1
|
Chen R, Ren S, Li S, Zhou H, Jia X, Han D, Gao Z. Synthetic biology for the food industry: advances and challenges. Crit Rev Biotechnol 2025; 45:23-47. [PMID: 38797660 DOI: 10.1080/07388551.2024.2340530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 05/29/2024]
Abstract
As global environmental pollution increases, climate change worsens, and population growth continues, the challenges of securing a safe, nutritious, and sustainable food supply have become enormous. This has led to new requirements for future food supply methods and functions. The use of synthetic biology technology to create cell factories suitable for food industry production and renewable raw material conversion into: important food components, functional food additives, and nutritional chemicals, represents an important method of solving the problems faced by the food industry. Here, we review the recent progress and applications of synthetic biology in the food industry, including alternatives to: traditional (artificial pigments, meat, starch, and milk), functional (sweeteners, sugar substitutes, nutrients, flavoring agents), and green (green fiber, degradable packing materials, green packaging materials and food traceability) foods. Furthermore, we discuss the future prospects of synthetic biology-based applications in the food industry. Thus, this review may serve as a reference for research on synthetic biology in the: food safety, food nutrition, public health, and health-related fields.
Collapse
Affiliation(s)
- Ruipeng Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Huanying Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xuexia Jia
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Dianpeng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
2
|
Nitschke S, Montalbano AP, Whiting ME, Smith BH, Mukherjee-Roy N, Marchioni CR, Sullivan MA, Zhao X, Wang P, Mount H, Verma M, Minassian BA, Nitschke F. Glycogen synthase GYS1 overactivation contributes to glycogen insolubility and malto-oligoglucan-associated neurodegenerative disease. EMBO J 2025:10.1038/s44318-024-00339-3. [PMID: 39806098 DOI: 10.1038/s44318-024-00339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025] Open
Abstract
Polyglucosans are glycogen molecules with overlong chains, which are hyperphosphorylated in the neurodegenerative Lafora disease (LD). Brain polyglucosan bodies (PBs) cause fatal neurodegenerative diseases including Lafora disease and adult polyglucosan body disease (ABPD), for which treatments, biomarkers, and good understanding of their pathogenesis are currently missing. Mutations in the genes for the phosphatase laforin or the E3 ubiquitin ligase malin can cause LD. By depleting PTG, an activator of the glycogen chain-elongating enzyme glycogen synthase (GYS1), in laforin- and malin-deficient LD mice, we show that abnormal glycogen chain lengths and not hyperphosphorylation underlie polyglucosan formation, and that polyglucosan bodies induce neuroinflammation. We provide evidence indicating that a small pool of overactive GYS1 contributes to glycogen insolubility in LD and APBD. In contrast to previous findings, metabolomics experiments using in situ-fixed brains reveal only modest metabolic changes in laforin-deficient mice. These changes are not replicated in malin-deficient or APBD mice, and are not normalized in rescued LD mice. Finally, we identify a pool of metabolically volatile malto-oligoglucans as a polyglucosan body- and neuroinflammation-associated brain energy source, and promising candidate biomarkers for LD and APBD, including malto-oligoglucans and the neurodegeneration marker CHI3L1/YKL40.
Collapse
Affiliation(s)
- Silvia Nitschke
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Alina P Montalbano
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Megan E Whiting
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Brandon H Smith
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Neije Mukherjee-Roy
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Charlotte R Marchioni
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Biochemistry and Molecular Genetics Department, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Mitchell A Sullivan
- Glycation and Diabetes Complications, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, QLD, 4102, Australia
- School of Health, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Xiaochu Zhao
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada
| | - Peixiang Wang
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada
| | - Howard Mount
- Tanz Centre for Research in Neurodegenerative Diseases, Departments of Psychiatry and Physiology, University of Toronto, Toronto, ON, M5T 0S8, Canada
| | - Mayank Verma
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Berge A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Felix Nitschke
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
3
|
Ohmoto C, Taguchi T, Onishi M, Yamaguchi H, Sekita M, Hashimoto T, Hirata Y, Katsuno N, Nishizu T. Retrogradation inhibition and intragranular distribution in cooked rice by addition of α-glucosidase (AG) and branching enzyme (BE). Food Chem 2024; 456:140049. [PMID: 38878545 DOI: 10.1016/j.foodchem.2024.140049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/25/2024] [Accepted: 06/08/2024] [Indexed: 07/24/2024]
Abstract
The effect of inhibiting retrogradation and changes in chain length distribution by AG and BE, which are texture-modifying enzymes, has been clarified. To ascertain in which part of the rice grain retrogradation occurs and which enzymes is most effective, the degree of retrogradation in each part of the rice grain was measured from the surface to the core of the same rice grain using a synchrotron radiation X-ray beam with a beam size of 100 μm. Retrogradation was effectively suppressed at all measurement sites by enzyme addition, although the effect of enzymes was greater at the surface. Rice grain sections were stained with iodine and eosin. A starch layer that does not easily form a complex with iodine was observed inside the protein layer at the surface of cooked rice. A starch layer with a long molecular chain that forms complexes with iodine was observed inside the rice grain.
Collapse
Affiliation(s)
- Chie Ohmoto
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan; Gifu University, 1-1 Yanagido, Gifu-shi, Gifu, 501-1193, Japan
| | - Takumi Taguchi
- Gifu University, 1-1 Yanagido, Gifu-shi, Gifu, 501-1193, Japan
| | - Misa Onishi
- Gifu University, 1-1 Yanagido, Gifu-shi, Gifu, 501-1193, Japan
| | - Hideyuki Yamaguchi
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan
| | - Misa Sekita
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan
| | - Takuya Hashimoto
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-8681, Japan
| | | | - Nakako Katsuno
- Gifu University, 1-1 Yanagido, Gifu-shi, Gifu, 501-1193, Japan
| | | |
Collapse
|
4
|
Liang D, Liang W, Luo H, Liu Q, Temirlan K, Li W. Research on electron beam irradiation in the multiscale structure of starch and its related applications: A review. Compr Rev Food Sci Food Saf 2024; 23:e70009. [PMID: 39289807 DOI: 10.1111/1541-4337.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024]
Abstract
Electron beam irradiation (EBI), as a typical "green" emerging technology, can effectively alter the functional properties of starch by influencing its microstructure. This alteration enables starch to meet the current demands of consumers and the market for "health food." This paper reviews studies on modifying various starches using EBI and describes the changes in microstructure, physicochemical properties, and functional properties induced by this method. Additionally, the effects of EBI on starch-containing food products are discussed, along with issues to be addressed and research gaps in the synergistic treatment of modified starch. It is noted that the source, irradiation dose, and irradiation time all influence the effectiveness of starch modification. Given the characteristics of EBI technology, integrating physical, chemical, and biological modification methods can optimize the modification process and enhance efficiency. This technology can potentially diversify modified starch varieties and expand their applications. Furthermore, there remains significant research potential in producing modified starch using EBI technology and applying it to the food industry.
