1
|
Heidar-Zadeh F, Castillo-Orellana C, van Zyl M, Pujal L, Verstraelen T, Bultinck P, Vöhringer-Martinez E, Ayers PW. Variational Hirshfeld Partitioning: General Framework and the Additive Variational Hirshfeld Partitioning Method. J Chem Theory Comput 2024. [PMID: 39514699 DOI: 10.1021/acs.jctc.4c01077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
We introduce the general mathematical framework of variational Hirshfeld partitioning, wherein the best possible approximation to a molecule's electron density is obtained by minimizing the f-divergence between the molecular density and a non-negative linear combination of (normalized) basis functions. This framework subsumes several existing methods that variationally optimize their pro-atoms, like (Gaussian) iterative stockholder analysis (ISA and GISA) and minimal basis iterative stockholder partitioning (MBIS), and provides a solid foundation for developing mathematically rigorous partitioning schemes. In this paper, we delve into the mathematical underpinnings of Hirshfeld-inspired partitioning schemes and show that among all the valid f-divergence measures only the extended Kullback-Leibler is a suitable choice. This led us to develop a novel partitioning scheme, called additive variational Hirshfeld (AVH), which constructs the pro-molecular density as a convex linear combination of the densities from selected states of isolated atoms and atomic ions. The AVH method is size-consistent with a unique solution and provides a straightforward approach for adding constraints for fragment properties. It also results in an intuitively appealing valence-bond-like decomposition of the molecular density as a weighted average of the densities of the atomic states in the molecule; that is, the AVH atomic density is a minimal deformation of the corresponding isolated atomic reference state's density. Compared to other variational Hirshfeld variants, our numerical results show that AVH yields chemically interpretable and sensible atomic charges that are not excessively large and demonstrate computational robustness.
Collapse
Affiliation(s)
- Farnaz Heidar-Zadeh
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L-3N6, Canada
| | - Carlos Castillo-Orellana
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4070371, Chile
| | - Maximilian van Zyl
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L-3N6, Canada
| | - Leila Pujal
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L-3N6, Canada
| | - Toon Verstraelen
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 46, B-9052 Zwijnaarde, Belgium
| | - Patrick Bultinck
- Ghent Quantum Chemistry Group, Department of Chemistry, Ghent University, Krijgslaan 281 S3, Ghent B-9000, Belgium
| | - Esteban Vöhringer-Martinez
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4070371, Chile
| | - Paul W Ayers
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
2
|
Zhang S, Jiang DE, Zhou N, Tang J, Zhang K, Li Y, Hu J, Peng C, Liu H, Yang B, Yao Y. Ionic liquids intercalation in titanium carbide MXenes: A first-principles investigation. J Comput Chem 2024; 45:2294-2307. [PMID: 38847556 DOI: 10.1002/jcc.27444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/24/2024] [Accepted: 05/23/2024] [Indexed: 08/15/2024]
Abstract
Herein, we present a density functional theory with dispersion correction (DFT-D) calculations that focus on the intercalation of ionic liquids (ILs) electrolytes into the two-dimensional (2D) Ti3C2Tx MXenes. These ILs include the cation 1-ethyl-3-methylimidazolium (Emim+), accompanied by three distinct anions: bis(trifluoromethylsulfonyl)imide (TFSA-), (fluorosulfonyl)imide (FSA-) and fluorosulfonyl(trifluoromethanesulfonyl)imide (FTFSA-). By altering the surface termination elements, we explore the intricate geometries of IL intercalation in neutral, negative, and positive pore systems. Accurate estimation of charge transfer is achieved through five population analysis models, such as Hirshfeld, Hirshfeld-I, DDEC6 (density derived electrostatic and chemical), Bader, and VDD (voronoi deformation density) charges. In this work, we recommend the DDEC6 and Hirshfeld-I charge models, as they offer moderate values and exhibit reasonable trends. The investigation, aimed at visualizing non-covalent interactions, elucidates the role of cation-MXene and anion-MXene interactions in governing the intercalation phenomenon of ionic liquids within MXenes. The magnitude of this role depends on two factors: the specific arrangement of the cation, and the nature of the anionic species involved in the process.
Collapse
Affiliation(s)
- Shaoze Zhang
- National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, China
- Engineering Laboratory for Advanced Battery and Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, China
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Nan Zhou
- National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, China
- Engineering Laboratory for Advanced Battery and Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, China
| | - Jiaxing Tang
- National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, China
- Engineering Laboratory for Advanced Battery and Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, China
| | - Keyu Zhang
- National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, China
- Engineering Laboratory for Advanced Battery and Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, China
| | - Yin Li
- National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, China
- Engineering Laboratory for Advanced Battery and Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, China
| | - Junxian Hu
- National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, China
- Engineering Laboratory for Advanced Battery and Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, China
| | - Changjun Peng
- Key Laboratory for Advanced Materials and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Honglai Liu
- Key Laboratory for Advanced Materials and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Bin Yang
- National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, China
- Engineering Laboratory for Advanced Battery and Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, China
| | - Yaochun Yao
- National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, China
- Engineering Laboratory for Advanced Battery and Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
3
|
Lyu B, Jiang J, Jiang Z. Electrostatic Repulsion Facilitated Ion Transport in Covalent-Organic Framework Membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402822. [PMID: 38837540 DOI: 10.1002/smll.202402822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/19/2024] [Indexed: 06/07/2024]
Abstract
Covalent-organic framework (COF) membranes are increasingly used for many potential applications including ion separation, fuel cells, and ion batteries. It is of central importance to fundamentally and quantitatively understand ion transport in COF membranes. In this study, a series of COF membranes is designed with different densities and arrangements of functional groups and subsequently utilize molecular simulation to provide microscopic insights into ion transport in these membranes. The membrane with a single-sided layer exhibits the highest chloride ion (Cl-) conductivity of 77.2 mS cm-1 at 30 °C. Replacing the single-sided layer with a double-sided layer or changing layer arrangement leads to a decrease in Cl- conductivity up to 33% or 53%, respectively. It is revealed that the electrostatic repulsion between ions serves as a driving force to facilitate ion transport and the positions of functional groups determine the direction of electrostatic repulsion. Furthermore, the ordered pores generate concentrated ions and allow rapid ion transport. This study offers bottom-up inspiration on the design of new COF membranes with moderate density and proper arrangement of functional groups to achieve high ion conductivity.
Collapse
Affiliation(s)
- Bohui Lyu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Jianwen Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Zhongyi Jiang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
4
|
Wu X, Jiang J. Precision-engineered metal-organic frameworks: fine-tuning reverse topological structure prediction and design. Chem Sci 2024:d4sc05616g. [PMID: 39345765 PMCID: PMC11423560 DOI: 10.1039/d4sc05616g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
Digital discoveries of metal-organic frameworks (MOFs) have been significantly advanced by the reverse topological approach (RTA). The node-and-linker assembly strategy allows predictable reticulations predefined by in silico coordination templates; however, reticular equivalents lead to substantial combinatorial explosion due to the infinite design space of building units (BUs). Here, we develop a fine-tuned RTA for the structure prediction of MOFs by integrating precise topological constraints and leveraging reticular chemistry, thus transcending traditional exhaustive trial-and-error assembly. From an extensive array of chemically realistic BUs, we subsequently design a database of 94 823 precision-engineered MOFs (PE-MOFs) and further optimize their structures. The PE-MOFs are assessed for post-combustion CO2 capture in the presence of H2O and top-performing candidates are identified by integrating three stability criteria (activation, water and thermal stabilities). This study highlights the potential of synergizing PE with the RTA to enhance efficiency and precision for computational design of MOFs and beyond.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore 117576 Singapore
| | - Jianwen Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore 117576 Singapore
| |
Collapse
|
5
|
Luo J, Said OB, Xie P, Gibaldi M, Burner J, Pereira C, Woo TK. MEPO-ML: a robust graph attention network model for rapid generation of partial atomic charges in metal-organic frameworks. NPJ COMPUTATIONAL MATERIALS 2024; 10:224. [PMID: 39309403 PMCID: PMC11412901 DOI: 10.1038/s41524-024-01413-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024]
Abstract
Accurate computation of the gas adsorption properties of MOFs is usually bottlenecked by the DFT calculations required to generate partial atomic charges. Therefore, large virtual screenings of MOFs often use the QEq method which is rapid, but of limited accuracy. Recently, machine learning (ML) models have been trained to generate charges in much better agreement with DFT-derived charges compared to the QEq models. Previous ML charge models for MOFs have all used training sets with less than 3000 MOFs obtained from the CoRE MOF database, which has recently been shown to have high structural error rates. In this work, we developed a graph attention network model for predicting DFT-derived charges in MOFs where the model was developed with the ARC-MOF database that contains 279,632 MOFs and over 40 million charges. This model, which we call MEPO-ML, predicts charges with a mean absolute error of 0.025e on our test set of over 27 K MOFs. Other ML models reported in the literature were also trained using the same dataset and descriptors, and MEPO-ML was shown to give the lowest errors. The gas adsorption properties evaluated using MEPO-ML charges are found to be in significantly better agreement with the reference DFT-derived charges compared to the empirical charges, for both polar and non-polar gases. Using only a single CPU core on our benchmark computer, MEPO-ML charges can be generated in less than two seconds on average (including all computations required to apply the model) for MOFs in the test set of 27 K MOFs.
Collapse
Affiliation(s)
- Jun Luo
- Department of Chemistry and Biomolecular Science, University of Ottawa, 10 Marie Curie Private, Ottawa, K1N 6N5 Canada
| | | | - Peigen Xie
- TotalEnergies OneTech SE, Palaiseau, France
| | - Marco Gibaldi
- Department of Chemistry and Biomolecular Science, University of Ottawa, 10 Marie Curie Private, Ottawa, K1N 6N5 Canada
| | - Jake Burner
- Department of Chemistry and Biomolecular Science, University of Ottawa, 10 Marie Curie Private, Ottawa, K1N 6N5 Canada
| | | | - Tom K. Woo
- Department of Chemistry and Biomolecular Science, University of Ottawa, 10 Marie Curie Private, Ottawa, K1N 6N5 Canada
| |
Collapse
|
6
|
Chen Y, Liang D, Lee EMY, Muy S, Guillaume M, Braida MD, Emery AA, Marzari N, de Pablo JJ. Ion Transport at Polymer-Argyrodite Interfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48223-48234. [PMID: 39213640 PMCID: PMC11403566 DOI: 10.1021/acsami.4c07440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Solid-state electrolytes, particularly polymer/ceramic composite electrolytes, are emerging as promising candidates for lithium-ion batteries due to their high ionic conductivity and mechanical flexibility. The interfaces that arise between the inorganic and organic materials in these composites play a crucial role in ion transport mechanisms. While lithium ions are proposed to diffuse across or parallel to the interface, few studies have directly examined the quantitative impact of these pathways on ion transport and little is known about how they affect the overall conductivity. Here, we present an atomistic study of lithium-ion (Li+) transport across well-defined polymer-argyrodite interfaces. We present a force field for polymer-argyrodite interfacial systems, and we carry out molecular dynamics and enhanced sampling simulations of several composite systems, including poly(ethylene oxide) (PEO)/Li6PS5Cl, hydrogenated nitrile butadiene rubber (HNBR)/Li6PS5Cl, and poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)/Li6PS5Cl. For the materials considered here, Li-ion exhibits a preference for the ceramic material, as revealed by free energy differences for Li-ion between the inorganic and the organic polymer phase in excess of 13 kBT. The relative free energy profiles of Li-ion for different polymeric materials exhibit similar shapes, but their magnitude depends on the strength of interaction between the polymers and Li-ion: the greater the interaction between the polymer and Li-ions, the smaller the free energy difference between the inorganic and organic materials. The influence of the interface is felt over a range of approximately 1.5 nm, after which the behavior of Li-ion in the polymer is comparable to that in the bulk. Near the interface, Li-ion transport primarily occurs parallel to the interfacial plane, and ion mobility is considerably slower near the interface itself, consistent with the reduced segmental mobility of the polymer in the vicinity of the ceramic material. These findings provide insights into ionic complexation and transport mechanisms in composite systems, and will help improve design of improved solid electrolyte systems.
