1
|
Vieira CSP, Segundo MA, Araújo AN. Cytochrome P450 electrochemical biosensors transforming in vitro metabolism testing - Opportunities and challenges. Bioelectrochemistry 2025; 163:108913. [PMID: 39854934 DOI: 10.1016/j.bioelechem.2025.108913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
The ability of the living world to flourish in the face of constant exposure to dangerous chemicals depends on the management ability of a widespread group of enzymes known as heme-thiolate monooxygenases or cytochrome P450 superfamily. About three-quarters of all reactions determining the metabolism of endogenous compounds, of those carried in foods, of taken drugs, or even of synthetic chemicals discarded into the environment depend on their catalytic performance. The chromatographic and (photo)luminometric methods routinely used as predictive and analytical tools in laboratories have significant drawbacks ranging from limited shelf-life of reagents, use of synthetic substrates, laborious and tedious procedures for highly sensitive detection. In this review, alternative electrochemical biosensors using the cytochrome P450 enzymes as bio-element are emphasized in their main aspects as well regarding their implementation and usefulness. Despite the various schemes proposed for the implementation, reports on real applications are scant for several reasons, including low reaction rates, broad substrate specificity, uncoupling reactions occurrence, and the need for expensive electron transfer partners to promote electron transfer. Finally, the prospect for future developments is introduced, focusing on integrating miniaturized systems with electrochemical techniques, alongside optimizing enzyme immobilization methods and electrode modifications to improve enzymatic stability and enhance sensor reliability. This progress represents a crucial step towards the creation of portable biosensors that mimic human physiological responses, supporting the precision medicine approach.
Collapse
Affiliation(s)
- Carina S P Vieira
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marcela A Segundo
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Alberto N Araújo
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
2
|
Bakestani RM, Wu Y, Glahn-Martínez B, Kippin TE, Plaxco KW, Kolkman RW. Carboxylate-Terminated Electrode Surfaces Improve the Performance of Electrochemical Aptamer-Based Sensors. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8706-8714. [PMID: 39841926 PMCID: PMC11803614 DOI: 10.1021/acsami.4c21790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/11/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Electrochemical aptamer-based (EAB) sensors are a molecular measurement platform that enables the continuous, real-time measurement of a wide range of drugs and biomarkers in situ in the living body. EAB sensors are fabricated by depositing a thiol-modified, target-binding aptamer on the surface of a gold electrode, followed by backfilling with an alkanethiol to form a self-assembled monolayer. And while the majority of previously described EAB sensors have employed hydroxyl-terminated monolayers, a handful of studies have shown that altering the monolayer headgroup can strongly affect sensor performance. Here, using 4 different EAB sensors, we show that the mixed monolayers composed of mixtures of 6-carbon hydroxyl-terminated thiols and varying amounts of either 6- or 8-carbon, carboxylate-terminated thiols lead to improved EAB sensor performance. Specifically, the use of such mixed monolayers enhances the signal gain (the relative change in the signal seen upon target addition) for all tested sensors, often by several fold, both in buffer and whole blood at room temperature or physiological temperatures. Moreover, these improvements in gain are achieved without significant changes in the aptamer affinity or the stability of the resulting sensors. In addition to proving a ready means of improving EAB sensor performance, these results suggest that exploration of the chemistry of the electrode surface employed in such sensors could prove to be a fruitful means of advancing this unique in vivo sensing technology.
Collapse
Affiliation(s)
- Rose Mery Bakestani
- Department
of Chemistry and Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Yuyang Wu
- Department
of Chemistry and Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Bettina Glahn-Martínez
- Department
of Chemistry and Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106, United States
- Department
of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Tod E. Kippin
- Department
of Psychological and Brain Sciences, University
of California Santa Barbara, Santa
Barbara, California 93106, United States
| | - Kevin W. Plaxco
- Department
of Chemistry and Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106, United States
- Biological
Engineering Graduate Program, University
of California Santa Barbara, Santa
Barbara, California 93106, United States
| | - Ruben W. Kolkman
- Department
of Chemistry and Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
3
|
Zuo Y, Lei L, Huang K, Zhang T, Hao Q, Zhao C, Liu H. Blending polymer outer membrane for continuous glucose monitoring with an extended lifetime. SENSORS AND ACTUATORS B: CHEMICAL 2024; 417:136142. [DOI: 10.1016/j.snb.2024.136142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 07/04/2024]
|
4
|
Li L, Zhou Y, Sun C, Zhou Z, Zhang J, Xu Y, Xiao X, Deng H, Zhong Y, Li G, Chen Z, Deng W, Hu X, Wang Y. Fully integrated wearable microneedle biosensing platform for wide-range and real-time continuous glucose monitoring. Acta Biomater 2024; 175:199-213. [PMID: 38160859 DOI: 10.1016/j.actbio.2023.12.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Wearable microneedle sensors for continuous glucose monitoring (CGM) have great potential for clinical impact by allowing access to large data sets to provide individualized treatment plans. To date, their development has been challenged by the accurate wide linear range tracking of interstitial fluid (ISF) glucose (Glu) levels. Here, we present a CGM platform consisting of a three-electrode microneedle electrochemical biosensor and a fully integrated radio-chemical analysis system. The long-term performance of the robust CGM on diabetic rats was achieved by electrodepositing Prussian blue (PB), and crosslinking glucose oxidase (GOx) and chitosan to form a 3D network using glutaraldehyde (GA). After redox by GOx, PB rapidly decomposes hydrogen peroxide and mediates charge transfer, while the 3D network and graphite powder provide enrichment and release sites for Glu and catalytic products, enabling a sensing range of 0.25-35 mM. Microneedle CGM has high sensitivity, good stability, and anti-interference ability. In diabetic rats, CGM can accurately monitor Glu levels in the ISF in real-time, which are highly consistent with levels measured by commercial Glu meters. These results indicate the feasibility and application prospects of the PB-based CGM for the clinical management of diabetes. STATEMENT OF SIGNIFICANCE: This study addresses the challenge of continuous glucose monitoring system design where the narrow linear range of sensing due to the miniaturization of sensors fails to meet the monitoring needs of clinical diabetic patients. This was achieved by utilizing a three-dimensional network of glutaraldehyde cross-linked glucose oxidase and chitosan. The unique topology of the 3D network provides a large number of sites for glucose enrichment and anchors the enzyme to the sensing medium and the conductive substrate through covalent bonding, successfully blocking the escape of the enzyme and the sensing medium and shortening the electron transfer and transmission path.
Collapse
Affiliation(s)
- Lei Li
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yujie Zhou
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Chenwei Sun
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Zhengming Zhou
- Department of Nutrition and Food Hygiene, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yuanyuan Xu
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xuanyu Xiao
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Hui Deng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuting Zhong
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Guoyuan Li
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Zhiyu Chen
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Wei Deng
- Department of Orthopedics Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College Chengdu, Sichuan, 611730, China
| | - Xuefeng Hu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
| |
Collapse
|
5
|
Kim Y, Jeon Y, Na M, Hwang SJ, Yoon Y. Recent Trends in Chemical Sensors for Detecting Toxic Materials. SENSORS (BASEL, SWITZERLAND) 2024; 24:431. [PMID: 38257524 PMCID: PMC10821350 DOI: 10.3390/s24020431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/07/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
Industrial development has led to the widespread production of toxic materials, including carcinogenic, mutagenic, and toxic chemicals. Even with strict management and control measures, such materials still pose threats to human health. Therefore, convenient chemical sensors are required for toxic chemical monitoring, such as optical, electrochemical, nanomaterial-based, and biological-system-based sensors. Many existing and new chemical sensors have been developed, as well as new methods based on novel technologies for detecting toxic materials. The emergence of material sciences and advanced technologies for fabrication and signal-transducing processes has led to substantial improvements in the sensing elements for target recognition and signal-transducing elements for reporting interactions between targets and sensing elements. Many excellent reviews have effectively summarized the general principles and applications of different types of chemical sensors. Therefore, this review focuses on chemical sensor advancements in terms of the sensing and signal-transducing elements, as well as more recent achievements in chemical sensors for toxic material detection. We also discuss recent trends in biosensors for the detection of toxic materials.
Collapse
Affiliation(s)
| | | | | | | | - Youngdae Yoon
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.K.); (Y.J.); (M.N.); (S.-J.H.)
| |
Collapse
|
6
|
Li X, Wang D, Ding Z, Chen X, Chen L, Ni W, Feng X. Engineering a Hollow Carbon Sphere-Based Triphase Microenvironment for Enhanced Enzymatic Reaction Kinetics and Bioassay Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302634. [PMID: 37376867 DOI: 10.1002/smll.202302634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/28/2023] [Revised: 06/11/2023] [Indexed: 06/29/2023]
Abstract
Electrochemical bioassays based on oxidase reactions are frequently used in biological sciences and medical industries. However, the enzymatic reaction kinetics are severely restricted by the poor solubility and slow diffusion rate of oxygen in conventional solid-liquid diphase reaction systems, which inevitably compromises the detection accuracy, linearity, and reliability of the oxidase-based bioassay. Herein, an effective solid-liquid-air triphase bioassay system is provided that uses hydrophobic hollow carbon spheres (HCSs) as oxygen nanocarriers. The oxygen stored in the cavity of HCS can rapidly diffuse to the oxidase active sites through the mesoporous carbon shell, providing sufficient oxygen for oxidase-based enzymatic reactions. As a result, the triphase system can significantly improve the enzymatic reaction kinetics and obtain a 20-fold higher linear detection range than the normal diphase system. Other biomolecules can also be determined using this triphase technique, and the triphase design strategy offers a new route to address the gas deficiency problem in catalytic reactions that involve gas consumption.
