1
|
Matczak P, Buday P, Kupfer S, Görls H, Mlostoń G, Weigand W. Probing the performance of DFT in the structural characterization of [FeFe] hydrogenase models. J Comput Chem 2025; 46:e27515. [PMID: 39417365 DOI: 10.1002/jcc.27515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
In this work, a series of DFT and DFT-D methods is combined with double-ζ basis sets to benchmark their performance in predicting the structures of five newly synthesized hexacarbonyl diiron complexes with a bridging ligand featuring a μ-S2C3 motif in a ring-containing unit functionalized with aromatic groups. Such complexes have been considered as [FeFe] hydrogenase catalytic site models with potential for eco-friendly energetic applications. According to this assessment, r2SCAN is identified as the density functional recommended for the reliable description of the molecular and crystal structures of the herein studied models. However, the butterfly (μ-S)2Fe2 core of the models demonstrates a minor deformation of its optimized geometry obtained from both molecular and periodic calculations. The FeFe bond length is slightly underestimated while the FeS bonds tend to be too long. Adding the D3(BJ) correction to r2SCAN does not lead to any improvement in the calculated structures.
Collapse
Affiliation(s)
- Piotr Matczak
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Lodz, Poland
| | - Philipp Buday
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Stephan Kupfer
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Helmar Görls
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Grzegorz Mlostoń
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Lodz, Poland
| | - Wolfgang Weigand
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
2
|
Uddin MR, Khaniya U, Gupta C, Mao J, Ranepura GA, Wei RJ, Ortiz-Soto J, Singharoy A, Gunner MR. Finding the E-channel proton loading sites by calculating the ensemble of protonation microstates. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149518. [PMID: 39442784 DOI: 10.1016/j.bbabio.2024.149518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
The aerobic electron transfer chain builds a proton gradient by proton coupled electron transfer reactions through a series of proteins. Complex I is the first enzyme in the sequence. Here transfer of two electrons from NADH to quinone yields four protons pumped from the membrane N- (negative, higher pH) side to the P- (positive, lower pH) side. Protons move through three linear antiporter paths, with a few amino acids and waters providing the route; and through the E-channel, a complex of competing paths, with clusters of interconnected protonatable residues. Proton loading sites (PLS) transiently bind protons as they are transported from N- to P-compartments. PLS can be individual residues or extended clusters of residues. The program MCCE uses Monte Carlos sampling to analyze the E-channel proton binding in equilibrium with individual Molecular Dynamics snapshots from trajectories of Thermus thermuphillus Complex I in the apo, quinone and quinol bound states. At pH 7, the five E-channel subunits (Nqo4, Nqo7, Nqo8, Nqo10, and Nqo11) take >25,000 protonation microstates, each with different residues protonated. The microstate explosion is tamed by analyzing interconnected clusters of residues along the proton transfer paths. A proton is bound and released from a cluster of five coupled residues on the protein N-side and to six coupled residues in the protein center. Loaded microstates bind protons to sites closer to the P-side in the forward pumping direction. MCCE microstate analysis identifies strongly coupled proton binding amongst individual residues in the two PLS clusters.
Collapse
Affiliation(s)
- Md Raihan Uddin
- Department of Physics, The City College of New York, NY 10031, USA; Graduate Program In Biochemistry, The Graduate Center of CUNY, 365 5th Avenue, NY 10031, USA
| | - Umesh Khaniya
- National Cancer Institute, NIH, Bethesda, MD 20814, USA; Ph.D. Program in Physics, The Graduate Center, City University of New York, New York 10016, USA
| | - Chitrak Gupta
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA; Bio-design Institute, Arizona State University, Tempe, AZ, USA
| | - Junjun Mao
- Department of Physics, The City College of New York, NY 10031, USA
| | - Gehan A Ranepura
- Department of Physics, The City College of New York, NY 10031, USA; Ph.D. Program in Physics, The Graduate Center, City University of New York, New York 10016, USA
| | - Rongmei Judy Wei
- Department of Physics, The City College of New York, NY 10031, USA; Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York 10016, USA
| | - Jose Ortiz-Soto
- Department of Physics, The City College of New York, NY 10031, USA; Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York 10016, USA
| | - Abhishek Singharoy
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA; Bio-design Institute, Arizona State University, Tempe, AZ, USA
| | - M R Gunner
- Department of Physics, The City College of New York, NY 10031, USA; Graduate Program In Biochemistry, The Graduate Center of CUNY, 365 5th Avenue, NY 10031, USA.
| |
Collapse
|
3
|
Shin YC, Latorre-Muro P, Djurabekova A, Zdorevskyi O, Bennett CF, Burger N, Song K, Xu C, Paulo JA, Gygi SP, Sharma V, Liao M, Puigserver P. Structural basis of respiratory complex adaptation to cold temperatures. Cell 2024; 187:6584-6598.e17. [PMID: 39395414 PMCID: PMC11601890 DOI: 10.1016/j.cell.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/07/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024]
Abstract
In response to cold, mammals activate brown fat for respiratory-dependent thermogenesis reliant on the electron transport chain. Yet, the structural basis of respiratory complex adaptation upon cold exposure remains elusive. Herein, we combined thermoregulatory physiology and cryoelectron microscopy (cryo-EM) to study endogenous respiratory supercomplexes from mice exposed to different temperatures. A cold-induced conformation of CI:III2 (termed type 2) supercomplex was identified with a ∼25° rotation of CIII2 around its inter-dimer axis, shortening inter-complex Q exchange space, and exhibiting catalytic states that favor electron transfer. Large-scale supercomplex simulations in mitochondrial membranes reveal how lipid-protein arrangements stabilize type 2 complexes to enhance catalytic activity. Together, our cryo-EM studies, multiscale simulations, and biochemical analyses unveil the thermoregulatory mechanisms and dynamics of increased respiratory capacity in brown fat at the structural and energetic level.
Collapse
Affiliation(s)
- Young-Cheul Shin
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Pedro Latorre-Muro
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| | - Amina Djurabekova
- Department of Physics, University of Helsinki, Helsinki 00014, Finland
| | | | - Christopher F Bennett
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nils Burger
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kangkang Song
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Cryo-EM Core Facility, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Chen Xu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Cryo-EM Core Facility, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Helsinki 00014, Finland; HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Maofu Liao
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China; Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China.
| | - Pere Puigserver
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
4
|
Terranova U. Iron-Sulfur Peptides Mimicking Ferredoxin for an Efficient Electron Transfer to Hydrogenase. Chembiochem 2024; 25:e202400380. [PMID: 38985090 DOI: 10.1002/cbic.202400380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/11/2024]
Abstract
In the green alga Chlamydomonas reinhardtii, hydrogenase HydA1 converts protons and electrons to H2 at the H-cluster, which includes a [4Fe-4S] cluster linked to a [2Fe] cluster. The yield of H2 is limited by the electron transfer to HydA1, mediated by the iron-sulfur unit of a photosynthetic electron transfer ferredoxin (PetF). In this study, I have investigated by molecular dynamics and the hybrid quantum mechanics/molecular mechanics method two canonical iron-sulfur peptides (PM1 and FBM) that hold potential as PetF replacements. Using a docking approach, I predict that the distance between the two iron-sulfur clusters in FBM/HydA1 is shorter than in PM1/HydA1, ensuring a greater electron transfer rate. This finding is in line with the reported higher H2 production rates for FBM/HydA1. I also show that the redox potential of these peptides, and therefore their electron transfer properties, can be changed by single-residue mutations in the secondary coordination sphere of their cluster. In particular, I have designed a PM1 variant that disrupts the hydrogen-bonding network between water and the cluster, shifting the redox potential negatively compared to PM1. These results will guide experiments aimed at replacing PetF with peptides that can unlock the biotechnological potential of the alga.
Collapse
Affiliation(s)
- Umberto Terranova
- Faculty of Medicine and Health Sciences, University of Buckingham, Crewe Campus, Crewe, CW1 5DU, UK
| |
Collapse
|
5
|
Sheikhzadeh A, Safaei M, Fadaei Naeini V, Baghani M, Foroutan M, Baniassadi M. Multiscale modeling of unfolding and bond dissociation of rubredoxin metalloprotein. J Mol Graph Model 2024; 129:108749. [PMID: 38442439 DOI: 10.1016/j.jmgm.2024.108749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
Mechanical properties of proteins that have a crucial effect on their operation. This study used a molecular dynamics simulation package to investigate rubredoxin unfolding on the atomic scale. Different simulation techniques were applied, and due to the dissociation of covalent/hydrogen bonds, this protein demonstrates several intermediate states in force-extension behavior. A conceptual model based on the cohesive finite element method was developed to consider the intermediate damages that occur during unfolding. This model is based on force-displacement curves derived from molecular dynamics results. The proposed conceptual model is designed to accurately identify bond rupture points and determine the associated forces. This is achieved by conducting a thorough comparison between molecular dynamics and cohesive finite element results. The utilization of a viscoelastic cohesive zone model allows for the consideration of loading rate effects. This rate-dependent model can be further developed and integrated into the multiscale modeling of large assemblies of metalloproteins, providing a comprehensive understanding of mechanical behavior while maintaining a reduced computational cost.
Collapse
Affiliation(s)
- Aliakbar Sheikhzadeh
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada
| | - Mohammad Safaei
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Vahid Fadaei Naeini
- Division of Machine Elements, Luleå University of Technology, Luleå, SE-97187, Sweden
| | - Mostafa Baghani
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Masumeh Foroutan
- Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Majid Baniassadi
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran; University of Strasbourg, CNRS, ICUBE Laboratory, Strasbourg, France.
| |
Collapse
|
6
|
Botticelli S, La Penna G, Minicozzi V, Stellato F, Morante S, Rossi G, Faraloni C. Predicting the Structure of Enzymes with Metal Cofactors: The Example of [FeFe] Hydrogenases. Int J Mol Sci 2024; 25:3663. [PMID: 38612474 PMCID: PMC11011570 DOI: 10.3390/ijms25073663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
The advent of deep learning algorithms for protein folding opened a new era in the ability of predicting and optimizing the function of proteins once the sequence is known. The task is more intricate when cofactors like metal ions or small ligands are essential to functioning. In this case, the combined use of traditional simulation methods based on interatomic force fields and deep learning predictions is mandatory. We use the example of [FeFe] hydrogenases, enzymes of unicellular algae promising for biotechnology applications to illustrate this situation. [FeFe] hydrogenase is an iron-sulfur protein that catalyzes the chemical reduction of protons dissolved in liquid water into molecular hydrogen as a gas. Hydrogen production efficiency and cell sensitivity to dioxygen are important parameters to optimize the industrial applications of biological hydrogen production. Both parameters are related to the organization of iron-sulfur clusters within protein domains. In this work, we propose possible three-dimensional structures of Chlorella vulgaris 211/11P [FeFe] hydrogenase, the sequence of which was extracted from the recently published genome of the given strain. Initial structural models are built using: (i) the deep learning algorithm AlphaFold; (ii) the homology modeling server SwissModel; (iii) a manual construction based on the best known bacterial crystal structure. Missing iron-sulfur clusters are included and microsecond-long molecular dynamics of initial structures embedded into the water solution environment were performed. Multiple-walkers metadynamics was also used to enhance the sampling of structures encompassing both functional and non-functional organizations of iron-sulfur clusters. The resulting structural model provided by deep learning is consistent with functional [FeFe] hydrogenase characterized by peculiar interactions between cofactors and the protein matrix.
