetamides, which are formed by FeCl2-facilitated dinitrogenation of α-azido acetamides. These reactions constitute a new strategy for expanding the synthetic dimensions of organic azides.
Collapse
Affiliation(s)
- Siyu Liang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yuxin Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
42
|
Zobernig DP, Luxner M, Stöger B, Veiros LF, Kirchner K. Hydrogenation of Terminal Alkenes Catalyzed by Air-Stable Mn(I) Complexes Bearing an N-Heterocyclic Carbene-Based PCP Pincer Ligand. Chemistry 2024; 30:e202302455. [PMID: 37814821 PMCID: PMC10952557 DOI: 10.1002/chem.202302455] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/11/2023]
Abstract
Efficient hydrogenations of terminal alkenes with molecular hydrogen catalyzed by well-defined bench stable Mn(I) complexes containing an N-heterocyclic carbene-based PCP pincer ligand are described. These reactions are environmentally benign and atom economic, implementing an inexpensive, earth abundant non-precious metal catalyst. A range of aromatic and aliphatic alkenes were efficiently converted into alkanes in good to excellent yields. The hydrogenation proceeds at 100 °C with catalyst loadings of 0.25-0.5 mol %, 2.5-5 mol % base (KOt Bu) and a hydrogen pressure of 20 bar. Mechanistic insight into the catalytic reaction is provided by means of DFT calculations.
Collapse
Affiliation(s)
- Daniel P. Zobernig
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 9/163-AC1060WienAustria
| | - Michael Luxner
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 9/163-AC1060WienAustria
| | | | - Luis F. Veiros
- Centro de Química Estrutural, Institute of Molecular SciencesDepartamento de Engenharia QuímicaInstituto Superior TécnicoUniversidade de LisboaAv. Rovisco Pais1049 001LisboaPortugal
| | - Karl Kirchner
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 9/163-AC1060WienAustria
| |
Collapse
|
43
|
Zhu SY, He WJ, Shen GC, Bai ZQ, Song FF, He G, Wang H, Chen G. Ligand-Promoted Iron-Catalyzed Nitrene Transfer for the Synthesis of Hydrazines and Triazanes through N-Amidation of Arylamines. Angew Chem Int Ed Engl 2024; 63:e202312465. [PMID: 37997539 DOI: 10.1002/anie.202312465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
Herein, we report that bulky alkylphosphines such as PtBu3 can switch the roles from actor to spectator ligands to promote the FeCl2 -catalyzed N-amidation reaction of arylamines with dioxazolones, giving hydrazides in high efficiency and chemoselectivity. Mechanistic studies indicated that the phosphine ligands could facilitate the decarboxylation of dioxazolones on the Fe center, and the hydrogen bonding interactions between the arylamines and the ligands on Fe nitrenoid intermediates might play a role in modulating the delicate interplay between the phosphine ligand, arylamine, and acyl nitrene N, favoring N-N coupling over N-P coupling. The new ligand-promoted N-amidation protocols offer a convenient way to access various challenging triazane compounds via double or sequential N-amidation of primary arylamines.
Collapse
Affiliation(s)
- Shi-Yang Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wen-Ji He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Guan-Chi Shen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zi-Qian Bai
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Fang-Fang Song
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Hao Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
44
|
Donthireddy SNR, Rit A. Heteroditopic NHC Ligand Supported Manganese(I) Complexes: Synthesis, Characterization, and Activity as Non-bifunctional Phosphine-Free Catalyst for the α-Alkylation of Nitriles. Chemistry 2024; 30:e202302504. [PMID: 37807667 DOI: 10.1002/chem.202302504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
In the present work, several manganese(I) complexes of chelating heteroditopic ligands Mn1-3, featuring ImNHC (imidazol-2-ylidene) connected to a 1,2,3-triazole-N or tzNHC (1,2,3-triazol-5-ylidene) donors via a methylene spacer, with possible modifications at the triazole backbone have been synthesized and completely characterized. Notably, the CO stretching frequencies, electrochemical analysis, and frontier orbital analysis certainly suggest that the chelating ImNHC-tzNHC ligands have stronger donation capabilities than the related ImNHC-Ntz ligand in the synthesized complexes. Moreover, these well-defined phosphine-free Mn(I)-NHC complexes have been found to be effective non-bifunctional catalysts for the α-alkylation of nitriles using alcohols and importantly, the catalyst Mn1 containing ImNHC connected to a weaker triazole-N donor displayed higher activity compared to Mn2/Mn3 containing an unsymmetrical bis-carbene donors (ImNHC and tzNHC). A wide range of aryl nitriles were coupled with diverse (hetero)aromatic as well as aliphatic alcohols to get the corresponding products in good to excellent yields (32 examples, up to 95 % yield). The detailed mechanistic studies including deuterium labelling experiments reveal that the reaction follows a Borrowing Hydrogen pathway.
