1
|
Olshin PK, Park WW, Kim YJ, Choi YJ, Mamonova DV, Kolesnikov IE, Afanaseva EV, Kwon OH. Boltzmann-Distribution-Driven Cathodoluminescence Thermometry in In Situ Transmission Electron Microscopy. ACS NANO 2024; 18:33441-33451. [PMID: 39604087 DOI: 10.1021/acsnano.4c10126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Nanothermometry in in situ transmission electron microscopy (TEM) is useful for comprehending the functioning mechanisms of the heterogeneous matter through real-time observations. Herein, we introduce a Boltzmann-distribution-driven cathodoluminescence (CL) nanothermometry for in situ local temperature probing in TEM. The population distribution across the close-lying Stark sublevels of dysprosium ions in an yttrium vanadate matrix follows the Boltzmann distribution, enabling the use of the CL-intensity ratio as a thermometry over a wide temperature range of 103-435 K with a relative sensitivity exceeding 3% K-1 and precision of ±2%. Superior to other CL-based thermometries, the present approach is independent of electron-beam parameters and dopant concentration, extending the robustness and applicability of CL-based nanothermometry in electron microscopy. We further demonstrate the real-time mapping of the temperature distribution across a TEM grid under laser irradiation.
Collapse
Affiliation(s)
- Pavel K Olshin
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Won-Woo Park
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Ye-Jin Kim
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Ye-Jin Choi
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Daria V Mamonova
- Department of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Ilya E Kolesnikov
- Center for Optical and Laser Materials Research, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Elena V Afanaseva
- Department of Chemistry, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Oh-Hoon Kwon
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
2
|
Singh R, Wang L, Huang J. In-Situ Characterization Techniques for Mechanism Studies of CO 2 Hydrogenation. Chempluschem 2024; 89:e202300511. [PMID: 38853143 DOI: 10.1002/cplu.202300511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/01/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
The paramount concerns of global warming, fossil fuel depletion, and energy crises have prompted the need of hydrocarbons productions via CO2 conversion. In order to achieve global carbon neutrality, much attention needs to be diverted towards CO2 management. Catalytic hydrogenation of CO2 is an exciting opportunity to curb the increasing CO2 and produce value-added products. However, the comprehensive understanding of CO2 hydrogenation is still a matter of discussion due to its complex reaction mechanism and involvement of various species. This review comprehensively discusses three processes: reverse water gas shift (RWGS) reaction, modified Fischer Tropsch synthesis (MFTS), and methanol-mediated route (MeOH) for CO2 hydrogenation to hydrocarbons. Along with analysing the reaction pathways, it is also very important to understand the real-time evolvement of catalytic process and reaction intermediates by employing in-situ characterization techniques under actual reaction conditions. Subsequently, in second part of this review, we provided a systematic analysis of advancements in in-situ techniques aimed to monitor the evolution of catalysts during CO2 reduction process. The section also highlights the key components of in-situ cells, their working principles, and applications in identifying reaction mechanisms for CO2 hydrogenation. Finally, by reviewing respective achievements in the field, we identify key gaps and present some future directions for CO2 hydrogenation and in-situ studies.
Collapse
Affiliation(s)
- Rasmeet Singh
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Camperdown, New South Wales, 2006, Australia
| | - Lizhuo Wang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Camperdown, New South Wales, 2006, Australia
| | - Jun Huang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Camperdown, New South Wales, 2006, Australia
| |
Collapse
|
3
|
Chinchilla L, Manzorro R, Olmos C, Chen X, Calvino JJ, Hungría AB. Temperature-driven evolution of ceria-zirconia-supported AuPd and AuRu bimetallic catalysts under different atmospheres: insights from IL-STEM studies. NANOSCALE 2023; 16:284-298. [PMID: 38059659 DOI: 10.1039/d3nr02304d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The evolution of the structure and composition of the system of particles in two Ce0.62Zr0.38O2-supported bimetallic catalysts based on Au and a 4d metal (Ru or Pd) under high temperature conditions and different reducing and oxidizing environments has been followed by means of Identical Location Scanning Transmission Electron Microscopy (IL-STEM). As an alternative to in situ microscopy, this technique offers valuable insights into the structural modifications occurring in chemical environments with the characteristics of a macro-scale reactor. By tracking exactly the same areas on a large number of metallic entities, it has been possible to reveal the influence of particle size and the nature of the redox environment on the temperature-driven mobilization of the different metals involved. Thus, oxidizing environments evidenced a much higher capacity to mobilize the three metals, preferentially Au. Moreover, the typical storage conditions (under air) of catalysts during the prolonged exposure time has been proved to induce significant modifications in these bimetallic systems, even at room temperature. Regardless of the type of redox environment, bimetallic systems showed better thermal resistance, which demonstrates a beneficial effect of the second metal. In summary, IL-STEM is an invaluable and complementary methodology for characterizing heterogeneous catalysts under realistic reaction conditions and is within the reach of most laboratories.
Collapse
Affiliation(s)
- Lidia Chinchilla
- Departamento de Ciencia de los Materiales, Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, Puerto Real (Cádiz), E-11510, Spain.
| | - Ramón Manzorro
- Departamento de Ciencia de los Materiales, Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, Puerto Real (Cádiz), E-11510, Spain.
| | - Carol Olmos
- Departamento de Ciencia de los Materiales, Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, Puerto Real (Cádiz), E-11510, Spain.
| | - Xiaowei Chen
- Departamento de Ciencia de los Materiales, Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, Puerto Real (Cádiz), E-11510, Spain.
| | - José J Calvino
- Departamento de Ciencia de los Materiales, Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, Puerto Real (Cádiz), E-11510, Spain.
| | - Ana B Hungría
- Departamento de Ciencia de los Materiales, Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, Puerto Real (Cádiz), E-11510, Spain.
| |
Collapse
|
4
|
Altenburger B, Andersson C, Levin S, Westerlund F, Fritzsche J, Langhammer C. Label-Free Imaging of Catalytic H 2O 2 Decomposition on Single Colloidal Pt Nanoparticles Using Nanofluidic Scattering Microscopy. ACS NANO 2023; 17:21030-21043. [PMID: 37847543 PMCID: PMC10655234 DOI: 10.1021/acsnano.3c03977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023]
Abstract
Single-particle catalysis aims at determining factors that dictate the nanoparticle activity and selectivity. Existing methods often use fluorescent model reactions at low reactant concentrations, operate at low pressures, or rely on plasmonic enhancement effects. Hence, methods to measure single-nanoparticle activity under technically relevant conditions and without fluorescence or other enhancement mechanisms are still lacking. Here, we introduce nanofluidic scattering microscopy of catalytic reactions on single colloidal nanoparticles trapped inside nanofluidic channels to fill this gap. By detecting minuscule refractive index changes in a liquid flushed trough a nanochannel, we demonstrate that local H2O2 concentration changes in water can be accurately measured. Applying this principle, we analyze the H2O2 concentration profiles adjacent to single colloidal Pt nanoparticles during catalytic H2O2 decomposition into O2 and H2O and derive the particles' individual turnover frequencies from the growth rate of the O2 gas bubbles formed in their respective nanochannel during reaction.