Collapse
Affiliation(s)
- Danyang Liang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, People's Republic of China
| | - Wei Liang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, People's Republic of China
| | - Haiyu Luo
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, People's Republic of China
| | - Qing Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, People's Republic of China
| | - Khamiddolov Temirlan
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, People's Republic of China
| | - Wenhao Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, People's Republic of China
| |
Collapse
|
5
|
Liao Q, Ren H, Xu J, Wang P, Yuan B, Zhang H. Combined experiments and molecular simulations for understanding the thermo-responsive behavior and gelation of methylated glucans with different glycosidic linkages. J Colloid Interface Sci 2024; 674:315-325. [PMID: 38936088 DOI: 10.1016/j.jcis.2024.06.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
HYPOTHESIS Elucidation of the micro-mechanisms of sol-gel transition of gelling glucans with different glycosidic linkages is crucial for understanding their structure-property relationship and for various applications. Glucans with distinct molecular chain structures exhibit unique gelation behaviors. The disparate gelation phenomena observed in two methylated glucans, methylated (1,3)-β-d-glucan of curdlan (MECD) and methylated (1,4)-β-d-glucan of cellulose (MC), notwithstanding their equivalent degrees of substitution, are intricately linked to their unique molecular architectures and interactions between glucan and water. EXPERIMENTS Density functional theory and molecular dynamics simulations focused on the electronic property distinctions between MECD and MC, alongside conformational variations during thermal gelation. Inline attenuated total reflection Fourier transform infrared spectroscopy tracked secondary structure alterations in MECD and MC. To corroborate the simulation results, additional analyses including circular dichroism, rheology, and micro-differential scanning calorimetry were performed. FINDINGS Despite having similar thermally induced gel networks, MECD and MC display distinct physical gelation patterns and molecular-level conformational changes during gelation. The network of MC gel was formed via a "coil-to-ring" transition, followed by ring stacking. In contrast, the MECD gel comprised compact irregular helices accompanied by notable volume shrinkage. These variations in gelation behavior are ascribed to heightened hydrophobic interactions and diminished hydrogen bonding in both systems upon heating, resulting in gelation. These findings provide valuable insights into the microstructural changes during gelation and the thermo-gelation mechanisms of structurally similar polysaccharides.
Collapse
Affiliation(s)
- Qingyu Liao
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huimin Ren
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiatong Xu
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengguang Wang
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Baihua Yuan
- Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Hongbin Zhang
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
6
|
Cifuente JO, Colleoni C, Kalscheuer R, Guerin ME. Architecture, Function, Regulation, and Evolution of α-Glucans Metabolic Enzymes in Prokaryotes. Chem Rev 2024; 124:4863-4934. [PMID: 38606812 PMCID: PMC11046441 DOI: 10.1021/acs.chemrev.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Bacteria have acquired sophisticated mechanisms for assembling and disassembling polysaccharides of different chemistry. α-d-Glucose homopolysaccharides, so-called α-glucans, are the most widespread polymers in nature being key components of microorganisms. Glycogen functions as an intracellular energy storage while some bacteria also produce extracellular assorted α-glucans. The classical bacterial glycogen metabolic pathway comprises the action of ADP-glucose pyrophosphorylase and glycogen synthase, whereas extracellular α-glucans are mostly related to peripheral enzymes dependent on sucrose. An alternative pathway of glycogen biosynthesis, operating via a maltose 1-phosphate polymerizing enzyme, displays an essential wiring with the trehalose metabolism to interconvert disaccharides into polysaccharides. Furthermore, some bacteria show a connection of intracellular glycogen metabolism with the genesis of extracellular capsular α-glucans, revealing a relationship between the storage and structural function of these compounds. Altogether, the current picture shows that bacteria have evolved an intricate α-glucan metabolism that ultimately relies on the evolution of a specific enzymatic machinery. The structural landscape of these enzymes exposes a limited number of core catalytic folds handling many different chemical reactions. In this Review, we present a rationale to explain how the chemical diversity of α-glucans emerged from these systems, highlighting the underlying structural evolution of the enzymes driving α-glucan bacterial metabolism.
Collapse
Affiliation(s)
- Javier O. Cifuente
- Instituto
Biofisika (UPV/EHU, CSIC), University of
the Basque Country, E-48940 Leioa, Spain
| | - Christophe Colleoni
- University
of Lille, CNRS, UMR8576-UGSF -Unité de Glycobiologie Structurale
et Fonctionnelle, F-59000 Lille, France
| | - Rainer Kalscheuer
- Institute
of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Marcelo E. Guerin
- Structural
Glycobiology Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish
National Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
7
|
Nybro Dansholm C, Meier S, Beeren SR. Amylose Dimerization in Solution Can Be Studied Using a Model System. Chembiochem 2024; 25:e202300832. [PMID: 38220779 DOI: 10.1002/cbic.202300832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/16/2024]
Abstract
Amylose, the linear polymer of α-1,4-linked glucopyranose units, is known to crystallize as a parallel double helix, but evidence of this duplex forming in solution has remained elusive for decades. We show how the dimerization of short amylose chains can be detected in solution using NMR spectroscopy when the glucans are labeled at the reducing-end with an aromatic moiety that overcomes chemical shift degeneracy leading to distinct signals for the single-stranded and duplex amylose. A set of α-1,4 glucans with varying lengths of 6, 12, 18, and 22 glucose units and a 4-aminobenzamide label were synthesized, enabling the first systematic thermodynamic study of the association of amylose in solution. The dimerization is enthalpically driven, entropically unfavorable and beyond a minimum length of 12, each additional pair of glucose residues stabilizes the duplex by 0.85 kJ mol-1 . This fundamental knowledge provides a basis for a quantitative understanding of starch structure, gelation and enzymatic digestion, and lays the foundations for the strategic use of α-1,4-glucans in the development of self-assembled materials.
Collapse
Affiliation(s)
- Charlotte Nybro Dansholm
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, Kongens Lyngby, DK-2800, Denmark
| | - Sebastian Meier
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, Kongens Lyngby, DK-2800, Denmark
| | - Sophie R Beeren
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, Kongens Lyngby, DK-2800, Denmark
| |
Collapse
|
8
|
Wang X, Xiao G. Recent chemical synthesis of plant polysaccharides. Curr Opin Chem Biol 2023; 77:102387. [PMID: 37716049 DOI: 10.1016/j.cbpa.2023.102387] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/18/2023]
Abstract
Here, chemical syntheses of long, branched and complex glycans over 10-mer from plants are summarized, which highlights amylopectin 20-mer from starch, 17-mer from carthamus tinctorius, α-glucan 30-mer from Longan, 19-mer from psidium guajava and 11-mer from dendrobium huoshanense. The glycans assembly strategies, protecting groups utilization and glycosylation methods discussed here will inspire the efficient synthesis of diverse complex glycans with many 1,2-cis glycosidic linkages.
Collapse
Affiliation(s)
- Xiufang Wang
- Department of Chemistry, Kunming University, 2 Puxing Road, Kunming 650214, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China.
| |
Collapse
|
9
|
Wang Y, Bai Y, Dong J, Liu J, Jin Z. Deciphering the structural and functional characteristics of an innovative small cluster branched α-glucan produced by sequential enzymatic synthesis. Carbohydr Polym 2023; 310:120696. [PMID: 36925237 DOI: 10.1016/j.carbpol.2023.120696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/24/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
Highly branched α-glucan (HBAG) proved to be a promising material as an osmotic agent in peritoneal dialysis solutions. However, high resistance of HBAG to amylolytic enzymes might be a potential drawback for peritoneal dialysis due to its high degree of branching (20-30 %). To address this issue, we designed a small-clustered α-glucan (SCAG) with a relatively low molecular weight (Mw) and limited branching. Structural characteristics revealed that SCAG was successfully synthesized by modifying waxy rice starch (WRS) using sequential maltogenic α-amylase (MA) and starch branching enzyme (BE). The Mw of SCAG was 1.40 × 105 Da, and its (α1 → 6) bonds ratio was 8.93 %, which was below that of HBAG. A relatively short branch distribution was observed in SCAG (CL = 6.27). Short-range orderliness of WRS was reduced from 0.749 to 0.322 with the MABE incubation. Additionally, SCAG had an extremely low viscosity (~12 cP) and nearly no retrogradation. Although the resistance of SCAG to amylolytic enzymes was enhanced by 15.22 % compared with native WRS, the extent was significantly lower than that of HBAG in previous studies. These new findings demonstrate the potential of SCAG as a novel functional α-glucan in food and pharmaceutical applications.