Collapse
Affiliation(s)
| | - Arnab Rit
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
45
|
Cattani S, Cera G. Modern Organometallic C-H Functionalizations with Earth-Abundant Iron Catalysts: An Update. Chem Asian J 2024; 19:e202300897. [PMID: 38051920 DOI: 10.1002/asia.202300897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/13/2023] [Indexed: 12/07/2023]
Abstract
Iron-catalyzed C-H activation has recently emerged as an increasingly powerful synthetic method for the step- and atom- economical direct C-H functionalizations of otherwise inert C-H bonds. Iron's low-cost and toxicity along with its catalytic versatility have encouraged the scientific community to elect this metal for the development of new C-H activation methodologies. Within this review, we aim to present a collection of the most recent examples of iron-catalyzed C-H functionalizations with a particular emphasis on modern synthetic strategies and mechanistic aspects.
Collapse
Affiliation(s)
- Silvia Cattani
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Gianpiero Cera
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|
46
|
Bhavyesh D, Soliya S, Konakanchi R, Begari E, Ashalu KC, Naveen T. The Recent Advances in Iron-Catalyzed C(sp 3 )-H Functionalization. Chem Asian J 2023:e202301056. [PMID: 38149480 DOI: 10.1002/asia.202301056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023]
Abstract
The use of iron as a core metal in catalysis has become a research topic of interest over the last few decades. The reasons are clear. Iron is the most abundant transition metal on Earth's crust and it is widely distributed across the world. It has been extracted and processed since the dawn of civilization. All these features render iron a noncontaminant, biocompatible, nontoxic, and inexpensive metal and therefore it constitutes the perfect candidate to replace noble metals (rhodium, palladium, platinum, iridium, etc.). Moreover, direct C-H functionalization is one of the most efficient strategies by which to introduce new functional groups into small organic molecules. The majority of organic compounds contain C(sp3 )-H bonds. Given the enormous importance of organic molecules in so many aspects of existence, the utilization and bioactivity of C(sp3 )-H bonds are of the utmost importance. This review sheds light on the substrate scope, selectivity, benefits, and limitations of iron catalysts for direct C(sp3 )-H bond activations. An overview of the use of iron catalysis in C(sp3 )-H activation protocols is summarized herein up to 2022.
Collapse
Affiliation(s)
- Desai Bhavyesh
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Gujarat, 395 007, India
| | - Sudha Soliya
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Gujarat, 395 007, India
| | - Ramaiah Konakanchi
- Department of Chemistry, VNR Vignana Jyoti Institute of Engineering and Technology, Hyderabad, 500090, India
| | - Eeshwaraiah Begari
- School of Applied Material Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Kashamalla Chinna Ashalu
- Department of Chemistry, School of Science, Indrashil University, Rajpur, Kadi, Gujarat, 382715, India
| | - Togati Naveen
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Gujarat, 395 007, India
| |
Collapse
|
47
|
Peng J, Li S, Huang J, Meng Q, Wang L, Xin W, Li W, Zhou W, Zhang L. Construction of Imidazole-Fused-Ring Systems by Iron-Catalyzed C(sp 3)-H Amination-Cyclization under Aerobic Conditions. J Org Chem 2023; 88:16581-16588. [PMID: 37976463 DOI: 10.1021/acs.joc.3c02078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
An iron-catalyzed efficient C-H amination for the construction of imidazole-fused-ring systems was developed under aerobic conditions. Compared to previous studies, this work exhibited green features. The reaction was conducted in the green solvent anisole, with water as the only byproduct. Four C(sp3)-H bonds were cleaved and three C-N bonds were formed in this transformation. Imidazo[1,5-a]pyridine-, imidazo[5,1-b]oxazole-, imidazo[5,1-b]thiazole-, imidazo[1,5-a]pyrazine-, and imidazo[1,5-a]imidazole-related N-heterocycles were obtained in acceptable-to-excellent yield.