Collapse
Affiliation(s)
- Simone Botticelli
- Department of Physics, University of Roma Tor Vergata, 00133 Rome, Italy; (S.B.); (V.M.); (F.S.); (S.M.); (G.R.)
- Section of Roma Tor Vergata, National Institute of Nuclear Physics, 00133 Rome, Italy
| | - Giovanni La Penna
- Section of Roma Tor Vergata, National Institute of Nuclear Physics, 00133 Rome, Italy
- Institute of Chemistry of Organometallic Compounds, National Research Council, 50019 Florence, Italy
| | - Velia Minicozzi
- Department of Physics, University of Roma Tor Vergata, 00133 Rome, Italy; (S.B.); (V.M.); (F.S.); (S.M.); (G.R.)
- Section of Roma Tor Vergata, National Institute of Nuclear Physics, 00133 Rome, Italy
| | - Francesco Stellato
- Department of Physics, University of Roma Tor Vergata, 00133 Rome, Italy; (S.B.); (V.M.); (F.S.); (S.M.); (G.R.)
- Section of Roma Tor Vergata, National Institute of Nuclear Physics, 00133 Rome, Italy
| | - Silvia Morante
- Department of Physics, University of Roma Tor Vergata, 00133 Rome, Italy; (S.B.); (V.M.); (F.S.); (S.M.); (G.R.)
- Section of Roma Tor Vergata, National Institute of Nuclear Physics, 00133 Rome, Italy
| | - Giancarlo Rossi
- Department of Physics, University of Roma Tor Vergata, 00133 Rome, Italy; (S.B.); (V.M.); (F.S.); (S.M.); (G.R.)
- Section of Roma Tor Vergata, National Institute of Nuclear Physics, 00133 Rome, Italy
- Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, 00184 Rome, Italy
| | - Cecilia Faraloni
- Institute of Bioeconomy, National Research Council, 50019 Florence, Italy
| |
Collapse
|
7
|
Brocks C, Das CK, Duan J, Yadav S, Apfel UP, Ghosh S, Hofmann E, Winkler M, Engelbrecht V, Schäfer LV, Happe T. A Dynamic Water Channel Affects O 2 Stability in [FeFe]-Hydrogenases. CHEMSUSCHEM 2024; 17:e202301365. [PMID: 37830175 DOI: 10.1002/cssc.202301365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023]
Abstract
[FeFe]-hydrogenases are capable of reducing protons at a high rate. However, molecular oxygen (O2 ) induces the degradation of their catalytic cofactor, the H-cluster, which consists of a cubane [4Fe4S] subcluster (4FeH ) and a unique diiron moiety (2FeH ). Previous attempts to prevent O2 -induced damage have focused on enhancing the protein's sieving effect for O2 by blocking the hydrophobic gas channels that connect the protein surface and the 2FeH . In this study, we aimed to block an O2 diffusion pathway and shield 4FeH instead. Molecular dynamics (MD) simulations identified a novel water channel (WH ) surrounding the H-cluster. As this hydrophilic path may be accessible for O2 molecules we applied site-directed mutagenesis targeting amino acids along WH in proximity to 4FeH to block O2 diffusion. Protein film electrochemistry experiments demonstrate increased O2 stabilities for variants G302S and S357T, and MD simulations based on high-resolution crystal structures confirmed an enhanced local sieving effect for O2 in the environment of the 4FeH in both cases. The results strongly suggest that, in wild type proteins, O2 diffuses from the 4FeH to the 2FeH . These results reveal new strategies for improving the O2 stability of [FeFe]-hydrogenases by focusing on the O2 diffusion network near the active site.
Collapse
Affiliation(s)
- Claudia Brocks
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Chandan K Das
- Faculty of Chemistry and Biochemistry, Center for Theoretical Chemistry, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Jifu Duan
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Shanika Yadav
- Faculty of Chemistry and Biochemistry, Inorganic Chemistry, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Ulf-Peter Apfel
- Faculty of Chemistry and Biochemistry, Inorganic Chemistry, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Subhasri Ghosh
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Eckhard Hofmann
- Faculty of Biology and Biotechnology, X-ray structure analysis of proteins, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Martin Winkler
- Electrobiotechnology, TUM Campus Straubing, Schulgasse 22, Straubing, 94315, Germany
| | - Vera Engelbrecht
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Lars V Schäfer
- Faculty of Chemistry and Biochemistry, Center for Theoretical Chemistry, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Thomas Happe
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| |
Collapse
|
8
|
Shin YC, Latorre-Muro P, Djurabekova A, Zdorevskyi O, Bennett CF, Burger N, Song K, Xu C, Sharma V, Liao M, Puigserver P. Structural basis of respiratory complexes adaptation to cold temperatures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575914. [PMID: 38293190 PMCID: PMC10827213 DOI: 10.1101/2024.01.16.575914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
In response to cold, mammals activate brown fat for respiratory-dependent thermogenesis reliant on the electron transport chain (1, 2). Yet, the structural basis of respiratory complex adaptation to cold remains elusive. Herein we combined thermoregulatory physiology and cryo-EM to study endogenous respiratory supercomplexes exposed to different temperatures. A cold-induced conformation of CI:III 2 (termed type 2) was identified with a ∼25° rotation of CIII 2 around its inter-dimer axis, shortening inter-complex Q exchange space, and exhibiting different catalytic states which favor electron transfer. Large-scale supercomplex simulations in lipid membrane reveal how unique lipid-protein arrangements stabilize type 2 complexes to enhance catalytic activity. Together, our cryo-EM studies, multiscale simulations and biochemical analyses unveil the mechanisms and dynamics of respiratory adaptation at the structural and energetic level.
Collapse
|
9
|
Fuller JT, Barnes S, Sadun LA, Ajmera P, Alexandrova AN, Sadun AA. Coenzyme Q10 trapping in mitochondrial complex I underlies Leber's hereditary optic neuropathy. Proc Natl Acad Sci U S A 2023; 120:e2304884120. [PMID: 37733737 PMCID: PMC10523484 DOI: 10.1073/pnas.2304884120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/21/2023] [Indexed: 09/23/2023] Open
Abstract
How does a single amino acid mutation occurring in the blinding disease, Leber's hereditary optic neuropathy (LHON), impair electron shuttling in mitochondria? We investigated changes induced by the m.3460 G>A mutation in mitochondrial protein ND1 using the tools of Molecular Dynamics and Free Energy Perturbation simulations, with the goal of determining the mechanism by which this mutation affects mitochondrial function. A recent analysis suggested that the mutation's replacement of alanine A52 with a threonine perturbs the stability of a region where binding of the electron shuttling protein, Coenzyme Q10, occurs. We found two functionally opposing changes involving the role of Coenzyme Q10. The first showed that quantum electron transfer from the terminal Fe/S complex, N2, to the Coenzyme Q10 headgroup, docked in its binding pocket, is enhanced. However, this positive adjustment is overshadowed by our finding that the mobility of Coenzyme Q10 in its oxidized and reduced states, entering and exiting its binding pocket, is disrupted by the mutation in a manner that leads to conditions promoting the generation of reactive oxygen species. An increase in reactive oxygen species caused by the LHON mutation has been proposed to be responsible for this optic neuropathy.
Collapse
Affiliation(s)
- Jack T. Fuller
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Steven Barnes
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Doheny Eye Institute, Pasadena, CA91103
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Lorenzo A. Sadun
- Department of Mathematics, University of Texas at Austin, Austin, TX78712
| | - Pujan Ajmera
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | | | - Alfredo A. Sadun
- Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Doheny Eye Institute, Pasadena, CA91103
| |
Collapse
|
10
|
Pereira CS, Teixeira MH, Russell DA, Hirst J, Arantes GM. Mechanism of rotenone binding to respiratory complex I depends on ligand flexibility. Sci Rep 2023; 13:6738. [PMID: 37185607 PMCID: PMC10130173 DOI: 10.1038/s41598-023-33333-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Respiratory complex I is a major cellular energy transducer located in the inner mitochondrial membrane. Its inhibition by rotenone, a natural isoflavonoid, has been used for centuries by indigenous peoples to aid in fishing and, more recently, as a broad-spectrum pesticide or even a possible anticancer therapeutic. Unraveling the molecular mechanism of rotenone action will help to design tuned derivatives and to understand the still mysterious catalytic mechanism of complex I. Although composed of five fused rings, rotenone is a flexible molecule and populates two conformers, bent and straight. Here, a rotenone derivative locked in the straight form was synthesized and found to inhibit complex I with 600-fold less potency than natural rotenone. Large-scale molecular dynamics and free energy simulations of the pathway for ligand binding to complex I show that rotenone is more stable in the bent conformer, either free in the membrane or bound to the redox active site in the substrate-binding Q-channel. However, the straight conformer is necessary for passage from the membrane through the narrow entrance of the channel. The less potent inhibition of the synthesized derivative is therefore due to its lack of internal flexibility, and interconversion between bent and straight forms is required to enable efficient kinetics and high stability for rotenone binding. The ligand also induces reconfiguration of protein loops and side-chains inside the Q-channel similar to structural changes that occur in the open to closed conformational transition of complex I. Detailed understanding of ligand flexibility and interactions that determine rotenone binding may now be exploited to tune the properties of synthetic derivatives for specific applications.
Collapse
Affiliation(s)
- Caroline S Pereira
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-900, Brazil
| | - Murilo H Teixeira
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-900, Brazil
| | - David A Russell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Judy Hirst
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK.
| | - Guilherme M Arantes
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
11
|
Tunnel dynamics of quinone derivatives and its coupling to protein conformational rearrangements in respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148951. [PMID: 36509126 DOI: 10.1016/j.bbabio.2022.148951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
Respiratory complex I in mitochondria and bacteria catalyzes the transfer of electrons from NADH to quinone (Q). The free energy available from the reaction is used to pump protons and to establish a membrane proton electrochemical gradient, which drives ATP synthesis. Even though several high-resolution structures of complex I have been resolved, how Q reduction is linked with proton pumping, remains unknown. Here, microsecond long molecular dynamics (MD) simulations were performed on Yarrowia lipolytica complex I structures where Q molecules have been resolved in the ~30 Å long Q tunnel. MD simulations of several different redox/protonation states of Q reveal the coupling between the Q dynamics and the restructuring of conserved loops and ion pairs. Oxidized quinone stabilizes towards the N2 FeS cluster, a binding mode not previously described in Yarrowia lipolytica complex I structures. On the other hand, reduced (and protonated) species tend to diffuse towards the Q binding sites closer to the tunnel entrance. Mechanistic and physiological relevance of these results are discussed.