Collapse
Affiliation(s)
- Xiaohui Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Dandan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhenyao Ding
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xi Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Liping Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Weihai Ni
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, 215006, China
| | - Xinjian Feng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
7
|
Singh B, Bhat A, Dutta L, Pati KR, Korpan Y, Dahiya I. Electrochemical Biosensors for the Detection of Antibiotics in Milk: Recent Trends and Future Perspectives. BIOSENSORS 2023; 13:867. [PMID: 37754101 PMCID: PMC10527191 DOI: 10.3390/bios13090867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023]
Abstract
Antibiotics have emerged as ground-breaking medications for the treatment of infectious diseases, but due to the excessive use of antibiotics, some drugs have developed resistance to microorganisms. Because of their structural complexity, most antibiotics are excreted unchanged, polluting the water, soil, and natural resources. Additionally, food items are being polluted through the widespread use of antibiotics in animal feed. The normal concentrations of antibiotics in environmental samples typically vary from ng to g/L. Antibiotic residues in excess of these values can pose major risks the development of illnesses and infections/diseases. According to estimates, 300 million people will die prematurely in the next three decades (by 2050), and the WHO has proclaimed "antibiotic resistance" to be a severe economic and sociological hazard to public health. Several antibiotics have been recognised as possible environmental pollutants (EMA) and their detection in various matrices such as food, milk, and environmental samples is being investigated. Currently, chromatographic techniques coupled with different detectors (e.g., HPLC, LC-MS) are typically used for antibiotic analysis. Other screening methods include optical methods, ELISA, electrophoresis, biosensors, etc. To minimise the problems associated with antibiotics (i.e., the development of AMR) and the currently available analytical methods, electrochemical platforms have been investigated, and can provide a cost-effective, rapid and portable alternative. Despite the significant progress in this field, further developments are necessary to advance electrochemical sensors, e.g., through the use of multi-functional nanomaterials and advanced (bio)materials to ensure efficient detection, sensitivity, portability, and reliability. This review summarises the use of electrochemical biosensors for the detection of antibiotics in milk/milk products and presents a brief introduction to antibiotics and AMR followed by developments in the field of electrochemical biosensors based on (i) immunosensor, (ii) aptamer (iii) MIP, (iv) enzyme, (v) whole-cell and (vi) direct electrochemical approaches. The role of nanomaterials and sensor fabrication is discussed wherever necessary. Finally, the review discusses the challenges encountered and future perspectives. This review can serve as an insightful source of information, enhancing the awareness of the role of electrochemical biosensors in providing information for the preservation of the health of the public, of animals, and of our environment, globally.
Collapse
Affiliation(s)
- Baljit Singh
- MiCRA Biodiagnostics Technology Gateway, Technological University Dublin (TU Dublin), D24 FKT9 Dublin, Ireland
- Centre of Applied Science for Health, Technological University Dublin (TU Dublin), D24 FKT9 Dublin, Ireland
| | - Abhijnan Bhat
- Centre of Applied Science for Health, Technological University Dublin (TU Dublin), D24 FKT9 Dublin, Ireland
| | - Lesa Dutta
- Department of Chemistry, Central University of Punjab, VPO Ghudda, Bathinda 151401, Punjab, India
| | - Kumari Riya Pati
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Yaroslav Korpan
- Institute of Molecular Biology and Genetics NAS of Ukraine, Department of Biomolecular Electronics, 03143 Kyiv, Ukraine
| | - Isha Dahiya
- Centre for Biotechnology, Maharshi Dayanand University (MDU), Rohtak 124001, Haryana, India
| |
Collapse
|
8
|
Tang Y, Hardy TJ, Yoon JY. Receptor-based detection of microplastics and nanoplastics: Current and future. Biosens Bioelectron 2023; 234:115361. [PMID: 37148803 DOI: 10.1016/j.bios.2023.115361] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/08/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
Plastic pollution is an emerging environmental concern, gaining significant attention worldwide. They are classified into microplastics (MP; defined from 1 μm to 5 mm) and smaller nanoplastics (NP; <1 μm). NPs may pose higher ecological risks than MPs. Various microscopic and spectroscopic techniques have been used to detect MPs, and the same methods have occasionally been used for NPs. However, they are not based on receptors, which provide high specificity in most biosensing applications. Receptor-based micro/nanoplastics (MNP) detection can provide high specificity, distinguishing MNPs from the environmental samples and, more importantly, identifying the plastic types. It can also offer a low limit of detection (LOD) required for environmental screening. Such receptors are expected to detect NPs specifically at the molecular level. This review categorizes the receptors into cells, proteins, peptides, fluorescent dyes, polymers, and micro/nanostructures. Detection techniques used with these receptors are also summarized and categorized. There is plenty of room for future research to test for broader classes of environmental samples and many plastic types, to lower the LOD, and to apply the current techniques for NPs. Portable and handheld MNP detection should also be demonstrated for field use since the current demonstrations primarily utilized laboratory instruments. Detection on microfluidic platforms will also be crucial in miniaturizing and automating the assay and, eventually, collecting an extensive database to support machine learning-based classification of MNP types.
Collapse
Affiliation(s)
- Yisha Tang
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Trinity J Hardy
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States.
| |
Collapse
|
9
|
Chamorro-Garcia A, Gerson J, Flatebo C, Fetter L, Downs AM, Emmons N, Ennis HL, Milosavić N, Yang K, Stojanovic M, Ricci F, Kippin TE, Plaxco KW. Real-Time, Seconds-Resolved Measurements of Plasma Methotrexate In Situ in the Living Body. ACS Sens 2023; 8:150-157. [PMID: 36534756 DOI: 10.1021/acssensors.2c01894] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022]
Abstract
Dose-limiting toxicity and significant patient-to-patient pharmacokinetic variability often render it difficult to achieve the safe and effective dosing of drugs. This is further compounded by the slow, cumbersome nature of the analytical methods used to monitor patient-specific pharmacokinetics, which inevitably rely on blood draws followed by post-facto laboratory analysis. Motivated by the pressing need for improved "therapeutic drug monitoring", we are developing electrochemical aptamer-based (EAB) sensors, a minimally invasive biosensor architecture that can provide real-time, seconds-resolved measurements of drug levels in situ in the living body. A key advantage of EAB sensors is that they are generalizable to the detection of a wide range of therapeutic agents because they are independent of the chemical or enzymatic reactivity of their targets. Three of the four therapeutic drug classes that have, to date, been shown measurable using in vivo EAB sensors, however, bind to nucleic acids as part of their mode of action, leaving open questions regarding the extent to which the approach can be generalized to therapeutics that do not. Here, we demonstrate real-time, in vivo measurements of plasma methotrexate, an antimetabolite (a mode of action not reliant on DNA binding) chemotherapeutic, following human-relevant dosing in a live rat animal model. By providing hundreds of drug concentration values, the resulting seconds-resolved measurements succeed in defining key pharmacokinetic parameters, including the drug's elimination rate, peak plasma concentration, and exposure (area under the curve), with unprecedented 5 to 10% precision. With this level of precision, we easily identify significant (>2-fold) differences in drug exposure occurring between even healthy rats given the same mass-adjusted methotrexate dose. By providing a real-time, seconds-resolved window into methotrexate pharmacokinetics, such measurements can be used to precisely "individualize" the dosing of this significantly toxic yet vitally important chemotherapeutic.
Collapse
Affiliation(s)
- Alejandro Chamorro-Garcia
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States.,Dipartimento di Scienze e Tecnologie Chimiche, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Julian Gerson
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Charlotte Flatebo
- Institute for Collaborative Biotechnologies, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Lisa Fetter
- Biomolecular Science and Engineering Program, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Alex M Downs
- Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Nicole Emmons
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Herbert L Ennis
- Center for Innovative Diagnostic and Therapeutic Approaches, Department of Medicine, Columbia University New York, New York, New York 10032, United States
| | - Nenad Milosavić
- Center for Innovative Diagnostic and Therapeutic Approaches, Department of Medicine, Columbia University New York, New York, New York 10032, United States
| | - Kyungae Yang
- Center for Innovative Diagnostic and Therapeutic Approaches, Department of Medicine, Columbia University New York, New York, New York 10032, United States
| | - Milan Stojanovic
- Center for Innovative Diagnostic and Therapeutic Approaches, Department of Medicine, Columbia University New York, New York, New York 10032, United States.,Department of Biomedical Engineering and Systems Biology, Columbia University New York, New York, New York 10032, United States
| | - Francesco Ricci
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Tod E Kippin
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States.,Biomolecular Science and Engineering Program, University of California Santa Barbara, Santa Barbara, California 93106, United States.,Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States.,Biological Engineering Graduate Program, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
10
|
Khan RS, Rather AH, Wani TU, Rather SU, Amna T, Hassan MS, Sheikh FA. Recent trends using natural polymeric nanofibers as supports for enzyme immobilization and catalysis. Biotechnol Bioeng 2023; 120:22-40. [PMID: 36169115 DOI: 10.1002/bit.28246] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/11/2022] [Revised: 08/25/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022]
Abstract
All the disciplines of science, especially biotechnology, have given continuous attention to the area of enzyme immobilization. However, the structural support made by material science intervention determines the performance of immobilized enzymes. Studies have proven that nanostructured supports can maintain better catalytic performance and improve immobilization efficiency. The recent trends in the application of nanofibers using natural polymers for enzyme immobilization have been addressed in this review article. A comprehensive survey about the immobilization strategies and their characteristics are highlighted. The natural polymers, e.g., chitin, chitosan, silk fibroin, gelatin, cellulose, and their blends with other synthetic polymers capable of immobilizing enzymes in their 1D nanofibrous form, are discussed. The multiple applications of enzymes immobilized on nanofibers in biocatalysis, biosensors, biofuels, antifouling, regenerative medicine, biomolecule degradation, etc.; some of these are discussed in this review article.