Collapse
Affiliation(s)
- Jiangling Peng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Shijia Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Junwei Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Qianli Meng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Lixin Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Wenlong Xin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Weini Li
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California91010, United States
| | - Wei Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| |
Collapse
|
48
|
Yang S, He M, Wang Y, Bao M, Yu X. Visible-light-induced iron-catalyzed reduction of nitroarenes to anilines. Chem Commun (Camb) 2023; 59:14177-14180. [PMID: 37961762 DOI: 10.1039/d3cc04324j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
An efficient visible-light-induced iron-catalyzed reduction of nitroarenes to anilines by using N-ethylmorpholine (NEM) as a reductant under mild conditions has been developed. The reaction proceeds with photosensitizer-free conditions and features good to excellent yields and broad functional group tolerance. Preliminary mechanistic investigations showed that this reaction was conducted via ligand-to-metal (NEM to Fe3+) charge transfer and nitro triplet biradical-induced hydrogen atom transfer processes.
Collapse
Affiliation(s)
- Shilei Yang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China.
| | - Min He
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Yi Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China.
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China.
| | - Xiaoqiang Yu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
49
|
Huang X, Yu AN, Yang D, Gao X, Liang ST, Pei SC, Cui HL. Iron-Catalyzed Synthesis of Peroxylpyrrolo[2,1- a]isoquinolines through Oxidative Dearomatization. J Org Chem 2023; 88:15326-15334. [PMID: 37878683 DOI: 10.1021/acs.joc.3c01824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
A mild late-stage modification of pyrrolo[2,1-a]isoquinolines was established through iron-catalyzed oxidative dearomatization and peroxidation. Peroxylated pyrroloisoquinolines have been prepared readily with hydroperoxide in low to good yields (up to 72%) at room temperature. Interestingly, the treatment of fully aromatized pyrrolo[1,2-a]quinolines under the current reaction system resulted in the formation of ring-opening products.
Collapse
Affiliation(s)
- Xiang Huang
- College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P.R. China
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P.R. China
| | - An-Ni Yu
- College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P.R. China
| | - De Yang
- College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P.R. China
| | - Xin Gao
- College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P.R. China
| | - Shu-Ting Liang
- College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P.R. China
| | - Shu-Chen Pei
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P.R. China
| | - Hai-Lei Cui
- College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P.R. China
| |
Collapse
|
50
|
Pouramiri B, Rashidi M, Lotfi S, Mohammadi M, Rabiei K. Biological Evaluation of Anti-Cholinesterase Activity, in Silico Molecular Docking Studies, and DFT Calculations of Green Synthesized Thiadiazolo[3,2-a]pyrimidine Derivatives. Chem Biodivers 2023; 20:e202301193. [PMID: 37869899 DOI: 10.1002/cbdv.202301193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 10/24/2023]
Abstract
A series of [1,3,4] thiadiazolo[3,2-a]pyrimidine-6-carboxylate derivatives 4(a-n) have been designed and synthesized as inhibitors of acetylcholinesterase (AChE). Synthesizing of thiadiazolo[3,2-a] pyrimidines was carried out in a single step, one-pot reaction using aromatic aldehydes, ethyl acetoacetate and different derivatives of 1,3,4-thiadiazoles (with molar ratio of 1 : 2 : 1, respectively) in conjunction with the catalyst, anhydrous iron(III) chloride by a grinding method under solvent-free conditions at room temperature. The in-vitro studies exhibited good potency for inhibiting AChE comparable with donepezil as the reference drug. The best results were obtained by Ethyl 2-(4-nitroophenyl)-7-methyl-5-(pyridin-3-yl)-5H-[1,3,4]thiadiazolo[3,2-a]pyrimidine-6-carboxylate 4n with IC50 value of 0.082±0.001 μM which was comparable with AChE inhibitory effects of donepezil (IC50 =0.079 μM).
Collapse
Affiliation(s)
- Behjat Pouramiri
- Department of Organic Chemistry, Qom University of Technology, Qom
| | - Mohsen Rashidi
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, 37195 Qom, Iran
| | - Safa Lotfi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | | | - Khadijeh Rabiei
- Department of Organic Chemistry, Qom University of Technology, Qom
| |
Collapse
|