1
|
Dorodnikov M, Knorr KH, Fan L, Kuzyakov Y, Nilsson MB. A novel belowground in-situ gas labeling approach: CH 4 oxidation in deep peat using passive diffusion chambers and 13C excess. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150457. [PMID: 34560456 DOI: 10.1016/j.scitotenv.2021.150457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
In-vitro incubation of environmental samples is a common approach to estimate CH4 oxidation potential. Here we developed and verified an in-situ method utilizing passive diffusion chambers (PDC, silicone tubes) to deliver 13C-labeled CH4 into peat for the determination of the CH4 oxidation potential based on 13C excess of CO2. To target CH4 oxidation under semi-aerobic and anaerobic conditions, we installed 20 PDCs (30 ml volume) below the water table in profiles from 35-cm to 2-m depths of a peatland in north-eastern Sweden in July 2017 using a peat auger. 13C-labeled CH4 was injected into PDCs through tubing twice during 12 days (day 0 and 6) and samples were collected at days 1, 3, 6, 8 and 11. Background (non-labeled) δ13C of CO2 ranged from -7.3 (35 cm) to +5.7‰ (200 cm) with depth. These δ13C values rose to +110 and + 204‰ after the CH4 injection. The estimated CH4-derived C in CO2 was the lowest at the bottom of the profile (0.3 μmol L-1), whereas the maximum was at 100 cm (6.1 μmol L-1) at five days after the second labeling. This corresponded to 1.5-7.2% of the total CH4 pool to be oxidized, depending on depth. This novel approach with belowground in-situ 13C labeling of gases demonstrated the suitability of tracing the transformations of these gases in soil depth by PDCs and for the first time verified the in-situ occurrence of a deep-peat CH4 oxidation.
Collapse
Affiliation(s)
- Maxim Dorodnikov
- Department of Soil Science of Temperate Ecosystems, University of Göttingen, Göttingen 37077, Germany; Department of Biogeochemistry of Agroecosystems, University of Göttingen, Göttingen 37077, Germany; Tyumen State University, 625003 Tyumen, Russia
| | - Klaus-Holger Knorr
- Ecohydrology and Biogeochemistry Group, Institute of Landscape Ecology, University of Münster, Germany
| | - Lichao Fan
- Department of Soil Science of Temperate Ecosystems, University of Göttingen, Göttingen 37077, Germany.
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, University of Göttingen, Göttingen 37077, Germany; Agro-Technological Institute, RUDN University, 117198 Moscow, Russia
| | - Mats B Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
2
|
Chiri E, Greening C, Lappan R, Waite DW, Jirapanjawat T, Dong X, Arndt SK, Nauer PA. Termite mounds contain soil-derived methanotroph communities kinetically adapted to elevated methane concentrations. THE ISME JOURNAL 2020; 14:2715-2731. [PMID: 32709975 PMCID: PMC7784690 DOI: 10.1038/s41396-020-0722-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/07/2020] [Accepted: 07/15/2020] [Indexed: 01/29/2023]
Abstract
Termite mounds have recently been confirmed to mitigate approximately half of termite methane (CH4) emissions, but the aerobic CH4 oxidising bacteria (methanotrophs) responsible for this consumption have not been resolved. Here, we describe the abundance, composition and CH4 oxidation kinetics of the methanotroph communities in the mounds of three distinct termite species sampled from Northern Australia. Results from three independent methods employed show that methanotrophs are rare members of microbial communities in termite mounds, with a comparable abundance but distinct composition to those of adjoining soil samples. Across all mounds, the most abundant and prevalent methane monooxygenase sequences were affiliated with upland soil cluster α (USCα), with sequences homologous to Methylocystis and tropical upland soil cluster (TUSC) also detected. The reconstruction of a metagenome-assembled genome of a mound USCα representative highlighted the metabolic capabilities of this group of methanotrophs. The apparent Michaelis-Menten kinetics of CH4 oxidation in mounds were estimated from in situ reaction rates. Methane affinities of the communities were in the low micromolar range, which is one to two orders of magnitude higher than those of upland soils, but significantly lower than those measured in soils with a large CH4 source such as landfill cover soils. The rate constant of CH4 oxidation, as well as the porosity of the mound material, were significantly positively correlated with the abundance of methanotroph communities of termite mounds. We conclude that termite-derived CH4 emissions have selected for distinct methanotroph communities that are kinetically adapted to elevated CH4 concentrations. However, factors other than substrate concentration appear to limit methanotroph abundance and hence these bacteria only partially mitigate termite-derived CH4 emissions. Our results also highlight the predominant role of USCα in an environment with elevated CH4 concentrations and suggest a higher functional diversity within this group than previously recognised.