Collapse
Affiliation(s)
- Rumysa S Khan
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar, Jammu and Kashmir, India
| | - Anjum H Rather
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar, Jammu and Kashmir, India
| | - Taha U Wani
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar, Jammu and Kashmir, India
| | - Sami-Ullah Rather
- Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Touseef Amna
- Department of Biology, Faculty of Science, Albaha University, Albaha, Saudi Arabia
| | - M Shamshi Hassan
- Department of Chemistry, Faculty of Science, Albaha University, Albaha, Saudi Arabia
| | - Faheem A Sheikh
- Nanostructured and Biomimetic Lab, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
11
|
Liu Y, Liu Z, Tian Y. Real-Time Tracking of Electrical Signals and an Accurate Quantification of Chemical Signals with Long-Term Stability in the Live Brain. Acc Chem Res 2022; 55:2821-2832. [PMID: 36074539 DOI: 10.1021/acs.accounts.2c00333] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/19/2023]
Abstract
The development of in vivo analytical tools and methods for recording electrical signals and accurately quantifying chemical signals is a key issue for a comprehensive understanding of brain events. The electrophysiological microelectrode was invented to monitor electrical signals in free-moving brains. On the other hand, electrochemical assays with excellent spatiotemporal resolution provide an effect way to monitor chemical signals in vivo. Unfortunately, the in vivo electrochemical biosensors still have three limitations. First, many biological species such as reactive oxygen species (ROS) and neurotransmitters demonstrate large overpotentials at conventional electrodes. Thus, it is hard to convert the chemical/electrochemical signals of these molecules into electric signals. Second, the interfacial properties of the recognition molecules assembled onto the electrode surfaces have a great influence on the transmission of electric charge through the interface and the stability of the modified recognition molecules. Meanwhile, the surface of biosensors implanted in the brain is easily absorbed by many proteins present in the brain, resulting in the loss of signals. Finally, activities in the brain including neuron discharges and electrophysiological signals may be affected by electrochemical measurements due to the application of extra potentials and/or currents.This Account presents a deep view of the fundamental design principles and solutions in response to the above challenges for developing in vivo biosensors with high performance while meeting the growing requirements, including high selectivity, long-time stability, and simultaneously monitoring electrical and chemical signals. We aim to highlight the basic criteria based on a double-recognition strategy for the selective biosensing of ROS, H2S, and HnS through the rational design of specific recognition molecules followed by electrochemical oxidation or reduction. Recent developments in designing functionalized surfaces through a systematic investigation of self-assembly with Au-S bonds, Au-Se bonds, and Au≡C bonds for facilitating electrochemical properties as well as improving the stability are summarized. More importantly, this Account highlights the novel methodologies for simultaneously monitoring electrical and chemical signals ascribed to the dynamic changes in K+, Na+, and Ca2+ and pH values in vivo. Additionally, SERS-based photophysiological microarray probes have been developed for quantitatively tracking chemical changes in the live brain together with recording electrophysiological signals.The design principles and novel strategies presented in this Account can be extended to the real-time tracking of electrical signals and the accurate quantification of more chemical signals such as amino acids, neurotransmitters, and proteins to understand the brain events. The final part also outlines potential future directions in constructing high-density microarrays, eventually enabling the large-scale dynamic recording of the chemical expression of multineuronal signals across the whole brain. There is still room to develop a multifiber microarray which can be coupled with photometric methods to record chemical signals both inside and outside neurons in the live brains of freely moving animals to understand physiological processes and screen drugs.
Collapse
Affiliation(s)
- Yuandong Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
12
|
Hua Y, Ma J, Li D, Wang R. DNA-Based Biosensors for the Biochemical Analysis: A Review. BIOSENSORS 2022; 12:bios12030183. [PMID: 35323453 PMCID: PMC8945906 DOI: 10.3390/bios12030183] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/13/2022] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 05/21/2023]
Abstract
In recent years, DNA-based biosensors have shown great potential as the candidate of the next generation biomedical detection device due to their robust chemical properties and customizable biosensing functions. Compared with the conventional biosensors, the DNA-based biosensors have advantages such as wider detection targets, more durable lifetime, and lower production cost. Additionally, the ingenious DNA structures can control the signal conduction near the biosensor surface, which could significantly improve the performance of biosensors. In order to show a big picture of the DNA biosensor's advantages, this article reviews the background knowledge and recent advances of DNA-based biosensors, including the functional DNA strands-based biosensors, DNA hybridization-based biosensors, and DNA templated biosensors. Then, the challenges and future directions of DNA-based biosensors are discussed and proposed.
Collapse
|
13
|
Moradi R, Khalili NP, Septiani NLW, Liu CH, Doustkhah E, Yamauchi Y, Rotkin SV. Nanoarchitectonics for Abused-Drug Biosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104847. [PMID: 34882957 DOI: 10.1002/smll.202104847] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/12/2021] [Revised: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Rapid, accessible, and highly accurate biosensors for the detection of addictive and abused drugs are needed to reduce the adverse personal and societal impacts of addiction. Modern sensors that utilize next-generation technologies, e.g., nanobiotechnology and nanoarchitectonics, have triggered revolutionary progress in the field as they allow accurate detection and tracking of trace levels of major classes of drugs. This paper reviews advances in the field of biosensors for the detection of commonly abused drugs, both prescribed such as codeine and morphine, and illegal narcotics like cocaine.
Collapse
Affiliation(s)
- Rasoul Moradi
- Nanotechnology Laboratory, School of Engineering and Applied Science, Khazar University, Baku, Az1096, Azerbaijan
- Department of Chemical Engineering, School of Engineering and Applied Science, Khazar University, Baku, Az1096, Azerbaijan
| | - Nazila Pour Khalili
- Nanotechnology Laboratory, School of Engineering and Applied Science, Khazar University, Baku, Az1096, Azerbaijan
- Center for Cell Pathology Research, Department of Biological Science, Khazar University, Baku, Az1096, Azerbaijan
| | - Ni Luh Wulan Septiani
- Advanced Functional Materials Research Group, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, and TMU Research Center of Urology and Kidney, Taipei Medical University, No. 250, Wu-Hsing Street, Taipei, 110, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, No. 291, Zhongzheng Road, Zhonghe District, New Taipei City, 23561, Taiwan
| | - Esmail Doustkhah
- International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Slava V Rotkin
- Department of Engineering Science and Mechanics, Materials Research Institute, The Pennsylvania State University, Millennium Science Complex, University Park, PA, 16802, USA
| |
Collapse
|
14
|
Razzaghi M, Homaei A, Vianello F, Azad T, Sharma T, Nadda AK, Stevanato R, Bilal M, Iqbal HMN. Industrial applications of immobilized nano-biocatalysts. Bioprocess Biosyst Eng 2022; 45:237-256. [PMID: 34596787 DOI: 10.1007/s00449-021-02647-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/07/2021] [Accepted: 09/24/2021] [Indexed: 02/05/2023]
Abstract
Immobilized enzyme-based catalytic constructs could greatly improve various industrial processes due to their extraordinary catalytic activity and reaction specificity. In recent decades, nano-enzymes, defined as enzyme immobilized on nanomaterials, gained popularity for the enzymes' improved stability, reusability, and ease of separation from the biocatalytic process. Thus, enzymes can be strategically incorporated into nanostructured materials to engineer nano-enzymes, such as nanoporous particles, nanofibers, nanoflowers, nanogels, nanomembranes, metal-organic frameworks, multi-walled or single-walled carbon nanotubes, and nanoparticles with tuned shape and size. Surface-area-to-volume ratio, pore-volume, chemical compositions, electrical charge or conductivity of nanomaterials, protein charge, hydrophobicity, and amino acid composition on protein surface play fundamental roles in the nano-enzyme preparation and catalytic properties. With proper understanding, the optimization of the above-mentioned factors will lead to favorable micro-environments for biocatalysts of industrial relevance. Thus, the application of nano-enzymes promise to further strengthen the advances in catalysis, biotransformation, biosensing, and biomarker discovery. Herein, this review article spotlights recent progress in nano-enzyme development and their possible implementation in different areas, including biomedicine, biosensors, bioremediation of industrial pollutants, biofuel production, textile, leather, detergent, food industries and antifouling.
Collapse
Affiliation(s)
- Mozhgan Razzaghi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran.
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, PD, Italy
| | - Taha Azad
- Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Tanvi Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, Waknaghat, India
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, Waknaghat, India
| | - Roberto Stevanato
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Venice, Italy
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hafiz M N Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, 64849, Monterrey, Mexico
| |
Collapse
|
15
|
The Efficiency of AuNPs in Cancer Cell Targeting Compared to Other Nanomedicine Technologies Using Fuzzy PROMETHEE. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:1566834. [PMID: 34567477 PMCID: PMC8457989 DOI: 10.1155/2021/1566834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 05/31/2021] [Accepted: 08/28/2021] [Indexed: 11/17/2022]
Abstract
Cancer is a disease with rare, diverse symptoms, causing abnormal cell growth in an uncontrolled way, leading to cell damage, apoptosis, and eventually death of the patient. This study uses the Fuzzy PROMETHEE technique to develop a new path for cancer treatment based on nanoparticles (NPs) applications, used in controlled anticancer drug delivery (drug release, toxicity, and unspecific site targeting) to enhance patient safety. The different nanoparticles employed in the drug delivery analysis are gold nanoparticles (AuNPs), liposomes, dendrimers, polymeric micelles (PMs), and quantum dots (QDs). Fuzzy predictable preference organization mode and evaluation multicriteria choice were used as tactics in making the best decision using the data from the factors of cost, size, shape, surface charge, ligand type, pH and temperature stimuli, biocompatibility, accumulation ratio, toxicity, specificity, stability, efficacy, adverse effect, and safety factor of the NPs. The results obtained from the total net flow of the visual PROMETHEE scenario for anticancer drug delivery, based on NPs data analysis, show that AuNPs are ranked the highest among the other NPs. The Phi values obtained for the NPs are as follows: AuNPs (0.1428), PMs (0.0280), QDs (-0.0467), dendrimers (-0.0593), and liposomes (-0.0649). This study highlights the optimal choice of NPs as an intelligent drug delivery system that facilitates therapeutic efficiency, where cancer cells are accurately targeted to enhance treatment quality and patient safety.
Collapse
|
16
|
Affiliation(s)
- Xiangyuan Mei
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences Beijing China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing China
| | - Dekai Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences Beijing China
| | - Fengjiao Zhang
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing China
| | - Chong‐an Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences Beijing China
| |
Collapse
|
17
|
Zhang Q, Meyerhoff ME. Nitric Oxide Release for Enhanced Biocompatibility and Analytical Performance of Implantable Electrochemical Sensors. ELECTROANAL 2021. [DOI: 10.1002/elan.202100174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qi Zhang
- Department of Chemistry University of Michigan Ann Arbor MI 48109 USA
| | - Mark E. Meyerhoff
- Department of Chemistry University of Michigan Ann Arbor MI 48109 USA
| |
Collapse
|
18
|
Wang H, Zhang J, Wang D, Wang Z, Chen Y, Feng X. Flexible triphase enzyme electrode based on hydrophobic porous PVDF membrane for high-performance bioassays. Biosens Bioelectron 2021; 183:113201. [PMID: 33812291 DOI: 10.1016/j.bios.2021.113201] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/01/2021] [Revised: 03/13/2021] [Accepted: 03/23/2021] [Indexed: 01/13/2023]
Abstract
Flexible bioassays based on oxidase-catalyzed and electrocatalytic cascade reactions have been widely reported. However, the fluctuant oxygen level and high anodic potential restricts the detection accuracy. To overcome these challenges, we report here a flexible triphase enzyme electrode by assembling an oxidase enzyme layer and Pt electrocatalysts onto a carbon nanotube film/porous polyvinylidene fluoride hydrophobic substrate. Such a flexible enzyme electrode has an air-liquid-solid triphase reaction zone where oxygen level is air phase dependent (constant and sufficient high), which stabilized the oxidase kinetics and enabled the cathodic measurement of enzymatic product H2O2 with minimum interferents caused from oxygen level fluctuation and many oxidizable species in analyte solution. Furthermore, the flexible triphase enzyme electrode exhibited good mechanical stability even after being bent over 600 times and an excellent air permeability, which are crucial to wearable devices that require long-term skin contact.