Collapse
Affiliation(s)
- Björn Altenburger
- Department
of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Carl Andersson
- Department
of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Sune Levin
- Department
of Life Sciences, Chalmers University of
Technology, SE-412 96 Gothenburg, Sweden
| | - Fredrik Westerlund
- Department
of Life Sciences, Chalmers University of
Technology, SE-412 96 Gothenburg, Sweden
| | - Joachim Fritzsche
- Department
of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Christoph Langhammer
- Department
of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
5
|
Welling TA, Schoemaker SE, de Jong KP, de Jongh PE. Carbon Nanofiber Growth Rates on NiCu Catalysts: Quantitative Coupling of Macroscopic and Nanoscale In Situ Studies. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:15766-15774. [PMID: 37609377 PMCID: PMC10440819 DOI: 10.1021/acs.jpcc.3c02657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/18/2023] [Indexed: 08/24/2023]
Abstract
Since recently, gas-cell transmission electron microscopy allows for direct, nanoscale imaging of catalysts during reaction. However, often systems are too perturbed by the imaging conditions to be relevant for real-life catalyzed conversions. We followed carbon nanofiber growth from NiCu-catalyzed methane decomposition under working conditions (550 °C, 1 bar of 5% H2, 45% CH4, and 50% Ar), directly comparing the time-resolved overall carbon growth rates in a reactor (measured gravimetrically) and nanometer-scale carbon growth observations (by electron microscopy). Good quantitative agreement in time-dependent growth rates allowed for validation of the electron microscopy measurements and detailed insight into the contribution of individual catalyst nanoparticles in these inherently heterogeneous catalysts to the overall carbon growth. The smallest particles did not contribute significantly to carbon growth, while larger particles (8-16 nm) exhibited high carbon growth rates but deactivated quickly. Even larger particles grew carbon slowly without significant deactivation. This methodology paves the way to understanding macroscopic rates of catalyzed reactions based on nanoscale in situ observations.
Collapse
Affiliation(s)
| | | | - Krijn P. de Jong
- Materials Chemistry &
Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Petra E. de Jongh
- Materials Chemistry &
Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
6
|
Qu J, Sui M, Li R. Recent advances in in-situ transmission electron microscopy techniques for heterogeneous catalysis. iScience 2023; 26:107072. [PMID: 37534164 PMCID: PMC10391733 DOI: 10.1016/j.isci.2023.107072] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
The process of heterogeneous catalytic reaction under working conditions has long been considered a "black box", which is mainly because of the difficulties in directly characterizing the structural changes of catalysts at the atomic level during catalytic reactions. The development of in situ transmission electron microscopy (TEM) techniques offers opportunities for introducing a realistic chemical reaction environment in TEM, making it possible to uncover the mystery of catalytic reactions. In this article, we present a comprehensive overview of the application of in situ TEM techniques in heterogeneous catalysis, highlighting its utility for observing gas-solid and liquid-solid reactions during thermal catalysis, electrocatalysis, and photocatalysis. in situ TEM has a unique advantage in revealing the complex structural changes of catalysts during chemical reactions. Revealing the real-time dynamic structure during reaction processes is crucial for understanding the intricate relationship between catalyst structure and its catalytic performance. Finally, we present a perspective on the future challenges and opportunities of in situ TEM in heterogeneous catalysis.
Collapse
Affiliation(s)
- Jiangshan Qu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM-2011), Dalian 116023, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Manling Sui
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Rengui Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM-2011), Dalian 116023, China
| |
Collapse
|
7
|
Chao HY, Venkatraman K, Moniri S, Jiang Y, Tang X, Dai S, Gao W, Miao J, Chi M. In Situ and Emerging Transmission Electron Microscopy for Catalysis Research. Chem Rev 2023. [PMID: 37327473 DOI: 10.1021/acs.chemrev.2c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Catalysts are the primary facilitator in many dynamic processes. Therefore, a thorough understanding of these processes has vast implications for a myriad of energy systems. The scanning/transmission electron microscope (S/TEM) is a powerful tool not only for atomic-scale characterization but also in situ catalytic experimentation. Techniques such as liquid and gas phase electron microscopy allow the observation of catalysts in an environment conducive to catalytic reactions. Correlated algorithms can greatly improve microscopy data processing and expand multidimensional data handling. Furthermore, new techniques including 4D-STEM, atomic electron tomography, cryogenic electron microscopy, and monochromated electron energy loss spectroscopy (EELS) push the boundaries of our comprehension of catalyst behavior. In this review, we discuss the existing and emergent techniques for observing catalysts using S/TEM. Challenges and opportunities highlighted aim to inspire and accelerate the use of electron microscopy to further investigate the complex interplay of catalytic systems.
Collapse
Affiliation(s)
- Hsin-Yun Chao
- Center for Nanophase Materials Sciences, One Bethel Valley Road, Building 4515, Oak Ridge, Tennessee 37831-6064, United States
| | - Kartik Venkatraman
- Center for Nanophase Materials Sciences, One Bethel Valley Road, Building 4515, Oak Ridge, Tennessee 37831-6064, United States
| | - Saman Moniri
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Yongjun Jiang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Xuan Tang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Wenpei Gao
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jianwei Miao
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, One Bethel Valley Road, Building 4515, Oak Ridge, Tennessee 37831-6064, United States
| |
Collapse
|
8
|
He B, Liu X, Chen L. Particle Attachment Growth of Au@Ag Core-Shell Nanocuboids. NANO LETTERS 2023; 23:3963-3970. [PMID: 37102992 DOI: 10.1021/acs.nanolett.3c00726] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In the templated synthesis of colloidal core-shell nanoparticles, the monomer attachment growth mechanism has been widely accepted to describe the growth process of shells. In this work, by using advanced transmission electron microscope techniques, we directly observe two alternative particle attachment growth pathways that dominate the growth of Au@Ag core-shell nanocuboids. One pathway involves the in situ reduction of AgCl nanoparticles attached to Au nanorods and the subsequent epitaxial growth of the Ag shell. The other pathway involves the adherence of Ag-AgCl Janus nanoparticles to Au nanorods with random orientations, followed by nanoparticle redispersion and the resulting formation of epitaxial Ag shells on the Au nanorods. The particle-mediated growth of Ag shells is accompanied by the redispersion of surface atoms, tending to form a uniform structure. The validation of the particle attachment growth processes at the atomic scale provides a new mechanistic understanding of core-shell nanostructure synthesis.