Collapse
Affiliation(s)
- Yanli Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, Jiangsu Province, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Jingjing Dong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Jialin Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, Jiangsu Province, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|
10
|
Tian Y, Wang Y, Zhong Y, Møller MS, Westh P, Svensson B, Blennow A. Interfacial Catalysis during Amylolytic Degradation of Starch Granules: Current Understanding and Kinetic Approaches. Molecules 2023; 28:molecules28093799. [PMID: 37175208 PMCID: PMC10180094 DOI: 10.3390/molecules28093799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Enzymatic hydrolysis of starch granules forms the fundamental basis of how nature degrades starch in plant cells, how starch is utilized as an energy resource in foods, and develops efficient, low-cost saccharification of starch, such as bioethanol and sweeteners. However, most investigations on starch hydrolysis have focused on its rates of degradation, either in its gelatinized or soluble state. These systems are inherently more well-defined, and kinetic parameters can be readily derived for different hydrolytic enzymes and starch molecular structures. Conversely, hydrolysis is notably slower for solid substrates, such as starch granules, and the kinetics are more complex. The main problems include that the surface of the substrate is multifaceted, its chemical and physical properties are ill-defined, and it also continuously changes as the hydrolysis proceeds. Hence, methods need to be developed for analyzing such heterogeneous catalytic systems. Most data on starch granule degradation are obtained on a long-term enzyme-action basis from which initial rates cannot be derived. In this review, we discuss these various aspects and future possibilities for developing experimental procedures to describe and understand interfacial enzyme hydrolysis of native starch granules more accurately.
Collapse
Affiliation(s)
- Yu Tian
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Yu Wang
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Yuyue Zhong
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Marie Sofie Møller
- Applied Molecular Enzyme Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Peter Westh
- Interfacial Enzymology, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
11
|
Ma Z, Hu Y, Li X, Liu R, Xia E, Xu P, Yang Y. Stereoselective synthesis of α-glucosides with glucosyl (Z)-Ynenoates as donors. Carbohydr Res 2023; 523:108710. [PMID: 36370627 DOI: 10.1016/j.carres.2022.108710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
Abstract
A SPhosAuNTf2-promoted DMF-modulated glycosylation approach with glycosyl (Z)-ynenoates as donors was developed for highly α-selective synthesis of various linkage types of α-glucans. The substituent groups were also found to play a significant role in the α-selective glucosylation reactions. The glycosylation approach was effectively applied to the stereospecific synthesis of the α-1,6-linked triglucoside.
Collapse
Affiliation(s)
- Zhi Ma
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yi Hu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xiaona Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Rongkun Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - E Xia
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - You Yang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
12
|
Frenett ML, Weis K, Cole MJ, Vargas JCC, Ramsay A, Huang J, Gentry MS, Vander Kooi CW, Raththagala M. Differential activity of glucan phosphatase starch EXcess4 orthologs from agronomic crops. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
A highly branched α-D-glucan facilitates antitumor immunity by reducing cancer cell CXCL5 expression. Int J Biol Macromol 2022; 209:166-179. [PMID: 35390399 DOI: 10.1016/j.ijbiomac.2022.03.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022]
Abstract
Tumor immunotherapy has emerged as a major pillar of anticancer therapeutic strategies. Natural polysaccharides, known for their strong immunomodulatory activities with relatively low cost and toxicity, are becoming promising prospects for cancer immunotherapy. In this study, we investigated the antitumor mechanism of JNY2PW, a highly branched α-D-glucan previously purified from the traditional marine Chinese medicine Arca inflata. JNY2PW was shown to enhance the sensitivity of tumor cells to co-culture macrophage supernatants by decreasing cancer cell CXCL5 expression. Furthermore, JNY2PW exerted antitumor effects without obvious toxic side effects in tumor-bearing mice by triggering the Akt/mTOR and ERK/GSK3β/β-catenin pathways and attenuating expression of CXCL5 in cancer cells. Remarkably, JNY2PW reduced tumor proliferation and dampened CXCL5 expression in tumor cells overexpressing CXCL5 both in vitro and in vivo. Additionally, JNY2PW blocked epithelial-mesenchymal transition (EMT) in both CXCL5-overexpressing and wild type tumor cells. Our data therefore uncovered a previously unrecognized antitumor mechanism for JNY2PW, suggesting that JNY2PW is a promising adjuvant as an immunomodulator for cancer immunotherapy.
Collapse
|
14
|
Haixia Z, Zhiguang C, Junrong H, Huayin P. Exploration of the process and mechanism of magnesium chloride induced starch gelatinization. Int J Biol Macromol 2022; 205:118-127. [PMID: 35181319 DOI: 10.1016/j.ijbiomac.2022.02.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/06/2022] [Accepted: 02/12/2022] [Indexed: 11/28/2022]
Abstract
As a new starch gelatinization method, salt induced gelatinization can not only reduce energy consumption but also impart special physicochemical properties to starch gel. In this study, the process and mechanism of MgCl2 induced starch gelatinization were explored. The results showed that, potato starch could be gelatinized after a treatment of 4 mol/L MgCl2 for 3 h. The gelatinization started with the slight damage of outer shells, then the internal molecules leached out through the cracks or holes to form gel, finally the outer shells disintegrated. During the gelatinization process, the viscosity and granule size gradually increased after 0.5 h, while the original crystallinity disappeared rapidly in 0.5 h. Besides, MgCl2 significantly increased the electrostatic interaction, then made starch molecules closer to each other and become denser, which may have close relationship with the appearance of the cracks and the disappearance of crystallization. Moreover, MgCl2 enhanced the hydration and increased the binding free energy of starch molecules, then promoted starch gelatinization and accelerated the destruction of starch structure, which may be the critical factors of the starch gelatinization induced by MgCl2. The results will provide reference for the research and application of salt induced gelatinization.
Collapse
Affiliation(s)
- Zhong Haixia
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, School of Agricultural Sciences, Xichang University, Xichang, Sichuan Province 615000, China
| | - Chen Zhiguang
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, School of Agricultural Sciences, Xichang University, Xichang, Sichuan Province 615000, China.
| | - Huang Junrong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi Province, China
| | - Pu Huayin
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi Province, China
| |
Collapse
|
15
|
Wang J, Jiang X, Zheng B, Zhang Y. Structural and physicochemical properties of lotus seed starch-chlorogenic acid complexes prepared by microwave irradiation. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:4157-4166. [PMID: 34538900 PMCID: PMC8405777 DOI: 10.1007/s13197-020-04881-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 06/13/2023]
Abstract
Lotus seed (LS) has a high starch content and possesses many useful functional properties, which are mainly attributed to its phenolic compound content. The objective of this study was to investigate the effect of microwave irradiation (MW) treatment on the structural and physicochemical properties of a lotus seed starch-chlorogenic acid (CA) blend. MW treatment appeared to promote the formation of LS-CA complexes and the modified starch displayed more rougher structures than native starch. The particle size distribution of starch remained approximately constant when the microwave power was 200 W, but increased sharply with further increases in microwave power; a similar trend was observed in the swelling and solubility of starch. XRD and FT-IR spectra show that MW treatment degraded the ordered crystalline structure of starch, facilitating exposure of the starch chains originally buried in the crystalline and amorphous regions within the grains. During this treatment, CA interacted with starch molecules by hydrogen bonding and form a LS-CA complex, which inhibited the self-assembly process of starch chains. These findings demonstrated the potential use of MW treatment in controlling the storage and processing quality of lotus seed, or other starchy foods rich in polyphenols.
Collapse
Affiliation(s)
- Jianyi Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 People’s Republic of China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xiangfu Jiang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 People’s Republic of China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 People’s Republic of China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 People’s Republic of China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
16
|
Abstract
![]()
Polysaccharides are
Nature’s most abundant biomaterials
essential for plant cell wall construction and energy storage. Seemingly
minor structural differences result in entirely different functions:
cellulose, a β (1–4) linked glucose polymer, forms fibrils
that can support large trees, while amylose, an α (1–4)
linked glucose polymer forms soft hollow fibers used for energy storage.