Collapse
Affiliation(s)
- Haili Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Jun Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China.
| | - Dandan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Zhaohong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Yangru Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Xinjian Feng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
19
|
Dennyson Savariraj A, Salih A, Alam F, Elsherif M, AlQattan B, Khan AA, Yetisen AK, Butt H. Ophthalmic Sensors and Drug Delivery. ACS Sens 2021; 6:2046-2076. [PMID: 34043907 PMCID: PMC8294612 DOI: 10.1021/acssensors.1c00370] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/20/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022]
Abstract
Advances in multifunctional materials and technologies have allowed contact lenses to serve as wearable devices for continuous monitoring of physiological parameters and delivering drugs for ocular diseases. Since the tear fluids comprise a library of biomarkers, direct measurement of different parameters such as concentration of glucose, urea, proteins, nitrite, and chloride ions, intraocular pressure (IOP), corneal temperature, and pH can be carried out non-invasively using contact lens sensors. Microfluidic contact lens sensor based colorimetric sensing and liquid control mechanisms enable the wearers to perform self-examinations at home using smartphones. Furthermore, drug-laden contact lenses have emerged as delivery platforms using a low dosage of drugs with extended residence time and increased ocular bioavailability. This review provides an overview of contact lenses for ocular diagnostics and drug delivery applications. The designs, working principles, and sensing mechanisms of sensors and drug delivery systems are reviewed. The potential applications of contact lenses in point-of-care diagnostics and personalized medicine, along with the significance of integrating multiplexed sensing units together with drug delivery systems, have also been discussed.
Collapse
Affiliation(s)
| | - Ahmed Salih
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Fahad Alam
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mohamed Elsherif
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Bader AlQattan
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ammar A. Khan
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, United Kingdom
| | - Ali K. Yetisen
- Department
of Physics, Lahore University of Management
Sciences, Lahore Cantonment 54792, Lahore, Pakistan
| | - Haider Butt
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
20
|
Crawford L, Wyatt M, Bryers J, Ratner B. Biocompatibility Evolves: Phenomenology to Toxicology to Regeneration. Adv Healthc Mater 2021; 10:e2002153. [PMID: 33829678 PMCID: PMC8221530 DOI: 10.1002/adhm.202002153] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/07/2020] [Revised: 02/26/2021] [Indexed: 12/20/2022]
Abstract
The word "biocompatibility," is inconsistent with the observations of healing for so-called biocompatible biomaterials. The vast majority of the millions of medical implants in humans today, presumably "biocompatible," are walled off by a dense, avascular, crosslinked collagen capsule, hardly suggestive of life or compatibility. In contrast, one is now seeing examples of implant biomaterials that lead to a vascularized reconstruction of localized tissue, a biological reaction different from traditional biocompatible materials that generate a foreign body capsule. Both the encapsulated biomaterials and the reconstructive biomaterials qualify as "biocompatible" by present day measurements of biocompatibility. Yet, this new generation of materials would seem to heal "compatibly" with the living organism, where older biomaterials are isolated from the living organism by the dense capsule. This review/perspective article will explore this biocompatibility etymological conundrum by reviewing the history of the concepts around biocompatibility, today's standard methods for assessing biocompatibility, a contemporary view of the foreign body reaction and finally, a compendium of new biomaterials that heal without the foreign body capsule. A new definition of biocompatibility is offered here to address advances in biomaterials design leading to biomaterials that heal into the body in a facile manner.
Collapse
Affiliation(s)
- Lars Crawford
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Meghan Wyatt
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - James Bryers
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Buddy Ratner
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
21
|
Zhang L, Xu T, Ji W, Wang X, Cheng S, Zhang S, Zhang Y, Zhang M. Ag 2S/Ag Nanoparticle Microelectrodes for In Vivo Potentiometric Measurement of Hydrogen Sulfide Dynamics in the Rat Brain. Anal Chem 2021; 93:7063-7070. [PMID: 33900732 DOI: 10.1021/acs.analchem.1c00540] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
Abstract
Hydrogen sulfide (H2S) plays a pivotal role in gas signal transduction, neuroprotection, and regulation of physiological and pathological processes. However, in vivo tracking the dynamic of hydrogen sulfide in the complex brain environment still faces huge challenges. This study demonstrates a new potentiometric method to monitor in vivo the dynamics of hydrogen sulfide in the rat brain using silver nanoparticles (AgNPs)-modified carbon fiber microelectrodes (AgNPs/CFE) pretreated with Na2S (i.e., Ag2S/AgNPs/CFE), which acts as a solid-contact and ion-selective microelectrode. The Ag2S/AgNPs/CFE exhibits good potential response toward hydrogen sulfide in the range of 2.5-160 μM, with a detection limit of 0.8 μM. Because of the presence of Ag2S, the Ag2S/AgNPs/CFE shows good selectivity to hydrogen sulfide, avoiding the interference from coexistent electroactive neurochemicals and the analogies, such as ascorbic acid and cysteine in the central nervous system. This good selectivity combined with the reversibility, protein antifouling, and biocompatibility of the microelectrode enables the Ag2S/AgNPs/CFE to detect hydrogen sulfide in the rat brain during local microinfusion of Na2S and the change in pH. Our study provides a reliable method to track hydrogen sulfide selectively in vivo, which will help to explore the function of hydrogen sulfide in neurophysiology and pathology.
Collapse
Affiliation(s)
- Li Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Tianci Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Wenliang Ji
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xiaofang Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Shuwen Cheng
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Shuai Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yue Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Meining Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
22
|
Permana D, Minamihata K, Goto M, Kamiya N. Strategies for Making Multimeric and Polymeric Bifunctional Protein Conjugates and Their Applications as Bioanalytical Tools. ANAL SCI 2021; 37:425-437. [PMID: 33455962 DOI: 10.2116/analsci.20scr07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022]
Abstract
Enzymes play a central role in the detection of target molecules in biotechnological fields. Most probes used in detection are bifunctional proteins comprising enzymes and binding proteins conjugated by chemical reactions. To create a highly sensitive detection probe, it is essential to increase the enzyme-to-binding protein ratio in the probe. However, if the chemical reactions required to prepare the probe are insufficiently site-specific, the detection probe may lose functionality. Genetic modifications and enzyme-mediated post-translational modifications (PTMs) can ensure the site-specific conjugation of proteins. They are therefore promising strategies for the production of detection probes with high enzyme contents, i.e., polymeric bifunctional proteins. Herein, we review recent advances in the preparation of bifunctional protein conjugates and polymeric bifunctional protein conjugates for detection. We have summarized research on genetically fused proteins and enzymatically prepared polymeric bifunctional proteins, and will discuss the potential use of protein polymers in various detection applications.
Collapse
Affiliation(s)
- Dani Permana
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University.,Research Unit for Clean Technology, Indonesian Institute of Sciences (LIPI), Kampus LIPI Bandung
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University.,Division of Biotechnology, Center for Future Chemistry, Kyushu University
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University.,Division of Biotechnology, Center for Future Chemistry, Kyushu University
| |
Collapse
|
23
|
Abstract
Current knowledge of the disposition kinetics of endogenous metabolites is founded almost entirely on poorly time-resolved experiments in which samples are removed from the body for later, benchtop analysis. Here, in contrast, we describe real-time, seconds-resolved measurements of plasma phenylalanine collected in situ in the body via electrochemical aptamer-based (EAB) sensors, a platform technology that is independent of the reactivity of its targets and thus is generalizable to many. Specifically, using indwelling EAB sensors, we have monitored plasma phenylalanine in live rats with a few micromolar precision and a 12 s temporal resolution, identifying a large-amplitude, few-seconds phase in the animals' metabolic response that had not previously been reported. Using the hundreds of individual measurements that the approach provides from each animal, we also identify inter-subject variability, including statistically significant differences associated with the feeding status. These results highlight the power of in vivo EAB measurements, an advancement that could dramatically impact our understanding of physiology and provide a valuable new tool for the monitoring and treatment of metabolic disorders.
Collapse
|
24
|
|
25
|
Sun K, Ding Z, Zhang J, Chen H, Qin Y, Xu S, Wu C, Yu J, Chiu DT. Enhancing the Long-Term Stability of a Polymer Dot Glucose Transducer by Using an Enzymatic Cascade Reaction System. Adv Healthc Mater 2021; 10:e2001019. [PMID: 33094566 PMCID: PMC8168372 DOI: 10.1002/adhm.202001019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/16/2020] [Revised: 07/15/2020] [Indexed: 12/22/2022]
Abstract
Impaired glucose metabolism in diabetes causes severe acute and long-term complications, making real-time detection of blood glucose indispensable for diabetic patients. Existing continuous glucose monitoring systems are unsuitable for long-term clinical glycemic management due to poor long-term stability. Polymer dot (Pdot) glucose transducers are implantable optical nanosensors that exhibit excellent brightness, sensitivity, selectivity, and biocompatibility. Here, it is shown that hydrogen peroxide-a product of glucose oxidation in Pdot glucose sensors-degrades sensor performance via photobleaching, reduces glucose oxidase activity, and generates cytotoxicity. By adding catalase to a glucose oxidase-based Pdot sensor to create an enzymatic cascade, the hydrogen peroxide product of glucose oxidation is rapidly decomposed by catalase, preventing its accumulation and improving the sensor's photostability, enzymatic activity, and biocompatibility. Thus, a next-generation Pdot glucose transducer with a multienzyme reaction system (Pdot-GOx/CAT) that provides excellent sensing characteristics as well as greater detection system stability is presented. Pdot glucose transducers that incorporate this enzymatic cascade to eliminate hydrogen peroxide will possess greater long-term stability for improved continuous glucose monitoring in diabetic patients.