Collapse
Affiliation(s)
- Eleonora Chiri
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- School of Ecosystem and Forest Sciences, University of Melbourne, Richmond, VIC, 3121, Australia
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia.
| | - Rachael Lappan
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - David W Waite
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Thanavit Jirapanjawat
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Xiyang Dong
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Stefan K Arndt
- School of Ecosystem and Forest Sciences, University of Melbourne, Richmond, VIC, 3121, Australia.
| | - Philipp A Nauer
- School of Ecosystem and Forest Sciences, University of Melbourne, Richmond, VIC, 3121, Australia
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
3
|
Solute Reactive Tracers for Hydrogeological Applications: A Short Review and Future Prospects. WATER 2020. [DOI: 10.3390/w12030653] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tracer testing is a mature technology used for characterizing aquatic flow systems. To gain more insights from tracer tests a combination of conservative (non-reactive) tracers together with at least one reactive tracer is commonly applied. The reactive tracers can provide unique information about physical, chemical, and/or biological properties of aquatic systems. Although, previous review papers provide a wide coverage on conservative tracer compounds there is no systematic review on reactive tracers yet, despite their extensive development during the past decades. This review paper summarizes the recent development in compounds and compound classes that are exploitable and/or have been used as reactive tracers, including their systematization based on the underlying process types to be investigated. Reactive tracers can generally be categorized into three groups: (1) partitioning tracers, (2) kinetic tracers, and (3) reactive tracers for partitioning. The work also highlights the potential for future research directions. The recent advances from the development of new tailor-made tracers might overcome existing limitations.
Collapse
|
4
|
Sihi D, Davidson EA, Savage KE, Liang D. Simultaneous numerical representation of soil microsite production and consumption of carbon dioxide, methane, and nitrous oxide using probability distribution functions. GLOBAL CHANGE BIOLOGY 2020; 26:200-218. [PMID: 31580516 DOI: 10.1111/gcb.14855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
Production and consumption of nitrous oxide (N2 O), methane (CH4 ), and carbon dioxide (CO2 ) are affected by complex interactions of temperature, moisture, and substrate supply, which are further complicated by spatial heterogeneity of the soil matrix. This microsite heterogeneity is often invoked to explain non-normal distributions of greenhouse gas (GHG) fluxes, also known as hot spots and hot moments. To advance numerical simulation of these belowground processes, we expanded the Dual Arrhenius and Michaelis-Menten model, to apply it consistently for all three GHGs with respect to the biophysical processes of production, consumption, and diffusion within the soil, including the contrasting effects of oxygen (O2 ) as substrate or inhibitor for each process. High-frequency chamber-based measurements of all three GHGs at the Howland Forest (ME, USA) were used to parameterize the model using a multiple constraint approach. The area under a soil chamber is partitioned according to a bivariate log-normal probability distribution function (PDF) of carbon and water content across a range of microsites, which leads to a PDF of heterotrophic respiration and O2 consumption among microsites. Linking microsite consumption of O2 with a diffusion model generates a broad range of microsite concentrations of O2 , which then determines the PDF of microsites that produce or consume CH4 and N2 O, such that a range of microsites occurs with both positive and negative signs for net CH4 and N2 O flux. Results demonstrate that it is numerically feasible for microsites of N2 O reduction and CH4 oxidation to co-occur under a single chamber, thus explaining occasional measurement of simultaneous uptake of both gases. Simultaneous simulation of all three GHGs in a parsimonious modeling framework is challenging, but it increases confidence that agreement between simulations and measurements is based on skillful numerical representation of processes across a heterogeneous environment.
Collapse
Affiliation(s)
- Debjani Sihi
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD, USA
| | - Eric A Davidson
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD, USA
| | | | - Dong Liang
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, MD, USA
| |
Collapse
|
5
|
Houghton KM, Carere CR, Stott MB, McDonald IR. Thermophilic methanotrophs: in hot pursuit. FEMS Microbiol Ecol 2019; 95:5543213. [DOI: 10.1093/femsec/fiz125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/31/2019] [Indexed: 11/13/2022] Open
Abstract
ABSTRACTMethane is a potent greenhouse gas responsible for 20–30% of global climate change effects. The global methane budget is ∼500–600 Tg y−1, with the majority of methane produced via microbial processes, including anthropogenic-mediated sources such as ruminant animals, rice fields, sewage treatment facilities and landfills. It is estimated that microbially mediated methane oxidation (methanotrophy) consumes >50% of global methane flux each year. Methanotrophy research has primarily focused on mesophilic methanotrophic representatives and cooler environments such as freshwater, wetlands or marine habitats from which they are sourced. Nevertheless, geothermal emissions of geological methane, produced from magma and lithosphere degassing micro-seepages, mud volcanoes and other geological sources, contribute an estimated 33–75 Tg y−1 to the global methane budget. The aim of this review is to summarise current literature pertaining to the activity of thermophilic and thermotolerant methanotrophs, both proteobacterial (Methylocaldum, Methylococcus, Methylothermus) and verrucomicrobial (Methylacidiphilum). We assert, on the basis of recently reported molecular and geochemical data, that geothermal ecosystems host hitherto unidentified species capable of methane oxidation at higher temperatures.