A detailed understanding of polysaccharide structures requires pure
materials that cannot be isolated from natural sources. Automated
Glycan Assembly provides quick access to trans-linked
glycans analogues of cellulose, but the stereoselective installation
of multiple cis-glycosidic linkages present in amylose
has not been possible to date. Here, we identify thioglycoside building
blocks with different protecting group patterns that, in concert with
temperature and solvent control, achieve excellent stereoselectivity
during the synthesis of linear and branched α-glucan polymers
with up to 20 cis-glycosidic linkages. The molecules
prepared with the new method will serve as probes to understand the
biosynthesis and the structure of α-glucans.
Collapse
Affiliation(s)
- Yuntao Zhu
- Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Martina Delbianco
- Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter H Seeberger
- Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
17
|
Park BR, Park JY, Lee SH, Hong SJ, Jeong JH, Choi JH, Park SY, Park CS, Lee HN, Kim YM. Synthesis of improved long-chain isomaltooligosaccharide, using a novel glucosyltransferase derived from Thermoanaerobacter thermocopriae, with maltodextrin. Enzyme Microb Technol 2021; 147:109788. [PMID: 33992410 DOI: 10.1016/j.enzmictec.2021.109788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 11/19/2022]
Abstract
Isomaltooligosaccharide (IMO), considered to be a prebiotic, reportedly has health effects, particularly in terms of digestion; however, the prebiotic effects of IMOs depend largely on the degree of polymerization. Currently, IMOs are commercially produced using transglucosidase (TG) derived from Aspergillus niger. Here, we report a novel Thermoanaerobacter thermocopriae-derived TG (TtTG) that can produce long-chain IMOs (L-IMOs) using maltodextrin as the main substrate. A putative carbohydrate-binding gene comprising carbohydrate-binding module 35 and glycoside hydrolase family 15 domain was cloned and successfully overexpressed in Escherichia coli BL21 (DE3) cells. The resulting purified recombinant enzyme (TtTG) had a molecular mass of 94 kDa. TtTG displayed an optimal pH of 4.0 (higher than that of commercial TG) and an optimal temperature of 60 °C (same as that of commercial TG). TtTG also enabled the synthesis of oligosaccharides using various saccharides, such as palatinose, kojibiose, sophorose, maltose, cellobiose, isomaltose, gentiobiose, and trehalose, which acted as specific acceptors. TtTG could also produce a medium-sized L-IMO, different from that by dextran-dextrinase and TG, from maltodextrin, as the sole substrate. Thus, the novel combination of maltodextrin and TtTG shows potential as an effective method for commercially producing L-IMOs with improved prebiotic effects.
Collapse
Affiliation(s)
- Bo-Ram Park
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 55365, Republic of Korea.
| | - Ji Yeong Park
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 55365, Republic of Korea
| | - So Hee Lee
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 55365, Republic of Korea
| | - Seong-Jin Hong
- Department of Food Science and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ji Hye Jeong
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 55365, Republic of Korea
| | - Ji-Ho Choi
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 55365, Republic of Korea
| | - Shin-Yong Park
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 55365, Republic of Korea
| | - Chan Soon Park
- Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 55365, Republic of Korea
| | - Ha-Nul Lee
- Department of Food Science and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Young-Min Kim
- Department of Food Science and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
18
|
Ferreira A, Cahú T, Xu J, Blennow A, Bezerra R. A highly stable raw starch digesting α-amylase from Nile tilapia (Oreochromis niloticus) viscera. Food Chem 2021; 354:129513. [PMID: 33765464 DOI: 10.1016/j.foodchem.2021.129513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 11/18/2022]
Abstract
A raw starch digesting α-amylase from Nile tilapia (Oreochromis niloticus) intestine was identified. The α-amylase, AMY-T, had an estimated molecular weight of 60 kDa and purified to near homogeneity. AMY-T showed an apparent KM 4.78 mg/mL and Vmax 0.44 mg/mL/min) towards soluble starch. It was highly stable for 24 h in the pH range 3.0-10.0, and to solvents like methanol, isopropanol, butanol, dimethylformamide, DMSO and ethyl-ether. AMY-T was able to digest different carbohydrates, mainly showing endo-activity. Importantly, AMY-T was catalytically efficient and adsorbing towards raw potato starch at temperature documented for other raw starch digesting α-amylases. Thin layer and anion exchange chromatography characterization showed that the end products of raw starch hydrolysis were glucose, maltose and maltodextrins, with degree of polymerisation ranging 1-8. Scanning electron microscopy analysis of the AMY-T treated starch granules documented both granular exo- and endo-attack by AMY-T. These catalytic capabilities suggest high potential for AMY-T for industrial use.
Collapse
Affiliation(s)
- Amália Ferreira
- Laboratory of Enzymology - LABENZ, Department of Biochemistry, Federal University of Pernambuco, Brazil
| | - Thiago Cahú
- Laboratory of Enzymology - LABENZ, Department of Biochemistry, Federal University of Pernambuco, Brazil
| | - Jinchuan Xu
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark; School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark.
| | - Ranilson Bezerra
- Laboratory of Enzymology - LABENZ, Department of Biochemistry, Federal University of Pernambuco, Brazil.
| |
Collapse
|
19
|
Chen Z, Ni D, Zhang W, Stressler T, Mu W. Lactic acid bacteria-derived α-glucans: From enzymatic synthesis to miscellaneous applications. Biotechnol Adv 2021; 47:107708. [PMID: 33549610 DOI: 10.1016/j.biotechadv.2021.107708] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/21/2020] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
Lactic acid bacteria (LAB) are capable of producing a variety of exopolysaccharide α-glucans, such as dextran, mutan, reuteran, and alternan. Their structural diversity allows LAB-derived α-glucans to hold vast commercial value and application potential in the food, cosmetic, medical, and biotechnology fields, garnering much attention in recent years. Glycoside Hydrolase 70 family (GH70) enzymes are efficient tools for the biosynthesis of α-glucans with various sizes, linkage compositions, and degrees of branching, using renewable and low-cost sucrose and starch as substrates. To date, plenty of various LAB-derived GH70 glucansucrases (especially dextransucrase) have been biochemically characterized to synthesize α-glucans from sucrose with a variety of structural organizations. This review mainly aimed at the biotechnological synthesis of α-glucans using GH70 family enzymes and their diverse (potential) applications. The purification, structural analysis and physicochemical properties of α-glucan polysaccharides were reviewed in detail. Synchronously, some new insights and future perspectives of LAB-derived α-glucans enzymatic synthesis and applications were also discussed. To expand the range of applications, the physicochemical properties and bioactivities of LAB-derived α-glucans, other than dextran, should be further explored. Additionally, screening novel GH70 subfamily starch-acting enzymes is conducive to expanding the repertoire of α-glucans.
Collapse
Affiliation(s)
- Ziwei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Timo Stressler
- Independend Researcher, 64546 Mörfelden-Walldorf, Germany
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
20
|
Analysis of the complexation process between starch molecules and trilinolenin. Int J Biol Macromol 2020; 165:44-49. [PMID: 32987075 DOI: 10.1016/j.ijbiomac.2020.09.139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/20/2020] [Accepted: 09/19/2020] [Indexed: 11/21/2022]
Abstract
Starch is a basic biomacromolecule, and an in-depth understanding of the process and mechanism of starch-lipid complexation has great significance for starch based food and pharmaceutical. In this study, molecular dynamics simulation was used to explore the complexation details between starch molecules and trilinolenin, such as complexation process, interaction forces, conformation changes and stability changes, which are difficult to be verified by using other characterization methods. The results show that, firstly, starch residues of one turn helix (8 residues) are enough to bind a trilinolenin molecule firmly. Secondly, the complex is maintained by Van der Waals and electrostatic interaction. Thirdly, the residues complexed with trilinolenin become more stable than the former or the free residues. In brief, the complexation process, interaction forces, conformation changes and stability changes of the starch-trilinolenin complex were clarified in this study. The results may create new insights for the research about the interaction of starch and lipid, then provide theoretical guidance for the research on starch based food and pharmaceutical.