Collapse
Affiliation(s)
- Yuxi Chen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Dongyue Liang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Elizabeth M Y Lee
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States
| | - Sokseiha Muy
- Theory and Simulations of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | - Nicola Marzari
- Theory and Simulations of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
7
|
Daglar H, Gulbalkan HC, Aksu GO, Keskin S. Computational Simulations of Metal-Organic Frameworks to Enhance Adsorption Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2405532. [PMID: 39072794 DOI: 10.1002/adma.202405532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/08/2024] [Indexed: 07/30/2024]
Abstract
Metal-organic frameworks (MOFs), renowned for their exceptional porosity and crystalline structure, stand at the forefront of gas adsorption and separation applications. Shortly after their discovery through experimental synthesis, computational simulations quickly become an important method in broadening the use of MOFs by offering deep insights into their structural, functional, and performance properties. This review specifically addresses the pivotal role of molecular simulations in enlarging the molecular understanding of MOFs and enhancing their applications, particularly for gas adsorption. After reviewing the historical development and implementation of molecular simulation methods in the field of MOFs, high-throughput computational screening (HTCS) studies used to unlock the potential of MOFs in CO2 capture, CH4 storage, H2 storage, and water harvesting are visited and recent advancements in these adsorption applications are highlighted. The transformative impact of integrating artificial intelligence with HTCS on the prediction of MOFs' performance and directing the experimental efforts on promising materials is addressed. An outlook on current opportunities and challenges in the field to accelerate the adsorption applications of MOFs is finally provided.
Collapse
Affiliation(s)
- Hilal Daglar
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, Istanbul, 34450, Turkey
| | - Hasan Can Gulbalkan
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, Istanbul, 34450, Turkey
| | - Gokhan Onder Aksu
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, Istanbul, 34450, Turkey
| | - Seda Keskin
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, Istanbul, 34450, Turkey
| |
Collapse
|
8
|
Ghanavati R, Escobosa AC, Manz TA. An automated protocol to construct flexibility parameters for classical forcefields: applications to metal-organic frameworks. RSC Adv 2024; 14:22714-22762. [PMID: 39035129 PMCID: PMC11258866 DOI: 10.1039/d4ra01859a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024] Open
Abstract
In this work, forcefield flexibility parameters were constructed and validated for more than 100 metal-organic frameworks (MOFs). We used atom typing to identify bond types, angle types, and dihedral types associated with bond stretches, angle bends, dihedral torsions, and other flexibility interactions. Our work used Manz's angle-bending and dihedral-torsion model potentials. For a crystal structure containing N atoms in its unit cell, the number of independent flexibility interactions is 3(N atoms - 1). Because the number of bonds, angles, and dihedrals is normally much larger than 3(N atoms - 1), these internal coordinates are redundant. To reduce (but not eliminate) this redundancy, our protocol prunes dihedral types in a way that preserves symmetry equivalency. Next, each dihedral type is classified as non-rotatable, hindered, rotatable, or linear. We introduce a smart selection method that identifies which particular torsion modes are important for each rotatable dihedral type. Then, we computed the force constants for all flexibility interactions together via LASSO regression (i.e., regularized linear least-squares fitting) of the training dataset. LASSO automatically identifies and removes unimportant forcefield interactions. For each MOF, the reference dataset was quantum-mechanically-computed in VASP via DFT with dispersion and included: (i) finite-displacement calculations along every independent atom translation mode, (ii) geometries randomly sampled via ab initio molecular dynamics (AIMD), (iii) the optimized ground-state geometry using experimental lattice parameters, and (iv) rigid torsion scans for each rotatable dihedral type. After training, the flexibility model was validated across geometries that were not part of the training dataset. For each MOF, we computed the goodness of fit (R-squared value) and the root-mean-squared error (RMSE) separately for the training and validation datasets. We compared flexibility models with and without bond-bond cross terms. Even without cross terms, the model yielded R-squared values of 0.910 (avg across all MOFs) ± 0.018 (st. dev.) for atom-in-material forces in the validation datasets. Our SAVESTEPS protocol should find widespread applications to parameterize flexible forcefields for material datasets. We performed molecular dynamics simulations using these flexibility parameters to compute heat capacities and thermal expansion coefficients for two MOFs.
Collapse
Affiliation(s)
- Reza Ghanavati
- Chemical & Materials Engineering, New Mexico State University Las Cruces NM 88001 USA
| | - Alma C Escobosa
- Chemical & Materials Engineering, New Mexico State University Las Cruces NM 88001 USA
| | - Thomas A Manz
- Chemical & Materials Engineering, New Mexico State University Las Cruces NM 88001 USA
| |
Collapse
|
9
|
Xie Y, Huang CQ, Zhou K, Liu Y. Elucidating the transport of water and ions in the nanochannel of covalent organic frameworks by molecular dynamics. J Chem Phys 2024; 161:014708. [PMID: 38953451 DOI: 10.1063/5.0195205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/15/2024] [Indexed: 07/04/2024] Open
Abstract
Inspired by biological channels, achieving precise separation of ion/water and ion/ion requires finely tuned pore sizes at molecular dimensions and deliberate exposure of charged groups. Covalent organic frameworks (COFs), a class of porous crystalline materials, offer well-defined nanoscale pores and diverse structures, making them excellent candidates for nanofluidic channels that facilitate ion and water transport. In this study, we perform molecular simulations to investigate the structure and kinetics of water and ions confined within the typical COFs with varied exposure of charged groups. The COFs exhibit vertically arrayed nanochannels, enabling diffusion coefficients of water molecules within COFs to remain within the same order of magnitude as in the bulk. The motion of water molecules manifests in two distinct modes, creating a mobile hydration layer around acid groups. The ion diffusion within COFs displays a notable disparity between monovalent (M+) and divalent (M2+) cations. As a result, the selectivity of M+/M2+ can exceed 100, while differentiation among M+ is less pronounced. In addition, our simulations indicate a high rejection (R > 98%) in COFs, indicating their potential as ideal materials for desalination. The chemical flexibility of COFs indicates that would hold significant promise as candidates for advanced artificial ion channels and separation membranes.
Collapse
Affiliation(s)
- Yahui Xie
- College of Energy, SIEMIS, Soochow University, Suzhou 215006, China
- Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chuan-Qi Huang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Ke Zhou
- College of Energy, SIEMIS, Soochow University, Suzhou 215006, China
| | - Yilun Liu
- Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
10
|
Zhao G, Chung YG. PACMAN: A Robust Partial Atomic Charge Predicter for Nanoporous Materials Based on Crystal Graph Convolution Networks. J Chem Theory Comput 2024; 20:5368-5380. [PMID: 38822793 DOI: 10.1021/acs.jctc.4c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
We report a fast and easy method (PACMAN) to assign partial atomic charges on metal-organic framework (MOF) and covalent-organic framework (COF) crystal structures based on graph convolution networks (GCNs) trained on >1.8 million high-fidelity partial atomic charge data obtained from the Quantum Metal-Organic Framework (QMOF) database. The developed model shows outstanding performance, achieving a mean absolute error (MAE) of 0.0055 e (test set performance) while maintaining consistency with DDEC6, Bader, and CM5 charges across diverse chemistry and topologies of MOFs and COFs. We find that the new method accurately assigns partial atomic charges for ion-containing nanoporous materials, which has not been possible in previous machine learning (ML) models. Grand canonical Monte Carlo (GCMC) simulation results for CO2 and N2 uptakes and the Widom particle insertion calculation for Henry's law constant of water results based on PACMAN and the original DDEC6 charges show excellent agreements compared to other ML models reported in the literature. The runtime analysis of the new method demonstrates that the partial atomic charges of MOF and COF structures with up to 500 atoms can be obtained in less than 10 s. An easy-to-use web interface has been developed to facilitate the adoption of the developed model.
Collapse
Affiliation(s)
- Guobin Zhao
- School of Chemical Engineering, Pusan National University, Busan 46241, South Korea
| | - Yongchul G Chung
- School of Chemical Engineering, Pusan National University, Busan 46241, South Korea
| |
Collapse
|
11
|
Hardian R, Jia J, Diaz-Marquez A, Naskar S, Fan D, Shekhah O, Maurin G, Eddaoudi M, Szekely G. Design of Mixed-Matrix MOF Membranes with Asymmetric Filler Density and Intrinsic MOF/Polymer Compatibility for Enhanced Molecular Sieving. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314206. [PMID: 38517323 DOI: 10.1002/adma.202314206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/03/2024] [Indexed: 03/23/2024]
Abstract
The separation of high-value-added chemicals from organic solvents is important for many industries. Membrane-based nanofiltration offers a more energy-efficient separation than the conventional thermal processes. Conceivably, mixed-matrix membranes (MMMs), encompassing metal-organic frameworks (MOFs) as fillers, are poised to promote selective separation via molecular sieving, synergistically combining polymers flexibility and fine-tuned porosity of MOFs. Nevertheless, conventional direct mixing of MOFs with polymer solutions results in underutilization of the MOF fillers owing to their uniform cross-sectional distribution. Therefore, in this work, a multizoning technique is proposed to produce MMMs with an asymmetric-filler density, in which the MOF fillers are distributed only on the surface of the membrane, and a seamless interface at the nanoscale. The design strategy demonstrates five times higher MOF surface coverage, which results in a solvent permeance five times higher than that of conventional MMMs while maintaining high selectivity. Practically, MOFs are paired with polymers of similar chemical nature to enhance their adhesion without the need for surface modification. The approach offers permanently accessible MOF porosity, which translates to effective molecular sieving, as exemplified by the polybenzimidazole and Zr-BI-fcu-MOF system. The findings pave the way for the development of composite materials with a seamless interface.