Collapse
Affiliation(s)
- Kai Sun
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Zhaoyang Ding
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Jicheng Zhang
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Haobin Chen
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Yuling Qin
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Shihan Xu
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jiangbo Yu
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Daniel T Chiu
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
26
|
Popov A, Aukstakojyte R, Gaidukevic J, Lisyte V, Kausaite-Minkstimiene A, Barkauskas J, Ramanaviciene A. Reduced Graphene Oxide and Polyaniline Nanofibers Nanocomposite for the Development of an Amperometric Glucose Biosensor. SENSORS 2021; 21:s21030948. [PMID: 33535400 PMCID: PMC7867097 DOI: 10.3390/s21030948] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 12/31/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022]
Abstract
The control of glucose concentration is a crucial factor in clinical diagnosis and the food industry. Electrochemical biosensors based on reduced graphene oxide (rGO) and conducting polymers have a high potential for practical application. A novel thermal reduction protocol of graphene oxide (GO) in the presence of malonic acid was applied for the synthesis of rGO. The rGO was characterized by scanning electron microscopy, X-ray diffraction analysis, Fourier-transform infrared spectroscopy, and Raman spectroscopy. rGO in combination with polyaniline (PANI), Nafion, and glucose oxidase (GOx) was used to develop an amperometric glucose biosensor. A graphite rod (GR) electrode premodified with a dispersion of PANI nanostructures and rGO, Nafion, and GOx was proposed as the working electrode of the biosensor. The optimal ratio of PANI and rGO in the dispersion used as a matrix for GOx immobilization was equal to 1:10. The developed glucose biosensor was characterized by a wide linear range (from 0.5 to 50 mM), low limit of detection (0.089 mM), good selectivity, reproducibility, and stability. Therefore, the developed biosensor is suitable for glucose determination in human serum. The PANI nanostructure and rGO dispersion is a promising material for the construction of electrochemical glucose biosensors.
Collapse
Affiliation(s)
- Anton Popov
- NanoTechnas—Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, LT-03225 Vilnius, Lithuania; (A.P.); (V.L.); (A.K.-M.)
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania
| | - Ruta Aukstakojyte
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania; (R.A.); (J.G.); (J.B.)
| | - Justina Gaidukevic
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania; (R.A.); (J.G.); (J.B.)
| | - Viktorija Lisyte
- NanoTechnas—Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, LT-03225 Vilnius, Lithuania; (A.P.); (V.L.); (A.K.-M.)
| | - Asta Kausaite-Minkstimiene
- NanoTechnas—Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, LT-03225 Vilnius, Lithuania; (A.P.); (V.L.); (A.K.-M.)
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania
| | - Jurgis Barkauskas
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania; (R.A.); (J.G.); (J.B.)
| | - Almira Ramanaviciene
- NanoTechnas—Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, LT-03225 Vilnius, Lithuania; (A.P.); (V.L.); (A.K.-M.)
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania
- Correspondence: ; Tel.: +370-5-219-3115
| |
Collapse
|
27
|
Goldoni R, Farronato M, Connelly ST, Tartaglia GM, Yeo WH. Recent advances in graphene-based nanobiosensors for salivary biomarker detection. Biosens Bioelectron 2021; 171:112723. [PMID: 33096432 PMCID: PMC7666013 DOI: 10.1016/j.bios.2020.112723] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/19/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/11/2022]
Abstract
As biosensing research is rapidly advancing due to significant developments in materials, chemistry, and electronics, researchers strive to build cutting-edge biomedical devices capable of detecting health-monitoring biomarkers with high sensitivity and specificity. Biosensors using nanomaterials are highly promising because of the wide detection range, fast response time, system miniaturization, and enhanced sensitivity. In the recent development of biosensors and electronics, graphene has rapidly gained popularity due to its superior electrical, biochemical, and mechanical properties. For biomarker detection, human saliva offers easy access with a large variety of analytes, making it a promising candidate for its use in point-of-care (POC) devices. Here, we report a comprehensive review that summarizes the most recent graphene-based nanobiosensors and oral bioelectronics for salivary biomarker detection. We discuss the details of structural designs of graphene electronics, use cases of salivary biomarkers, the performance of existing sensors, and applications in health monitoring. This review also describes current challenges in materials and systems and future directions of the graphene bioelectronics for clinical POC applications. Collectively, the main contribution of this paper is to deliver an extensive review of the graphene-enabled biosensors and oral electronics and their successful applications in human salivary biomarker detection.
Collapse
Affiliation(s)
- Riccardo Goldoni
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Atlanta, GA, 30332, USA; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Marco Farronato
- Department of Medicine, Surgery, and Dentistry, Università Degli Studi di Milano, Milan, Italy; Maxillofacial and Dental Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico di Milano, Italy
| | - Stephen Thaddeus Connelly
- Department of Oral & Maxillofacial Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Gianluca Martino Tartaglia
- Department of Medicine, Surgery, and Dentistry, Università Degli Studi di Milano, Milan, Italy; Maxillofacial and Dental Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico di Milano, Italy
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, 30332, USA; Center for Human-Centric Interfaces and Engineering, Neural Engineering Center, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
28
|
Chang Y, Gao S, Liu M, Liu J. Designing signal-on sensors by regulating nanozyme activity. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4708-4723. [PMID: 32990706 DOI: 10.1039/d0ay01625j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/11/2023]
Abstract
Nanozymes are nanomaterials with enzyme-like activities. Compared to natural enzymes, nanozymes are more stable and cost-effective, and they have unique properties due to their nanoscale size and surface chemistry. In this review, we summarize 'signal-on' nanozyme-based sensors for detecting metal ions, anions, small molecules and proteins. Since protein-based enzymes are already highly active, they were used to detect their inhibitors, resulting in 'signal-off' sensors. On the other hand, for nanozymes, target molecules were detected either as a promotor of nanozyme activity or for its ability to selectively remove nanozyme inhibitors. In both cases, 'signal-on' detection was achieved. We classify the commonly used nanozymes based on their composition such as metal oxide, gold nanoparticles and other nanomaterials, most of which belong to the oxidase, peroxidase and catalase mimics. The nanozymes can catalyze the oxidation of colorless or non-fluorescent substrates to produce a visual or fluorescent signal. Based on this, this article presents some typical 'turn-on' and 'turn-off-on' sensors, and we critically review their design principles. At the end, further perspectives for the nanozyme-based sensors are outlined.
Collapse
Affiliation(s)
- Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China.
| | | | | | | |
Collapse
|
29
|
Kamathewatta NJB, Deay DO, Karaca BT, Seibold S, Nguyen TM, Tomás B, Richter ML, Berrie CL, Tamerler C. Self-Immobilized Putrescine Oxidase Biocatalyst System Engineered with a Metal Binding Peptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11908-11917. [PMID: 32921059 DOI: 10.1021/acs.langmuir.0c01986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/24/2023]
Abstract
Flavin oxidases are valuable biocatalysts for the oxidative synthesis of a wide range of compounds, while at the same time reduce oxygen to hydrogen peroxide. Compared to other redox enzymes, their ability to use molecular oxygen as an electron acceptor offers a relatively simple system that does not require a dissociable coenzyme. As such, they are attractive targets for adaptation as cost-effective biosensor elements. Their functional immobilization on surfaces offers unique opportunities to expand their utilization for a wide range of applications. Genetically engineered peptides have been demonstrated as enablers of the functional assembly of biomolecules at solid material interfaces. Once identified as having a high affinity for the material of interest, these peptides can provide a single step bioassembly process with orientation control, a critical parameter for functional immobilization of the enzymes. In this study, for the first time, we explored the bioassembly of a putrescine oxidase enzyme using a gold binding peptide tag. The enzyme was genetically engineered to incorporate a gold binding peptide with an expectation of an effective display of the peptide tag to interact with the gold surface. In this work, the functional activity and expression were investigated, along with the selectivity of the binding of the peptide-tagged enzyme. The fusion enzyme was characterized using multiple techniques, including protein electrophoresis, enzyme activity, and microscopy and spectroscopic methods, to verify the functional expression of the tagged protein with near-native activity. Binding studies using quartz crystal microbalance (QCM), nanoparticle binding studies, and atomic force microscopy studies were used to address the selectivity of the binding through the peptide tag. Surface binding AFM studies show that the binding was selective for gold. Quartz crystal microbalance studies show a strong increase in the affinity of the peptide-tagged protein over the native enzyme, while activity assays of protein bound to nanoparticles provide evidence that the enzyme retained catalytic activity when immobilized. In addition to showing selectivity, AFM images show significant differences in the height of the molecules when immobilized through the peptide tag compared to immobilization of the native enzyme, indicating differences in orientation of the bound enzyme when attached via the affinity tag. Controlling the orientation of surface-immobilized enzymes would further improve their enzymatic activity and impact diverse applications, including oxidative biocatalysis, biosensors, biochips, and biofuel production.
Collapse
Affiliation(s)
| | - Dwight O Deay
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Banu Taktak Karaca
- Institute for Bioengineering Research, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Molecular Biology and Genetics, Biruni University, İstanbul 34010, Turkey
| | - Steve Seibold
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Tyler M Nguyen
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Brandon Tomás
- Institute for Bioengineering Research, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Mechanical Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Mark L Richter
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Cindy L Berrie
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Institute for Bioengineering Research, University of Kansas, Lawrence, Kansas 66045, United States
| | - Candan Tamerler
- Institute for Bioengineering Research, University of Kansas, Lawrence, Kansas 66045, United States
- Bioengineering Program, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Mechanical Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
30
|
Bakirhan NK, Topal BD, Ozcelikay G, Karadurmus L, Ozkan SA. Current Advances in Electrochemical Biosensors and Nanobiosensors. Crit Rev Anal Chem 2020; 52:519-534. [DOI: 10.1080/10408347.2020.1809339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022]
Affiliation(s)
- Nurgul K. Bakirhan
- Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| | - Burcu D. Topal
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Goksu Ozcelikay
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Leyla Karadurmus
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- Department of Analytical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
31
|
Zhou N, Liu T, Wen B, Gong C, Wei G, Su Z. Recent Advances in the Construction of Flexible Sensors for Biomedical Applications. Biotechnol J 2020; 15:e2000094. [PMID: 32744777 DOI: 10.1002/biot.202000094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/10/2020] [Revised: 07/08/2020] [Indexed: 11/09/2022]
Abstract
The fabrication of flexible sensors is a potential way to promote the progress of modern social science and technology due to their wide applications in high-performance electronic equipment and devices. Flexible sensors based on organic materials combine the unique advantages of flexibility and low cost, increasing interest in healthcare monitoring, treatment, and human-machine interfaces. Advances in materials science and biotechnology have rapidly accelerated the development of bio-integrated multifunctional sensors and devices. Due to their excellent mechanical and electrical properties, many types of functional materials provided benefits for the construction of various sensors with improved flexibility and stretchability. In this review, recent advance in the fabrication of flexible sensors by using functional nanomaterials including nanoparticles, carbon materials, metal-organic materials, and polymers is presented. In addition, the potential biomedical applications of the fabricated flexible sensors for detecting gas molecules signals, small molecules, DNA/RNA, proteins, others are introduced and discussed.