Collapse
|
21
|
Aru V, Motawie MS, Khakimov B, Sørensen KM, Møller BL, Engelsen SB. First-principles identification of C-methyl-scyllo-inositol (mytilitol) - A new species-specific metabolite indicator of geographic origin for marine bivalve molluscs (Mytilus and Ruditapes spp.). Food Chem 2020; 328:126959. [PMID: 32474235 DOI: 10.1016/j.foodchem.2020.126959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 11/17/2022]
Abstract
This study presents a level-1 identification of the seven carbon (7-C) sugar C-methyl-scyllo-inositol (mytilitol) in mussels and clams (Mytilus and Ruditapes spp., respectively) purchased in Denmark and Italy. For each sample, the hydrophilic extract of the soft tissue was analyzed by proton nuclear magnetic resonance (1H NMR) spectroscopy using a 600 MHz NMR spectrometer. A first tentative identification of mytilitol was carried out by computing a statistical total correlation spectroscopy (STOCY) analysis of the 1H NMR spectra, followed by a level-1 identification based on first-principles methods including chemical synthesis, structure elucidation and standard-addition experiments. Mytilitol was quantified in the 1H NMR spectra and its average relative concentration turned out to be significantly lower in clams than in mussels (p-value < 0.001), with Danish mussels having the highest mytilitol concentration. Principal component analysis (PCA) of the NMR dataset brought further evidence to a species-specific and geographic-dependent content of mytilitol in mussels and clams.
Collapse
Affiliation(s)
- Violetta Aru
- Chemometrics & Analytical Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark.
| | - Mohammed Saddik Motawie
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| | - Bekzod Khakimov
- Chemometrics & Analytical Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark.
| | - Klavs Martin Sørensen
- Chemometrics & Analytical Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark.
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| | - Søren Balling Engelsen
- Chemometrics & Analytical Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark.
| |
Collapse
|
22
|
Zhi-Guang C, Hong-Hui Z, Keipper W, Hua-Yin P, Qi Y, Chen-Lu F, Guo-Wei S, Jun-Rong H. The analysis of the effects of high hydrostatic pressure (HHP) on amylose molecular conformation at atomic level based on molecular dynamics simulation. Food Chem 2020; 327:127047. [PMID: 32454269 DOI: 10.1016/j.foodchem.2020.127047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 01/04/2023]
Abstract
For more effective using of HHP (high hydrostatic pressure) in starch processing, in this study, molecular dynamics simulation was used to explore the effects of pressure on amylose molecular conformation at the atomic level. The results shown that, firstly, high pressure decreased the intramolecular hydrogen bonds and increased the amylose-solvent hydrogen bonds, which is consistent with the process of high pressure starch gelatinization. Secondly, high pressure made amylose polymers more "stout". Meanwhile, high pressure decreased the angle of α-1,4 glycosidic linkage and increased the dihedral angles of α-1,4 glycosidic linkage, which indicates that pressure has obvious effects on amylose molecular conformation. Thirdly, high pressure made amylose polymers more stable. Moreover, in view of the results of energies, HHP may have an opposite gelatinization mechanism to heating. The results may be complementary to the existing experimental phenomena and provide theoretical guidance value for the using of HHP in starch processing.
Collapse
Affiliation(s)
- Chen Zhi-Guang
- Shaanxi University of Science and Technology, School of Food and Biological Engineering, Xi'an, Shaanxi Province 710021, China; Neijiang Vocational and Technical College, Department of Agricultural Technology, Neijiang, Sichuan Province 641000, China
| | - Zhang Hong-Hui
- Shaanxi University of Science and Technology, School of Food and Biological Engineering, Xi'an, Shaanxi Province 710021, China
| | - Wade Keipper
- Shaanxi University of Science and Technology, School of Arts and Sciences, Xi'an, Shaanxi Province 710021, China
| | - Pu Hua-Yin
- Shaanxi University of Science and Technology, School of Food and Biological Engineering, Xi'an, Shaanxi Province 710021, China
| | - Yang Qi
- Shaanxi University of Science and Technology, School of Food and Biological Engineering, Xi'an, Shaanxi Province 710021, China
| | - Fang Chen-Lu
- Shaanxi University of Science and Technology, School of Food and Biological Engineering, Xi'an, Shaanxi Province 710021, China
| | - Shu Guo-Wei
- Shaanxi University of Science and Technology, School of Food and Biological Engineering, Xi'an, Shaanxi Province 710021, China
| | - Huang Jun-Rong
- Shaanxi University of Science and Technology, School of Food and Biological Engineering, Xi'an, Shaanxi Province 710021, China.
| |
Collapse
|
23
|
Blennow A, Skryhan K, Tanackovic V, Krunic SL, Shaik SS, Andersen MS, Kirk H, Nielsen KL. Non-GMO potato lines, synthesizing increased amylose and resistant starch, are mainly deficient in isoamylase debranching enzyme. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2096-2108. [PMID: 32096588 PMCID: PMC7540516 DOI: 10.1111/pbi.13367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/31/2020] [Accepted: 02/17/2020] [Indexed: 05/04/2023]
Abstract
Solanum tuberosum potato lines with high amylose content were generated by crossing with the wild potato species Solanum sandemanii followed by repeated backcrossing to Solanum tuberosum lines. The trait, termed increased amylose (IAm), was recessive and present after three generations of backcrossing into S. tuberosum lines (6.25% S. sandemanii genes). The tubers of these lines were small, elongated and irregular with small and misshaped starch granules and high sugar content. Additional backcrossing resulted in less irregular tuber morphology, increased starch content (4.3%-9.5%) and increased amylose content (29%-37.9%) but indifferent sugar content. The amylose in the IAm starch granules was mainly located in peripheral spots, and large cavities were found in the granules. Starch pasting was suppressed, and the digestion-resistant starch (RS) content was increased. Comprehensive microarray polymer profiling (CoMPP) analysis revealed specific alterations of major pectic and glycoprotein cell wall components. This complex phenotype led us to search for candidate IAm genes exploiting its recessive trait. Hence, we sequenced genomic DNA of a pool of IAm lines, identified SNPs genome wide against the draft genome sequence of potato and searched for regions of decreased heterozygosity. Three regions, located on chromosomes 3, 7 and 10, respectively, displayed markedly less heterozygosity than average. The only credible starch metabolism-related gene found in these regions encoded the isoamylase-type debranching enzyme Stisa1. Decreased expression of mRNA (>500 fold) and reduced enzyme activity (virtually absent from IAm lines) supported Stisa1 as a candidate gene for IAm.
Collapse
Affiliation(s)
- Andreas Blennow
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Katsiaryna Skryhan
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Vanja Tanackovic
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Susanne L. Krunic
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Shahnoor S. Shaik
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | | | | | - Kåre L. Nielsen
- Department of Chemistry and BiologyAalborg UniversityAalborgDenmark
| |
Collapse
|
24
|
Zhi-Guang C, Jun-Rong H, Hua-Yin P, Qi Y, Chen-Lu F. The effects of HHP (high hydrostatic pressure) on the interchain interaction and the conformation of amylopectin and double-amylose molecules. Int J Biol Macromol 2020; 155:91-102. [PMID: 32224170 DOI: 10.1016/j.ijbiomac.2020.03.190] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/14/2020] [Accepted: 03/22/2020] [Indexed: 12/29/2022]
Abstract
Starch is an important resource in nature, and HHP (high hydrostatic pressure) is one of the most important physical modification technologies. In this study, molecular dynamics simulation was used to explore the interchain interaction and the changes of molecule conformations of amylopectin and double-amylose helix at atomic level in different pressure. The results shown that, firstly, high pressure increased the content of 4C1 chair conformation, decreased the RMSD (root mean square deviations) and RMSF (root mean square fluctuation), made molecules more stable. Secondly, high pressure increased the interchain VDW (Van der Waals) and electrostatic forces, then caused the decreases of the interchain distances and surface area of both amylopectin and double-amylose, made molecules more compact. Thirdly, high pressure decreased the intramolecular hydrogen bonds, increased the molecule-solvent hydrogen bonds. These findings can explain some existing experimental phenomena from the atomic level, meanwhile, it may also provide importance reference value for using of HHP in starch processing and the studies of starch granule structure.