Collapse
Affiliation(s)
- Bowen He
- School of Chemistry and Chemical Engineering, in situ Center for Physical Sciences, Shanghai Electrochemical Energy Device Research Center (SEED), and Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xi Liu
- School of Chemistry and Chemical Engineering, in situ Center for Physical Sciences, Shanghai Electrochemical Energy Device Research Center (SEED), and Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liwei Chen
- School of Chemistry and Chemical Engineering, in situ Center for Physical Sciences, Shanghai Electrochemical Energy Device Research Center (SEED), and Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Zhang L, Fan H, Dang Y, Zhuang Q, Arandiyan H, Wang Y, Cheng N, Sun H, Pérez Garza HH, Zheng R, Wang Z, S Mofarah S, Koshy P, Bhargava SK, Cui Y, Shao Z, Liu Y. Recent advances in in situ and operando characterization techniques for Li 7La 3Zr 2O 12-based solid-state lithium batteries. MATERIALS HORIZONS 2023; 10:1479-1538. [PMID: 37040188 DOI: 10.1039/d3mh00135k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Li7La3Zr2O12 (LLZO)-based solid-state Li batteries (SSLBs) have emerged as one of the most promising energy storage systems due to the potential advantages of solid-state electrolytes (SSEs), such as ionic conductivity, mechanical strength, chemical stability and electrochemical stability. However, there remain several scientific and technical obstacles that need to be tackled before they can be commercialised. The main issues include the degradation and deterioration of SSEs and electrode materials, ambiguity in the Li+ migration routes in SSEs, and interface compatibility between SSEs and electrodes during the charging and discharging processes. Using conventional ex situ characterization techniques to unravel the reasons that lead to these adverse results often requires disassembly of the battery after operation. The sample may be contaminated during the disassembly process, resulting in changes in the material properties within the battery. In contrast, in situ/operando characterization techniques can capture dynamic information during cycling, enabling real-time monitoring of batteries. Therefore, in this review, we briefly illustrate the key challenges currently faced by LLZO-based SSLBs, review recent efforts to study LLZO-based SSLBs using various in situ/operando microscopy and spectroscopy techniques, and elaborate on the capabilities and limitations of these in situ/operando techniques. This review paper not only presents the current challenges but also outlines future developmental prospects for the practical implementation of LLZO-based SSLBs. By identifying and addressing the remaining challenges, this review aims to enhance the comprehensive understanding of LLZO-based SSLBs. Additionally, in situ/operando characterization techniques are highlighted as a promising avenue for future research. The findings presented here can serve as a reference for battery research and provide valuable insights for the development of different types of solid-state batteries.
Collapse
Affiliation(s)
- Lei Zhang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Huilin Fan
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Yuzhen Dang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Quanchao Zhuang
- School of Materials and Physics, China University of Mining & Technology, Xuzhou 221116, China.
| | - Hamidreza Arandiyan
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia.
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Yuan Wang
- Institute for Frontier Materials, Deakin University, Melbourne, Vic 3125, Australia
| | - Ningyan Cheng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Hongyu Sun
- DENSsolutions B.V., Informaticalaan 12, 2628 ZD Delft, The Netherlands
| | | | - Runguo Zheng
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Zhiyuan Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Sajjad S Mofarah
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Suresh K Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Yanhua Cui
- Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621900, China
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA, 6845, Australia
| | - Yanguo Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| |
Collapse
|
10
|
Galushko AS, Boiko DA, Pentsak EO, Eremin DB, Ananikov VP. Time-Resolved Formation and Operation Maps of Pd Catalysts Suggest a Key Role of Single Atom Centers in Cross-Coupling. J Am Chem Soc 2023; 145:9092-9103. [PMID: 37052882 DOI: 10.1021/jacs.3c00645] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
An approach to the spatially localized characterization of supported catalysts over a reaction course is proposed. It consists of a combination of scanning, transmission, and high-resolution scanning transmission electron microscopy to determine metal particles from arrays of surface nanoparticles to individual nanoparticles and individual atoms. The study of the evolution of specific metal catalyst particles at different scale levels over time, particularly before and after the cross-coupling catalytic reaction, made it possible to approach the concept of 4D catalysis-tracking the positions of catalytic centers in space (3D) over time (+1D). The dynamic behavior of individual palladium atoms and nanoparticles in cross-coupling reactions was recorded with nanometer accuracy via the precise localization of catalytic centers. Single atoms of palladium leach out into solution from the support under the action of the catalytic system, where they exhibit extremely high catalytic activity compared to surface metal nanoparticles. Monoatomic centers, which make up only approximately 1% of palladium in the Pd/C system, provide more than 99% of the catalytic activity. The remaining palladium nanoparticles changed their shape and could move over the surface of the support, which was recorded by processing images of the array of nanoparticles with a neural network and aligning them using automatically detected keypoints. The study reveals a novel opportunity for single-atom catalysis─easier detachment (capture) from (on) the carbon support surface is the origin of superior catalytic activity, rather than the operation of single atomic catalytic centers on the surface of the support, as is typically assumed.