Collapse
Affiliation(s)
- Nan Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tianjiao Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bianying Wen
- School of Materials and Mechanical Engineering, Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing, 100048, China
| | - Coucong Gong
- Faculty of Production Engineering, University of Bremen, Bremen, D-28359, Germany
| | - Gang Wei
- Faculty of Production Engineering, University of Bremen, Bremen, D-28359, Germany.,College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
32
|
The synthesis of novel boronate esters and N-Heterocyclic carbene (NHC)-stabilized boronate esters: Spectroscopy, antimicrobial and antioxidant studies. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
|
33
|
Bhavaniramya S, Vanajothi R, Vishnupriya S, Premkumar K, Al-Aboody MS, Vijayakumar R, Baskaran D. Enzyme Immobilization on Nanomaterials for Biosensor and Biocatalyst in Food and Biomedical Industry. Curr Pharm Des 2020; 25:2661-2676. [PMID: 31309885 DOI: 10.2174/1381612825666190712181403] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/08/2019] [Accepted: 07/03/2019] [Indexed: 12/30/2022]
Abstract
Enzymes exhibit a great catalytic activity for several physiological processes. Utilization of immobilized enzymes has a great potential in several food industries due to their excellent functional properties, simple processing and cost effectiveness during the past decades. Though they have several applications, they still exhibit some challenges. To overcome the challenges, nanoparticles with their unique physicochemical properties act as very attractive carriers for enzyme immobilization. The enzyme immobilization method is not only widely used in the food industry but is also a component methodology in the pharmaceutical industry. Compared to the free enzymes, immobilized forms are more robust and resistant to environmental changes. In this method, the mobility of enzymes is artificially restricted to changing their structure and properties. Due to their sensitive nature, the classical immobilization methods are still limited as a result of the reduction of enzyme activity. In order to improve the enzyme activity and their properties, nanomaterials are used as a carrier for enzyme immobilization. Recently, much attention has been directed towards the research on the potentiality of the immobilized enzymes in the food industry. Hence, the present review emphasizes the different types of immobilization methods that is presently used in the food industry and other applications. Various types of nanomaterials such as nanofibers, nanoflowers and magnetic nanoparticles are significantly used as a support material in the immobilization methods. However, several numbers of immobilized enzymes are used in the food industries to improve the processing methods which not only reduce the production cost but also the effluents from the industry.
Collapse
Affiliation(s)
- Sundaresan Bhavaniramya
- College of Food and Dairy Technology, Tamil Nadu Veterinary and Animal Sciences, University, Chennai-600052, Tamil Nadu, India
| | - Ramar Vanajothi
- Department of Biomedical Science, Bharathidasan University, Trichy-620024, Tamil Nadu, India
| | - Selvaraju Vishnupriya
- College of Food and Dairy Technology, Tamil Nadu Veterinary and Animal Sciences, University, Chennai-600052, Tamil Nadu, India
| | - Kumpati Premkumar
- Department of Biomedical Science, Bharathidasan University, Trichy-620024, Tamil Nadu, India
| | - Mohammad S Al-Aboody
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Rajendran Vijayakumar
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Dharmar Baskaran
- College of Food and Dairy Technology, Tamil Nadu Veterinary and Animal Sciences, University, Chennai-600052, Tamil Nadu, India
| |
Collapse
|
34
|
Joshi A, Kim KH. Recent advances in nanomaterial-based electrochemical detection of antibiotics: Challenges and future perspectives. Biosens Bioelectron 2020; 153:112046. [DOI: 10.1016/j.bios.2020.112046] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/27/2019] [Revised: 12/20/2019] [Accepted: 01/20/2020] [Indexed: 12/16/2022]
|
35
|
Vacchini M, Edwards R, Guizzardi R, Palmioli A, Ciaramelli C, Paiotta A, Airoldi C, La Ferla B, Cipolla L. Glycan Carriers As Glycotools for Medicinal Chemistry Applications. Curr Med Chem 2019; 26:6349-6398. [DOI: 10.2174/0929867326666190104164653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/27/2018] [Revised: 11/07/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Carbohydrates are one of the most powerful and versatile classes of biomolecules that nature
uses to regulate organisms’ biochemistry, modulating plenty of signaling events within cells, triggering
a plethora of physiological and pathological cellular behaviors. In this framework, glycan carrier
systems or carbohydrate-decorated materials constitute interesting and relevant tools for medicinal
chemistry applications. In the last few decades, efforts have been focused, among others, on the development
of multivalent glycoconjugates, biosensors, glycoarrays, carbohydrate-decorated biomaterials
for regenerative medicine, and glyconanoparticles. This review aims to provide the reader with a general
overview of the different carbohydrate carrier systems that have been developed as tools in different
medicinal chemistry approaches relying on carbohydrate-protein interactions. Given the extent of
this topic, the present review will focus on selected examples that highlight the advancements and potentialities
offered by this specific area of research, rather than being an exhaustive literature survey of
any specific glyco-functionalized system.
Collapse
Affiliation(s)
- Mattia Vacchini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Rana Edwards
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Roberto Guizzardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alessandro Palmioli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Carlotta Ciaramelli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alice Paiotta
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Barbara La Ferla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| |
Collapse
|
36
|
Ding Z, Chen L, Wang D, Zhou H, Zhou L, Zhu X, Jiang L, Feng X. Oxygen-Tolerant Hydrogen Peroxide Reduction Catalysts for Reliable Noninvasive Bioassays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903320. [PMID: 31402577 DOI: 10.1002/smll.201903320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/25/2019] [Revised: 08/01/2019] [Indexed: 06/10/2023]
Abstract
Noninvasive bioassays based on the principle of a hydrogen peroxide (H2 O2 ) cathodic reaction are highly desirable for low concentration analyte detection within biofluids since the reaction is immune to interference from oxidizable species. However, the inability to selectively reduce H2 O2 over O2 for commonly used stable catalysts (carbon or noble metals) is one of the key factors limiting their development and practical applications. Herein, catalysts that enable selective H2 O2 reduction in the presence of oxygen with fluctuating concentrations are reported. These catalysts consist of noble metal nanoparticles underneath an amorphous chromium oxide nanolayer, which inhibits O2 diffusion to the metal/oxide interface and suppresses its reduction reaction. Using these catalysts, analytes of low concentration in biofluids, including but not limited to glucose and lactate, are detected within the presence of various interferents. This work enables wide application of the cathodic detection principle and the development of reliable noninvasive bioassays.
Collapse
Affiliation(s)
- Zhenyao Ding
- College of Chemistry, Soochow University, Suzhou, 215123, P. R. China
| | - Liping Chen
- College of Chemistry, Soochow University, Suzhou, 215123, P. R. China
| | - Dandan Wang
- College of Chemistry, Soochow University, Suzhou, 215123, P. R. China
| | - Hang Zhou
- College of Chemistry, Soochow University, Suzhou, 215123, P. R. China
| | - Lu Zhou
- College of Chemistry, Soochow University, Suzhou, 215123, P. R. China
| | - Xing Zhu
- Analysis and Testing Center, Soochow University, Suzhou, 215123, P. R. China
| | - Lei Jiang
- Technical Institute of Physics and Chemistry, CAS, Beijing, 100091, P. R. China
| | - Xinjian Feng
- College of Chemistry, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
37
|
Ma J, Jiang Y, Shen L, Ma H, Sun T, Lv F, Kiran A, Zhu N. Wearable biomolecule smartsensors based on one-step fabricated berlin green printed arrays. Biosens Bioelectron 2019; 144:111637. [PMID: 31494509 DOI: 10.1016/j.bios.2019.111637] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/25/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 12/15/2022]
Abstract
The wearable smart detection of body biomolecules and biomarkers is being of significance in the practical fields. Hydrogen peroxide (H2O2) is a product of some enzyme-catalyzed biomolecular reactions. The detection of H2O2 could reflect the concentration information of the enzyme reaction biomolecule substrate such as glucose. A high-performance berlin green (BG) carbon ink for monitoring H2O2 was prepared in this work. And we have successfully developed the wearable smartsensors for detecting H2O2 and glucose based on one-step fabricated BG arrays by screen-printing technology. Comparing with other detection methods, these sensors are wearable, movable, flexible and biocompatible for monitoring biomolecules. As a result, the sensors exhibited good sensitivity, specificity, stability and reproductivity towards H2O2 and glucose. Additionally, there also received stable response after near one hundred times stretching and thousands of bending. Moreover, the wearable sensors could be easily remotely controlled by a smart phone, when integrated with wireless into the device. In prospective studies, the one-step fabricated wearable smartsensors is of great significance in developing a straightforward, highly-efficient and low-cost method for actual detection of biomolecules reflecting body health status, and would potentially be applied in the artificial intelligence (AI) fields.
Collapse
Affiliation(s)
- Junlin Ma
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Yu Jiang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Liuxue Shen
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Hongting Ma
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Tongrui Sun
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Fengjuan Lv
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Almas Kiran
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Nan Zhu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| |
Collapse
|
38
|
Pérez JAC, Sosa-Hernández JE, Hussain SM, Bilal M, Parra-Saldivar R, Iqbal HM. Bioinspired biomaterials and enzyme-based biosensors for point-of-care applications with reference to cancer and bio-imaging. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2018.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023]
|
39
|
Azharuddin M, Zhu GH, Das D, Ozgur E, Uzun L, Turner APF, Patra HK. A repertoire of biomedical applications of noble metal nanoparticles. Chem Commun (Camb) 2019; 55:6964-6996. [DOI: 10.1039/c9cc01741k] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Abstract
The emerging properties of noble metal nanoparticles are attracting huge interest from the translational scientific community. In this feature article, we highlight recent advances in the adaptation of noble metal nanomaterials and their biomedical applications in therapeutics, diagnostics and sensing.