Collapse
|
12
|
Bellur A, Das S, Jayaraman V, Behera S, Suryavanshi A, Balasubramanian S, Balaram P, Jindal G, Balaram H. Revisiting the Burden Borne by Fumarase: Enzymatic Hydration of an Olefin. Biochemistry 2023; 62:476-493. [PMID: 36595439 DOI: 10.1021/acs.biochem.2c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fumarate hydratase (FH) is a remarkable catalyst that decreases the free energy of the catalyzed reaction by 30 kcal mol-1, much larger than most exceptional enzymes with extraordinary catalytic rates. Two classes of FH are observed in nature: class-I and class-II, which have different folds, yet catalyze the same reversible hydration/dehydration reaction of the dicarboxylic acids fumarate/malate, with equal efficiencies. Using class-I FH from the hyperthermophilic archaeon Methanocaldococcus jannaschii (Mj) as a model along with comparative analysis with the only other available class-I FH structure from Leishmania major (Lm), we provide insights into the molecular mechanism of catalysis in this class of enzymes. The structure of MjFH apo-protein has been determined, revealing that large intersubunit rearrangements occur across apo- and holo-protein forms, with a largely preorganized active site for substrate binding. Site-directed mutagenesis of active site residues, kinetic analysis, and computational studies, including density functional theory (DFT) and natural population analysis, together show that residues interacting with the carboxylate group of the substrate play a pivotal role in catalysis. Our study establishes that an electrostatic network at the active site of class-I FH polarizes the substrate fumarate through interactions with its carboxylate groups, thereby permitting an easier addition of a water molecule across the olefinic bond. We propose a mechanism of catalysis in FH that occurs through transition-state stabilization involving the distortion of the electronic structure of the substrate olefinic bond mediated by the charge polarization of the bound substrate at the enzyme active site.
Collapse
Affiliation(s)
- Asutosh Bellur
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Soumik Das
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Vijay Jayaraman
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Sudarshan Behera
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Arpitha Suryavanshi
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | | | - Garima Jindal
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru 560012, India
| | - Hemalatha Balaram
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| |
Collapse
|
13
|
Rutz A, Das CK, Fasano A, Jaenecke J, Yadav S, Apfel UP, Engelbrecht V, Fourmond V, Léger C, Schäfer LV, Happe T. Increasing the O 2 Resistance of the [FeFe]-Hydrogenase CbA5H through Enhanced Protein Flexibility. ACS Catal 2022; 13:856-865. [PMID: 36733639 PMCID: PMC9886219 DOI: 10.1021/acscatal.2c04031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/08/2022] [Indexed: 12/29/2022]
Abstract
The high turnover rates of [FeFe]-hydrogenases under mild conditions and at low overpotentials provide a natural blueprint for the design of hydrogen catalysts. However, the unique active site (H-cluster) degrades upon contact with oxygen. The [FeFe]-hydrogenase fromClostridium beijerinckii (CbA5H) is characterized by the flexibility of its protein structure, which allows a conserved cysteine to coordinate to the active site under oxidative conditions. Thereby, intrinsic cofactor degradation induced by dioxygen is minimized. However, the protection from O2 is only partial, and the activity of the enzyme decreases upon each exposure to O2. By using site-directed mutagenesis in combination with electrochemistry, ATR-FTIR spectroscopy, and molecular dynamics simulations, we show that the kinetics of the conversion between the oxygen-protected inactive state (cysteine-bound) and the oxygen-sensitive active state can be accelerated by replacing a surface residue that is very distant from the active site. This sole exchange of methionine for a glutamate residue leads to an increased resistance of the hydrogenase to dioxygen. With our study, we aim to understand how local modifications of the protein structure can have a crucial impact on protein dynamics and how they can control the reactivity of inorganic active sites through outer sphere effects.
Collapse
Affiliation(s)
- Andreas Rutz
- Photobiotechnology,
Department of Plant Biochemistry, Ruhr-Universität
Bochum, 44801 Bochum, Germany
| | - Chandan K. Das
- Theoretical
Chemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Andrea Fasano
- Laboratoire
de Bioénergétique et Ingénierie des Protéines, CNRS, Aix-Marseille Université, Institut de
Microbiologie de la Méditerranée, 13009 Marseille, France
| | - Jan Jaenecke
- Photobiotechnology,
Department of Plant Biochemistry, Ruhr-Universität
Bochum, 44801 Bochum, Germany
| | - Shanika Yadav
- Inorganic
Chemistry Ι, Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Ulf-Peter Apfel
- Inorganic
Chemistry Ι, Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany,Fraunhofer
UMSICHT, 46047 Oberhausen, Germany
| | - Vera Engelbrecht
- Photobiotechnology,
Department of Plant Biochemistry, Ruhr-Universität
Bochum, 44801 Bochum, Germany
| | - Vincent Fourmond
- Laboratoire
de Bioénergétique et Ingénierie des Protéines, CNRS, Aix-Marseille Université, Institut de
Microbiologie de la Méditerranée, 13009 Marseille, France
| | - Christophe Léger
- Laboratoire
de Bioénergétique et Ingénierie des Protéines, CNRS, Aix-Marseille Université, Institut de
Microbiologie de la Méditerranée, 13009 Marseille, France
| | - Lars V. Schäfer
- Theoretical
Chemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Thomas Happe
- Photobiotechnology,
Department of Plant Biochemistry, Ruhr-Universität
Bochum, 44801 Bochum, Germany,
| |
Collapse
|
14
|
Uno S, Masuya T, Zdorevskyi O, Ikunishi R, Shinzawa-Itoh K, Lasham J, Sharma V, Murai M, Miyoshi H. Diverse reaction behaviors of artificial ubiquinones in mitochondrial respiratory complex I. J Biol Chem 2022; 298:102075. [PMID: 35643318 PMCID: PMC9243180 DOI: 10.1016/j.jbc.2022.102075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Abstract
The ubiquinone (UQ) reduction step catalyzed by NADH-UQ oxidoreductase (mitochondrial respiratory complex I) is key to triggering proton translocation across the inner mitochondrial membrane. Structural studies have identified a long, narrow, UQ-accessing tunnel within the enzyme. We previously demonstrated that synthetic oversized UQs, which are unlikely to transit this narrow tunnel, are catalytically reduced by native complex I embedded in submitochondrial particles but not by the isolated enzyme. To explain this contradiction, we hypothesized that access of oversized UQs to the reaction site is obstructed in the isolated enzyme because their access route is altered following detergent solubilization from the inner mitochondrial membrane. In the present study, we investigated this using two pairs of photoreactive UQs (pUQm-1/pUQp-1 and pUQm-2/pUQp-2), with each pair having the same chemical properties except for a ∼1.0 Å difference in side-chain widths. Despite this subtle difference, reduction of the wider pUQs by the isolated complex was significantly slower than of the narrower pUQs, but both were similarly reduced by the native enzyme. In addition, photoaffinity-labeling experiments using the four [125I]pUQs demonstrated that their side chains predominantly label the ND1 subunit with both enzymes but at different regions around the tunnel. Finally, we show that the suppressive effects of different types of inhibitors on the labeling significantly changed depending on [125I]pUQs used, indicating that [125I]pUQs and these inhibitors do not necessarily share a common binding cavity. Altogether, we conclude that the reaction behaviors of pUQs cannot be simply explained by the canonical UQ tunnel model.
Collapse
Affiliation(s)
- Shinpei Uno
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takahiro Masuya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Ryo Ikunishi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kyoko Shinzawa-Itoh
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Hyogo, Japan
| | - Jonathan Lasham
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Helsinki, Finland; Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| |
Collapse
|
15
|
Cryo-EM structures define ubiquinone-10 binding to mitochondrial complex I and conformational transitions accompanying Q-site occupancy. Nat Commun 2022; 13:2758. [PMID: 35589726 PMCID: PMC9120487 DOI: 10.1038/s41467-022-30506-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/04/2022] [Indexed: 02/03/2023] Open
Abstract
Mitochondrial complex I is a central metabolic enzyme that uses the reducing potential of NADH to reduce ubiquinone-10 (Q10) and drive four protons across the inner mitochondrial membrane, powering oxidative phosphorylation. Although many complex I structures are now available, the mechanisms of Q10 reduction and energy transduction remain controversial. Here, we reconstitute mammalian complex I into phospholipid nanodiscs with exogenous Q10. Using cryo-EM, we reveal a Q10 molecule occupying the full length of the Q-binding site in the 'active' (ready-to-go) resting state together with a matching substrate-free structure, and apply molecular dynamics simulations to propose how the charge states of key residues influence the Q10 binding pose. By comparing ligand-bound and ligand-free forms of the 'deactive' resting state (that require reactivating to catalyse), we begin to define how substrate binding restructures the deactive Q-binding site, providing insights into its physiological and mechanistic relevance.
Collapse
|
16
|
Djurabekova A, Galemou Yoga E, Nyman A, Pirttikoski A, Zickermann V, Haapanen O, Sharma V. Docking and molecular simulations reveal a quinone binding site on the surface of respiratory complex I. FEBS Lett 2022; 596:1133-1146. [PMID: 35363885 DOI: 10.1002/1873-3468.14346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/11/2022] [Accepted: 03/24/2022] [Indexed: 11/07/2022]
Abstract
The first component of the mitochondrial electron transport chain is respiratory complex I. Several high-resolution structures of complex I from different species have been resolved. However, despite these significant achievements, the mechanism of redox-coupled proton pumping remains elusive. Here, we combined atomistic docking, molecular dynamics simulations and site-directed mutagenesis on respiratory complex I from Yarrowia lipolytica to identify a quinone (Q) binding site on its surface near the horizontal amphipathic helices of ND1 and NDUFS7 subunits. The surface-bound Q makes stable interactions with conserved charged and polar residues, including the highly conserved Arg72 from the NDUFS7 subunit. The binding and dynamics of a Q molecule at the surface-binding site raises interesting possibilities about the mechanism of complex I, which are discussed.
Collapse
Affiliation(s)
| | - Etienne Galemou Yoga
- Institute of Biochemistry II, University Hospital, Goethe University, Frankfurt am Main, Germany.,Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Aino Nyman
- Department of Physics, University of Helsinki, Finland
| | | | - Volker Zickermann
- Institute of Biochemistry II, University Hospital, Goethe University, Frankfurt am Main, Germany.,Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Outi Haapanen
- Department of Physics, University of Helsinki, Finland
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Finland.,HiLIFE Institute of Biotechnology, University of Helsinki, Finland
| |
Collapse
|
17
|
Puthenkalathil RC, Ensing B. Fast Proton Transport in FeFe Hydrogenase via a Flexible Channel and a Proton Hole Mechanism. J Phys Chem B 2022; 126:403-411. [PMID: 35007078 PMCID: PMC8785182 DOI: 10.1021/acs.jpcb.1c08124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Di-iron hydrogenases
are a class of enzymes that are capable of
reducing protons to form molecular hydrogen with high efficiency.
In addition to the catalytic site, these enzymes have evolved dedicated
pathways to transport protons and electrons to the reaction center.