Collapse
Affiliation(s)
- Chen Zhi-Guang
- Shaanxi University of Science and Technology, School of food and Biological Engineering, Xian 710016, China; Neijiang Vocational and Technical College, Department of Agricultural Technology, Neijiang 641000, China
| | - Huang Jun-Rong
- Shaanxi University of Science and Technology, School of food and Biological Engineering, Xian 710016, China.
| | - Pu Hua-Yin
- Shaanxi University of Science and Technology, School of food and Biological Engineering, Xian 710016, China
| | - Yang Qi
- Shaanxi University of Science and Technology, School of food and Biological Engineering, Xian 710016, China
| | - Fang Chen-Lu
- Shaanxi University of Science and Technology, School of food and Biological Engineering, Xian 710016, China
| |
Collapse
|
25
|
Besford QA, Cavalieri F, Caruso F. Glycogen as a Building Block for Advanced Biological Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904625. [PMID: 31617264 DOI: 10.1002/adma.201904625] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/15/2019] [Indexed: 06/10/2023]
Abstract
Biological nanoparticles found in living systems possess distinct molecular architectures and diverse functions. Glycogen is a unique biological polysaccharide nanoparticle fabricated by nature through a bottom-up approach. The biocatalytic synthesis of glycogen has evolved over time to form a nanometer-sized dendrimer-like structure (20-150 nm) with a highly branched surface and a dense core. This makes glycogen markedly different from other natural linear or branched polysaccharides and particularly attractive as a platform for biomedical applications. Glycogen is inherently biodegradable, nontoxic, and can be functionalized with diverse surface and internal motifs for enhanced biofunctional properties. Recently, there has been growing interest in glycogen as a natural alternative to synthetic polymers and nanoparticles in a range of applications. Herein, the recent literature on glycogen in the material-based sciences, including its use as a constituent in biodegradable hydrogels and fibers, drug delivery vectors, tumor targeting and penetrating nanoparticles, immunomodulators, vaccine adjuvants, and contrast agents, is reviewed. The various methods of chemical functionalization and physical assembly of glycogen nanoparticles into multicomponent nanodevices, which advance glycogen toward a functional therapeutic nanoparticle from nature and back again, are discussed in detail.
Collapse
Affiliation(s)
- Quinn A Besford
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Francesca Cavalieri
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
26
|
Tian G, Qin C, Liu Z, Shen D, Zou X, Fu J, Hu J, Seeberger PH, Yin J. Total synthesis of theHelicobacter pyloriserotype O2 O-antigen α-(1 → 2)- and α-(1 → 3)-linked oligoglucosides. Chem Commun (Camb) 2020; 56:344-347. [DOI: 10.1039/c9cc07915g] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Unique α-(1 → 2)- and α-(1 → 3)-linked oligoglucosides from theH. pyloriserotype O2 O-antigen were synthesized with exclusive α-selectivity using remote participation effects.
Collapse
Affiliation(s)
- Guangzong Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Zhonghua Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Dacheng Shen
- Department of Biomolecular Systems
- Max-Plank Institute of Colloids and Interfaces
- 14476 Potsdam
- Germany
| | - Xiaopeng Zou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Junjie Fu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Jing Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Peter H. Seeberger
- Department of Biomolecular Systems
- Max-Plank Institute of Colloids and Interfaces
- 14476 Potsdam
- Germany
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| |
Collapse
|
27
|
Chua SC, Chong FK, Yen CH, Ho YC. Valorization of conventional rice starch in drinking water treatment and optimization using response surface methodology (RSM). CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1684269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Siong-Chin Chua
- Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, Perak Darul Ridzuan, Malaysia
- Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Perak Darul Ridzuan, Malaysia
| | - Fai-Kait Chong
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Perak Darul Ridzuan, Malaysia
| | - Chia-Heng Yen
- Department of Water Resource Technology and Materials Research, Division of Water Technology Research, Industrial Technology Research Institute, Hsinchu City, Taiwan
| | - Yeek-Chia Ho
- Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, Perak Darul Ridzuan, Malaysia
- Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
28
|
Amigo JM, del Olmo A, Engelsen MM, Lundkvist H, Engelsen SB. Staling of white wheat bread crumb and effect of maltogenic α-amylases. Part 2: Monitoring the staling process by using near infrared spectroscopy and chemometrics. Food Chem 2019; 297:124946. [DOI: 10.1016/j.foodchem.2019.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/09/2019] [Accepted: 06/04/2019] [Indexed: 11/28/2022]
|
29
|
Ethylenediamine/glutaraldehyde-modified starch: A bioplatform for removal of anionic dyes from wastewater. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0328-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Position of acetyl groups on anhydroglucose unit in acetylated starches with intermediate degrees of substitution. Carbohydr Polym 2019; 220:118-125. [DOI: 10.1016/j.carbpol.2019.05.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 11/20/2022]
|
31
|
Hao H, Li L, Somasundaran P, Yuan Z. Adsorption of Pregelatinized Starch for Selective Flocculation and Flotation of Fine Siderite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6878-6887. [PMID: 30998371 DOI: 10.1021/acs.langmuir.9b00669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pregelatinized starch (PS) was used for the selective flocculation and flotation of fine siderite in a carbonate-containing iron ore. With PS, the flotation of fine siderite was improved. The repulsive forces between fine siderite particles and the attractive forces between siderite and hematite or quartz were decreased after treatment with PS, indicating that the aggregation of siderite was enhanced and the aggregations of mixed minerals were weakened. An analysis of the changes in X-ray photoelectron spectra showed that coordination bonds were formed when PS was adsorbed on siderite and hematite. However, PS could not adsorb on quartz. Moreover, the molecular simulation showed that the main mechanism for PS adsorption on siderite was confirmed as a "tail model" with end -OH coordinated with Fe2+. The bridge connection of PS enhanced the flocculation of fine siderite. The flotation of fine siderite was also enhanced. For hematite treated with PS, the combination of coordination bond and hydrogen bond resulted in the "loop model" and "train model" as the main adsorption mechanisms of PS. The molecules covered the hematite surface and prevented the adsorption of the collector. The flotation of hematite was depressed. As a result, the selective flocculation and flotation of fine siderite were realized.
Collapse
Affiliation(s)
- Haiqing Hao
- School of Resources & Civil Engineering , Northeastern University , Shenyang 110819 , China
| | - Lixia Li
- School of Resources & Civil Engineering , Northeastern University , Shenyang 110819 , China
| | - Ponisseril Somasundaran
- Langmuir Center for Colloid and Interface Science , Columbia University , New York , New York 10027 , United States
| | - Zhitao Yuan
- School of Resources & Civil Engineering , Northeastern University , Shenyang 110819 , China
| |
Collapse
|
32
|
Przetaczek-Rożnowska I, Fortuna T, Wodniak M, Łabanowska M, Pająk P, Królikowska K. Properties of potato starch treated with microwave radiation and enriched with mineral additives. Int J Biol Macromol 2019; 124:229-234. [DOI: 10.1016/j.ijbiomac.2018.11.153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/16/2022]
|
33
|
Ma Z, Yin X, Chang D, Hu X, Boye JI. Long- and short-range structural characteristics of pea starch modified by autoclaving, α-amylolysis, and pullulanase debranching. Int J Biol Macromol 2018; 120:650-656. [PMID: 30165145 DOI: 10.1016/j.ijbiomac.2018.08.132] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/24/2018] [Accepted: 08/25/2018] [Indexed: 11/19/2022]
Abstract
Pea starch (S) was modified by autoclaving (A), α-amylolysis (E), and pullulanase debranching (P), the effect of pretreatments including autoclaving and α-amylolysis on the structural modifications to the pullulanase debranched starch was investigated. All processed pea starch was transformed from a C- to a B-type crystalline structure. The power law exponent (α) ranging from 1.85 to 2.64 suggested the existence of mass fractal structure. Compared with native starch, all treatments applied caused an enhanced short-range order which was reflected by the increased values of α, degree of double helix (DD), degree of order (DO), and double helix content based on SAXS, FTIR, and 13CNMR observations. The processed starch sample of AS, and APS exhibited the highest DO, and α values, as well as the stronger absorption peak between 3000 and 3695 cm-1on FT-IR spectrum. AEPS exhibited the significantly highest double helix content, indicating that the higher extent of degradation induced by the combined treatments of autoclaving, α-amylolysis, and pullulanase debranching would give the molecular chains a higher alignment opportunity for the evolution towards coil-to-helix transition. The results would be helpful for better understanding the structure-processing relationship and to provide theoretical foundation for the development of food ingredients with targeted functional properties.