Collapse
Affiliation(s)
- Rifan Hardian
- Advanced Membranes & Porous Materials Center, Physical Sciences and Engineering Division (PSE), Sustainable Separation Engineering Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jiangtao Jia
- Advanced Membranes & Porous Materials Center, Physical Sciences and Engineering Division (PSE), Functional Materials Design Discovery, and Development Laboratory (FMD3), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | | | - Supriyo Naskar
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, 34293, France
| | - Dong Fan
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, 34293, France
| | - Osama Shekhah
- Advanced Membranes & Porous Materials Center, Physical Sciences and Engineering Division (PSE), Functional Materials Design Discovery, and Development Laboratory (FMD3), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Guillaume Maurin
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, 34293, France
| | - Mohamed Eddaoudi
- Advanced Membranes & Porous Materials Center, Physical Sciences and Engineering Division (PSE), Functional Materials Design Discovery, and Development Laboratory (FMD3), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Chemical Science Program, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Gyorgy Szekely
- Advanced Membranes & Porous Materials Center, Physical Sciences and Engineering Division (PSE), Sustainable Separation Engineering Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Chemical Engineering Program, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
12
|
Sriram A, Choi S, Yu X, Brabson LM, Das A, Ulissi Z, Uyttendaele M, Medford AJ, Sholl DS. The Open DAC 2023 Dataset and Challenges for Sorbent Discovery in Direct Air Capture. ACS CENTRAL SCIENCE 2024; 10:923-941. [PMID: 38799660 PMCID: PMC11117325 DOI: 10.1021/acscentsci.3c01629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Direct air capture (DAC) of CO2 with porous adsorbents such as metal-organic frameworks (MOFs) has the potential to aid large-scale decarbonization. Previous screening of MOFs for DAC relied on empirical force fields and ignored adsorbed H2O and MOF deformation. We performed quantum chemistry calculations overcoming these restrictions for thousands of MOFs. The resulting data enable efficient descriptions using machine learning.
Collapse
Affiliation(s)
- Anuroop Sriram
- Fundamental AI Research,
Meta AI, Meta, Menlo Park, California 94025, United States
| | - Sihoon Choi
- Fundamental AI Research,
Meta AI, Meta, Menlo Park, California 94025, United States
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Xiaohan Yu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Logan M. Brabson
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Abhishek Das
- Fundamental AI Research,
Meta AI, Meta, Menlo Park, California 94025, United States
| | - Zachary Ulissi
- Fundamental AI Research,
Meta AI, Meta, Menlo Park, California 94025, United States
| | - Matt Uyttendaele
- Fundamental AI Research,
Meta AI, Meta, Menlo Park, California 94025, United States
| | - Andrew J. Medford
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - David S. Sholl
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-2008, United States
| |
Collapse
|
13
|
Chen W, Zhou K, Wu Z, Yang L, Xie Y, Meng X, Zhao Z, Wen L. Ion-Concentration-Hopping Heterolayer Gel for Ultrahigh Gradient Energy Conversion. J Am Chem Soc 2024; 146:13191-13200. [PMID: 38603609 DOI: 10.1021/jacs.4c01036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Conventional solid ion channel systems relying on single one- or two-dimensional confined nanochannels enabled selective and ultrafast convective ion transport. However, due to intrinsic solid channel stacking, these systems often face pore-pore polarization and ion concentration blockage, thereby restricting their efficiency in macroscale ion transport. Here, we constructed a soft heterolayer-gel system that integrated an ion-selective hydrogel layer with a water-barrier organogel layer, achieving ultrahigh cation selectivity and flux and effectively providing high-efficiency gradient energy conversion on a macroscale order of magnitude. Specifically, the hydrogel layer featured an unconfined 3D network, where the fluctuations of highly hydrated polyelectrolyte chains driven by thermal dynamics enhanced cation selectivity and mitigated transfer energy barriers. Such chain fluctuation mechanisms facilitated ion-cluster internal transmission, thereby enhancing ion concentration hopping for more efficient ion-selective transport. Compared to the existing rigid nanochannel-based gradient energy conversion systems, such a heterogel-based power generator exhibited a record power density of 192.90 and 1.07 W/m2 at the square micrometer scale and square centimeter scale, respectively (under a 500-fold artificial solution). We anticipate that such heterolayer gels would be a promising candidate for energy separation and storage applications.
Collapse
Affiliation(s)
- Weipeng Chen
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ke Zhou
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Zhixin Wu
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Linsen Yang
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yahui Xie
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, P. R. China
- Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xue Meng
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ziguang Zhao
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Liping Wen
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
14
|
Jin H, Merz KM. Modeling Zinc Complexes Using Neural Networks. J Chem Inf Model 2024; 64:3140-3148. [PMID: 38587510 PMCID: PMC11040731 DOI: 10.1021/acs.jcim.4c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/04/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
Understanding the energetic landscapes of large molecules is necessary for the study of chemical and biological systems. Recently, deep learning has greatly accelerated the development of models based on quantum chemistry, making it possible to build potential energy surfaces and explore chemical space. However, most of this work has focused on organic molecules due to the simplicity of their electronic structures as well as the availability of data sets. In this work, we build a deep learning architecture to model the energetics of zinc organometallic complexes. To achieve this, we have compiled a configurationally and conformationally diverse data set of zinc complexes using metadynamics to overcome the limitations of traditional sampling methods. In terms of the neural network potentials, our results indicate that for zinc complexes, partial charges play an important role in modeling the long-range interactions with a neural network. Our developed model outperforms semiempirical methods in predicting the relative energy of zinc conformers, yielding a mean absolute error (MAE) of 1.32 kcal/mol with reference to the double-hybrid PWPB95 method.
Collapse
Affiliation(s)
- Hongni Jin
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kenneth M. Merz
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
15
|
Wang Y, Han C, Sinnott SB. Predicted Separation of Acid Gases from Gas Mixtures by Functionalized Porous Aromatic Frameworks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5688-5694. [PMID: 38456440 DOI: 10.1021/acs.langmuir.3c03169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The selective adsorption of target acid gas molecules from binary gas mixtures by porous aromatic frameworks (PAFs) with two identical functional groups per aromatic ring (PAF-R2) was computationally investigated using grand canonical Monte Carlo simulations. PAF-R2 adsorption was considered for three binary mixtures of small molecular concentrations of acid gas and abundant nitrogen gas (CO2/N2, SO2/N2, and H2S/N2). The results indicate that additional functional groups enhance acid gas loadings and selectivity, compared with pristine PAF and single-functionalized PAFs. Low pressures yield linearly increasing gas loadings and constant selectivity, while high pressures yield much higher adsorption and selectivity. In particular, SO2 loading and selectivity under high pressures are heavily influenced by the PAF's maximum adsorption limit, which can be linked back to the functional groups and their configuration. In summary, PAF-(3,5)-(COOH)2 (nomenclature of PAFs is provided in the Appendix in the Supporting Information) and many other PAF with the same two electron-withdrawing groups are predicted to have great acid gas adsorption and selectivity from gas mixtures, while PAF-(3,5)-(OH)2 (one of PAFs with two identical electron-donating groups) is predicted to have good adsorption and selectivity, especially under elevated pressures. The results of this work can provide insights into various types of PAFs with great selective adsorption ability and their corresponding conditions. The simulation procedures and results may inspire the exploration and screening of other types of PAFs or porous materials, for acid gas absorption.
Collapse
Affiliation(s)
- Yuxiang Wang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Chang Han
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Susan B Sinnott
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Institute for Computational and Data Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
16
|
Tan H, Shan G. Computational screening and functional tuning of chemically stable metal organic frameworks for I 2/CH 3I capture in humid environments. iScience 2024; 27:109096. [PMID: 38380246 PMCID: PMC10877947 DOI: 10.1016/j.isci.2024.109096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/07/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
High chemical stability is of vital significance in rendering metal organic frameworks (MOFs) as promising adsorbents for capturing leaked radioactive nuclides, under real nuclear industrial conditions with high humidity. In this work, grand canonical Monte Carlo (GCMC) and density functional theory (DFT) methods have been employed to systematically evaluate I2/CH3I capture performances of 21 experimentally confirmed chemically stable MOFs in humid environments. Favorable structural factors and the influence of hydrophilicity for iodine capture were unveiled. Subsequently, the top-performing MIL-53-Al with flexible tunability was functionalized with different functional groups to achieve the better adsorption performance. It has been revealed that the adsorption affinity and pore volume were two major factors altered by the functionalization of polar functional groups, which collectively influenced the iodine adsorption properties. In general, this work has screened the chemically stable high-performance MOF iodine adsorbents and provided comprehensive insights into the key factors affecting I2/CH3I uptake and separation in humid environments.
Collapse
Affiliation(s)
- Haoyi Tan
- School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100083, China
| | - Guangcun Shan
- School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100083, China
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
17
|
Jamdade S, Yu Z, Boulfelfel SE, Cai X, Thyagarajan R, Fang H, Sholl DS. Probing Structural Defects in MOFs Using Water Stability. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:3975-3984. [PMID: 38476825 PMCID: PMC10926153 DOI: 10.1021/acs.jpcc.3c07497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/19/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Defects in the crystal structures of metal-organic frameworks (MOFs), whether present intrinsically or introduced via so-called defect engineering, can play strong roles in the properties of MOFs for various applications. Unfortunately, direct experimental detection and characterization of defects in MOFs are very challenging. We show that in many cases, the differences between experimentally observed and computationally predicted water stabilities of MOFs can be used to deduce information on the presence of point defects in real materials. Most computational studies of MOFs consider these materials to be defect-free, and in many cases, the resulting structures are predicted to be hydrophobic. Systematic experimental studies, however, have shown that many MOFs are hydrophilic. We show that the existence of chemically plausible point defects can often account for this discrepancy and use this observation in combination with detailed molecular simulations to assess the impact of local defects and flexibility in a variety of MOFs for which defects had not been considered previously.
Collapse
Affiliation(s)
- Shubham Jamdade
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Zhenzi Yu
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Salah Eddine Boulfelfel
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Xuqing Cai
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Raghuram Thyagarajan
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Hanjun Fang
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - David S. Sholl
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
- Oak
Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
18
|
Park H, Yan X, Zhu R, Huerta EA, Chaudhuri S, Cooper D, Foster I, Tajkhorshid E. A generative artificial intelligence framework based on a molecular diffusion model for the design of metal-organic frameworks for carbon capture. Commun Chem 2024; 7:21. [PMID: 38355806 PMCID: PMC11341761 DOI: 10.1038/s42004-023-01090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/18/2023] [Indexed: 02/16/2024] Open
Abstract
Metal-organic frameworks (MOFs) exhibit great promise for CO2 capture. However, finding the best performing materials poses computational and experimental grand challenges in view of the vast chemical space of potential building blocks. Here, we introduce GHP-MOFassemble, a generative artificial intelligence (AI), high performance framework for the rational and accelerated design of MOFs with high CO2 adsorption capacity and synthesizable linkers. GHP-MOFassemble generates novel linkers, assembled with one of three pre-selected metal nodes (Cu paddlewheel, Zn paddlewheel, Zn tetramer) into MOFs in a primitive cubic topology. GHP-MOFassemble screens and validates AI-generated MOFs for uniqueness, synthesizability, structural validity, uses molecular dynamics simulations to study their stability and chemical consistency, and crystal graph neural networks and Grand Canonical Monte Carlo simulations to quantify their CO2 adsorption capacities. We present the top six AI-generated MOFs with CO2 capacities greater than 2m mol g-1, i.e., higher than 96.9% of structures in the hypothetical MOF dataset.