Here, we present a detailed study of the most likely proton transfer
pathway in such an enzyme using QM/MM molecular dynamics simulations.
The protons are transported through a channel lined out from the protein
exterior to the di-iron active site, by a series of hydrogen-bonded,
weakly acidic or basic, amino acids and two incorporated water molecules.
The channel shows remarkable flexibility, which is an essential feature
to quickly reset the hydrogen-bond direction in the channel after
each proton passing. Proton transport takes place via a “hole”
mechanism, rather than an excess proton mechanism, the free energy
landscape of which is remarkably flat, with a highest transition state
barrier of only 5 kcal/mol. These results confirm our previous assumptions
that proton transport is not rate limiting in the H2 formation
activity and that cysteine C299 may be considered protonated at physiological
pH conditions. Detailed understanding of this proton transport may
aid in the ongoing attempts to design artificial biomimetic hydrogenases
for hydrogen fuel production.
Collapse
Affiliation(s)
- Rakesh C Puthenkalathil
- Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bernd Ensing
- Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
18
|
Rao G, Chen N, Marchiori DA, Wang LP, Britt RD. Accumulation and Pulse Electron Paramagnetic Resonance Spectroscopic Investigation of the 4-Oxidobenzyl Radical Generated in the Radical S-Adenosyl-l-methionine Enzyme HydG. Biochemistry 2022; 61:107-116. [PMID: 34989236 DOI: 10.1021/acs.biochem.1c00619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The radical S-adenosyl-l-methionine (SAM) enzyme HydG cleaves tyrosine to generate CO and CN- ligands of the [FeFe] hydrogenase H-cluster, accompanied by the formation of a 4-oxidobenzyl radical (4-OB•), which is the precursor to the HydG p-cresol byproduct. Native HydG only generates a small amount of 4-OB•, limiting detailed electron paramagnetic resonance (EPR) spectral characterization beyond our initial EPR lineshape study employing various tyrosine isotopologues. Here, we show that the concentration of trapped 4-OB• is significantly increased in reactions using HydG variants, in which the "dangler Fe" to which CO and CN- bind is missing or substituted by a redox-inert Zn2+ ion. This allows for the detailed characterization of 4-OB• using high-field EPR and electron nuclear double resonance spectroscopy to extract its g-values and 1H/13C hyperfine couplings. These results are compared to density functional theory-predicted values of several 4-OB• models with different sizes and protonation states, with a best fit to the deprotonated radical anion configuration of 4-OB•. Overall, our results depict a clearer electronic structure of the transient 4-OB• radical and provide new insights into the radical SAM chemistry of HydG.
Collapse
Affiliation(s)
- Guodong Rao
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Nanhao Chen
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - David A Marchiori
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Lee-Ping Wang
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - R David Britt
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| |
Collapse
|
19
|
Felbek C, Arrigoni F, de Sancho D, Jacq-Bailly A, Best RB, Fourmond V, Bertini L, Léger C. Mechanism of Hydrogen Sulfide-Dependent Inhibition of FeFe Hydrogenase. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Christina Felbek
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille Cedex 20 13402, France
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan 20126, Italy
| | - David de Sancho
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU & Donostia International Physics Center (DIPC), PK 1072, 20080 Donostia-San Sebastián, Spain
| | - Aurore Jacq-Bailly
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille Cedex 20 13402, France
| | - Robert B. Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, Maryland 20892-0520, United States
| | - Vincent Fourmond
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille Cedex 20 13402, France
| | - Luca Bertini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan 20126, Italy
| | - Christophe Léger
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille Cedex 20 13402, France
| |
Collapse
|
20
|
Parey K, Lasham J, Mills DJ, Djurabekova A, Haapanen O, Yoga EG, Xie H, Kühlbrandt W, Sharma V, Vonck J, Zickermann V. High-resolution structure and dynamics of mitochondrial complex I-Insights into the proton pumping mechanism. SCIENCE ADVANCES 2021; 7:eabj3221. [PMID: 34767441 PMCID: PMC8589321 DOI: 10.1126/sciadv.abj3221] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/24/2021] [Indexed: 05/23/2023]
Abstract
Mitochondrial NADH:ubiquinone oxidoreductase (complex I) is a 1-MDa membrane protein complex with a central role in energy metabolism. Redox-driven proton translocation by complex I contributes substantially to the proton motive force that drives ATP synthase. Several structures of complex I from bacteria and mitochondria have been determined, but its catalytic mechanism has remained controversial. We here present the cryo-EM structure of complex I from Yarrowia lipolytica at 2.1-Å resolution, which reveals the positions of more than 1600 protein-bound water molecules, of which ~100 are located in putative proton translocation pathways. Another structure of the same complex under steady-state activity conditions at 3.4-Å resolution indicates conformational transitions that we associate with proton injection into the central hydrophilic axis. By combining high-resolution structural data with site-directed mutagenesis and large-scale molecular dynamic simulations, we define details of the proton translocation pathways and offer insights into the redox-coupled proton pumping mechanism of complex I.
Collapse
Affiliation(s)
- Kristian Parey
- Institute of Biochemistry II, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Jonathan Lasham
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Deryck J. Mills
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Amina Djurabekova
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Outi Haapanen
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Etienne Galemou Yoga
- Institute of Biochemistry II, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Hao Xie
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Vivek Sharma
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland
- HiLIFE Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Volker Zickermann
- Institute of Biochemistry II, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| |
Collapse
|
21
|
Chen N, Rao G, Britt RD, Wang LP. Quantum Chemical Study of a Radical Relay Mechanism for the HydG-Catalyzed Synthesis of a Fe(II)(CO) 2(CN)cysteine Precursor to the H-Cluster of [FeFe] Hydrogenase. Biochemistry 2021; 60:3016-3026. [PMID: 34569243 DOI: 10.1021/acs.biochem.1c00379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The [FeFe] hydrogenase catalyzes the redox interconversion of protons and H2 with a Fe-S "H-cluster" employing CO, CN, and azadithiolate ligands to two Fe centers. The biosynthesis of the H-cluster is a highly interesting reaction carried out by a set of Fe-S maturase enzymes called HydE, HydF, and HydG. HydG, a member of the radical S-adenosylmethionine (rSAM) family, converts tyrosine, cysteine, and Fe(II) into an organometallic Fe(II)(CO)2(CN)cysteine "synthon", which serves as the substrate for HydE. Although key aspects of the HydG mechanism have been experimentally determined via isotope-sensitive spectroscopic methods, other important mechanistic questions have eluded experimental determination. Here, we use computational quantum chemistry to refine the mechanism of the HydG catalytic reaction. We utilize quantum mechanics/molecular mechanics simulations to investigate the reactions at the canonical Fe-S cluster, where a radical cleavage of the tyrosine substrate takes place and proceeds through a relay of radical intermediates to form HCN and a COO•- radical anion. We then carry out a broken-symmetry density functional theory study of the reactions at the unusual five-iron auxiliary Fe-S cluster, where two equivalents of CN- and COOH• coordinate to the fifth "dangler iron" in a series of substitution and redox reactions that yield the synthon as the final product for further processing by HydE.
Collapse
Affiliation(s)
- Nanhao Chen
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Guodong Rao
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - R David Britt
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Lee-Ping Wang
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| |
Collapse
|
22
|
Poor Person's pH Simulation of Membrane Proteins. Methods Mol Biol 2021. [PMID: 34302678 DOI: 10.1007/978-1-0716-1468-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
pH conditions are central to the functioning of all biomolecules. However, implications of pH changes are nontrivial on a molecular scale. Though a rigorous microscopic definition of pH exists, its implementation in classical molecular dynamics (MD) simulations is cumbersome, and more so in large integral membrane systems. In this chapter, an integrative pipeline is described that combines Multi-Conformation Continuum Electrostatics (MCCE) computations with MD simulations to capture the effect of transient protonation states on the coupled conformational changes in transmembrane proteins. The core methodologies are explained, and all the software required to set up this pipeline are outlined with their key parameters. All associated analyses of structure and function are provided using two case studies, namely those of bioenergetic complexes: NADH dehydrogenase (complex I) and Vo domain of V-type ATPase. The hybrid MCCE-MD pipeline has allowed the discovery of hydrogen bond networks, ligand binding pathways, and disease-causing mutations.
Collapse
|
23
|
Kurashov V, Milanovsky G, Luo L, Martin A, Semenov AY, Savikhin S, Cherepanov DA, Golbeck JH, Xu W. Conserved residue PsaB-Trp673 is essential for high-efficiency electron transfer between the phylloquinones and the iron-sulfur clusters in Photosystem I. PHOTOSYNTHESIS RESEARCH 2021; 148:161-180. [PMID: 33991284 DOI: 10.1007/s11120-021-00839-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Despite the high level of symmetry between the PsaA and PsaB polypeptides in Photosystem I, some amino acids pairs are strikingly different, such as PsaA-Gly693 and PsaB-Trp673, which are located near a cluster of 11 water molecules between the A1A and A1B quinones and the FX iron-sulfur cluster. In this work, we changed PsaB-Trp673 to PsaB-Phe673 in Synechocystis sp. PCC 6803. The variant contains ~ 85% of wild-type (WT) levels of Photosystem I but is unable to grow photoautotrophically. Both time-resolved and steady-state optical measurements show that in the PsaB-W673F variant less than 50% of the electrons reach the terminal iron-sulfur clusters FA and FB; the majority of the electrons recombine from A1A- and A1B-. However, in those reaction centers which pass electrons forward the transfer is heterogeneous: a minor population shows electron transfer rates from A1A- and A1B- to FX slightly slower than that of the WT, whereas a major population shows forward electron transfer rates to FX slowed to the ~ 10 µs time range. Competition between relatively similar forward and backward rates of electron transfer from the quinones to the FX cluster account for the relatively low yield of long-lived charge separation in the PsaB-W673F variant. A higher water content and its increased mobility observed in MD simulations in the interquinone cavity of the PsaB-W673F variant shifts the pK of PsaB-Asp575 and allows its deprotonation in situ. The heterogeneity found may be rooted in protonation state of PsaB-Asp575, which controls whether electron transfer can proceed beyond the phylloquinone cofactors.
Collapse
Affiliation(s)
- Vasily Kurashov
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - George Milanovsky
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Leninskie Gory, 1, Building 40, Moscow, Russia, 119992
| | - Lujun Luo
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Antoine Martin
- Department of Physics, Purdue University, West Lafayette, IN, USA
| | - Alexey Yu Semenov
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Leninskie Gory, 1, Building 40, Moscow, Russia, 119992
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st, 4, Moscow, Russia, 117977
| | - Sergei Savikhin
- Department of Physics, Purdue University, West Lafayette, IN, USA
| | - Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st, 4, Moscow, Russia, 117977.