Collapse
Affiliation(s)
- Alexey S Galushko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Daniil A Boiko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Evgeniy O Pentsak
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Dmitry B Eremin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
- Bridge Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-3502, United States
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
11
|
Liu JC, Luo L, Xiao H, Zhu J, He Y, Li J. Metal Affinity of Support Dictates Sintering of Gold Catalysts. J Am Chem Soc 2022; 144:20601-20609. [DOI: 10.1021/jacs.2c06785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jin-Cheng Liu
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Langli Luo
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Hai Xiao
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology China, Hefei, Anhui 230029, China
| | - Yang He
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
12
|
In-situ and operando spectroscopies for the characterization of catalysts and of mechanisms of catalytic reactions. J Catal 2021. [DOI: 10.1016/j.jcat.2021.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Piccolo L. Restructuring effects of the chemical environment in metal nanocatalysis and single-atom catalysis. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Chee SW, Lunkenbein T, Schlögl R, Cuenya BR. In situand operandoelectron microscopy in heterogeneous catalysis-insights into multi-scale chemical dynamics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:153001. [PMID: 33825698 DOI: 10.1088/1361-648x/abddfd] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
This review features state-of-the-artin situandoperandoelectron microscopy (EM) studies of heterogeneous catalysts in gas and liquid environments during reaction. Heterogeneous catalysts are important materials for the efficient production of chemicals/fuels on an industrial scale and for energy conversion applications. They also play a central role in various emerging technologies that are needed to ensure a sustainable future for our society. Currently, the rational design of catalysts has largely been hampered by our lack of insight into the working structures that exist during reaction and their associated properties. However, elucidating the working state of catalysts is not trivial, because catalysts are metastable functional materials that adapt dynamically to a specific reaction condition. The structural or morphological alterations induced by chemical reactions can also vary locally. A complete description of their morphologies requires that the microscopic studies undertaken span several length scales. EMs, especially transmission electron microscopes, are powerful tools for studying the structure of catalysts at the nanoscale because of their high spatial resolution, relatively high temporal resolution, and complementary capabilities for chemical analysis. Furthermore, recent advances have enabled the direct observation of catalysts under realistic environmental conditions using specialized reaction cells. Here, we will critically discuss the importance of spatially-resolvedoperandomeasurements and the available experimental setups that enable (1) correlated studies where EM observations are complemented by separate measurements of reaction kinetics or spectroscopic analysis of chemical species during reaction or (2) real-time studies where the dynamics of catalysts are followed with EM and the catalytic performance is extracted directly from the reaction cell that is within the EM column or chamber. Examples of current research in this field will be presented. Challenges in the experimental application of these techniques and our perspectives on the field's future directions will also be discussed.
Collapse
Affiliation(s)
- See Wee Chee
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Thomas Lunkenbein
- Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Robert Schlögl
- Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
- Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, 45413 Mülheim an der Ruhr, Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| |
Collapse
|
15
|
Miller BK, Crozier PA. Linking Changes in Reaction Kinetics and Atomic-Level Surface Structures on a Supported Ru Catalyst for CO Oxidation. ACS Catal 2021. [DOI: 10.1021/acscatal.0c03789] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Benjamin K. Miller
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287-6106, United States
| | - Peter A. Crozier
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287-6106, United States
| |
Collapse
|
16
|
van der Wal LI, Turner SJ, Zečević J. Developments and advances in in situ transmission electron microscopy for catalysis research. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00258a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recent developments and advances in in situ TEM have raised the possibility to study every step during the catalysts' lifecycle. This review discusses the current state, opportunities and challenges of in situ TEM in the realm of catalysis.
Collapse
Affiliation(s)
- Lars I. van der Wal
- Materials Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- Utrecht
- The Netherlands
| | - Savannah J. Turner
- Materials Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- Utrecht
- The Netherlands
| | - Jovana Zečević
- Materials Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- Utrecht
- The Netherlands
| |
Collapse
|
17
|
Tang M, Yuan W, Ou Y, Li G, You R, Li S, Yang H, Zhang Z, Wang Y. Recent Progresses on Structural Reconstruction of Nanosized Metal Catalysts via Controlled-Atmosphere Transmission Electron Microscopy: A Review. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03335] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Min Tang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wentao Yuan
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yang Ou
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guanxing Li
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ruiyang You
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Songda Li
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hangsheng Yang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ze Zhang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yong Wang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
18
|
Schnadt J, Knudsen J, Johansson N. Present and new frontiers in materials research by ambient pressure x-ray photoelectron spectroscopy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:413003. [PMID: 32438360 DOI: 10.1088/1361-648x/ab9565] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
In this topical review we catagorise all ambient pressure x-ray photoelectron spectroscopy publications that have appeared between the 1970s and the end of 2018 according to their scientific field. We find that catalysis, surface science and materials science are predominant, while, for example, electrocatalysis and thin film growth are emerging. All catalysis publications that we could identify are cited, and selected case stories with increasing complexity in terms of surface structure or chemical reaction are discussed. For thin film growth we discuss recent examples from chemical vapour deposition and atomic layer deposition. Finally, we also discuss current frontiers of ambient pressure x-ray photoelectron spectroscopy research, indicating some directions of future development of the field.
Collapse
Affiliation(s)
- Joachim Schnadt
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, Lund, Sweden
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - Jan Knudsen
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, Lund, Sweden
- MAX IV Laboratory, Lund University, Lund, Sweden
| | | |
Collapse
|
19
|
He B, Zhang Y, Liu X, Chen L. In‐situ Transmission Electron Microscope Techniques for Heterogeneous Catalysis. ChemCatChem 2020. [DOI: 10.1002/cctc.201902285] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bowen He
- In-situ Center for Physical Sciences School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200240 P.R. China
| | - Yixiao Zhang
- In-situ Center for Physical Sciences School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200240 P.R. China
| | - Xi Liu
- In-situ Center for Physical Sciences School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200240 P.R. China
- SynCat@BeijingSynfuels China Technology Co.Ltd Beijing 101407 P.R. China
- State Key Laboratory of Coal Conversion Institute of Coal ChemistryChinese Academy of Sciences Taiyuan 030001 P.R. China
| | - Liwei Chen
- In-situ Center for Physical Sciences School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200240 P.R. China
- i-Lab, CAS Center for Excellence in Nanoscience Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO)Chinese Academy of Sciences Suzhou 215123 P.R. China
| |
Collapse
|
20
|
Zhang X, Han S, Zhu B, Zhang G, Li X, Gao Y, Wu Z, Yang B, Liu Y, Baaziz W, Ersen O, Gu M, Miller JT, Liu W. Reversible loss of core–shell structure for Ni–Au bimetallic nanoparticles during CO2 hydrogenation. Nat Catal 2020. [DOI: 10.1038/s41929-020-0440-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Zhu B, Meng J, Yuan W, Zhang X, Yang H, Wang Y, Gao Y. Umformung von Metallnanopartikeln unter Reaktionsbedingungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201906799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Beien Zhu
- Shanghai Advanced Research InstituteChinese Academy of Sciences 201210 Shanghai China
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| | - Jun Meng
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wentao Yuan
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Xun Zhang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Hangsheng Yang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Yong Wang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Yi Gao
- Shanghai Advanced Research InstituteChinese Academy of Sciences 201210 Shanghai China
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| |
Collapse
|
22
|
Zhu B, Meng J, Yuan W, Zhang X, Yang H, Wang Y, Gao Y. Reshaping of Metal Nanoparticles Under Reaction Conditions. Angew Chem Int Ed Engl 2020; 59:2171-2180. [DOI: 10.1002/anie.201906799] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/10/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Beien Zhu
- Shanghai Advanced Research InstituteChinese Academy of Sciences 201210 Shanghai China
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| | - Jun Meng
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wentao Yuan
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Xun Zhang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Hangsheng Yang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Yong Wang
- State Key Laboratory of Silicon MaterialsSchool of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Yi Gao
- Shanghai Advanced Research InstituteChinese Academy of Sciences 201210 Shanghai China
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| |
Collapse
|
23
|
Kashin AS, Ananikov VP. Monitoring chemical reactions in liquid media using electron microscopy. Nat Rev Chem 2019. [DOI: 10.1038/s41570-019-0133-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Abstract
Atom probe tomography is a well-established analytical instrument for imaging the 3D structure and composition of materials with high mass resolution, sub-nanometer spatial resolution and ppm elemental sensitivity. Thanks to recent hardware developments in Atom Probe Tomography (APT), combined with progress on site-specific focused ion beam (FIB)-based sample preparation methods and improved data treatment software, complex materials can now be routinely investigated. From model samples to complex, usable porous structures, there is currently a growing interest in the analysis of catalytic materials. APT is able to probe the end state of atomic-scale processes, providing information needed to improve the synthesis of catalysts and to unravel structure/composition/reactivity relationships. This review focuses on the study of catalytic materials with increasing complexity (tip-sample, unsupported and supported nanoparticles, powders, self-supported catalysts and zeolites), as well as sample preparation methods developed to obtain suitable specimens for APT experiments.