Collapse
Affiliation(s)
- Hyun Park
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Theoretical and Computational Biophysics Group, NIH Resource Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xiaoli Yan
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Multiscale Materials and Manufacturing Lab, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Ruijie Zhu
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Eliu A Huerta
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
- Department of Computer Science, University of Chicago, Chicago, IL, 60637, USA.
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Santanu Chaudhuri
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Multiscale Materials and Manufacturing Lab, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Donny Cooper
- Computational Science and Engineering, Data Science and AI Department, TotalEnergies EP Research & Technology USA, LLC, Houston, TX, 77002, USA
| | - Ian Foster
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Department of Computer Science, University of Chicago, Chicago, IL, 60637, USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
19
|
Yang MY, Wu XP. Level-Shifted Embedded Cluster Method for Modeling the Chemistry of Metal Oxides. J Chem Theory Comput 2024. [PMID: 38300767 DOI: 10.1021/acs.jctc.3c01123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The embedded cluster method has been used extensively in the study of the chemical and physical properties of metal oxides. This method has been a popular tool due to its relatively high accuracy and low computational cost. An even more promising option may entail integrating the embedded cluster method with the combined quantum mechanical and molecular mechanical (QM/MM) approach, thereby enabling further consideration of interactions within the entire system for superior results. We aim to accurately model the chemistry of metal oxides using this combined scheme. Here, using the prototypical MgO(100) surface as a test system, with Mg9O14 as the cluster in the quantum mechanical region, we show that the embedded cluster with untailored boundary effective core potentials (ECPs) can have frontier orbital energy levels that substantially deviate from the quantum mechanical reference results. This occurs even when Mg9O9, which retains the stoichiometry of MgO, is used as the cluster in the quantum mechanical region. As a result, the chemical properties of the embedded cluster models differ from those of the quantum mechanical reference model. To address this issue, we propose a new variant of the embedded cluster method called the level-shifted embedded cluster (LSEC) method, which allows the energy levels to be shifted to match the reference levels by tuning the boundary ECPs. Our validation calculations on the adsorption of various adsorbates with different properties on the MgO(100) surface show that the overall performance of QM/MM with the LSEC method is excellent for the adsorption energies, geometries, and charge properties. The excellent performance holds for both the nonstoichiometric and stoichiometric clusters (i.e., Mg9O14 and Mg9O9, respectively), demonstrating the robustness of the LSEC method. We expect that the LSEC method can be combined with QM/MM or used separately for future chemical studies of metal oxides and other ionically bonded systems.
Collapse
Affiliation(s)
- Ming-Yu Yang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
| | - Xin-Ping Wu
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
| |
Collapse
|
20
|
Riemann A, Rankin L, Henry D. Atomic Charge Dependency of Spiropyran/Merocyanine Adsorption as a Precursor to Surface Isomerization Reactions. ACS OMEGA 2024; 9:798-810. [PMID: 38222550 PMCID: PMC10785610 DOI: 10.1021/acsomega.3c06712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024]
Abstract
This computational study investigates the adsorption of various spiropyran and merocyanine isomers on a NaCl substrate using a combination of density functional theory (DFT) and molecular mechanics (MM) calculations. Four different charge methods were used to determine the partial atomic charges for the adsorbate molecules, including Mulliken population analysis and three electrostatic potential (ESP) methods (Merz-Kollman, ChelpG, and Hu-Lu-Yang), while three different force fields (AMBER 3, CHARMM 27, and MM+) were employed for the MM calculations. The results show that the various DFT charge methods produced similar outcomes for the molecules' partial atomic charges, with some exceptions for individual atoms and methods. Additionally, it was found that the ESP charge methods were more sensitive to the conformer orientation than the Mulliken approach. The adsorption behavior of merocyanine conformers with the central bond in trans orientation (T-conformers) was similar for various configurations, with the molecule adsorbing mostly flat with its aromatic rings almost parallel to the substrate. However, C-conformers (with their central bond in cis orientation) and spiropyran isomers exhibited inconsistent adsorption behavior, mostly because only some of the aromatic rings contributed to the adsorption behavior. Due to additional van der Waals interactions of more aromatic rings, the adsorption energies for T-conformers are consistently 0.2-0.3 eV higher than for C-conformers and for spiropyran. The study found that the adsorption geometries and energies of stable T-conformers were independent of the partial atomic charge scheme and force field used, and C-conformers show parameter-dependent behavior upon adsorption, leading to metastable configurations. These findings indicate viable pathways during the spiropyran-merocyanine isomerization reactions. Therefore, the results provide initial insights into the possibility of switching spiropyran isomers into merocyanine isomers and vice versa after adsorption onto substrates.
Collapse
Affiliation(s)
- Andreas Riemann
- Department of Physics & Astronomy, Western Washington University, 516 High Street, Bellingham, Washington 98225, United States
| | - Lauren Rankin
- Department of Physics & Astronomy, Western Washington University, 516 High Street, Bellingham, Washington 98225, United States
| | - Dylan Henry
- Department of Physics & Astronomy, Western Washington University, 516 High Street, Bellingham, Washington 98225, United States
| |
Collapse
|
21
|
Pandey I, Lin LC, Chen CC, Howe JD. Understanding Carbon Monoxide Binding and Interactions in M-MOF-74 (M = Mg, Mn, Ni, Zn). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18187-18197. [PMID: 38059595 DOI: 10.1021/acs.langmuir.3c01551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Small molecules may adsorb strongly in metal-organic frameworks (MOFs) through interactions with under-coordinated open metal sites (OMS) that often exist within these structures. Among adsorbates, CO is attractive to study both for its relevance in energy-related applications and for its ability to engage in both σ-donation and π-backbonding interactions with the OMS in MOFs. Concomitant with strong adsorption, structural changes arise due to modifications of the electronic structure of both the adsorbate and adsorbent. These structural changes affect the separation performance of materials, and accurately capturing these changes and the resulting energetics is critical for accurate predictive modeling of adsorption. Traditional approaches to modeling using classical force fields typically do not capture or account for changes at the electronic level. To characterize the structural and energetic effects of the local structural changes, we employed density functional theory (DFT) to study CO adsorption in M-MOF-74s. M-MOF-74s feature OMS at which CO is known to adsorb strongly and can be synthesized with a variety of divalent metal cations with distinct performance in adsorption. We considered M-MOF-74s with a range of metals of varied d-band occupations (Mg (3d0), Mn (3d5), Ni (3d8), and Zn (3d10)) with various structural constraints ranging from geometrically constrained adsorbent and adsorbate ions to fully optimized geometries to deconvolute the relative contributions of various structural effects to the adsorption energetics and binding distances observed. Our data indicate that the most significant structural changes during adsorption correlate with the greatest π-backbonding behaviors and commensurately result in a sizable binding energy change observed for CO adsorption. The insights built from this work are relevant to two longstanding research challenges within the MOF community: rational design of materials for separations and the design of force fields capable of accurately modeling adsorption.
Collapse
Affiliation(s)
- Ishan Pandey
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Li-Chiang Lin
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chau-Chyun Chen
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Joshua D Howe
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
22
|
Liu S, Wang M, Wei S, Liu S, Wang Z, Lawrence Wu CM, Sun D, Lu X. Enhanced CO 2 capture in partially interpenetrated MOFs: Synergistic effects from functional group, pore size, and steric-hindrance. J Colloid Interface Sci 2023; 650:1361-1370. [PMID: 37480651 DOI: 10.1016/j.jcis.2023.07.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/20/2023] [Accepted: 07/09/2023] [Indexed: 07/24/2023]
Abstract
Excessive CO2 emissions have contributed to global environmental issues, driving the development of CO2 capture adsorbents. Among various candidates, metal-organic frameworks (MOFs) are considered the most promising due to their unique microporous structure. Herein, a series of partially interpenetrated MOFs named UPC-XX were built to investigate the continuous enhancement in CO2 capture performance via synergistic effects from functional group, pore size, and steric-hindrance using theoretical calculations. It's showed that the introduction of functional groups improved the structure polarity and created more adsorption sites, thus, enhanced CO2 capture capacity. The pore size modification augments the exposure of adsorption sites to mitigate the negative impact of pore space and surface area reduction caused by the introduction of functional groups, thereby further increasing the CO2 capture capacity. The steric-hindrance effect optimized the adsorption sites distribution, which hasn't been considered in the previous two regulation strategies, thus, further increased the CO2 capture capacity. The results underscore UPC-MOFs as outstanding adsorbent materials, among the UPC-MOFs, UPC-OSO3-steric exhibited the highest CO2 capture capacity of 12.69 mmol/g with selectivities of 1142.41 (CO2 over N2) and 507.42 (CO2 over CH4) at 1.0 bar, 298 K. And the synergistic effect mechanisms of functional group, structure size, and steric hindrance were elucidated through theoretical calculations analyzing pore characteristics, gas distribution, isosteric heat, and van der Waals/Coulomb interactions.
Collapse
Affiliation(s)
- Sen Liu
- College of Science, China University of Petroleum, Qingdao, Shandong 266580, PR China
| | - Maohuai Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Shuxian Wei
- College of Science, China University of Petroleum, Qingdao, Shandong 266580, PR China.
| | - Siyuan Liu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, PR China
| | - Zhaojie Wang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, PR China
| | - Chi-Man Lawrence Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Daofeng Sun
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, PR China
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580, PR China
| |
Collapse
|
23
|
Singh SK, Sose AT, Wang F, Bejagam KK, Deshmukh SA. Data Driven Discovery of MOFs for Hydrogen Gas Adsorption. J Chem Theory Comput 2023; 19:6686-6703. [PMID: 37756641 DOI: 10.1021/acs.jctc.3c00081] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Hydrogen gas (H2) is a clean and renewable energy source, but the lack of efficient and cost-effective storage materials is a challenge to its widespread use. Metal-organic frameworks (MOFs), a class of porous materials, have been extensively studied for H2 storage due to their tunable structural and chemical features. However, the large design space offered by MOFs makes it challenging to select or design appropriate MOFs with a high H2 storage capacity. To overcome these challenges, we present a data-driven computational approach that systematically designs new functionalized MOFs for H2 storage. In particular, we showcase the framework of a hybrid particle swarm optimization integrated genetic algorithm, grand canonical Monte Carlo (GCMC) simulations, and our in-house MOF structure generation code to design new MOFs with excellent H2 uptake. This automated, data driven framework adds appropriate functional groups to IRMOF-10 to improve its H2 adsorption capacity. A detailed analysis of the top selected MOFs, their adsorption isotherms, and MOF design rules to enhance H2 adsorption are presented. We found a functionalized IRMOF-10 with an enhanced H2 adsorption increased by ∼6 times compared to that of pure IRMOF-10 at 1 bar and 77 K. Furthermore, this study also utilizes machine learning and deep learning techniques to analyze a large data set of MOF structures and properties, in order to identify the key factors that influence hydrogen adsorption. The proof-of-concept that uses a machine learning/deep learning approach to predict hydrogen adsorption based on the identified structural and chemical properties of the MOF is demonstrated.