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA.
| |
Collapse
|
24
|
Fuji R, Umezawa K, Mizuguchi M, Ihara M. Protein Engineering of the Soluble Metal-dependent Formate Dehydrogenase from Escherichia coli. ANAL SCI 2021; 37:733-739. [PMID: 33455969 DOI: 10.2116/analsci.20scp15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Formate is the most targeted C1 building block and electron carrier in the post-petroleum era. Formate dehydrogenase (FDH), which catalyzes the production or degradation of formate, has acquired considerable attention. Among FDHs, a metal-dependent FDH that carries a complex active center, molybdenum-pterin cofactor, can directly transfer electrons from formate to other redox proteins without generating NAD(P)H. Previously, we reported an expression system for membrane-bound metal-dependent FDH from E. coli (encoded by the fdoG-fdoH-fdoI operon) and succeeded in its conversion to a soluble protein. However, this protein exhibited a too low stability to be purified and analyzed biochemically. In this study, we tried to improve the stability of heterologously expressed FDH through rational and irrational approaches. As a result, a mutant with the highest specific activity was obtained through a rational approach. This study not only yielded a promising FDH enzyme with enhanced activity and stability for industrial applications, but also offered relevant insights for the handling of recombinant large proteins.
Collapse
Affiliation(s)
- Rintaro Fuji
- Department of Bioscience and Food Production Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University
| | - Koji Umezawa
- Department of Bioscience and Food Production Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University.,Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University
| | - Manami Mizuguchi
- Department of Bioscience and Food Production Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University
| | - Masaki Ihara
- Department of Bioscience and Food Production Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University.,Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University
| |
Collapse
|
25
|
Camilo SRG, Curtolo F, Galassi VV, Arantes GM. Tunneling and Nonadiabatic Effects on a Proton-Coupled Electron Transfer Model for the Q o Site in Cytochrome bc1. J Chem Inf Model 2021; 61:1840-1849. [PMID: 33793213 DOI: 10.1021/acs.jcim.1c00008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cytochrome bc1 is a fundamental enzyme for cellular respiration and photosynthesis. This dimeric protein complex catalyzes a proton-coupled electron transfer (PCET) from the reduced coenzyme-Q substrate (Q) to a bimetallic iron-sulfur cluster in the Qo active site. Herein, we combine molecular dynamics simulations of the complete cytochrome bc1 protein with electronic-structure calculations of truncated models and a semiclassical tunneling theory to investigate the electron-proton adiabaticity of the initial reaction catalyzed in the Qo site. After sampling possible orientations between the Q substrate and a histidine side chain that functions as hydrogen acceptor, we find that a truncated model composed by ubiquinol-methyl and imidazole-iron(III)-sulfide captures the expected changes in oxidation and spin states of the electron donor and acceptor. Diabatic electronic surfaces obtained for this model with multiconfigurational wave function calculations demonstrate that this reaction is electronic nonadiabatic, and proton tunneling is faster than mixing of electronic configurations. These results indicate the formalism that should be used to calculate vibronic couplings and kinetic parameters for the initial reaction in the Qo site of cytochrome bc1. This framework for molecular simulation may also be applied to investigate other PCET reactions in the Q-cycle or in various metalloproteins that catalyze proton translocation coupled to redox processes.
Collapse
Affiliation(s)
- Sofia R G Camilo
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil
| | - Felipe Curtolo
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil
| | - Vanesa V Galassi
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil
| | - Guilherme M Arantes
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil
| |
Collapse
|
26
|
Okuda M, Ekimoto T, Kurita JI, Ikeguchi M, Nishimura Y. Structural and dynamical insights into the PH domain of p62 in human TFIIH. Nucleic Acids Res 2021; 49:2916-2930. [PMID: 33211877 PMCID: PMC7969019 DOI: 10.1093/nar/gkaa1045] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/30/2020] [Accepted: 10/22/2020] [Indexed: 11/15/2022] Open
Abstract
TFIIH is a crucial transcription and DNA repair factor consisting of the seven-subunit core. The core subunit p62 contains a pleckstrin homology domain (PH-D), which is essential for locating TFIIH at transcription initiation and DNA damage sites, and two BSD (BTF2-like transcription factors, synapse-associated proteins and DOS2-like proteins) domains. A recent cryo-electron microscopy (cryo-EM) structure of human TFIIH visualized most parts of core, except for the PH-D. Here, by nuclear magnetic resonance spectroscopy we have established the solution structure of human p62 PH-D connected to the BSD1 domain by a highly flexible linker, suggesting the flexibility of PH-D in TFIIH. Based on this dynamic character, the PH-D was modeled in the cryo-EM structure to obtain the whole human TFIIH core structure, which indicates that the PH-D moves around the surface of core with a specific but limited spatial distribution; these dynamic structures were refined by molecular dynamics (MD) simulations. Furthermore, we built models, also refined by MD simulations, of TFIIH in complex with five p62-binding partners, including transcription factors TFIIEα, p53 and DP1, and nucleotide excision repair factors XPC and UVSSA. The models explain why the PH-D is crucially targeted by these factors, which use their intrinsically disordered acidic regions for TFIIH recruitment.
Collapse
Affiliation(s)
- Masahiko Okuda
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Jun-Ichi Kurita
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.,RIKEN Medical Sciences Innovation Hub Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.,Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8258, Japan
| |
Collapse
|
27
|
Essential role of accessory subunit LYRM6 in the mechanism of mitochondrial complex I. Nat Commun 2020; 11:6008. [PMID: 33243981 PMCID: PMC7693276 DOI: 10.1038/s41467-020-19778-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/29/2020] [Indexed: 01/18/2023] Open
Abstract
Respiratory complex I catalyzes electron transfer from NADH to ubiquinone (Q) coupled to vectorial proton translocation across the inner mitochondrial membrane. Despite recent progress in structure determination of this very large membrane protein complex, the coupling mechanism is a matter of ongoing debate and the function of accessory subunits surrounding the canonical core subunits is essentially unknown. Concerted rearrangements within a cluster of conserved loops of central subunits NDUFS2 (β1-β2S2 loop), ND1 (TMH5-6ND1 loop) and ND3 (TMH1-2ND3 loop) were suggested to be critical for its proton pumping mechanism. Here, we show that stabilization of the TMH1-2ND3 loop by accessory subunit LYRM6 (NDUFA6) is pivotal for energy conversion by mitochondrial complex I. We determined the high-resolution structure of inactive mutant F89ALYRM6 of eukaryotic complex I from the yeast Yarrowia lipolytica and found long-range structural changes affecting the entire loop cluster. In atomistic molecular dynamics simulations of the mutant, we observed conformational transitions in the loop cluster that disrupted a putative pathway for delivery of substrate protons required in Q redox chemistry. Our results elucidate in detail the essential role of accessory subunit LYRM6 for the function of eukaryotic complex I and offer clues on its redox-linked proton pumping mechanism. Respiratory complex I plays a key role in energy metabolism. Cryo-EM structure of a mutant accessory subunit LYRM6 from the yeast Yarrowia lipolytica and molecular dynamics simulations reveal conformational changes at the interface between LYRM6 and subunit ND3, propagated further into the complex. These findings offer insight into the mechanism of proton pumping by respiratory complex I.
Collapse
|
28
|
Efimova VS, Isaeva LV, Orekhov PS, Bozdaganyan ME, Rubtsov MA, Novikova LA. Using a viral 2A peptide-based strategy to reconstruct the bovine P450scc steroidogenic system in S. cerevisiae: Bovine P450scc system expression using 2A peptides. J Biotechnol 2020; 325:186-195. [PMID: 33157198 DOI: 10.1016/j.jbiotec.2020.10.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022]
Abstract
Cytochrome P450scc system performs the first rate-limiting stage of steroidogenesis in mammals. The bovine P450scc system was reconstructed in Saccharomyces cerevisiae, using a foot-and-mouth disease virus 2A peptide (F2A)-based construct, to co-express cytochrome P450scc, adrenodoxin (Adx), and adrenodoxin reductase (AdR). During the translation of the self-processing fusion protein P450scc-F2A-Adx-F2A-AdR, the first and the second linkers are cleaved with different efficiencies (96 % and 11 %, respectively), resulting in the unbalanced expression of individual proteins. The low cleavage efficiency and the relative Adx and AdR protein levels were increased through replacing the second F2A peptide with different sequences and changing the order of Adx and AdR. The P450scc, AdR, and Adx sequences located upstream of the F2A affected F2A processing, to various degrees. Moreover, using molecular dynamics (MD) simulations, we showed that the 2A peptide fused to the C-terminus of Adx formed the steric hindrance during enzymatic complex formation, resulting in the reduction of catalytic activity. Thus, the functional activity of the reconstructed P450scc system was determined not only by the efficiency of 2A peptides but also by the overall sequence of the expressed 2A-polyprotein. Our results can be applied to the development of 2A-based co-translation strategies, to produce other multicomponent protein systems.
Collapse
Affiliation(s)
- Vera S Efimova
- Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1/40, Moscow, 119991, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow, 119991, Russia
| | - Ludmila V Isaeva
- Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1/40, Moscow, 119991, Russia
| | - Philipp S Orekhov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow, 119991, Russia; Department of Biochemistry, Institute for Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya st. 2, Moscow, 119991 Russia; Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow, 141701, Russia
| | - Marine E Bozdaganyan
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow, 119991, Russia; Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow, 141701, Russia; N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow, 119991, Russia
| | - Mikhail A Rubtsov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow, 119991, Russia; Department of Biochemistry, Institute for Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya st. 2, Moscow, 119991 Russia
| | - Ludmila A Novikova
- Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1/40, Moscow, 119991, Russia.
| |
Collapse
|
29
|
Khaniya U, Gupta C, Cai X, Mao J, Kaur D, Zhang Y, Singharoy A, Gunner MR. Hydrogen bond network analysis reveals the pathway for the proton transfer in the E-channel of T. thermophilus Complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148240. [PMID: 32531220 DOI: 10.1016/j.bbabio.2020.148240] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 10/24/2022]
Abstract
Complex I, NADH-ubiquinone oxidoreductase, is the first enzyme in the mitochondrial and bacterial aerobic respiratory chain. It pumps four protons through four transiently open pathways from the high pH, negative, N-side of the membrane to the positive, P-side driven by the exergonic transfer of electrons from NADH to a quinone. Three protons transfer through subunits descended from antiporters, while the fourth, E-channel is unique. The path through the E-channel is determined by a network analysis of hydrogen bonded pathways obtained by Monte Carlo sampling of protonation states, polar hydrogen orientation and water occupancy. Input coordinates are derived from molecular dynamics trajectories comparing oxidized, reduced (dihydro) and no menaquinone-8 (MQ). A complex proton transfer path from the N- to the P-side is found consisting of six clusters of highly connected hydrogen-bonded residues. The network connectivity depends on the presence of quinone and its redox state, supporting a role for this cofactor in coupling electron and proton transfers. The N-side is more organized with MQ-bound complex I facilitating proton entry, while the P-side is more connected in the apo-protein, facilitating proton exit. Subunit Nqo8 forms the core of the E channel; Nqo4 provides the N-side entry, Nqo7 and then Nqo10 join the pathway in the middle, while Nqo11 contributes to the P-side exit.