Collapse
Affiliation(s)
- Zhen Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China.
| | - Xiuxiu Yin
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Danni Chang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Joyce I Boye
- Food Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Blvd West, St. Hyacinthe, Quebec J2S 8E3, Canada
| |
Collapse
|
34
|
Allan MC, Rajwa B, Mauer LJ. Effects of sugars and sugar alcohols on the gelatinization temperature of wheat starch. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.06.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Wang C, Chen S, Zhang HB, Li Y, Hu XQ. Characterization of the inserted mutagenesis dextransucrases from Leuconostoc mesenteroides 0326 to produce hyperbranched dextran. Int J Biol Macromol 2018; 112:584-590. [DOI: 10.1016/j.ijbiomac.2018.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 01/20/2018] [Accepted: 02/01/2018] [Indexed: 01/15/2023]
|
36
|
Self-assembled oligosaccharide-based block copolymers as charge-storage materials for memory devices. Polym J 2018. [DOI: 10.1038/s41428-018-0059-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Sagnelli D, Chessa S, Mandalari G, Di Martino M, Sorndech W, Mamone G, Vincze E, Buillon G, Nielsen DS, Wiese M, Blennow A, Hebelstrup KH. Low glycaemic index foods from wild barley and amylose-only barley lines. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.11.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
38
|
Cockburn DW, Suh C, Medina KP, Duvall RM, Wawrzak Z, Henrissat B, Koropatkin NM. Novel carbohydrate binding modules in the surface anchored α-amylase of Eubacterium rectale provide a molecular rationale for the range of starches used by this organism in the human gut. Mol Microbiol 2017; 107:249-264. [PMID: 29139580 PMCID: PMC6939882 DOI: 10.1111/mmi.13881] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2017] [Indexed: 12/30/2022]
Abstract
Gut bacteria recognize accessible glycan substrates within a complex environment. Carbohydrate binding modules (CBMs) of cell surface glycoside hydrolases often drive binding to the target substrate. Eubacterium rectale, an important butyrate-producing organism in the gut, consumes a limited range of substrates, including starch. Host consumption of resistant starch increases the abundance of E. rectale in the intestine, likely because it successfully captures the products of resistant starch degradation by other bacteria. Here, we demonstrate that the cell wall anchored starch-degrading α-amylase, Amy13K of E. rectale harbors five CBMs that all target starch with differing specificities. Intriguingly these CBMs efficiently bind to both regular and high amylose corn starch (a type of resistant starch), but have almost no affinity for potato starch (another type of resistant starch). Removal of these CBMs from Amy13K reduces the activity level of the enzyme toward corn starches by ∼40-fold, down to the level of activity toward potato starch, suggesting that the CBMs facilitate activity on corn starch and allow its utilization in vivo. The specificity of the Amy13K CBMs provides a molecular rationale for why E. rectale is able to only use certain starch types without the aid of other organisms.
Collapse
Affiliation(s)
- Darrell W Cockburn
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Food Science, Pennsylvania State University, University Park, PA 16802, USA
| | - Carolyn Suh
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Krizia Perez Medina
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Rebecca M Duvall
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Zdzislaw Wawrzak
- Life Sciences Collaborative Access Team (LS-CAT), Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL, 60439, USA
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, Marseille, F-13288, France.,Institut National de la Recherche Agronomique, USC1408 Architecture et Fonction des Macromolécules Biologiques, Marseille, F-13288, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
39
|
Effect of diurnal photosynthetic activity on the fine structure of amylopectin from normal and waxy barley starch. Int J Biol Macromol 2017; 102:924-932. [DOI: 10.1016/j.ijbiomac.2017.04.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 11/18/2022]
|
40
|
Wang C, Zhang HB, Li MQ, Hu XQ, Li Y. Functional analysis of truncated and site-directed mutagenesis dextransucrases to produce different type dextrans. Enzyme Microb Technol 2017; 102:26-34. [DOI: 10.1016/j.enzmictec.2017.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 10/19/2022]
|
41
|
Guleria A, Singha AS, Rana RK. Preparation of starch-based biocomposites reinforced with mercerized lignocellulosic fibers: Evaluation of their thermal, morphological, mechanical, and biodegradable properties. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2017. [DOI: 10.1080/1023666x.2017.1345558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ashish Guleria
- Department of chemistry, Chandigarh University Gharuan, Mohali (Pb), India
| | - A. S. Singha
- Department of Chemistry, National Institute of Technology Hamirpur (HP) India
| | - Raj K Rana
- Department of Chemistry, National Institute of Technology Hamirpur (HP) India
| |
Collapse
|
42
|
Ringsted T, Siesler HW, Engelsen SB. Monitoring the staling of wheat bread using 2D MIR-NIR correlation spectroscopy. J Cereal Sci 2017. [DOI: 10.1016/j.jcs.2017.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
43
|
|
44
|
Nishimura T, Akiyoshi K. Amylose engineering: phosphorylase-catalyzed polymerization of functional saccharide primers for glycobiomaterials. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9:e1423. [PMID: 27506150 PMCID: PMC5333464 DOI: 10.1002/wnan.1423] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/26/2016] [Accepted: 07/05/2016] [Indexed: 12/31/2022]
Abstract
Interest in amylose and its hybrids has grown over many decades, and a great deal of work has been devoted to developing methods for designing functional amylose hybrids. In this context, phosphorylase-catalyzed polymerization shows considerable promise as a tool for preparing diverse amylose hybrids. Recently, advances have been made in the chemoenzymatic synthesis and characterization of amylose-block-polymers, amylose-graft-polymers, amylose-modified surfaces, hetero-oligosaccharides, and cellodextrin hybrids. Many of these saccharides provide clear opportunities for advances in biomaterials because of their biocompatibility and biodegradability. Important developments in bioapplications of amylose hybrids have also been made, and such newly developed amylose hybrids will help promote the development of new generations of glyco materials. WIREs Nanomed Nanobiotechnol 2017, 9:e1423. doi: 10.1002/wnan.1423 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Tomoki Nishimura
- Department of Polymer Chemistry, Graduate School of EngineeringKyoto UniversityKyotoJapan
- JST-ERATO Akiyoshi Bionanotransporter ProjectKyotoJapan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of EngineeringKyoto UniversityKyotoJapan
- JST-ERATO Akiyoshi Bionanotransporter ProjectKyotoJapan
| |
Collapse
|
45
|
Krunic SL, Skryhan K, Mikkelsen L, Ruzanski C, Shaik SS, Kirk HG, Palcic M, Blennow A. Non-GMO potato lines with an altered starch biosynthesis pathway confer increased-amylose and resistant starch properties. STARCH-STARKE 2017. [DOI: 10.1002/star.201600310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Susanne L. Krunic
- Department of Plant and Environmental Sciences; University of Copenhagen; Frederiksberg C Denmark
| | - Katsiaryna Skryhan
- Department of Plant and Environmental Sciences; University of Copenhagen; Frederiksberg C Denmark
| | - Lisbeth Mikkelsen
- Department of Plant and Environmental Sciences; University of Copenhagen; Frederiksberg C Denmark
| | - Christian Ruzanski
- CMC Biologics, Søborg; Copenhagen Denmark
- Carlsberg Laboratory, Valby; Copenhagen Denmark
| | - Shahnoor S. Shaik
- Department of Plant and Environmental Sciences; University of Copenhagen; Frederiksberg C Denmark
| | | | - Monica Palcic
- Carlsberg Laboratory, Valby; Copenhagen Denmark
- Department of Biochemistry and Microbiology; University of Victoria; British Columbia Canada