Collapse
Affiliation(s)
- Samrendra K Singh
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Abhishek T Sose
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Fangxi Wang
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Karteek K Bejagam
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Sanket A Deshmukh
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
24
|
Naskar S, Fan D, Ghoufi A, Maurin G. Microscopic insight into the shaping of MOFs and its impact on CO 2 capture performance. Chem Sci 2023; 14:10435-10445. [PMID: 37799984 PMCID: PMC10548504 DOI: 10.1039/d3sc04218a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023] Open
Abstract
The traditional synthesis method produces microcrystalline powdered MOFs, which prevents direct implementation in real-world applications which demand strict control of shape, morphology and physical properties. Therefore, shaping of MOFs via the use of binders is of paramount interest for their practical use in gas adsorption/separation, catalysis, sensors, etc. However, so far, the binders have been mostly selected by trial-and-error without anticipating the adhesion between the MOF and binder components to ensure the processability of homogeneous and mechanically stable shaped MOFs and the impact of the shaping on the intrinsic properties of the MOFs has been overlooked. Herein, we deliver a first systematic multiscale computational exploration of MOF/binder composites by selecting CALF-20, a prototypical MOF for real application in the field of CO2 capture, and a series of binders that cover a rather broad spectrum of properties in terms of rigidity/flexibility, porosity, and chemical functionality. The adhesion between the two components and hence the effectiveness of the shaping as well as the impact of the overall porosity of the CALF-20/binder on the CO2/N2 selectivity, CO2 sorption capacity and kinetics was analyzed. Shaping of CALF-20 by carboxymethyl cellulose was predicted to enable a fair compromise between excellent adhesion between the two components, whilst maintaining high CO2/N2 selectivity, large CO2 uptake and CO2 transport as fast as in the CALF-20. This multiscale computational tool paves the way towards the selection of an appropriate binder to achieve an optimum shaping of a given MOF in terms of processability whilst maintaining its high level of performance.
Collapse
Affiliation(s)
- Supriyo Naskar
- ICGM, Université de Montpellier, CNRS, ENSCM Montpellier 34293 France
| | - Dong Fan
- ICGM, Université de Montpellier, CNRS, ENSCM Montpellier 34293 France
| | - Aziz Ghoufi
- Institut de Physique de Rennes, IPR, UMR CNRS 6251 263 Avenue du Général Leclerc 35042 Rennes France
- Univ Paris-East Creteil, CNRS, ICMPE (UMR 7182) 2 rue Henri Dunant Thiais F-94320 France
| | - Guillaume Maurin
- ICGM, Université de Montpellier, CNRS, ENSCM Montpellier 34293 France
| |
Collapse
|
25
|
Kirchhoff B, Jung C, Gaissmaier D, Braunwarth L, Fantauzzi D, Jacob T. In silico characterization of nanoparticles. Phys Chem Chem Phys 2023; 25:13228-13243. [PMID: 37161752 DOI: 10.1039/d3cp01073b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Nanoparticles (NPs) make for intriguing heterogeneous catalysts due to their large active surface area and excellent and often size-dependent catalytic properties that emerge from a multitude of chemically different surface reaction sites. NP catalysts are, in principle, also highly tunable: even small changes to the NP size or surface facet composition, doping with heteroatoms, or changes of the supporting material can significantly alter their physicochemical properties. Because synthesis of size- and shape-controlled NP catalysts is challenging, the ability to computationally predict the most favorable NP structures for a catalytic reaction of interest is an in-demand skill that can help accelerate and streamline the material optimization process. Fundamentally, simulations of NP model systems present unique challenges to computational scientists. Not only must considerable methodological hurdles be overcome in performing calculations with hundreds to thousands of atoms while retaining appropriate accuracy to be able to probe the desired properties. Also, the data generated by simulations of NPs are typically more complex than data from simulations of, for example, single crystal surface models, and therefore often require different data analysis strategies. To this end, the present work aims to review analytical methods and data analysis strategies that have proven useful in extracting thermodynamic trends from NP simulations.
Collapse
Affiliation(s)
- Björn Kirchhoff
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany.
| | - Christoph Jung
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany.
- Helmholtz-Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtz-Straße 16, 89081 Ulm, Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Daniel Gaissmaier
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany.
- Helmholtz-Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtz-Straße 16, 89081 Ulm, Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Laura Braunwarth
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany.
| | - Donato Fantauzzi
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany.
| | - Timo Jacob
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany.
- Helmholtz-Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtz-Straße 16, 89081 Ulm, Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany
| |
Collapse
|
26
|
Emelianova A, Reed A, Basharova EA, Kolesnikov AL, Gor GY. Closer Look at Adsorption of Sarin and Simulants on Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18559-18567. [PMID: 36976256 DOI: 10.1021/acsami.3c02713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The development of effective protection against exposure to chemical warfare agents (CWAs), such as sarin, relies on studies of its adsorption on the capturing materials and seeking candidates capable of adsorbing large amounts of sarin gas. Many metal-organic frameworks (MOFs) are promising materials for the effective capture and degradation of sarin and simulant substances. Among the simulants capable of mimicking thermodynamic properties of the agent, not all of them have been investigated on the ability to act similarly in the adsorption process, in particular, whether the agent and a simulant have similar mechanisms of binding to the MOF surface. Molecular simulation studies not only provide a safe way to investigate the aforementioned processes but can also help reveal the mechanisms of interactions between the adsorbents and the adsorbing compounds at the molecular level. We performed Monte Carlo simulations of the adsorption of sarin and three simulants, dimethyl methylphosphonate (DMMP), diisopropyl methylphosphonate (DIMP), and diisopropyl fluorophosphate (DIFP), on selected MOFs that have previously shown strong capabilities to adsorb sarin. On the basis of the calculated adsorption isotherms, enthalpy of adsorption, and radial distribution functions, we revealed common mechanisms among the particularly efficient adsorbents as well as the ability of simulants to mimic them. The findings can help in selecting a suitable simulant compound to study CWA adsorption on MOFs and guide further synthesis of efficient MOFs for the capture of organophosphorus compounds.
Collapse
Affiliation(s)
- Alina Emelianova
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, United States
| | - Allen Reed
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, United States
| | | | - Andrei L Kolesnikov
- Institut für Nichtklassische Chemie e.V., Permoserstraße 15, 04318 Leipzig, Germany
| | - Gennady Y Gor
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, United States
| |
Collapse
|
27
|
Shi B, Pang X, Lyu B, Wu H, Shen J, Guan J, Wang X, Fan C, Cao L, Zhu T, Kong Y, Liu Y, Jiang Z. Spacer-Engineered Ionic Channels in Covalent Organic Framework Membranes toward Ultrafast Proton Transport. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211004. [PMID: 36683382 DOI: 10.1002/adma.202211004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Side-chain engineering of covalent organic frameworks as advanced ion conductors is a critical issue to be explored. Herein, ionic covalent organic framework membranes (iCOFMs) with spacer-engineered ionic channel are de novo designed and prepared. The ionic channels are decorated with side chains comprising spacers having different carbon chain lengths and the -SO3 H groups at the end. Attributed to the synergistic contribution from the spacers and the -SO3 H groups, the iCOFM with moderate-length spacer exhibit the highest through-plane proton conductivity of 889 mS cm-1 at 90 °C.
Collapse
Affiliation(s)
- Benbing Shi
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Xiao Pang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Bohui Lyu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Jianliang Shen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Jingyuan Guan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Xiaoyao Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Chunyang Fan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Li Cao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Tianhao Zhu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Yan Kong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Yawei Liu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China
| |
Collapse
|
28
|
Jorge M, Barrera MC, Milne AW, Ringrose C, Cole DJ. What is the Optimal Dipole Moment for Nonpolarizable Models of Liquids? J Chem Theory Comput 2023; 19:1790-1804. [PMID: 36827585 PMCID: PMC10061682 DOI: 10.1021/acs.jctc.2c01123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Indexed: 02/26/2023]
Abstract
In classical nonpolarizable models, electrostatic interactions are usually described by assigning fixed partial charges to interaction sites. Despite the multitude of methods and theories proposed over the years for partial charge assignment, a fundamental question remains─what is the correct degree of polarization that a fixed-charge model should possess to provide the best balance of interactions (including induction effects) and yield the best description of the potential energy surface of a liquid phase? We address this question by approaching it from two separate and independent viewpoints: the QUantum mechanical BEspoke (QUBE) approach, which assigns bespoke force field parameters for individual molecules from ab initio calculations with minimal empirical fitting, and the Polarization-Consistent Approach (PolCA) force field, based on empirical fitting of force field parameters with an emphasis on transferability by rigorously accounting for polarization effects in the parameterization process. We show that the two approaches yield consistent answers to the above question, namely, that the dipole moment of the model should be approximately halfway between those of the gas and the liquid phase. Crucially, however, the reference liquid-phase dipole needs to be estimated using methods that explicitly consider both mean-field and local contributions to polarization. In particular, continuum dielectric models are inadequate for this purpose because they cannot account for local effects and therefore significantly underestimate the degree of polarization of the molecule. These observations have profound consequences for the development, validation, and testing of nonpolarizable models.
Collapse
Affiliation(s)
- Miguel Jorge
- Department
of Chemical and Process Engineering, University
of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom
| | - Maria Cecilia Barrera
- Strathclyde
Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow G4 0RE, United Kingdom
| | - Andrew W. Milne
- Department
of Chemical and Process Engineering, University
of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom
| | - Chris Ringrose
- School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
upon Tyne NE1 7RU, United Kingdom
| | - Daniel J. Cole
- School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
29
|
Zhao J, Zhu ZW, Zhao DX, Yang ZZ. Atomic charges in molecules defined by molecular real space partition into atomic subspaces. Phys Chem Chem Phys 2023; 25:9020-9030. [PMID: 36928882 DOI: 10.1039/d2cp05428k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Atomic charge (AC), which is the charge distribution of a molecule, is an important property that is closely associated with structures, reactivities, and intra- and inter-molecular interactions among molecules. Several theoretical models or methods can be used to obtain the magnitudes of AC with different characteristics. These models can be classified into fuzzy-atoms models and models partitioning a molecule into individual atoms with sharp boundaries. The first category includes Mulliken, natural population analysis (NPA), Hirshfeld, Merz-Kollman-Singh (MK), CHELPG, the electronegativity equalization method (EEM), the atom-bond electronegativity equalization method (ABEEM), and atomic polar tensor (APT). The second category is derived from quantum chemical topology (QCT) and includes the quantum theory of atoms in molecules (QTAIM) and QCT analysis based on the potential acting on one electron in a molecule (PAEMQCT). Herein, after giving a bird's-eye view of the population methods of the first category, we specifically describe some features of the second category. We only present the basic framework of QCT for obtaining ACs from QTAIM and PAEMQCT and show their important characteristics. QCT establishes the basis of the following chemical concept: a molecule is spatially partitioned into individual atoms with sharp boundaries. The ACs from QTAIM are close to the atomic valence in chemistry, and ACs from PAEMQCT may be practically suitable for modeling intra- and inter-molecular interactions.