Collapse
Affiliation(s)
- Mohammad Azharuddin
- Department of Clinical and Experimental Medicine
- Linkoping University
- Linkoping
- Sweden
| | - Geyunjian H. Zhu
- Department of Chemical Engineering and Biotechnology
- University of Cambridge
- Cambridge
- UK
| | - Debapratim Das
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| | - Erdogan Ozgur
- Hacettepe University
- Faculty of Science
- Department of Chemistry
- Ankara
- Turkey
| | - Lokman Uzun
- Hacettepe University
- Faculty of Science
- Department of Chemistry
- Ankara
- Turkey
| | | | - Hirak K. Patra
- Department of Clinical and Experimental Medicine
- Linkoping University
- Linkoping
- Sweden
- Department of Chemical Engineering and Biotechnology
| |
Collapse
|
40
|
Guan F, Zhang J, Tang H, Chen L, Feng X. An enhanced enzymatic reaction using a triphase system based on superhydrophobic mesoporous nanowire arrays. NANOSCALE HORIZONS 2019; 4:231-235. [PMID: 32254161 DOI: 10.1039/c8nh00184g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/11/2023]
Abstract
Gaseous reactants play a key role in a wide range of biocatalytic reactions, however reaction kinetics are generally limited by the slow mass transport of gases (typically oxygen) in or through aqueous solutions. Inspired by the morphologies of natural non-wetting surfaces, herein we address this limitation by developing a triphase reaction system possessing a triphase gas-solid-liquid interface. As a proof of concept, we study the kinetics of glucose oxidase (GOx) catalyzed reactions using a triphase system fabricated by layering GOx upon superhydrophobic mesoporous ZnO nanowire arrays through which oxygen, needed for the enzymatic reaction, is supplied directly from the atmosphere to the liquid-solid interface. We find that the enzymatic reaction rate is enhanced by a factor of 30 over that obtained from a conventional diphase system where oxygen is supplied through and from the liquid. The triphase system offers the opportunity to develop high performance bioassay systems, serving as an enabling platform for addressing challenges posed by gas-deficit kinetics.
Collapse
Affiliation(s)
- Fengying Guan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | | | | | | | | |
Collapse
|
41
|
Liu G, Cao C, Ni S, Feng S, Wei H. On-chip structure-switching aptamer-modified magnetic nanobeads for the continuous monitoring of interferon-gamma ex vivo. MICROSYSTEMS & NANOENGINEERING 2019; 5:35. [PMID: 31636925 PMCID: PMC6799845 DOI: 10.1038/s41378-019-0074-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/17/2019] [Revised: 04/18/2019] [Accepted: 05/27/2019] [Indexed: 05/04/2023]
Abstract
Cytokines are cell signaling molecules that indicate the health status of the body. In this study, we developed a microfluidic device integrated with structure-switching aptamers capable of continuously tracking the concentration of the cytokine interferon gamma (IFN-γ) in cell culture medium and blood serum. First, a ferrocene (Fc)-labeled structure-switching signaling aptamer with a hairpin structure targeting IFN-γ was immobilized on magnetic nanobeads by the strongest noncovalent interactions between streptavidin and biotin. The aptamer-modified magnetic nanobeads were trapped on a customized microfluidic chip by a magnetic field to form the sensing interface. The binding of IFN-γ could trigger the hairpin structure of the aptamer to unfold, pushing Fc redox molecules away from the sensing interface and consequently switching off the electrochemical signal. The change in the redox current of Fc was quantitatively related to the concentration of IFN-γ in a linear range of 10-500 pg mL-1 and with the lowest detection limit of 6 pg mL-1. This microfluidic device was specific to IFN-γ in the presence of overabundant serum proteins and allowed the continuous monitoring of IFN-γ without adding exogenous reagents. It provided a universal point-of-care biosensing platform for the real-time detection of a spectrum of analytes.
Collapse
Affiliation(s)
- Guozhen Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, NSW 2052 Australia
- Australian Centre for NanoMedicine, UNSW Sydney, Sydney, NSW 2052 Australia
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, 430079 Wuhan, PR China
| | - Chaomin Cao
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, 430079 Wuhan, PR China
| | - Shengnan Ni
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, 430079 Wuhan, PR China
| | - Shilun Feng
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109 Australia
| | - Hui Wei
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, 430079 Wuhan, PR China
| |
Collapse
|
42
|
|
43
|
Arroyo-Currás N, Ortega G, Copp DA, Ploense KL, Plaxco ZA, Kippin TE, Hespanha JP, Plaxco KW. High-Precision Control of Plasma Drug Levels Using Feedback-Controlled Dosing. ACS Pharmacol Transl Sci 2018; 1:110-118. [PMID: 32219207 PMCID: PMC7088981 DOI: 10.1021/acsptsci.8b00033] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/29/2018] [Indexed: 12/30/2022]
Abstract
By, in effect, rendering pharmacokinetics an experimentally adjustable parameter, the ability to perform feedback-controlled dosing informed by high-frequency in vivo drug measurements would prove a powerful tool for both pharmacological research and clinical practice. Efforts to this end, however, have historically been thwarted by an inability to measure in vivo drug levels in real time and with sufficient convenience and temporal resolution. In response, we describe a closed-loop, feedback-controlled delivery system that uses drug level measurements provided by an in vivo electrochemical aptamer-based (E-AB) sensor to adjust dosing rates every 7 s. The resulting system supports the maintenance of either constant or predefined time-varying plasma drug concentration profiles in live rats over many hours. For researchers, the resultant high-precision control over drug plasma concentrations provides an unprecedented opportunity to (1) map the relationships between pharmacokinetics and clinical outcomes, (2) eliminate inter- and intrasubject metabolic variation as a confounding experimental variable, (3) accurately simulate human pharmacokinetics in animal models, and (4) measure minute-to-minute changes in a drug's pharmacokinetic behavior in response to changing health status, diet, drug-drug interactions, or other intrinsic and external factors. In the clinic, feedback-controlled drug delivery would improve our ability to accurately maintain therapeutic drug levels in the face of large, often unpredictable intra- and interpatient metabolic variation. This, in turn, would improve the efficacy and safety of therapeutic intervention, particularly for the most gravely ill patients, for whom metabolic variability is highest and the margin for therapeutic error is smallest.
Collapse
Affiliation(s)
- Netzahualcóyotl Arroyo-Currás
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States,E-mail: . Tel.: (410) 955-3569
| | - Gabriel Ortega
- ‡Department of Chemistry and Biochemistry, §Center for Bioengineering, ⊥Center for Control,
Dynamical Systems, and Computation, #Department of Psychological and Brain Sciences, and ∇The Neuroscience
Research Institute and Department of Molecular, Cellular, and Developmental
Biology, University of California Santa
Barbara, Santa
Barbara, California 93106, United States,CIC
bioGUNE, Bizkaia Technology Park, Ed. 801A, 48160, Derio, Spain
| | - David A. Copp
- ‡Department of Chemistry and Biochemistry, §Center for Bioengineering, ⊥Center for Control,
Dynamical Systems, and Computation, #Department of Psychological and Brain Sciences, and ∇The Neuroscience
Research Institute and Department of Molecular, Cellular, and Developmental
Biology, University of California Santa
Barbara, Santa
Barbara, California 93106, United States
| | - Kyle L. Ploense
- ‡Department of Chemistry and Biochemistry, §Center for Bioengineering, ⊥Center for Control,
Dynamical Systems, and Computation, #Department of Psychological and Brain Sciences, and ∇The Neuroscience
Research Institute and Department of Molecular, Cellular, and Developmental
Biology, University of California Santa
Barbara, Santa
Barbara, California 93106, United States
| | - Zoe A. Plaxco
- ‡Department of Chemistry and Biochemistry, §Center for Bioengineering, ⊥Center for Control,
Dynamical Systems, and Computation, #Department of Psychological and Brain Sciences, and ∇The Neuroscience
Research Institute and Department of Molecular, Cellular, and Developmental
Biology, University of California Santa
Barbara, Santa
Barbara, California 93106, United States
| | - Tod E. Kippin
- ‡Department of Chemistry and Biochemistry, §Center for Bioengineering, ⊥Center for Control,
Dynamical Systems, and Computation, #Department of Psychological and Brain Sciences, and ∇The Neuroscience
Research Institute and Department of Molecular, Cellular, and Developmental
Biology, University of California Santa
Barbara, Santa
Barbara, California 93106, United States
| | - João P. Hespanha
- ‡Department of Chemistry and Biochemistry, §Center for Bioengineering, ⊥Center for Control,
Dynamical Systems, and Computation, #Department of Psychological and Brain Sciences, and ∇The Neuroscience
Research Institute and Department of Molecular, Cellular, and Developmental
Biology, University of California Santa
Barbara, Santa
Barbara, California 93106, United States
| | - Kevin W. Plaxco
- ‡Department of Chemistry and Biochemistry, §Center for Bioengineering, ⊥Center for Control,
Dynamical Systems, and Computation, #Department of Psychological and Brain Sciences, and ∇The Neuroscience
Research Institute and Department of Molecular, Cellular, and Developmental
Biology, University of California Santa
Barbara, Santa
Barbara, California 93106, United States,E-mail: . Tel.: (805) 893-5558
| |
Collapse
|
44
|
Palanisamy S, Velusamy V, Chen SW, Yang TCK, Balu S, Banks CE. Enhanced reversible redox activity of hemin on cellulose microfiber integrated reduced graphene oxide for H 2O 2 biosensor applications. Carbohydr Polym 2018; 204:152-160. [PMID: 30366526 DOI: 10.1016/j.carbpol.2018.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2018] [Revised: 09/12/2018] [Accepted: 10/01/2018] [Indexed: 11/30/2022]
Abstract
In recent years, the carbohydrate polymers incorporated composite materials have shown significant interest in the bioanalytical chemistry due to their enhanced catalytic performances of various enzymes or mimics. This paper reports the fabrication of novel H2O2 biosensor using a hemin immobilized reduced graphene oxide-cellulose microfiber composite (hemin/RGO-CMF). The RGO-CMF composite was prepared by the reduction of GO-CMF composite using vitamin C as a reducing agent. Various physio-chemical methods have applied for the characterization of RGO-CMF composite. Cyclic voltammetry results revealed that the hemin/RGO-CMF composite shows a better redox electrochemical behavior than hemin/RGO and hemin/GO-CMF. Under optimized conditions, the hemin/RGO-CMF composite exhibit a linear response to H2O2 in the concentration range from 0.06 to 540.6 μM with the lower detection limit of 16 nM. The sensor also can able to detect the H2O2 in commercial contact lens solution and milk samples with functional recovery, which authenticates the potential ability in practical sensors.