| | - Andreas Blennow
- Department of Plant and Environmental Sciences; University of Copenhagen; Frederiksberg C Denmark
| |
Collapse
|
46
|
Samal A, Craig JP, Coradetti ST, Benz JP, Eddy JA, Price ND, Glass NL. Network reconstruction and systems analysis of plant cell wall deconstruction by Neurospora crassa. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:225. [PMID: 28947916 PMCID: PMC5609067 DOI: 10.1186/s13068-017-0901-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/05/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Plant biomass degradation by fungal-derived enzymes is rapidly expanding in economic importance as a clean and efficient source for biofuels. The ability to rationally engineer filamentous fungi would facilitate biotechnological applications for degradation of plant cell wall polysaccharides. However, incomplete knowledge of biomolecular networks responsible for plant cell wall deconstruction impedes experimental efforts in this direction. RESULTS To expand this knowledge base, a detailed network of reactions important for deconstruction of plant cell wall polysaccharides into simple sugars was constructed for the filamentous fungus Neurospora crassa. To reconstruct this network, information was integrated from five heterogeneous data types: functional genomics, transcriptomics, proteomics, genetics, and biochemical characterizations. The combined information was encapsulated into a feature matrix and the evidence weighted to assign annotation confidence scores for each gene within the network. Comparative analyses of RNA-seq and ChIP-seq data shed light on the regulation of the plant cell wall degradation network, leading to a novel hypothesis for degradation of the hemicellulose mannan. The transcription factor CLR-2 was subsequently experimentally shown to play a key role in the mannan degradation pathway of N. crassa. CONCLUSIONS Here we built a network that serves as a scaffold for integration of diverse experimental datasets. This approach led to the elucidation of regulatory design principles for plant cell wall deconstruction by filamentous fungi and a novel function for the transcription factor CLR-2. This expanding network will aid in efforts to rationally engineer industrially relevant hyper-production strains.
Collapse
Affiliation(s)
- Areejit Samal
- Institute for Systems Biology, Seattle, WA 98109 USA
- Energy Biosciences Institute, University of California Berkeley, Berkeley, CA 94704 USA
- The Institute of Mathematical Sciences, Homi Bhabha National Institute, Chennai, 600113 India
- The Abdus Salam International Centre for Theoretical Physics, 34151 Trieste, Italy
| | - James P. Craig
- Energy Biosciences Institute, University of California Berkeley, Berkeley, CA 94704 USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Samuel T. Coradetti
- Energy Biosciences Institute, University of California Berkeley, Berkeley, CA 94704 USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - J. Philipp Benz
- Energy Biosciences Institute, University of California Berkeley, Berkeley, CA 94704 USA
- Holzforschung München, TUM School of Life Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - James A. Eddy
- Institute for Systems Biology, Seattle, WA 98109 USA
| | | | - N. Louise Glass
- Energy Biosciences Institute, University of California Berkeley, Berkeley, CA 94704 USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| |
Collapse
|
47
|
|
48
|
Amigo JM, del Olmo Alvarez A, Engelsen MM, Lundkvist H, Engelsen SB. Staling of white wheat bread crumb and effect of maltogenic α-amylases. Part 1: Spatial distribution and kinetic modeling of hardness and resilience. Food Chem 2016; 208:318-25. [DOI: 10.1016/j.foodchem.2016.02.162] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/02/2016] [Accepted: 02/29/2016] [Indexed: 11/26/2022]
|
49
|
Syson K, Stevenson CEM, Miah F, Barclay JE, Tang M, Gorelik A, Rashid AM, Lawson DM, Bornemann S. Ligand-bound Structures and Site-directed Mutagenesis Identify the Acceptor and Secondary Binding Sites of Streptomyces coelicolor Maltosyltransferase GlgE. J Biol Chem 2016; 291:21531-21540. [PMID: 27531751 PMCID: PMC5076824 DOI: 10.1074/jbc.m116.748160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/02/2016] [Indexed: 11/20/2022] Open
Abstract
GlgE is a maltosyltransferase involved in α-glucan biosynthesis in bacteria that has been genetically validated as a target for tuberculosis therapies. Crystals of the Mycobacterium tuberculosis enzyme diffract at low resolution so most structural studies have been with the very similar Streptomyces coelicolor GlgE isoform 1. Although the donor binding site for α-maltose 1-phosphate had been previously structurally defined, the acceptor site had not. Using mutagenesis, kinetics, and protein crystallography of the S. coelicolor enzyme, we have now identified the +1 to +6 subsites of the acceptor/product, which overlap with the known cyclodextrin binding site. The sugar residues in the acceptor subsites +1 to +5 are oriented such that they disfavor the binding of malto-oligosaccharides that bear branches at their 6-positions, consistent with the known acceptor chain specificity of GlgE. A secondary binding site remote from the catalytic center was identified that is distinct from one reported for the M. tuberculosis enzyme. This new site is capable of binding a branched α-glucan and is most likely involved in guiding acceptors toward the donor site because its disruption kinetically compromises the ability of GlgE to extend polymeric substrates. However, disruption of this site, which is conserved in the Streptomyces venezuelae GlgE enzyme, did not affect the growth of S. venezuelae or the structure of the polymeric product. The acceptor subsites +1 to +4 in the S. coelicolor enzyme are well conserved in the M. tuberculosis enzyme so their identification could help inform the design of inhibitors with therapeutic potential.
Collapse
Affiliation(s)
- Karl Syson
- From the Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Clare E M Stevenson
- From the Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Farzana Miah
- From the Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - J Elaine Barclay
- From the Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Minhong Tang
- From the Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Andrii Gorelik
- From the Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Abdul M Rashid
- From the Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - David M Lawson
- From the Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Stephen Bornemann
- From the Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
50
|
Wilkens C, Auger KD, Anderson NT, Meekins DA, Raththagala M, Abou Hachem M, Payne CM, Gentry MS, Svensson B. Plant α‐glucan phosphatases SEX4 and LSF2 display different affinity for amylopectin and amylose. FEBS Lett 2016; 590:118-28. [DOI: 10.1002/1873-3468.12027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 11/23/2015] [Accepted: 11/23/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Casper Wilkens
- Enzyme and Protein Chemistry Department of Systems Biology Technical University of Denmark Kongens Lyngby Denmark
| | - Kyle D. Auger
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology University of Kentucky Lexington KY USA
| | - Nolan T. Anderson
- Department of Chemical and Materials Engineering University of Kentucky Lexington KY USA
| | - David A. Meekins
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology University of Kentucky Lexington KY USA
| | - Madushi Raththagala
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology University of Kentucky Lexington KY USA
| | - Maher Abou Hachem
- Enzyme and Protein Chemistry Department of Systems Biology Technical University of Denmark Kongens Lyngby Denmark
| | - Christina M. Payne
- Department of Chemical and Materials Engineering University of Kentucky Lexington KY USA
| | - Matthew S. Gentry
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology University of Kentucky Lexington KY USA
| | - Birte Svensson
- Enzyme and Protein Chemistry Department of Systems Biology Technical University of Denmark Kongens Lyngby Denmark
| |
Collapse
|