Collapse
|
25
|
Liu S, Arce AS, Nilsson S, Albinsson D, Hellberg L, Alekseeva S, Langhammer C. In Situ Plasmonic Nanospectroscopy of the CO Oxidation Reaction over Single Pt Nanoparticles. ACS NANO 2019; 13:6090-6100. [PMID: 31091069 PMCID: PMC6566494 DOI: 10.1021/acsnano.9b02876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 05/15/2019] [Indexed: 05/10/2023]
Abstract
The ongoing quest to develop single-particle methods for the in situ study of heterogeneous catalysts is driven by the fact that heterogeneity in terms of size, shape, grain structure, and composition is a general feature among nanoparticles in an ensemble. This heterogeneity hampers the generation of a deeper understanding for how these parameters affect catalytic properties. Here we present a solution that in a single benchtop experimental setup combines single-particle plasmonic nanospectroscopy with mass spectrometry for gas phase catalysis under reaction conditions at high temperature. We measure changes in the surface state of polycrystalline platinum model catalyst particles in the 70 nm size range and the corresponding bistable kinetics during the carbon monoxide oxidation reaction via the peak shift of the dark-field scattering spectrum of a closely adjacent plasmonic nanoantenna sensor and compare these changes with the total reaction rate measured by the mass spectrometer from an ensemble of nominally identical particles. We find that the reaction kinetics of simultaneously measured individual Pt model catalysts are dictated by the grain structure and that the superposition of the individual nanoparticle response can account for the significant broadening observed in the corresponding nanoparticle ensemble data. In a wider perspective our work enables in situ plasmonic nanospectroscopy in controlled gas environments at high temperature to investigate the role of the surface state on transition metal catalysts during reaction and of processes such as alloying or surface segregation in situ at the single-nanoparticle level for model catalysts in the few tens to hundreds of nanometer size range.
Collapse
Affiliation(s)
- Su Liu
- Department of Physics, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | - Arturo Susarrey Arce
- Department of Physics, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | - Sara Nilsson
- Department of Physics, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | - David Albinsson
- Department of Physics, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | - Lars Hellberg
- Department of Physics, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | - Svetlana Alekseeva
- Department of Physics, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | - Christoph Langhammer
- Department of Physics, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| |
Collapse
|
26
|
Yang F, Zhao H, Wang X, Liu X, Liu Q, Liu X, Jin C, Wang R, Li Y. Atomic Scale Stability of Tungsten–Cobalt Intermetallic Nanocrystals in Reactive Environment at High Temperature. J Am Chem Soc 2019; 141:5871-5879. [DOI: 10.1021/jacs.9b00473] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Feng Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Haofei Zhao
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaowei Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xu Liu
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qidong Liu
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiyan Liu
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chuanhong Jin
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Rongming Wang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yan Li
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
27
|
Chmielewski A, Meng J, Zhu B, Gao Y, Guesmi H, Prunier H, Alloyeau D, Wang G, Louis C, Delannoy L, Afanasiev P, Ricolleau C, Nelayah J. Reshaping Dynamics of Gold Nanoparticles under H 2 and O 2 at Atmospheric Pressure. ACS NANO 2019; 13:2024-2033. [PMID: 30620561 DOI: 10.1021/acsnano.8b08530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Despite intensive research efforts, the nature of the active sites for O2 and H2 adsorption/dissociation by supported gold nanoparticles (NPs) is still an unresolved issue in heterogeneous catalysis. This stems from the absence of a clear picture of the structural evolution of Au NPs at near reaction conditions, i. e., at high pressures and high temperatures. We hereby report real-space observations of the equilibrium shapes of titania-supported Au NPs under O2 and H2 at atmospheric pressure using gas transmission electron microscopy. In situ TEM observations show instantaneous changes in the equilibrium shape of Au NPs during cooling under O2 from 400 °C to room temperature. In comparison, no instant change in equilibrium shape is observed under a H2 environment. To interpret these experimental observations, the equilibrium shape of Au NPs under O2, atomic oxygen, and H2 is predicted using a multiscale structure reconstruction model. Excellent agreement between TEM observations and theoretical modeling of Au NPs under O2 provides strong evidence for the molecular adsorption of oxygen on the Au NPs below 120 °C on specific Au facets, which are identified in this work. In the case of H2, theoretical modeling predicts no interaction with gold atoms that explain their high morphological stability under this gas. This work provides atomic structural information for the fundamental understanding of the O2 and H2 adsorption properties of Au NPs under real working conditions and shows a way to identify the active sites of heterogeneous nanocatalysts under reaction conditions by monitoring the structure reconstruction.