Collapse
Affiliation(s)
- Jian Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning province, 116029, China. .,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning province, 116023, China
| | - Zun-Wei Zhu
- School of Materials Science and Engineering, Anyang Institute of Technology, Anyang, Henan province, 455000, China
| | - Dong-Xia Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning province, 116029, China.
| | - Zhong-Zhi Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning province, 116029, China.
| |
Collapse
|
30
|
Wang M, Jiang J. Designing Nanofluidic Diode from a Hybrid-Bilayer Covalent Organic Framework: Molecular Simulation Investigation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206382. [PMID: 36519638 DOI: 10.1002/smll.202206382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Nanofluidic diodes are potentially useful in many important applications such as sensing, electronics, and energy conversion. However, the manufacturing of controllable nanopores for nanofluidic diodes is technically challenging. Herein, a nanofluidic diode is designed from a highly programmatic covalent organic framework (COF). Through molecular simulation, remarkable diode behavior is observed in a hybrid-bilayer COF but not in its constituent single-layer COFs. The rectification effect of ion current in the hybrid-bilayer COF is attributed to an asymmetric electrostatic potential across the COF nanopore. Furthermore, a synergistic effect of counterion is unraveled in the hybrid-bilayer COF, and the presence of counterion is found to reduce the entry barrier and facilitate ion transport. The performance of the hybrid-bilayer COF as a nanofluidic diode is comprehensively investigated by varying salt concentration, layer number, interlayer spacing, and slipping. This proof-of-concept simulation study demonstrates the feasibility of the hybrid-bilayer COF as a nanofluidic diode and the finding may stimulate the development of new nanofluidic platforms.
Collapse
Affiliation(s)
- Mao Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Jianwen Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| |
Collapse
|
31
|
Dong W, Yuan J, Tan J, Tang X, Liu W, Zheng A, Chen W. Enhance Hydrogen Isotopes Separation by Alkali Earth Metal Dopant in Metal-Organic Framework. J Phys Chem Lett 2023; 14:1198-1207. [PMID: 36715699 DOI: 10.1021/acs.jpclett.2c03657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Kinetic quantum sieving (KQS) based on pore size and chemical affinity quantum sieving (CAQS) based on adsorption site are two routes of porous materials to separate hydrogen isotope mixtures. Alkali earth metals (Be, Mg, and Ca) were doped into UiO-67 to explore whether these metal sites can promote H2/D2 separation. Based on the zero-point energy and adsorption enthalpy calculated by density functional theory calculations, the Be dopant shows better H2/D2 separation performance than other alkali earth metal dopants and unsaturated metal sites in metal-organic frameworks based on CAQS. Orbital interaction strongly relates to the chemical affinity and further influences the D2/H2 selectivity. Moreover, the predicted D2/H2 selectivity of Be-doped sites (49.4) at 77 K is even larger than the best experimental result (26). Finally, the different dynamic behaviors of H2 and D2 on Be-doped UiO-67 indicate its strong H2/D2 separation performance via KQS.
Collapse
Affiliation(s)
- Wenjun Dong
- School of Materials Science and Engineering, Zhengzhou University, 450001Zhengzhou, Henan, P. R. China
| | - Jiamin Yuan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071Wuhan, P. R. China
- University of Chinese Academy of Sciences, 101408Beijing, P. R. China
| | - Jingyi Tan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071Wuhan, P. R. China
- University of Chinese Academy of Sciences, 101408Beijing, P. R. China
| | - Xiaomin Tang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071Wuhan, P. R. China
| | - Wentao Liu
- School of Materials Science and Engineering, Zhengzhou University, 450001Zhengzhou, Henan, P. R. China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071Wuhan, P. R. China
| | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071Wuhan, P. R. China
| |
Collapse
|
32
|
Pinto AV, Ferreira P, Fernandes PA, Magalhães AL, Ramos MJ. Development of Nanoscale Graphene Oxide Models for the Adsorption of Biological Molecules. J Phys Chem B 2023; 127:557-566. [PMID: 36282235 DOI: 10.1021/acs.jpcb.2c06037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Graphene oxide (GO), a nanomaterial with promising applications that range from water purification to enzyme immobilization, is actively present in scientific research since its discovery. GO studies with computational methodologies such as molecular dynamics are frequently reported in the literature; however, the models used often rely on approximations, such as randomly placing functional groups and the use of generalized force fields. Therefore, it is important to develop new MD models that provide a more accurate description of GO structures and their interaction with an aqueous solvent and other adsorbate molecules. In this paper, we derived new force field non-bonded parameters from linear-scaling density functional theory calculations of nanoscale GO sheets with more than 10,000 atoms through an atoms-in-molecules (AIM) partitioning scheme. The resulting GAFF2-AIM force field, derived from the bonded terms of GAFF2 parameterization, reproduces the solvent structure reported in ab initio MD simulations better than the force field nowadays widely used in the literature. Additionally, we analyzed the effect of the ionic strength of the medium and of the C/O ratio on the distribution of charges surrounding the GO sheets. Finally, we simulated the adsorption of natural amino acid molecules to a GO sheet and estimated their free energy of binding, which compared very favorably to their respective experimental values, validating the force field presented in this work.
Collapse
Affiliation(s)
- Alexandre V Pinto
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007Porto, Portugal
| | - Pedro Ferreira
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007Porto, Portugal
| | - Pedro A Fernandes
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007Porto, Portugal
| | - Alexandre L Magalhães
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007Porto, Portugal
| | - Maria J Ramos
- LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007Porto, Portugal
| |
Collapse
|
33
|
Jamdade S, Gurnani R, Fang H, Boulfelfel SE, Ramprasad R, Sholl DS. Identifying High-Performance Metal–Organic Frameworks for Low-Temperature Oxygen Recovery from Helium by Computational Screening. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Shubham Jamdade
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Rishi Gurnani
- School of Material Science & Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Hanjun Fang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Salah Eddine Boulfelfel
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Rampi Ramprasad
- School of Material Science & Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - David S. Sholl
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
34
|
Gonçalves YMH, Horta BAC. gmak: A Parameter-Space Mapping Strategy for Force-Field Calibration. J Chem Theory Comput 2023; 19:605-618. [PMID: 36634285 DOI: 10.1021/acs.jctc.2c00955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In the context of classical molecular simulations, the accuracy of a force field is highly influenced by the values of the relevant simulation parameters. In this work, a parameter-space mapping (PSM) workflow is proposed to aid in the calibration of force-field parameters, based mainly on the following features: (i) regular-grid discretization of the search space; (ii) partial sampling of the search-space grid; (iii) training of surrogate models to predict the estimates of the target properties for nonsampled parameter sets; (iv) post hoc interpretation of the results in terms of multiobjective optimization concepts; (v) attenuation of statistical errors achieved via empiric extension of the duration of the simulations; (vi) iterative search-space translation according to a user-defined scalar objective function that measures the accuracy of the force field (e.g., the weighted root-mean-square deviation of the target properties relative to the reference data). This combination of features results in a hybrid of a single- and a multiobjective optimization strategy, allowing for the approximate determination of both a local minimum of the chosen objective function and its neighboring Pareto efficient points. The PSM workflow is implemented in the extensible Python program gmak, which is made available in the Git repository at http://github.com/mssm-labmmol/gmak. Using this implementation, the PSM workflow was tested in a proof-of-concept fashion in the recalibration of the Lennard-Jones parameters of the 3-point Optimal Point Charge (OPC3) water model for compatibility with the GROMOS treatment of nonbonded interactions. The recalibrated model reproduces typical pure-liquid properties with an accuracy similar to the original OPC3 model and represents a significant improvement relative to the Simple Point Charge (SPC) model, which is the official recommendation for simulations using GROMOS force fields.
Collapse
Affiliation(s)
- Yan M H Gonçalves
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Peers Consulting & Technology, Av. Ibirapuera, 1753-18° andar, Moema, São Paulo, São Paulo 04029-90, Brazil
| | - Bruno A C Horta
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Peers Consulting & Technology, Av. Ibirapuera, 1753-18° andar, Moema, São Paulo, São Paulo 04029-90, Brazil
- Laboratory of Applied Intelligence, University of Vale do Itajaí, Itajaí, Santa Catarina 88302-901, Brazil
| |
Collapse
|
35
|
Oktavian R, Schireman R, Glasby LT, Huang G, Zanca F, Fairen-Jimenez D, Ruggiero MT, Moghadam PZ. Computational Characterization of Zr-Oxide MOFs for Adsorption Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56938-56947. [PMID: 36516445 PMCID: PMC9801377 DOI: 10.1021/acsami.2c13391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Zr-oxide secondary building units construct metal-organic framework (MOF) materials with excellent gas adsorption properties and high mechanical, thermal, and chemical stability. These attributes have led Zr-oxide MOFs to be well-recognized for a wide range of applications, including gas storage and separation, catalysis, as well as healthcare domain. Here, we report structure search methods within the Cambridge Structural Database (CSD) to create a curated subset of 102 Zr-oxide MOFs synthesized to date, bringing a unique record for all researchers working in this area. For the identified structures, we manually corrected the proton topology of hydroxyl and water molecules on the Zr-oxide nodes and characterized their textural properties, Brunauer-Emmett-Teller (BET) area, and topology. Importantly, we performed systematic periodic density functional theory (DFT) calculations comparing 25 different combinations of basis sets and functionals to calculate framework partial atomic charges for use in gas adsorption simulations. Through experimental verification of CO2 adsorption in selected Zr-oxide MOFs, we demonstrate the sensitivity of CO2 adsorption predictions at the Henry's regime to the choice of the DFT method for partial charge calculations. We characterized Zr-MOFs for their CO2 adsorption performance via high-throughput grand canonical Monte Carlo (GCMC) simulations and revealed how the chemistry of the Zr-oxide node could have a significant impact on CO2 uptake predictions. We found that the maximum CO2 uptake is obtained for structures with the heat of adsorption values >25 kJ/mol and the largest cavity diameters of ca. 6-7 Å. Finally, we introduced augmented reality (AR) visualizations as a means to bring adsorption phenomena alive in porous adsorbents and to dynamically explore gas adsorption sites in MOFs.