Collapse
Affiliation(s)
- Selvakumar Palanisamy
- Division of Electrical and Electronic Engineering, School of Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, United Kingdom; Department of Chemical Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei City, Taiwan, ROC.
| | - Vijayalakshmi Velusamy
- Division of Electrical and Electronic Engineering, School of Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, United Kingdom.
| | - Shih-Wen Chen
- Department of Chemical Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei City, Taiwan, ROC
| | - Thomas C K Yang
- Department of Chemical Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei City, Taiwan, ROC.
| | - Sridharan Balu
- Department of Chemical Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei City, Taiwan, ROC
| | - Craig E Banks
- School of Science and the Environment, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, United Kingdom
| |
Collapse
|
45
|
Abstract
A microbial fuel cell (MFC) is a type of bio-electrochemical system with novel features, such as electricity generation, wastewater treatment, and biosensor applications. In recent years, progressive trends in MFC research on its chemical, electrochemical, and microbiological aspects has resulted in its noticeable applications in the field of sensing. This review was consequently aimed to provide an overview of the most interesting new applications of MFCs in sensors, such as providing the required electrical current and power for remote sensors (energy supply device for sensors) and detection of pollutants, biochemical oxygen demand (BOD), and specific DNA strands by MFCs without an external analytical device (self-powered biosensors). Moreover, in this review, procedures of MFC operation as a power supply for pH, temperature, and organic loading rate (OLR) sensors, and also self-powered biosensors of toxicity, pollutants, and BOD have been discussed.
Collapse
|
46
|
Kusano S, Konishi S, Yamada Y, Hayashida O. Synthesis of water-soluble anthracene-appended benzoxaboroles and evaluation of their cis-1,2-diol recognition properties. Org Biomol Chem 2018; 16:4619-4622. [PMID: 29872817 DOI: 10.1039/c8ob00979a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023]
Abstract
Three series of water-soluble anthracene-appended benzoxaboroles 1a-c were developed; their binding affinity toward cis-1,2-diols was explored by conventional fluorescence titrations to demonstrate the role of benzoxaborole as a general recognition motif of cis-1,2-diols for fluorescent probes. The complex structures of the tetra-coordinated boronate adducts between 1 and the cis-1,2-diols were revealed.
Collapse
Affiliation(s)
- S Kusano
- Department of Chemistry, Faculty of Science, Fukuoka University, Nanakuma 8-19-1, Fukuoka 814-0180, Japan.
| | - S Konishi
- Department of Chemistry, Faculty of Science, Fukuoka University, Nanakuma 8-19-1, Fukuoka 814-0180, Japan.
| | - Y Yamada
- Department of Chemistry, Faculty of Science, Fukuoka University, Nanakuma 8-19-1, Fukuoka 814-0180, Japan.
| | - O Hayashida
- Department of Chemistry, Faculty of Science, Fukuoka University, Nanakuma 8-19-1, Fukuoka 814-0180, Japan.
| |
Collapse
|
47
|
Affiliation(s)
- Krishanu Ghosal
- Gene Therapy and Tissue Engineering Lab, Department of Polymer Science & Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India
| | - Kishor Sarkar
- Gene Therapy and Tissue Engineering Lab, Department of Polymer Science & Technology, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009, India
| |
Collapse
|
48
|
Elsherif M, Hassan MU, Yetisen AK, Butt H. Wearable Contact Lens Biosensors for Continuous Glucose Monitoring Using Smartphones. ACS NANO 2018; 12:5452-5462. [PMID: 29750502 PMCID: PMC6107296 DOI: 10.1021/acsnano.8b00829] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/17/2023]
Abstract
Low-cost, robust, and reusable continuous glucose monitoring systems that can provide quantitative measurements at point-of-care settings is an unmet medical need. Optical glucose sensors require complex and time-consuming fabrication processes, and their readouts are not practical for quantitative analyses. Here, a wearable contact lens optical sensor was created for the continuous quantification of glucose at physiological conditions, simplifying the fabrication process and facilitating smartphone readouts. A photonic microstructure having a periodicity of 1.6 μm was printed on a glucose-selective hydrogel film functionalized with phenylboronic acid. Upon binding with glucose, the microstructure volume swelled, which modulated the periodicity constant. The resulting change in the Bragg diffraction modulated the space between zero- and first-order spots. A correlation was established between the periodicity constant and glucose concentration within 0-50 mM. The sensitivity of the sensor was 12 nm mM-1, and the saturation response time was less than 30 min. The sensor was integrated with commercial contact lenses and utilized for continuous glucose monitoring using smartphone camera readouts. The reflected power of the first-order diffraction was measured via a smartphone application and correlated to the glucose concentrations. A short response time of 3 s and a saturation time of 4 min was achieved in the continuous monitoring mode. Glucose-sensitive photonic microstructures may have applications in point-of-care continuous monitoring devices and diagnostics at home settings.
Collapse
Affiliation(s)
- Mohamed Elsherif
- Nanotechnology
Laboratory, School of Engineering, and School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Department
of Experimental Physics, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
- E-mail:
| | - Mohammed Umair Hassan
- Nanotechnology
Laboratory, School of Engineering, and School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Optoelectronics
Research Lab, Department of Physics, COMSATS
University, Islamabad 45550, Pakistan
| | - Ali K. Yetisen
- Nanotechnology
Laboratory, School of Engineering, and School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Haider Butt
- Nanotechnology
Laboratory, School of Engineering, and School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
- E-mail:
| |
Collapse
|
49
|
Ngernsutivorakul T, White TS, Kennedy RT. Microfabricated Probes for Studying Brain Chemistry: A Review. Chemphyschem 2018; 19:1128-1142. [PMID: 29405568 PMCID: PMC6996029 DOI: 10.1002/cphc.201701180] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2017] [Indexed: 12/13/2022]
Abstract
Probe techniques for monitoring in vivo chemistry (e.g., electrochemical sensors and microdialysis sampling probes) have significantly contributed to a better understanding of neurotransmission in correlation to behaviors and neurological disorders. Microfabrication allows construction of neural probes with high reproducibility, scalability, design flexibility, and multiplexed features. This technology has translated well into fabricating miniaturized neurochemical probes for electrochemical detection and sampling. Microfabricated electrochemical probes provide a better control of spatial resolution with multisite detection on a single compact platform. This development allows the observation of heterogeneity of neurochemical activity precisely within the brain region. Microfabricated sampling probes are starting to emerge that enable chemical measurements at high spatial resolution and potential for reducing tissue damage. Recent advancement in analytical methods also facilitates neurochemical monitoring at high temporal resolution. Furthermore, a positive feature of microfabricated probes is that they can be feasibly built with other sensing and stimulating platforms including optogenetics. Such integrated probes will empower researchers to precisely elucidate brain function and develop novel treatments for neurological disorders.
Collapse
Affiliation(s)
| | - Thomas S. White
- Macromolecular Science and Engineering, University of Michigan, 3003E, NCRC Building 28, 2800 Plymouth Rd., Ann Arbor, MI 48109
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109
- Department of Pharmacology, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109
| |
Collapse
|
50
|
Zhang L, Tian Y. Designing Recognition Molecules and Tailoring Functional Surfaces for In Vivo Monitoring of Small Molecules in the Brain. Acc Chem Res 2018; 51:688-696. [PMID: 29485847 DOI: 10.1021/acs.accounts.7b00543] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022]
Abstract
The in vivo analysis of chemical signals in brain extracellular fluid (ECF) using implanted electrochemical biosensors is a vital way to study brain functions and brain activity mapping. This approach offers excellent spatial (10-200 μm) and temporal (approximately second) resolution and the major advantage of long-term stability. By implantation of a microelectrode in a specific brain region, changes in the concentration of a variety of ECF chemical species can be monitored through applying a suitable electrical signal and, typically, recording the resulting Faradaic current. However, the high performance requirements for in vivo biosensors greatly limit our understanding of the roles that biomolecules play in the brain. Since a large number of biological species, including reactive oxygen species (ROS), metal ions, amino acids, and proteins, coexist in the brain and interact with each other, developing in vivo biosensors with high selectivity is a great challenge. Meanwhile, it is difficult to quantitatively determine target molecules in the brain because of the variation in the distinct environments for monitoring biomolecules in vitro and in vivo. Thus, there are large errors in the quantification of concentrations in the brain using calibration curves obtained in artificial cerebrospinal fluid (aCSF). More importantly, to gain a full understanding of the physiological and pathological processes in the brain, the development of novel approaches for the simultaneous determination of multiple species in vivo is urgently needed. This Account provides insight into the basic design principles and criteria required to convert chemical/electrochemical reactions into electric signals, while satisfying the increasing requirements, including high selectivity, sensitivity, and accuracy, for the in vivo analysis of biomolecules in the brain. Recent developments in designing various functional surfaces, such as self-assembled monolayers, gold nanostructures, and nanostructured semiconductors for facilitating electron transfer from specific enzymes, including superoxide dismutase (SOD), and further application to an O2•- biosensor are summarized. This Account also aims to highlight the design principles for the selective biosensing of Cu2+ and pH in the brain through the rational design and synthesis of specific recognition molecules. Additionally, electrochemical ratiometric biosensors with current signal output have been constructed to correct the effect of distinct environments in a timely manner, thus greatly improving the accuracy of the determination of Cu2+ in the live brain. This method of using a built-in element has been extended to biosensors with the potential signal output for in vivo pH analysis. More importantly, the new concept of both current and potential signal outputs provides an avenue to simultaneously determine dual species in the brain. The extension of the design principles and developed strategy demonstrated in this Account to other biomolecules, which may be closely correlated to the biological processes of brain events, is promising. The final section of this Account outlines potential future directions in tailoring functional surfaces and designing recognition molecules based on recent advances in molecular science, nanoscience and nanotechnology, and biological chemistry for the design of advanced devices with multiple target species to map the molecular imaging of the brain. There are still opportunities to engineer surfaces that improve on this approach by constructing implantable, multifunctional nanodevices that promise to combine the benefits of multiple sensing and therapeutic modules.
Collapse
Affiliation(s)
- Limin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China
| |
Collapse
|