Collapse
Affiliation(s)
- Adrian Chmielewski
- Université Paris Diderot , Sorbonne Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162, 75013 Paris , France
| | - Jun Meng
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
- Institut Charles Gerhardt Montpellier, CNRS/ENSCM/UM , 240, Avenue du Professeur Emile Jeanbrau , 34090 Montpellier , France
| | - Beien Zhu
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800 , China
| | - Yi Gao
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800 , China
| | - Hazar Guesmi
- Institut Charles Gerhardt Montpellier, CNRS/ENSCM/UM , 240, Avenue du Professeur Emile Jeanbrau , 34090 Montpellier , France
| | - Hélène Prunier
- Université Paris Diderot , Sorbonne Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162, 75013 Paris , France
| | - Damien Alloyeau
- Université Paris Diderot , Sorbonne Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162, 75013 Paris , France
| | - Guillaume Wang
- Université Paris Diderot , Sorbonne Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162, 75013 Paris , France
| | - Catherine Louis
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS , F-75252 Paris , France
| | - Laurent Delannoy
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS , F-75252 Paris , France
| | - Pavel Afanasiev
- Université de Lyon, Institut de Recherches sur la Catalyse et l'Environnement de Lyon - IRCELYON - UMR 5256, CNRS-UCB Lyon 1 , 2 Avenue Albert Einstein , 69626 Villeurebanne Cedex, France
| | - Christian Ricolleau
- Université Paris Diderot , Sorbonne Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162, 75013 Paris , France
| | - Jaysen Nelayah
- Université Paris Diderot , Sorbonne Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162, 75013 Paris , France
| |
Collapse
|
28
|
Roddatis V, Bongers MD, Vink R, Burlaka V, Čížek J, Pundt A. Insights into Hydrogen Gas Environment-Promoted Nanostructural Changes in Stressed and Relaxed Palladium by Environmental Transmission Electron Microscopy and Variable-Energy Positron Annihilation Spectroscopy. J Phys Chem Lett 2018; 9:5246-5253. [PMID: 30152701 DOI: 10.1021/acs.jpclett.8b02363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Environmental transmission electron microscopy (ETEM) and variable-energy positron annihilation spectroscopy (VEPAS) are used to observe hydrogen-induced microstructural changes in stress-free palladium (Pd) foils and stressed Pd thin films grown on rutile TiO2 substrates. The microstructural changes in Pd strongly depend on the hydrogen pressure and on the stress state. At room temperature, enhanced Pd surface atom mobility and surface reconstruction is seen by ETEM already at low hydrogen pressures ( pH < 10 Pa). The observations are consistent with molecular dynamics simulations. A strong increase of the vacancy density was found, and so-called superabundant vacancies were identified by VEPAS. At higher pressures, migration and vanishing of intrinsic defects is observed in Pd free-standing foils. The Pd thin films demonstrate an increased density of dislocations with increase of the H2 pressure. The comparison of the two studied systems demonstrates the influence of the mechanical stress on structural evolution of Pd catalysts.
Collapse
Affiliation(s)
- Vladimir Roddatis
- Institute of Materials Physics , University of Goettingen , Friedrich-Hund-Platz 1 , Goettingen D-37077 , Germany
| | - Marian D Bongers
- Institute of Materials Physics , University of Goettingen , Friedrich-Hund-Platz 1 , Goettingen D-37077 , Germany
| | - Richard Vink
- Institute of Materials Physics , University of Goettingen , Friedrich-Hund-Platz 1 , Goettingen D-37077 , Germany
| | - Vladimir Burlaka
- Institute of Materials Physics , University of Goettingen , Friedrich-Hund-Platz 1 , Goettingen D-37077 , Germany
| | - Jakub Čížek
- Department of Low-Temperature Physics , Charles University , Prague V Holešovičkách 2 , CZ-18000 Praha 8 , Czech Republic
| | - Astrid Pundt
- Institute of Materials Physics , University of Goettingen , Friedrich-Hund-Platz 1 , Goettingen D-37077 , Germany
- Institute for Applied Materials (IAM-WK) , Karlsruhe Institute of Technology (KIT) , Engelbert-Arnold-Strasse 4 , Karlsruhe D-76131 , Germany
| |
Collapse
|
29
|
Bai Y, Zhang J, Yang G, Zhang Q, Pan J, Xie H, Liu X, Han Y, Tan Y. Insight into the Nanoparticle Growth in Supported Ni Catalysts during the Early Stage of CO Hydrogenation Reaction: The Important Role of Adsorbed CO Molecules. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yunxing Bai
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junfeng Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Guohui Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Qingde Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Junxuan Pan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Hongjuan Xie
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Xingchen Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Yizhuo Han
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Yisheng Tan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| |
Collapse
|
30
|
Simonsen SB, Wang Y, Jensen JO, Zhang W. Coarsening of carbon black supported Pt nanoparticles in hydrogen. NANOTECHNOLOGY 2017; 28:475710. [PMID: 28984273 DOI: 10.1088/1361-6528/aa91a8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study addresses coarsening mechanisms of Pt nanoparticles supported on carbon black in hydrogen. By means of in situ transmission electron microscopy (TEM), Pt nanoparticle coarsening was monitored in 6 mbar 20% H2/Ar while ramping up the temperature to almost 1000 °C. Time-resolved TEM images directly reveal that separated ca. 3 nm sized Pt nanoparticles in a hydrogen environment are stable up to ca. 800 °C at a heating rate of 10 °C min-1. The coarsening above this temperature is dominated by the particle migration and coalescence mechanism. However, for agglomerated Pt nanoparticles, coalescence events were observed already above 200 °C. The temperature-dependency of particle sizes and the observed migration distances are described and found to be consistent with simple early models for the migration and coalescence.
Collapse
Affiliation(s)
- Søren Bredmose Simonsen
- Department of Energy Conversion and Storage, Technical University of Denmark, DK-4000 Roskilde, Denmark
| | | | | | | |
Collapse
|
31
|
Simonsen SB, Shao J, Zhang W. Structural evolution during calcination and sintering of a (La 0.6Sr 0.4) 0.99CoO 3-δ nanofiber prepared by electrospinning. NANOTECHNOLOGY 2017; 28:265402. [PMID: 28513468 DOI: 10.1088/1361-6528/aa73a6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Design of three-dimensional metal oxide nanofibers by electrospinning is being widely explored. However, the impacts of calcination and sintering on the resulting morphology remain unknown. For the first time, (La0.6Sr0.4)0.99CoO3-δ (LSC) nanofiber, which is among the most promising electrode materials for solid oxide fuel cells, was synthesized by sol-gel electrospinning. By elevating the temperature in oxygen using in situ transmission electron microscopy, we discovered the structural transitions from nanofibers to nanotubes and then to nano-pearl strings. This facile and up-scalable method can be widely applied to design metal oxide one-dimensional nanomaterials with precise control in both geometry (nanofiber, nanotube and nano-pearl string) and surface area (by varying grain size).