Collapse
Affiliation(s)
- Rama Oktavian
- Department
of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, U.K.
| | - Raymond Schireman
- Department
of Chemistry, University of Vermont, Burlington, Vermont 05405, United States
| | - Lawson T. Glasby
- Department
of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, U.K.
| | - Guanming Huang
- Department
of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, U.K.
| | - Federica Zanca
- Department
of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, U.K.
| | - David Fairen-Jimenez
- Department
of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Michael T. Ruggiero
- Department
of Chemistry, University of Vermont, Burlington, Vermont 05405, United States
| | - Peyman Z. Moghadam
- Department
of Chemical Engineering, University College
London, London WC1E 7JE, U.K.
- Department
of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, U.K.
| |
Collapse
|
36
|
Seijas-Bellido JA, Samanta B, Valadez-Villalobos K, Gallardo JJ, Navas J, Balestra SRG, Madero Castro RM, Vicent-Luna JM, Tao S, Toroker MC, Anta JA. Transferable Classical Force Field for Pure and Mixed Metal Halide Perovskites Parameterized from First-Principles. J Chem Inf Model 2022; 62:6423-6435. [PMID: 35576452 PMCID: PMC9795557 DOI: 10.1021/acs.jcim.1c01506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many key features in photovoltaic perovskites occur in relatively long time scales and involve mixed compositions. This requires realistic but also numerically simple models. In this work we present a transferable classical force field to describe the mixed hybrid perovskite MAxFA1-xPb(BryI1-y)3 for variable composition (∀x, y ∈ [0, 1]). The model includes Lennard-Jones and Buckingham potentials to describe the interactions between the atoms of the inorganic lattice and the organic molecule, and the AMBER model to describe intramolecular atomic interactions. Most of the parameters of the force field have been obtained by means of a genetic algorithm previously developed to parametrize the CsPb(BrxI1-x)3 perovskite (Balestra et al. J. Mater. Chem. A. 2020, DOI: 10.1039/d0ta03200j). The algorithm finds the best parameter set that simultaneously fits the DFT energies obtained for several crystalline structures with moderate degrees of distortion with respect to the equilibrium configuration. The resulting model reproduces correctly the XRD patterns, the expansion of the lattice upon I/Br substitution, and the thermal expansion coefficients. We use the model to run classical molecular dynamics simulations with up to 8600 atoms and simulation times of up to 40 ns. From the simulations we have extracted the ion diffusion coefficient of the pure and mixed perovskites, presenting for the first time these values obtained by a fully dynamical method using a transferable model fitted to first-principles calculations. The values here reported can be considered as the theoretical upper limit, that is, without grain boundaries or other defects, for ion migration dynamics induced by halide vacancies in photovoltaic perovskite devices under operational conditions.
Collapse
Affiliation(s)
| | - Bipasa Samanta
- Department
of Materials Science and Engineering, Technion−Israel
Institute of Technology, Haifa, 3200003, Israel
| | | | - Juan Jesús Gallardo
- Departamento
de Química Física, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, Cádiz E-11510, Spain
| | - Javier Navas
- Departamento
de Química Física, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, Cádiz E-11510, Spain
| | - Salvador R. G. Balestra
- Área
de Química Física, Universidad
Pablo de Olavide, Seville, 41013, Spain
- Instituto
de Ciencia de Materiales de Madrid, Consejo
Superior de Investigaciones Científicas (ICMM-CSIC) c/Sor Juana Inés de la Cruz
3, Madrid, 28049, Spain
| | | | - José Manuel Vicent-Luna
- Materials
Simulation and Modelling, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600MB, The Netherlands
| | - Shuxia Tao
- Materials
Simulation and Modelling, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600MB, The Netherlands
| | - Maytal Caspary Toroker
- Department
of Materials Science and Engineering, Technion−Israel
Institute of Technology, Haifa, 3200003, Israel
| | - Juan Antonio Anta
- Área
de Química Física, Universidad
Pablo de Olavide, Seville, 41013, Spain
| |
Collapse
|
37
|
Yin H, Lin H, Zhang Y, Huang S. Iron(II) Phthalocyanine Adsorbed on Defective Graphenes: A Density Functional Study. ACS OMEGA 2022; 7:43915-43922. [PMID: 36506202 PMCID: PMC9730508 DOI: 10.1021/acsomega.2c05170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
The adsorptions of iron(II) phthalocyanine (FePc) on graphene and defective graphene were investigated systematically using density functional theory. Three types of graphene defects covering stone-wales (SW), single vacancy (SV), and double vacancy (DV) were taken into account, in which DV defects included DV(5-8-5), DV(555-777), and DV(5555-6-7777). The calculations of formation energies of defects showed that the SW defect has the lowest formation energy, and it was easier for DV defects to form compared with the SV defect. It is more difficult to rotate or move FePc on the surface of defective graphenes than on the surface of graphene due to bigger energy differences at different sites. Although the charge analysis indicated the charge transfers from graphene or defective graphene to FePc for all studied systems, the electron distributions of FePc on various defective graphenes were different. Especially for FePc@SV, the d xy orbital of Fe in the conduction band moved toward the Fermi level about 1 eV, and the d xz of Fe in the valence band for FePc@SV also moved toward the Fermi level compared with FePc@graphene and other FePc@defective graphenes. Between the planes of FePc and defective graphene, the electron accumulation occurs majorly in the position of the FePc molecular plane for FePc@SW, FePc@DV(5-8-5), and FePc@DV(5555-6-7777) as well as FePc@graphene. However, electrons were accumulated on the upper and lower surfaces of the FePc molecular plane for FePc@SV and FePc@DV(555-777). Thus, the electron distribution of FePc can be modulated by introducing the interfaces of different defective graphenes.
Collapse
Affiliation(s)
- Huimin Yin
- College
of Chemistry, Fuzhou University, Fuzhou, Fujian350108, P. R. China
| | - Heyun Lin
- College
of Chemistry, Fuzhou University, Fuzhou, Fujian350108, P. R. China
| | - Yongfan Zhang
- College
of Chemistry, Fuzhou University, Fuzhou, Fujian350108, P. R. China
| | - Shuping Huang
- College
of Chemistry, Fuzhou University, Fuzhou, Fujian350108, P. R. China
- Fujian
Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou, Fujian350108, P. R. China
| |
Collapse
|
38
|
Zhu Z, Wang H, Wu XY, Luo K, Fan J. Computational Screening of Metal-Organic Frameworks for Ammonia Capture from H 2/N 2/NH 3 Mixtures. ACS OMEGA 2022; 7:37640-37653. [PMID: 36312414 PMCID: PMC9607671 DOI: 10.1021/acsomega.2c04517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The separation of ammonia from H2/N2/NH3 mixtures is an important step in ammonia decomposition for hydrogen production and ammonia synthesis from H2 and N2 based nonaqueous technologies. Metal-organic frameworks (MOFs) are considered as potential materials for capturing ammonia. In the present work, high-throughput screening of 2932 Computation-Ready Experimental MOFs (CoRE MOFs) was carried out for ammonia capture from H2/N2/NH3 mixtures by Grand Canonical Monte Carlo (GCMC) simulations. It was found that the high-performing MOFs are characterized by tube-like channels, moderate LCD (largest cavity diameter) (4-7.5 Å), and high Q st 0(NH3) (the isosteric heat of NH3 adsorption) (>45 kJ/mol). MOFs with high NH3 adsorption capacity often feature moderate surface area, while the surface area of MOFs with high NH3 selectivity is relatively lower, which limits the NH3 adsorption capacity. Q st 0 and the Henry's constant (K H ) are two energy descriptors describing the interactions between adsorbents and adsorbates. The former has a stronger correlation with the adsorption selectivity, while the latter has a stronger correlation with the adsorption capacity. By analyzing the molecular density distribution of adsorbates in high-performing MOFs, it was found that unsaturated coordinated metal sites provide the main functional binding sites for NH3. Most MOFs with high NH3 selectivity have multiple different metal nodes or other atoms except C, O, and H, such as N and P. Multiple metal nodes and nonmetallic atoms provide more functional binding sites. Finally, the adsorption behavior with various concentrations of gas mixtures was examined to verify the universality of the screening calculations, and the effect of framework flexibility on adsorption performance was explored.
Collapse
Affiliation(s)
- Zhaofan Zhu
- State
Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou310027, P. R. China
| | - Haiou Wang
- State
Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou310027, P. R. China
| | - Xiao-Yu Wu
- Department
of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University
Avenue W, Waterloo, OntarioN2L 3G1, Canada
| | - Kun Luo
- State
Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou310027, P. R. China
| | - Jianren Fan
- State
Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou310027, P. R. China
| |
Collapse
|
39
|
Wu X, Che Y, Chen L, Amigues EJ, Wang R, He J, Dong H, Ding L. Mapping the Porous and Chemical Structure-Function Relationships of Trace CH 3I Capture by Metal-Organic Frameworks using Machine Learning. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47209-47221. [PMID: 36197758 DOI: 10.1021/acsami.2c10861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Large-scale computational screening has become an indispensable tool for functional materials discovery. It, however, remains a challenge to adequately interrogate the large amount of data generated by a screening study. Here, we computationally screened 1087 metal-organic frameworks (MOFs), from the CoRE MOF 2014 database, for capturing trace amounts (300 ppmv) of methyl iodide (CH3I); as a primary representative of organic iodides, CH3129I is one of the most difficult radioactive contaminants to separate. Furthermore, we demonstrate a simple and general approach for mapping and interrogating the high-dimensional structure-function data obtained by high-throughput screening; this involves learning two-dimensional embeddings of the high-dimensional data by applying unsupervised learning to encoded structural and chemical features of MOFs. The resulting various porous and chemical structure-function maps are human-interpretable, revealing not only top-performing MOFs but also complex structure-function correlations that are hidden when inspecting individual MOF features. These maps also alleviate the need of laborious visual inspection of a large number of MOFs by clustering similar MOFs, per the encoding features, into defined regions on the map. We also show that these structure-function maps are amenable to supervised classification of the performances of MOFs for trace CH3I capture. We further show that the machine-learning models trained on the 1087 CoRE MOFs can be used to predict an unseen set of 250 MOFs randomly selected from a different MOF database, achieving high prediction accuracies.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu, P. R. China
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Yu Che
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Linjiang Chen
- School of Chemistry and School of Computer Science, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Eric Jean Amigues
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu, P. R. China
| | - Ruiyao Wang
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu, P. R. China
| | - Jinghui He
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Huilong Dong
- School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, P. R. China
| | - Lifeng Ding
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu, P. R. China
| |
Collapse
|
40
|
Molecular design of covalent−organic framework membranes for Li+/Mg2+ separation: Significant charge effect. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Discrepancy quantification between experimental and simulated data of CO2 adsorption isotherm using hierarchical Bayesian estimation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Lyu B, Wang M, Jiang Z, Jiang J. Microscopic insight into anion conduction in covalent−organic framework membranes: A molecular simulation study. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Bobbitt NS, Chandross M. Interactions of Water with Pristine and Defective MoS 2. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10419-10429. [PMID: 35981286 DOI: 10.1021/acs.langmuir.2c01057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Molybdenum disulfide (MoS2) is a lamellar solid lubricant often used in aerospace applications because of its extremely low friction coefficient (∼0.01) in inert environments. The lubrication performance of MoS2 is significantly impaired by exposure to even small amounts of water and oxygen, and the mechanisms behind this remain poorly understood. We use density functional theory calculations to study the binding of water on MoS2 sheets with and without defects. In general, we find that pristine MoS2 is slightly hydrophilic but that defects greatly increase the binding affinity for water. Intercalated water disrupts the crystal structure of bulk MoS2 due to the limited space between lamellae (∼3.4 Å), and this leads to generally unfavorable adsorption, except in the cases where water molecules are located on the sites of sulfur vacancies. We also find that water adsorption is more favorable directly below a surface layer of MoS2 compared to in the bulk.