Collapse
Affiliation(s)
- Umesh Khaniya
- Department of Physics, City College of New York, New York 10031, USA; Department of Physics, The Graduate Center, City University of New York, New York 10016, USA
| | - Chitrak Gupta
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA; Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Xiuhong Cai
- Department of Physics, City College of New York, New York 10031, USA; Department of Physics, The Graduate Center, City University of New York, New York 10016, USA
| | - Junjun Mao
- Department of Physics, City College of New York, New York 10031, USA
| | - Divya Kaur
- Department of Physics, City College of New York, New York 10031, USA; Department of Chemistry, The Graduate Center, City University of New York, New York 10016, USA
| | - Yingying Zhang
- Department of Physics, City College of New York, New York 10031, USA; Department of Physics, The Graduate Center, City University of New York, New York 10016, USA
| | - Abhishek Singharoy
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA; Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - M R Gunner
- Department of Physics, City College of New York, New York 10031, USA; Department of Physics, The Graduate Center, City University of New York, New York 10016, USA; Department of Chemistry, The Graduate Center, City University of New York, New York 10016, USA.
| |
Collapse
|
30
|
Gupta C, Khaniya U, Chan CK, Dehez F, Shekhar M, Gunner MR, Sazanov L, Chipot C, Singharoy A. Charge Transfer and Chemo-Mechanical Coupling in Respiratory Complex I. J Am Chem Soc 2020; 142:9220-9230. [PMID: 32347721 DOI: 10.1021/jacs.9b13450] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mitochondrial respiratory chain, formed by five protein complexes, utilizes energy from catabolic processes to synthesize ATP. Complex I, the first and the largest protein complex of the chain, harvests electrons from NADH to reduce quinone, while pumping protons across the mitochondrial membrane. Detailed knowledge of the working principle of such coupled charge-transfer processes remains, however, fragmentary due to bottlenecks in understanding redox-driven conformational transitions and their interplay with the hydrated proton pathways. Complex I from Thermus thermophilus encases 16 subunits with nine iron-sulfur clusters, reduced by electrons from NADH. Here, employing the latest crystal structure of T. thermophilus complex I, we have used microsecond-scale molecular dynamics simulations to study the chemo-mechanical coupling between redox changes of the iron-sulfur clusters and conformational transitions across complex I. First, we identify the redox switches within complex I, which allosterically couple the dynamics of the quinone binding pocket to the site of NADH reduction. Second, our free-energy calculations reveal that the affinity of the quinone, specifically menaquinone, for the binding-site is higher than that of its reduced, menaquinol form-a design essential for menaquinol release. Remarkably, the barriers to diffusive menaquinone dynamics are lesser than that of the more ubiquitous ubiquinone, and the naphthoquinone headgroup of the former furnishes stronger binding interactions with the pocket, favoring menaquinone for charge transport in T. thermophilus. Our computations are consistent with experimentally validated mutations and hierarchize the key residues into three functional classes, identifying new mutation targets. Third, long-range hydrogen-bond networks connecting the quinone-binding site to the transmembrane subunits are found to be responsible for proton pumping. Put together, the simulations reveal the molecular design principles linking redox reactions to quinone turnover to proton translocation in complex I.
Collapse
Affiliation(s)
- Chitrak Gupta
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States.,Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Umesh Khaniya
- Department of Physics, City College of New York, New York, New York 10031, United States.,Department of Physics, City University of New York, New York, New York 10017, United States
| | - Chun Kit Chan
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | | | - Mrinal Shekhar
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - M R Gunner
- Department of Physics, City College of New York, New York, New York 10031, United States.,Department of Physics, City University of New York, New York, New York 10017, United States
| | - Leonid Sazanov
- Institute of Science and Technology, 3400 Klosterneuburg, Austria
| | - Christophe Chipot
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,University of Lorraine, Nancy 54000, France
| | - Abhishek Singharoy
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States.,Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
31
|
Hoias Teixeira M, Menegon Arantes G. Balanced internal hydration discriminates substrate binding to respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:541-548. [DOI: 10.1016/j.bbabio.2019.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/16/2019] [Accepted: 05/28/2019] [Indexed: 12/16/2022]
|
32
|
Mutations in a conserved loop in the PSST subunit of respiratory complex I affect ubiquinone binding and dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:573-581. [PMID: 31226318 DOI: 10.1016/j.bbabio.2019.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/10/2019] [Accepted: 06/15/2019] [Indexed: 12/13/2022]
Abstract
Respiratory complex I catalyses the reduction of ubiquinone (Q) from NADH coupled to proton pumping across the inner membrane of mitochondria. The electrical charging of the inner mitochondrial membrane drives the synthesis of ATP, which is used to power biochemical reactions of the cell. The recent surge in structural data on complex I from bacteria and mitochondria have contributed to significant understanding of its molecular architecture. However, despite these accomplishments, the role of various subdomains in redox-coupled proton pumping remains entirely unclear. In this work, we have mutated conserved residues in the loop of the PSST subunit that faces the ~30 Å long unique Q-binding tunnel of respiratory complex I. The data show a drastic decrease in Q reductase activity upon mutating several residues despite full assembly of the complex. In-silico modeling and multiple microsecond long molecular dynamics simulations of wild-type and enzyme variants with exchanges of conserved arginine residues revealed remarkable ejection of the bound Q from the site near terminal electron donor N2. Based on experiments and long-time scale molecular simulations, we identify microscopic elements that dynamically control the diffusion of Q and are central to redox-coupled proton pumping in respiratory complex I.
Collapse
|
33
|
Haapanen O, Djurabekova A, Sharma V. Role of Second Quinone Binding Site in Proton Pumping by Respiratory Complex I. Front Chem 2019; 7:221. [PMID: 31024903 PMCID: PMC6465577 DOI: 10.3389/fchem.2019.00221] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/21/2019] [Indexed: 12/22/2022] Open
Abstract
Respiratory complex I performs the reduction of quinone (Q) to quinol (QH2) and pumps protons across the membrane. Structural data on complex I have provided spectacular insights into the electron and proton transfer paths, as well as into the long (~30 Å) and unique substrate binding channel. However, due to missing structural information on Q binding modes, it remains unclear how Q reduction drives long range (~20 nm) redox-coupled proton pumping in complex I. Here we applied multiscale computational approaches to study the dynamics and redox chemistry of Q and QH2. Based on tens of microseconds of atomistic molecular dynamics (MD) simulations of bacterial and mitochondrial complex I, we find that the dynamics of Q is remarkably rapid and it diffuses from the N2 binding site to another stable site near the entrance of the Q channel in microseconds. Analysis of simulation trajectories also reveal the presence of yet another Q binding site 25–30 Å from the N2 center, which is in remarkable agreement with the electron density observed in recent cryo electron microscopy structure of complex I from Yarrowia lipolytica. Quantum chemical computations on the two Q binding sites closer to the entrance of the Q tunnel reveal redox-coupled protonation reactions that may be important in driving the proton pump of complex I.
Collapse
Affiliation(s)
- Outi Haapanen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | | | - Vivek Sharma
- Department of Physics, University of Helsinki, Helsinki, Finland.,Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
34
|
Liu Y, Mohammadi M, Vashisth H. Diffusion network of CO in FeFe-Hydrogenase. J Chem Phys 2018; 149:204108. [PMID: 30501239 DOI: 10.1063/1.5054877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
FeFe-hydrogenase is an efficient enzyme to produce H2 under optimal conditions. However, the activity of this enzyme is highly sensitive to the presence of inhibitory gases CO and O2 that cause irreversible damage to the active site. Therefore, a detailed knowledge of the diffusion pathways of these inhibitory gases is necessary to develop strategies for designing novel enzymes that are tolerant to these gases. In this work, we studied the diffusion pathways of CO in the CpI FeFe-hydrogenase from Clostridium pasteurianum. Specifically, we used several enhanced sampling and free-energy simulation methods to reconstruct a three-dimensional free-energy surface for CO diffusion which revealed 45 free-energy minima forming an interconnected network of pathways. We discovered multiple pathways of minimal free-energy as diffusion portals for CO and found that previously suggested hydrophobic pathways are not thermodynamically favorable for CO diffusion. We also observed that the global minimum in the free-energy surface is located in the vicinity of the active-site metal cluster, the H-cluster, which suggests a high-affinity for CO near the active site. Among 19 potential residues that we propose as candidates for future mutagenesis studies, 11 residues are shared with residues that have been previously proposed to increase the tolerance of this enzyme for O2. We hypothesize that these shared candidate residues are potentially useful for designing new variants of this enzyme that are tolerant to both inhibitory gases.
Collapse
Affiliation(s)
- Yong Liu
- Department of Chemical Engineering, University of New Hampshire, 33 Academic Way, Durham, New Hampshire 03824, USA
| | - Mohammadjavad Mohammadi
- Department of Chemical Engineering, University of New Hampshire, 33 Academic Way, Durham, New Hampshire 03824, USA
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, 33 Academic Way, Durham, New Hampshire 03824, USA
| |
Collapse
|
35
|
Waskasi MM, Martin DR, Matyushov DV. Wetting of the Protein Active Site Leads to Non-Marcusian Reaction Kinetics. J Phys Chem B 2018; 122:10490-10495. [PMID: 30365331 DOI: 10.1021/acs.jpcb.8b10376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enzymes exist in continuously fluctuating water bath dramatically affecting their function. Water not only forms the solvation shell but also penetrates into the protein interior. Changing the wetting pattern of the protein's active site in response to altering redox state initiates a highly nonlinear structural change and non-Gaussian electrostatic fluctuations at the active site. The free-energy surfaces of electron transfer are highly nonparabolic (non-Marcusian), as shown by atomistic molecular dynamics simulations of hydrated ferredoxin protein and by an analytical model in agreement with simulations. The reorganization energy of electron transfer passes through a spike marking equal probabilities of the wet and dry states of the active site. The activation thermodynamics affected by wetting leads to a non-Arrhenius, passing through a maximum, plot for the reaction rate vs the inverse temperature.
Collapse
Affiliation(s)
- Morteza M Waskasi
- School of Molecular Sciences , Arizona State University , P.O. Box 871604, Tempe , Arizona 85287-1604 , United States
| | | | | |
Collapse
|
36
|
Mirts EN, Petrik ID, Hosseinzadeh P, Nilges MJ, Lu Y. A designed heme-[4Fe-4S] metalloenzyme catalyzes sulfite reduction like the native enzyme. Science 2018; 361:1098-1101. [PMID: 30213908 DOI: 10.1126/science.aat8474] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/25/2018] [Indexed: 01/17/2023]
Abstract
Multielectron redox reactions often require multicofactor metalloenzymes to facilitate coupled electron and proton movement, but it is challenging to design artificial enzymes to catalyze these important reactions, owing to their structural and functional complexity. We report a designed heteronuclear heme-[4Fe-4S] cofactor in cytochrome c peroxidase as a structural and functional model of the enzyme sulfite reductase. The initial model exhibits spectroscopic and ligand-binding properties of the native enzyme, and sulfite reduction activity was improved-through rational tuning of the secondary sphere interactions around the [4Fe-4S] and the substrate-binding sites-to be close to that of the native enzyme. By offering insight into the requirements for a demanding six-electron, seven-proton reaction that has so far eluded synthetic catalysts, this study provides strategies for designing highly functional multicofactor artificial enzymes.