Collapse
Affiliation(s)
- S B Simonsen
- Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, Roskilde, DK-4000, Denmark
| | | | | |
Collapse
|
32
|
|
33
|
|
34
|
Kalz KF, Kraehnert R, Dvoyashkin M, Dittmeyer R, Gläser R, Krewer U, Reuter K, Grunwaldt J. Future Challenges in Heterogeneous Catalysis: Understanding Catalysts under Dynamic Reaction Conditions. ChemCatChem 2017; 9:17-29. [PMID: 28239429 PMCID: PMC5299475 DOI: 10.1002/cctc.201600996] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Indexed: 01/12/2023]
Abstract
In the future, (electro-)chemical catalysts will have to be more tolerant towards a varying supply of energy and raw materials. This is mainly due to the fluctuating nature of renewable energies. For example, power-to-chemical processes require a shift from steady-state operation towards operation under dynamic reaction conditions. This brings along a number of demands for the design of both catalysts and reactors, because it is well-known that the structure of catalysts is very dynamic. However, in-depth studies of catalysts and catalytic reactors under such transient conditions have only started recently. This requires studies and advances in the fields of 1) operando spectroscopy including time-resolved methods, 2) theory with predictive quality, 3) kinetic modelling, 4) design of catalysts by appropriate preparation concepts, and 5) novel/modular reactor designs. An intensive exchange between these scientific disciplines will enable a substantial gain of fundamental knowledge which is urgently required. This concept article highlights recent developments, challenges, and future directions for understanding catalysts under dynamic reaction conditions.
Collapse
Affiliation(s)
- Kai F. Kalz
- Institute of Catalysis Research and Technology (IKFT)Karlsruhe Institute of Technology (KIT)D-76344Eggenstein-LeopoldshafenGermany
| | - Ralph Kraehnert
- Department of ChemistryTechnische Universität BerlinD-10623BerlinGermany
| | - Muslim Dvoyashkin
- Institute of Chemical TechnologyUniversität LeipzigD-04103LeipzigGermany
| | - Roland Dittmeyer
- Institute for Micro Process Engineering (IMVT)Karlsruhe Institute of Technology (KIT)D-76344Eggenstein-LeopoldshafenGermany
| | - Roger Gläser
- Institute of Chemical TechnologyUniversität LeipzigD-04103LeipzigGermany
| | - Ulrike Krewer
- Institute of Energy and Process Systems EngineeringTU BraunschweigD-38106BraunschweigGermany
| | - Karsten Reuter
- Chair for Theoretical Chemistry and Catalysis Research CenterTechnische Universität MünchenD-85747GarchingGermany
| | - Jan‐Dierk Grunwaldt
- Institute of Catalysis Research and Technology (IKFT)Karlsruhe Institute of Technology (KIT)D-76344Eggenstein-LeopoldshafenGermany
- Institute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)D-76131KarlsruheGermany
| |
Collapse
|
35
|
Spectroscopic Methods in Catalysis and Their Application in Well-Defined Nanocatalysts. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/b978-0-12-805090-3.00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
36
|
Li J, Güttinger R, Moré R, Song F, Wan W, Patzke GR. Frontiers of water oxidation: the quest for true catalysts. Chem Soc Rev 2017; 46:6124-6147. [DOI: 10.1039/c7cs00306d] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Development of advanced analytical techniques is essential for the identification of water oxidation catalysts together with mechanistic studies.
Collapse
Affiliation(s)
- J. Li
- University of Zurich
- Department of Chemistry
- CH-8057 Zurich
- Switzerland
| | - R. Güttinger
- University of Zurich
- Department of Chemistry
- CH-8057 Zurich
- Switzerland
| | - R. Moré
- University of Zurich
- Department of Chemistry
- CH-8057 Zurich
- Switzerland
| | - F. Song
- University of Zurich
- Department of Chemistry
- CH-8057 Zurich
- Switzerland
| | - W. Wan
- University of Zurich
- Department of Chemistry
- CH-8057 Zurich
- Switzerland
| | - G. R. Patzke
- University of Zurich
- Department of Chemistry
- CH-8057 Zurich
- Switzerland
| |
Collapse
|
37
|
Pan YT, Yan L, Shao YT, Zuo JM, Yang H. Regioselective Atomic Rearrangement of Ag-Pt Octahedral Catalysts by Chemical Vapor-Assisted Treatment. NANO LETTERS 2016; 16:7988-7992. [PMID: 27960506 DOI: 10.1021/acs.nanolett.6b04411] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Thermal annealing is a common, and often much-needed, process to optimize the surface structure and composition of bimetallic nanoparticles for high catalytic performance. Such thermal treatment is often carried out either in air or under an inert atmosphere by a trial-and-error approach. Herewith, we present a new chemical vapor-assisted treatment, which can preserve the octahedral morphology of Ag-Pt nanoparticles while modifying the surface into preferred composition arrangements with site-selectivity for high catalytic activity. In situ environmental transmission electron microscope (ETEM) study reveals a relatively homogeneous distribution of Ag and Pt is generated on the surface of Ag-Pt nanoparticles upon exposure to carbon monoxide (CO), whereas Pt atoms preferably segregate to the edge regions when the gas atmosphere is switched to argon. Density functional theory (DFT) calculations suggest stabilization of Pt atoms is energetically favored in the form of mixed surface alloys when CO vapor is present. Without CO, Ag and Pt phase separate under the similar mild treatment condition. There exists a close correlation between the tunable surface structures and the catalytic activities of Ag-Pt octahedral nanoparticles.