Collapse
Affiliation(s)
- N Scott Bobbitt
- Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Michael Chandross
- Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| |
Collapse
|
44
|
Li M, Cai W, Wang C, Wu X. High-throughput computational screening of hypothetical metal-organic frameworks with open copper sites for CO 2/H 2 separation. Phys Chem Chem Phys 2022; 24:18764-18776. [PMID: 35903942 DOI: 10.1039/d2cp01139e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is challenging to identify the optimal metal-organic framework (MOF) adsorbents for gas adsorption and membrane-based separation from the large-scale material databases. The high-throughput computational screening (HTCS) method was adopted to discover the optimal materials for CO2/H2 separation from thousands of MOFs. First, a hierarchical strategy was used to select 1092 MOFs from 13 512 MOFs, and their adsorption capacity towards the equimolar CO2/H2 mixture at 298 K and 10 bar was further calculated using the grand canonical Monte Carlo (GCMC) simulations. The results show that those MOFs with lvtb topology and organic linker 1,2,4,5-tetrazine are conducive to exhibiting high performance CO2/H2 adsorption separation among top-100 MOFs with high performance. The MOFs with pore limited diameter (PLD), largest cavity diameter (LCD), gravimetrical surface area (GSA), and void fraction in the range of 4-12 Å, 5-12 Å, 5500-6500 m2 g-1 and 0.80-0.85, respectively, have high adsorption capacity towards CO2. Second, the dynamic adsorption properties of the top-4 MOFs were simulated by the breakthrough curves of the binary (CO2/H2) and quinary (CO2/H2/CH4/CO/N2) mixtures in the fixed adsorption bed. MOF-4641 exhibits a high breakthrough time of 130 for the quinary mixture. Finally, the adsorption mechanism of CO2 in the top-4 MOFs was investigated by the radial distribution function (RDF), the mass center probability density distribution, etc. The atomic insights from HTCS and breakthrough curve predictions in this work will be helpful in developing novel porous materials and obtaining superior CO2 separation performance.
Collapse
Affiliation(s)
- Mengmeng Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, P. R. China
| | - Weiquan Cai
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, P. R. China.,School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Chao Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Xuanjun Wu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P. R. China.
| |
Collapse
|
45
|
Li A, Bueno-Perez R, Madden D, Fairen-Jimenez D. From computational high-throughput screenings to the lab: taking metal-organic frameworks out of the computer. Chem Sci 2022; 13:7990-8002. [PMID: 35919420 PMCID: PMC9278459 DOI: 10.1039/d2sc01254e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/13/2022] [Indexed: 12/22/2022] Open
Abstract
Metal-organic frameworks (MOFs) are one of the most researched designer materials today, as their high tunability offers scientists a wide space to imagine all kinds of possible structures. Their uniquely flexible customisability spurred the creation of hypothetical datasets and the syntheses of more than 100 000 MOFs officially reported in the Cambridge Structural Database. To scan such large numbers of MOFs, computational high-throughput screenings (HTS) have become the customary method to identify the most promising structure for a given application, and/or to spot useful structure-property relationships. However, despite all these data-mining efforts, only a fraction of HTS studies have identified synthesisable top-performing MOFs that were then further investigated in the lab. In this perspective, we review these specific cases and suggest possible steps to push future HTS more systematically towards synthesisable structures.
Collapse
Affiliation(s)
- Aurelia Li
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge Philippa Fawcett Drive Cambridge CB3 0AS UK
| | - Rocio Bueno-Perez
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge Philippa Fawcett Drive Cambridge CB3 0AS UK
| | - David Madden
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge Philippa Fawcett Drive Cambridge CB3 0AS UK
| | - David Fairen-Jimenez
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge Philippa Fawcett Drive Cambridge CB3 0AS UK
| |
Collapse
|
46
|
Takamatsu A, Higashi M, Sato H. Free Energy and Solvation Structure Analysis for Adsorption of Aromatic Molecules at Pt(111)/Water Interface by 3D-RISM Theory. CHEM LETT 2022. [DOI: 10.1246/cl.220215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Akihiko Takamatsu
- Department of Molecular Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masahiro Higashi
- Department of Molecular Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Nishikyo-ku, Kyoto 615-8520, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Nishikyo-ku, Kyoto 615-8520, Japan
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto 606-8103, Japan
| |
Collapse
|
47
|
Demir H, Keskin S. Multi-Level Computational Screening of in Silico Designed MOFs for Efficient SO 2 Capture. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:9875-9888. [PMID: 35747510 PMCID: PMC9207907 DOI: 10.1021/acs.jpcc.2c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/23/2022] [Indexed: 06/15/2023]
Abstract
SO2 presence in the atmosphere can cause significant harm to the human and environment through acid rain and/or smog formation. Combining the operational advantages of adsorption-based separation and diverse nature of metal-organic frameworks (MOFs), cost-effective separation processes for SO2 emissions can be developed. Herein, a large database of hypothetical MOFs composed of >300,000 materials is screened for SO2/CH4, SO2/CO2, and SO2/N2 separations using a multi-level computational approach. Based on a combination of separation performance metrics (adsorption selectivity, working capacity, and regenerability), the best materials and the most common functional groups in those most promising materials are identified for each separation. The top bare MOFs and their functionalized variants are determined to attain SO2/CH4 selectivities of 62.4-16899.7, SO2 working capacities of 0.3-20.1 mol/kg, and SO2 regenerabilities of 5.8-98.5%. Regarding SO2/CO2 separation, they possess SO2/CO2 selectivities of 13.3-367.2, SO2 working capacities of 0.1-17.7 mol/kg, and SO2 regenerabilities of 1.9-98.2%. For the SO2/N2 separation, their SO2/N2 selectivities, SO2 working capacities, and SO2 regenerabilities span the ranges of 137.9-67,338.9, 0.4-20.6 mol/kg, and 7.0-98.6%, respectively. Besides, using breakdowns of gas separation performances of MOFs into functional groups, separation performance limits of MOFs based on functional groups are identified where bare MOFs (MOFs with multiple functional groups) tend to show the smallest (largest) spreads.
Collapse
|
48
|
Huang J, Cai X, Li Y, Fang Z, Li Y, Lin W, Huang SP, Zhang Y. DFT Investigations of KTiOPO 4M x (M = K, Na, Li) Anodes for Alkali-Ion Battery. J Chem Phys 2022; 156:204702. [DOI: 10.1063/5.0090071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Properties of KTiOPO4M x (M = K, Na, and Li, x = 0.000 to 1.000) as anodes for potassium-ion battery (PIB), sodium-ion battery (SIB), and lithium-ion battery (LIB) are investigated by density functional theory (DFT) calculations. Our work reveals that electrochemical performance of KTiOPO4 as an anode for PIB is superior to that for SIB and LIB, in terms of average voltage and ion diffusion kinetics. The ab initio molecular dynamics (AIMD) simulations indicate that KTiOPO4M x anode exhibits high structural stability, and alkali ion intercalation contributes to accelerate ion diffusion during charging process. Particularly, the low activation energy 0.406 eV of K migration on surface KTP(210) obtained by the climbing-image nudged elastic band (Cl-NEB) method, which suggests a high-rate capability. The systematical comparison of the performance of KTiOPO4 as an anode for PIB, SIB, and LIB on the theoretical perspective clarifies that a large channel is not always promising for small radius ion intercalation and diffusion.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Lin
- Chemistry, Fuzhou University, China
| | | | | |
Collapse
|
49
|
Miller A, Halstead M, Besley E, Stace AJ. Designing stable binary endohedral fullerene lattices. Phys Chem Chem Phys 2022; 24:10044-10052. [PMID: 35415738 DOI: 10.1039/d2cp00196a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoparticle lattices and endohedral fullerenes have both been identified as potential building blocks for future electronic, magnetic and optical devices; here it is proposed that it could be possible to combine those concepts and design stable nanoparticle lattices composed from binary collections of endohedral fullerenes. The inclusion of an atom, for example Ca or F, within a fullerene cage is known to be accompanied by a redistribution of surface charge, whereby the cage can acquire either a negative (Ca) or positive (F) charge. From calculations involving a combination of van der Waals and many-body electrostatic interactions, it is predicted that certain binary combinations, for example a metal (A) and a halogen (B), could result in the formation of stable nanoparticle lattices with the familiar AB and AB2 stoichiometries. Much of the stability is due to Coulomb interactions, however, charge-induced and van der Waals interactions, which always enhance stability, are found to extend the range of charge on a cage over which lattices are stable. Some lattice types are shown to be three or four times more stable than an equivalent neutral C60 structure. An extension of the calculations to the fabrication of structures involving endohedral C84 is also discussed.
Collapse
Affiliation(s)
- Abigail Miller
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Matthew Halstead
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Elena Besley
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Anthony J Stace
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
50
|
Thorpe J, Riemann A. Combined DFT and Molecular Mechanics Modeling of the Adsorption of Semiconducting Molecules on an Ionic Substrate: PTCDA and CuPc on NaCl. ACS OMEGA 2022; 7:4095-4100. [PMID: 35155903 PMCID: PMC8829859 DOI: 10.1021/acsomega.1c05590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Experimental results suggest that molecular geometry and energies can be influenced by the presence of thin film substrates as well as surrounding molecules. It is imperative that computational models take this influence into account. The accurate computational modeling of these molecules is an efficient way of carrying out chemistry calculations and reinforcing experimental findings. In our study, density functional theory (DFT) and molecular mechanics (MM) are used to model the configurations of the organic semiconducting materials, 3,4,9,10-perylene tetracarboxylic dianhydride, C24H8O6 (PTCDA), and copper(II) phthalocyanine, C32H16CuN8 (CuPc), as adsorbed on single- and double-layer NaCl substrates of various dimensions and charge settings. After a geometry and charge optimization of the molecules using DFT, the molecular geometries are optimized under different environments using computational calculations with specific force-field settings in HyperChem Professional 8.0(TM) software using MM. Energies and geometries of the molecules are then recorded, and our data are compared to experimental results of similar systems. We find that, with the appropriate choice of substrate properties, the calculated molecular configurations directly reflect those found experimentally. Our results support the idea that this method of simulation can produce reliable models in the field of physical chemistry.
Collapse
|