Collapse
Affiliation(s)
- Evan N Mirts
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Igor D Petrik
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Parisa Hosseinzadeh
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mark J Nilges
- School of Chemical Sciences Electron Paramagnetic Resonance Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yi Lu
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. .,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Pacific Northwest National Laboratory, Richland, WA 99352, USA
| |
Collapse
|
37
|
Nunes-Alves A, Arantes GM. Mechanical Unfolding of Macromolecules Coupled to Bond Dissociation. J Chem Theory Comput 2017; 14:282-290. [DOI: 10.1021/acs.jctc.7b00805] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ariane Nunes-Alves
- Department of Biochemistry,
Instituto de Quı́mica, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil
| | - Guilherme Menegon Arantes
- Department of Biochemistry,
Instituto de Quı́mica, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil
| |
Collapse
|
38
|
Holub D, Ma H, Krauß N, Lamparter T, Elstner M, Gillet N. Functional role of an unusual tyrosine residue in the electron transfer chain of a prokaryotic (6-4) photolyase. Chem Sci 2017; 9:1259-1272. [PMID: 29675172 PMCID: PMC5887102 DOI: 10.1039/c7sc03386a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/09/2017] [Indexed: 11/21/2022] Open
Abstract
Cryptochromes and photolyases form a flavoprotein family in which the FAD chromophore undergoes light induced changes of its redox state. During this process, termed photoreduction, electrons flow from the surface via conserved amino acid residues to FAD. The bacterial (6-4) photolyase PhrB belongs to a phylogenetically ancient group. Photoreduction of PhrB differs from the typical pattern because the amino acid of the electron cascade next to FAD is a tyrosine (Tyr391), whereas photolyases and cryptochromes of other groups have a tryptophan as direct electron donor of FAD. Mutagenesis studies have identified Trp342 and Trp390 as essential for charge transfer. Trp342 is located at the periphery of PhrB while Trp390 connects Trp342 and Tyr391. The role of Tyr391, which lies between Trp390 and FAD, is however unclear as its replacement by phenylalanine did not block photoreduction. Experiments reported here, which replace Tyr391 by Ala, show that photoreduction is blocked, underlining the relevance of Tyr/Phe at position 391 and indicating that charge transfer occurs via the triad 391-390-342. This raises the question, why PhrB positions a tyrosine at this location, having a less favourable ionisation potential than tryptophan, which occurs at this position in many proteins of the photolyase/cryptochrome family. Tunnelling matrix calculations show that tyrosine or phenylalanine can be involved in a productive bridged electron transfer between FAD and Trp390, in line with experimental findings. Since replacement of Tyr391 by Trp resulted in loss of FAD and DMRL chromophores, electron transfer cannot be studied experimentally in this mutant, but calculations on a mutant model suggest that Trp might participate in the electron transfer cascade. Charge transfer simulations reveal an unusual stabilization of the positive charge on site 391 compared to other photolyases or cryptochromes. Water molecules near Tyr391 offer a polar environment which stabilizes the positive charge on this site, thereby lowering the energetic barrier intrinsic to tyrosine. This opens a second charge transfer channel in addition to tunnelling through the tyrosine barrier, based on hopping and therefore transient oxidation of Tyr391, which enables a fast charge transfer similar to proteins utilizing a tryptophan-triad. Our results suggest that evolution of the first site of the redox chain has just been possible by tuning the protein structure and environment to manage a downhill hole transfer process from FAD to solvent.
Collapse
Affiliation(s)
- Daniel Holub
- Department for Theoretical Chemical Biology , Institute for Physical Chemistry , Karlsruhe Institute for Technology , Kaiserstr. 12 , 76131 , Karlsruhe , Germany .
| | - Hongju Ma
- Botanical Institute , Karlsruhe Institute for Technology , Fritz Haber Weg 4 , 76131 , Karlsruhe , Germany
| | - Norbert Krauß
- Botanical Institute , Karlsruhe Institute for Technology , Fritz Haber Weg 4 , 76131 , Karlsruhe , Germany
| | - Tilman Lamparter
- Botanical Institute , Karlsruhe Institute for Technology , Fritz Haber Weg 4 , 76131 , Karlsruhe , Germany
| | - Marcus Elstner
- Department for Theoretical Chemical Biology , Institute for Physical Chemistry , Karlsruhe Institute for Technology , Kaiserstr. 12 , 76131 , Karlsruhe , Germany . .,Institute of Biological Interfaces (IGB2) , Karlsruhe Institute for Technology , Kaiserstr. 12 , 76131 , Karlsruhe , Germany
| | - Natacha Gillet
- Department for Theoretical Chemical Biology , Institute for Physical Chemistry , Karlsruhe Institute for Technology , Kaiserstr. 12 , 76131 , Karlsruhe , Germany .
| |
Collapse
|
39
|
Benediktsson B, Bjornsson R. QM/MM Study of the Nitrogenase MoFe Protein Resting State: Broken-Symmetry States, Protonation States, and QM Region Convergence in the FeMoco Active Site. Inorg Chem 2017; 56:13417-13429. [DOI: 10.1021/acs.inorgchem.7b02158] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bardi Benediktsson
- Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland
| | - Ragnar Bjornsson
- Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland
| |
Collapse
|
40
|
Mohammadi M, Vashisth H. Pathways and Thermodynamics of Oxygen Diffusion in [FeFe]-Hydrogenase. J Phys Chem B 2017; 121:10007-10017. [DOI: 10.1021/acs.jpcb.7b06489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mohammadjavad Mohammadi
- Department of Chemical Engineering, University of New Hampshire, Durham 03824, New Hampshire, United States
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham 03824, New Hampshire, United States
| |
Collapse
|
41
|
Haapanen O, Sharma V. Role of water and protein dynamics in proton pumping by respiratory complex I. Sci Rep 2017; 7:7747. [PMID: 28798393 PMCID: PMC5552823 DOI: 10.1038/s41598-017-07930-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/05/2017] [Indexed: 11/29/2022] Open
Abstract
Membrane bound respiratory complex I is the key enzyme in the respiratory chains of bacteria and mitochondria, and couples the reduction of quinone to the pumping of protons across the membrane. Recently solved crystal or electron microscopy structures of bacterial and mitochondrial complexes have provided significant insights into the electron and proton transfer pathways. However, due to large spatial separation between the electron and proton transfer routes, the molecular mechanism of coupling remains unclear. Here, based on atomistic molecular dynamics simulations performed on the entire structure of complex I from Thermus thermophilus, we studied the hydration of the quinone-binding site and the membrane-bound subunits. The data from simulations show rapid diffusion of water molecules in the protein interior, and formation of hydrated regions in the three antiporter-type subunits. An unexpected water-protein based connectivity between the middle of the Q-tunnel and the fourth proton channel is also observed. The protonation-state dependent dynamics of key acidic residues in the Nqo8 subunit suggest that the latter may be linked to redox-coupled proton pumping in complex I. We propose that in complex I the proton and electron transfer paths are not entirely separate, instead the nature of coupling may in part be ‘direct’.
Collapse
Affiliation(s)
- Outi Haapanen
- Department of Physics, University of Helsinki, P. O. Box 64, FI-00014, Helsinki, Finland.,Department of Physics, Tampere University of Technology, P. O. Box 692, FI-33101, Tampere, Finland
| | - Vivek Sharma
- Department of Physics, University of Helsinki, P. O. Box 64, FI-00014, Helsinki, Finland. .,Department of Physics, Tampere University of Technology, P. O. Box 692, FI-33101, Tampere, Finland. .,Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
42
|
Adamson H, Robinson M, Bond PS, Soboh B, Gillow K, Simonov AN, Elton DM, Bond AM, Sawers RG, Gavaghan DJ, Parkin A. Analysis of HypD Disulfide Redox Chemistry via Optimization of Fourier Transformed ac Voltammetric Data. Anal Chem 2017; 89:1565-1573. [PMID: 28029041 DOI: 10.1021/acs.analchem.6b03589] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Rapid disulfide bond formation and cleavage is an essential mechanism of life. Using large amplitude Fourier transformed alternating current voltammetry (FTacV) we have measured previously uncharacterized disulfide bond redox chemistry in Escherichia coli HypD. This protein is representative of a class of assembly proteins that play an essential role in the biosynthesis of the active site of [NiFe]-hydrogenases, a family of H2-activating enzymes. Compared to conventional electrochemical methods, the advantages of the FTacV technique are the high resolution of the faradaic signal in the higher order harmonics and the fact that a single electrochemical experiment contains all the data needed to estimate the (very fast) electron transfer rates (both rate constants ≥ 4000 s-1) and quantify the energetics of the cysteine disulfide redox-reaction (reversible potentials for both processes approximately -0.21 ± 0.01 V vs SHE at pH 6). Previously, deriving such data depended on an inefficient manual trial-and-error approach to simulation. As a highly advantageous alternative, we describe herein an automated multiparameter data optimization analysis strategy where the simulated and experimental faradaic current data are compared for both the real and imaginary components in each of the 4th to 12th harmonics after quantifying the charging current data using the time-domain response.
Collapse
Affiliation(s)
- Hope Adamson
- Department of Chemistry, University of York , Heslington, York, YO10 5DD, United Kingdom
| | - Martin Robinson
- Department of Computer Science, University of Oxford , Wolfson Building, Parks Road, Oxford, OX1 3QD, United Kingdom
| | - Paul S Bond
- Department of Chemistry, University of York , Heslington, York, YO10 5DD, United Kingdom
| | - Basem Soboh
- Experimental Molecular Biophysics, Freie Universität Berlin , Arnimalle 14, 14195 Berlin, Germany
| | - Kathryn Gillow
- Mathematical Institute, Andrew Wiles Building, University of Oxford , Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, United Kingdom
| | - Alexandr N Simonov
- School of Chemistry and the ARC Centre of Excellence for Electromaterials Science, Monash University , Clayton, Victoria 3800, Australia
| | - Darrell M Elton
- School of Engineering and Mathematical Sciences, La Trobe University , Bundoora, Victoria 3086, Australia
| | - Alan M Bond
- School of Chemistry and the ARC Centre of Excellence for Electromaterials Science, Monash University , Clayton, Victoria 3800, Australia
| | - R Gary Sawers
- Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg , Halle (Saale), Germany
| | - David J Gavaghan
- Department of Computer Science, University of Oxford , Wolfson Building, Parks Road, Oxford, OX1 3QD, United Kingdom
| | - Alison Parkin
- Department of Chemistry, University of York , Heslington, York, YO10 5DD, United Kingdom
| |
Collapse
|
43
|
Pietra F. Uptake of Organohalide Pollutants, and Release of Partially Dehalogenated Products, by NpRdhA, a 'Base-Off' Cob(II)alamin-Dependent Reductive Dehalogenase from a Deep Sea Bacterium. A Molecular Dynamics Investigation. Chem Biodivers 2016; 12:1945-53. [PMID: 26663844 DOI: 10.1002/cbdv.201500195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Indexed: 11/12/2022]
Abstract
This work shows that, during MD aided by external tiny random forces, 3-bromo-4-hydroxybenzoic acid (LHB), the product of reductive dehalogenation of 3,5-dibromo-4-hydroxybenzoic acid (LBB) by the corrin-based marine enzyme NpRdhA, is expelled along mainly the wide channel that connects the corrin to the external medium. In accordance, unbiased MD showed that LBB migrates relatively rapidly from the external medium to the inside of the channel, finally getting to the corrin active center of NpRdhA. The LBB pose, with bromide head and carboxylate tail nearly equidistant from the corrin Co ion, does not fit the results of previous automatic docking. Either the experimental structure of the NpRdhA-LBB complex, or a quantum-mechanical study of LBB at the corrin active site, are therefore urged.