Collapse
Affiliation(s)
- Yung-Tin Pan
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign , 114 Roger Adam Laboratory, MC-712, 600 South Methews Avenue, Urbana, Illinois 61801, United States
| | - Linqing Yan
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign , 114 Roger Adam Laboratory, MC-712, 600 South Methews Avenue, Urbana, Illinois 61801, United States
| | - Yu-Tsun Shao
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , 1006 Materials Research Laboratory, 104 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Jian-Min Zuo
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , 1006 Materials Research Laboratory, 104 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Hong Yang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign , 114 Roger Adam Laboratory, MC-712, 600 South Methews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
38
|
Aouine M, Epicier T, Millet JMM. In Situ Environmental STEM Study of the MoVTe Oxide M1 Phase Catalysts for Ethane Oxidative Dehydrogenation. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01114] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mimoun Aouine
- Institut
de Recherches sur la Catalyse et l’Environnement de Lyon, IRCELYON, UMR5256 CNRS-Université Claude Bernard, Lyon I, 2 avenue A. Einstein, 69626 Villeurbanne Cedex, France
| | - Thierry Epicier
- Institut
de Recherches sur la Catalyse et l’Environnement de Lyon, IRCELYON, UMR5256 CNRS-Université Claude Bernard, Lyon I, 2 avenue A. Einstein, 69626 Villeurbanne Cedex, France
- Université de Lyon, INSA Lyon, MATEIS, UMR CNRS 5510, 7, avenue Jean-Capelle, 69621 Villeurbanne Cedex, France
| | - Jean-Marc M. Millet
- Institut
de Recherches sur la Catalyse et l’Environnement de Lyon, IRCELYON, UMR5256 CNRS-Université Claude Bernard, Lyon I, 2 avenue A. Einstein, 69626 Villeurbanne Cedex, France
| |
Collapse
|
39
|
Bligaard T, Bullock RM, Campbell CT, Chen JG, Gates BC, Gorte RJ, Jones CW, Jones WD, Kitchin JR, Scott SL. Toward Benchmarking in Catalysis Science: Best Practices, Challenges, and Opportunities. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00183] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas Bligaard
- SUNCAT - Center
for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - R. Morris Bullock
- Center
for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Charles T. Campbell
- Department
of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Jingguang G. Chen
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Bruce C. Gates
- Department of Chemical Engineering & Materials Science, University of California, Davis, California 95616, United States
| | - Raymond J. Gorte
- Department of Chemical & Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Christopher W. Jones
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - William D. Jones
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - John R. Kitchin
- Department
of Chemical Engineering, Carnegie Mellon University, 5000 Forbes
Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Susannah L. Scott
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
40
|
Lee SC, Benck JD, Tsai C, Park J, Koh AL, Abild-Pedersen F, Jaramillo TF, Sinclair R. Chemical and Phase Evolution of Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production. ACS NANO 2016; 10:624-632. [PMID: 26624225 DOI: 10.1021/acsnano.5b05652] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Amorphous MoSx is a highly active, earth-abundant catalyst for the electrochemical hydrogen evolution reaction. Previous studies have revealed that this material initially has a composition of MoS3, but after electrochemical activation, the surface is reduced to form an active phase resembling MoS2 in composition and chemical state. However, structural changes in the MoSx catalyst and the mechanism of the activation process remain poorly understood. In this study, we employ transmission electron microscopy (TEM) to image amorphous MoSx catalysts activated under two hydrogen-rich conditions: ex situ in an electrochemical cell and in situ in an environmental TEM. For the first time, we directly observe the formation of crystalline domains in the MoSx catalyst after both activation procedures as well as spatially localized changes in the chemical state detected via electron energy loss spectroscopy. Using density functional theory calculations, we investigate the mechanisms for this phase transformation and find that the presence of hydrogen is critical for enabling the restructuring process. Our results suggest that the surface of the amorphous MoSx catalyst is dynamic: while the initial catalyst activation forms the primary active surface of amorphous MoS2, continued transformation to the crystalline phase during electrochemical operation could contribute to catalyst deactivation. These results have important implications for the application of this highly active electrocatalyst for sustainable H2 generation.
Collapse
Affiliation(s)
| | | | - Charlie Tsai
- SUNCAT Center for Interface Science and Catalysis , SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | | | | | - Frank Abild-Pedersen
- SUNCAT Center for Interface Science and Catalysis , SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Thomas F Jaramillo
- SUNCAT Center for Interface Science and Catalysis , SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | | |
Collapse
|
41
|
Zhao S, Li Y, Stavitski E, Tappero R, Crowley S, Castaldi MJ, Zakharov DN, Nuzzo RG, Frenkel AI, Stach EA. Operando Characterization of Catalysts through use of a Portable Microreactor. ChemCatChem 2015. [DOI: 10.1002/cctc.201500688] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shen Zhao
- Department of Chemistry; University of Illinois; Urbana IL 61801 USA
- Center for Functional Nanomaterials; Brookhaven National Laboratory; Upton NY 11793 USA
| | - Yuanyuan Li
- Department of Physics; Yeshiva University; New York NY 10016 USA
| | - Eli Stavitski
- Photon Sciences Division; Brookhaven National Laboratory; Upton NY 11973 USA
| | - Ryan Tappero
- Photon Sciences Division; Brookhaven National Laboratory; Upton NY 11973 USA
| | - Stephen Crowley
- Department of Chemical Engineering; City College of New York; New York NY 10031 USA
| | - Marco J. Castaldi
- Department of Chemical Engineering; City College of New York; New York NY 10031 USA
| | - Dmitri N. Zakharov
- Center for Functional Nanomaterials; Brookhaven National Laboratory; Upton NY 11793 USA
| | - Ralph G. Nuzzo
- Department of Chemistry; University of Illinois; Urbana IL 61801 USA
| | | | - Eric A. Stach
- Center for Functional Nanomaterials; Brookhaven National Laboratory; Upton NY 11793 USA
| |
Collapse
|
42
|
Takeda S, Kuwauchi Y, Yoshida H. Environmental transmission electron microscopy for catalyst materials using a spherical aberration corrector. Ultramicroscopy 2015; 151:178-190. [DOI: 10.1016/j.ultramic.2014.11.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/13/2014] [Accepted: 11/15/2014] [Indexed: 11/29/2022]
|
43
|
Su DS, Zhang B, Schlögl R. Electron microscopy of solid catalysts--transforming from a challenge to a toolbox. Chem Rev 2015; 115:2818-82. [PMID: 25826447 DOI: 10.1021/cr500084c] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Dang Sheng Su
- †Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China.,‡Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Bingsen Zhang
- †Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Robert Schlögl
- ‡Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
44
|
Hofmann G, Rochet A, Ogel E, Casapu M, Ritter S, Ogurreck M, Grunwaldt JD. Aging of a Pt/Al2O3 exhaust gas catalyst monitored by quasi in situ X-ray micro computed tomography. RSC Adv 2015. [DOI: 10.1039/c4ra14007a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Catalyst aging effects are analyzed using X-ray absorption micro-computed tomography in combination with conventional characterization methods on various length scales ranging from nm to μm to gain insight into deactivation mechanisms.
Collapse
Affiliation(s)
- Georg Hofmann
- Institute for Chemical Technology and Polymer Chemistry
- Karlsruhe Institute of Technology (KIT)
- D-76131 Karlsruhe
- Germany
| | - Amélie Rochet
- Institute for Chemical Technology and Polymer Chemistry
- Karlsruhe Institute of Technology (KIT)
- D-76131 Karlsruhe
- Germany
| | - Elen Ogel
- Institute for Chemical Technology and Polymer Chemistry
- Karlsruhe Institute of Technology (KIT)
- D-76131 Karlsruhe
- Germany
| | - Maria Casapu
- Institute for Chemical Technology and Polymer Chemistry
- Karlsruhe Institute of Technology (KIT)
- D-76131 Karlsruhe
- Germany
| | - Stephan Ritter
- Institute of Structural Physics
- Technical University Dresden (TUD)
- D-01062 Dresden
- Germany
| | - Malte Ogurreck
- Institute of Materials Research
- Helmholtz-Zentrum Geesthacht (HZG)
- D-21502 Geesthacht
- Germany
| | - Jan-Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry
- Karlsruhe Institute of Technology (KIT)
- D-76131 Karlsruhe
- Germany
| |
Collapse
|