Collapse
Affiliation(s)
- Francesco Pietra
- Accademia Lucchese di Scienze, Lettere e Arti, Classe di Scienze, Palazzo Ducale, IT-55100 Lucca, (phone/fax: +39-0583-417336).
| |
Collapse
|
44
|
Kubas A, Orain C, De Sancho D, Saujet L, Sensi M, Gauquelin C, Meynial-Salles I, Soucaille P, Bottin H, Baffert C, Fourmond V, Best RB, Blumberger J, Léger C. Mechanism of O 2 diffusion and reduction in FeFe hydrogenases. Nat Chem 2016; 9:88-95. [PMID: 27995927 DOI: 10.1038/nchem.2592] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 07/08/2016] [Indexed: 11/09/2022]
Abstract
FeFe hydrogenases are the most efficient H2-producing enzymes. However, inactivation by O2 remains an obstacle that prevents them being used in many biotechnological devices. Here, we combine electrochemistry, site-directed mutagenesis, molecular dynamics and quantum chemical calculations to uncover the molecular mechanism of O2 diffusion within the enzyme and its reactions at the active site. We propose that the partial reversibility of the reaction with O2 results from the four-electron reduction of O2 to water. The third electron/proton transfer step is the bottleneck for water production, competing with formation of a highly reactive OH radical and hydroxylated cysteine. The rapid delivery of electrons and protons to the active site is therefore crucial to prevent the accumulation of these aggressive species during prolonged O2 exposure. These findings should provide important clues for the design of hydrogenase mutants with increased resistance to oxidative damage.
Collapse
Affiliation(s)
- Adam Kubas
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.,Institute of Physical Chemistry, Polish Academy of Science, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Christophe Orain
- Aix Marseille Univ, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - David De Sancho
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.,CIC nanoGUNE, Tolosa Hiribidea 76, 20018 Donostia-San Sebastián, Spain.,IKERBASQUE; Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
| | - Laure Saujet
- Institut de Biologie et de Technologies de Saclay IBITECS, SB2SM, F-91191 Gif sur Yvette, France.,Institut de Biologie Intégrative de la Cellule I2BC, UMR 9198, CEA, CNRS, Université Paris Sud, F-91191 Gif sur Yvette, France
| | - Matteo Sensi
- Aix Marseille Univ, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Charles Gauquelin
- Université de Toulouse, INSA, UPS, INP, LISBP, INRA:UMR792, CNRS:UMR 5504, 135 avenue de Rangueil, Toulouse 31077 Cedex 04, France
| | - Isabelle Meynial-Salles
- Université de Toulouse, INSA, UPS, INP, LISBP, INRA:UMR792, CNRS:UMR 5504, 135 avenue de Rangueil, Toulouse 31077 Cedex 04, France
| | - Philippe Soucaille
- Université de Toulouse, INSA, UPS, INP, LISBP, INRA:UMR792, CNRS:UMR 5504, 135 avenue de Rangueil, Toulouse 31077 Cedex 04, France
| | - Hervé Bottin
- Institut de Biologie et de Technologies de Saclay IBITECS, SB2SM, F-91191 Gif sur Yvette, France.,Institut de Biologie Intégrative de la Cellule I2BC, UMR 9198, CEA, CNRS, Université Paris Sud, F-91191 Gif sur Yvette, France
| | - Carole Baffert
- Aix Marseille Univ, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Vincent Fourmond
- Aix Marseille Univ, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | - Jochen Blumberger
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
| | - Christophe Léger
- Aix Marseille Univ, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Marseille, France
| |
Collapse
|
45
|
Bhagi-Damodaran A, Hosseinzadeh P, Mirts E, Reed J, Petrik ID, Lu Y. Design of Heteronuclear Metalloenzymes. Methods Enzymol 2016; 580:501-37. [PMID: 27586347 PMCID: PMC5156654 DOI: 10.1016/bs.mie.2016.05.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Heteronuclear metalloenzymes catalyze some of the most fundamentally interesting and practically useful reactions in nature. However, the presence of two or more metal ions in close proximity in these enzymes makes them more difficult to prepare and study than homonuclear metalloenzymes. To meet these challenges, heteronuclear metal centers have been designed into small and stable proteins with rigid scaffolds to understand how these heteronuclear centers are constructed and the mechanism of their function. This chapter describes methods for designing heterobinuclear metal centers in a protein scaffold by giving specific examples of a few heme-nonheme bimetallic centers engineered in myoglobin and cytochrome c peroxidase. We provide step-by-step procedures on how to choose the protein scaffold, design a heterobinuclear metal center in the protein scaffold computationally, incorporate metal ions into the protein, and characterize the resulting metalloproteins, both structurally and functionally. Finally, we discuss how an initial design can be further improved by rationally tuning its secondary coordination sphere, electron/proton transfer rates, and the substrate affinity.
Collapse
Affiliation(s)
- A Bhagi-Damodaran
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - P Hosseinzadeh
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - E Mirts
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - J Reed
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - I D Petrik
- University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Y Lu
- University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
46
|
Abstract
The heme iron of cytochromes P450 must be reduced to bind and activate molecular oxygen for substrate oxidation. Reducing equivalents are derived from a redox partner, which requires the formation of a protein-protein complex. A subject of increasing discussion is the role that redox partner binding plays, if any, in favoring significant structural changes in the P450s that are required for activity. Many P450s now have been shown to experience large open and closed motions. Several structural and spectral studies indicate that the well-studied P450cam adopts the open conformation when its redox partner, putidaredoxin (Pdx), binds, whereas recent NMR studies indicate that this view is incorrect. Given the relevance of this discrepancy to P450 chemistry, it is important to determine whether Pdx favors the open or closed form of P450cam. Here, we have used both computational and experimental isothermal titration calorimetry studies that unequivocally show Pdx favors binding to the open form of P450cam. Analyses of molecular-dynamic trajectories also provide insights into intermediate conformational states that could be relevant to catalysis.
Collapse
|
47
|
Cornish AJ, Ginovska B, Thelen A, da Silva JCS, Soares TA, Raugei S, Dupuis M, Shaw WJ, Hegg EL. Single-Amino Acid Modifications Reveal Additional Controls on the Proton Pathway of [FeFe]-Hydrogenase. Biochemistry 2016; 55:3165-73. [PMID: 27186945 DOI: 10.1021/acs.biochem.5b01044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The proton pathway of [FeFe]-hydrogenase is essential for enzymatic H2 production and oxidation and is composed of four residues and a water molecule. A computational analysis of this pathway in the [FeFe]-hydrogenase from Clostridium pasteurianum revealed that the solvent-exposed residue of the pathway (Glu282) forms hydrogen bonds to two residues outside of the pathway (Arg286 and Ser320), implying that these residues could function in regulating proton transfer. In this study, we show that substituting Arg286 with leucine eliminates hydrogen bonding with Glu282 and results in an ∼3-fold enhancement of H2 production activity when methyl viologen is used as an electron donor, suggesting that Arg286 may help control the rate of proton delivery. In contrast, substitution of Ser320 with alanine reduces the rate ∼5-fold, implying that it either acts as a member of the pathway or influences Glu282 to permit proton transfer. Interestingly, quantum mechanics/molecular mechanics and molecular dynamics calculations indicate that Ser320 does not play a structural role or indirectly influence the barrier for proton movement at the entrance of the channel. Rather, it may act as an additional proton acceptor for the pathway or serve in a regulatory role. While further studies are needed to elucidate the role of Ser320, collectively these data provide insights into the complex proton transport process.
Collapse
Affiliation(s)
- Adam J Cornish
- Department of Biochemistry & Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States.,Great Lakes Bioenergy Research Center, Michigan State University , East Lansing, Michigan 48824, United States
| | - Bojana Ginovska
- Physical Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Adam Thelen
- Department of Biochemistry & Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| | - Julio C S da Silva
- Department of Fundamental Chemistry, Federal University of Pernambuco , Cidade Universitária,50740-560 Recife, PE, Brazil
| | - Thereza A Soares
- Department of Fundamental Chemistry, Federal University of Pernambuco , Cidade Universitária,50740-560 Recife, PE, Brazil
| | - Simone Raugei
- Physical Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Michel Dupuis
- Physical Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Wendy J Shaw
- Physical Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Eric L Hegg
- Department of Biochemistry & Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States.,Great Lakes Bioenergy Research Center, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
48
|
Harris BJ, Cheng X, Frymier P. Structure and Function of Photosystem I–[FeFe] Hydrogenase Protein Fusions: An All-Atom Molecular Dynamics Study. J Phys Chem B 2016; 120:599-609. [DOI: 10.1021/acs.jpcb.5b07812] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bradley J. Harris
- College
of Engineering and Computer Science, University of Tennessee, Chattanooga, Tennessee 37403, United States
| | - Xiaolin Cheng
- Center for
Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | | |
Collapse
|
49
|
|
50
|
Redox-induced activation of the proton pump in the respiratory complex I. Proc Natl Acad Sci U S A 2015; 112:11571-6. [PMID: 26330610 DOI: 10.1073/pnas.1503761112] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Complex I functions as a redox-linked proton pump in the respiratory chains of mitochondria and bacteria, driven by the reduction of quinone (Q) by NADH. Remarkably, the distance between the Q reduction site and the most distant proton channels extends nearly 200 Å. To elucidate the molecular origin of this long-range coupling, we apply a combination of large-scale molecular simulations and a site-directed mutagenesis experiment of a key residue. In hybrid quantum mechanics/molecular mechanics simulations, we observe that reduction of Q is coupled to its local protonation by the His-38/Asp-139 ion pair and Tyr-87 of subunit Nqo4. Atomistic classical molecular dynamics simulations further suggest that formation of quinol (QH2) triggers rapid dissociation of the anionic Asp-139 toward the membrane domain that couples to conformational changes in a network of conserved charged residues. Site-directed mutagenesis data confirm the importance of Asp-139; upon mutation to asparagine the Q reductase activity is inhibited by 75%. The current results, together with earlier biochemical data, suggest that the proton pumping in complex I is activated by a unique combination of electrostatic and conformational transitions.
Collapse
|