Collapse
Affiliation(s)
- Karen M Houghton
- GNS Science, Wairakei Research Centre, 114 Karetoto Rd, Taupō 3384, New Zealand
- School of Science, University of Waikato, Knighton Rd, Hamilton 3240, New Zealand
| | - Carlo R Carere
- GNS Science, Wairakei Research Centre, 114 Karetoto Rd, Taupō 3384, New Zealand
- Department of Chemical and Process Engineering, University of Canterbury, 20 Kirkwood Ave, Upper Riccarton, Christchurch 8041, New Zealand
| | - Matthew B Stott
- GNS Science, Wairakei Research Centre, 114 Karetoto Rd, Taupō 3384, New Zealand
- School of Biological Sciences, University of Canterbury, 20 Kirkwood Ave, Upper Riccarton, Christchurch 8041, New Zealand
| | - Ian R McDonald
- School of Science, University of Waikato, Knighton Rd, Hamilton 3240, New Zealand
| |
Collapse
|
6
|
Abstract
Termites are responsible for ∼1 to 3% of global methane (CH4) emissions. However, estimates of global termite CH4 emissions span two orders of magnitude, suggesting that fundamental knowledge of CH4 turnover processes in termite colonies is missing. In particular, there is little reliable information on the extent and location of microbial CH4 oxidation in termite mounds. Here, we use a one-box model to unify three independent field methods-a gas-tracer test, an inhibitor approach, and a stable-isotope technique-and quantify CH4 production, oxidation, and transport in three North Australian termite species with different feeding habits and mound architectures. We present systematic in situ evidence of widespread CH4 oxidation in termite mounds, with 20 to 80% of termite-produced CH4 being mitigated before emission to the atmosphere. Furthermore, closing the CH4 mass balance in mounds allows us to estimate in situ termite biomass from CH4 turnover, with mean biomass ranging between 22 and 86 g of termites per kilogram of mound for the three species. Field tests with excavated mounds show that the predominant location of CH4 oxidation is either in the mound material or the soil beneath and is related to species-specific mound porosities. Regardless of termite species, however, our data and model suggest that the fraction of oxidized CH4 (f ox) remains well buffered due to links among consumption, oxidation, and transport processes via mound CH4 concentration. The mean f ox of 0.50 ± 0.11 (95% CI) from in situ measurements therefore presents a valid oxidation factor for future global estimates of termite CH4 emissions.
Collapse
|
7
|
Schulte M, Jochmann MA, Gehrke T, Thom A, Ricken T, Denecke M, Schmidt TC. Characterization of methane oxidation in a simulated landfill cover system by comparing molecular and stable isotope mass balances. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 69:281-288. [PMID: 28811145 DOI: 10.1016/j.wasman.2017.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
Biological methane oxidation may be regarded as a method of aftercare treatment for landfills to reduce climate relevant methane emissions. It is of social and economic interest to estimate the behavior of bacterial methane oxidation in aged landfill covers due to an adequate long-term treatment of the gas emissions. Different approaches assessing methane oxidation in laboratory column studies have been investigated by other authors recently. However, this work represents the first study in which three independent approaches, ((i) mass balance, (ii) stable isotope analysis, and (iii) stoichiometric balance of product (CO2) and reactant (CH4) by CO2/CH4-ratio) have been compared for the estimation of the biodegradation by a robust statistical validation on a rectangular, wide soil column. Additionally, an evaluation by thermal imaging as a potential technique for the localization of the active zone of bacterial methane oxidation has been addressed in connection with stable isotope analysis and CO2/CH4-ratios. Although landfills can be considered as open systems the results for stable isotope analysis based on a closed system correlated better with the mass balance than calculations based on an open system. CO2/CH4-ratios were also in good agreement with mass balance. In general, highest values for biodegradation were determined from mass balance, followed by CO2/CH4-ratio, and stable isotope analysis. The investigated topsoil proved to be very suitable as a potential cover layer by removing up to 99% of methane for CH4 loads of 35-65gm-2d-1 that are typical in the aftercare phase of landfills. Finally, data from stable isotope analysis and the CO2/CH4-ratios were used to trace microbial activity within the reactor system. It was shown that methane consumption and temperature increase, as a cause of high microbial activity, correlated very well.
Collapse
Affiliation(s)
- Marcel Schulte
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Maik A Jochmann
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany.
| | - Tobias Gehrke
- Department of Water and Waste Management, University of Duisburg-Essen, Universitätsstr. 15, 45141 Essen, Germany
| | - Andrea Thom
- Chair of Mechanics, Structural Analysis, Dynamics, Dortmund Technical University, August-Schmidt-Str. 6, 44227 Dortmund, Germany
| | - Tim Ricken
- Chair of Mechanics, Structural Analysis, Dynamics, Dortmund Technical University, August-Schmidt-Str. 6, 44227 Dortmund, Germany
| | - Martin Denecke
- Department of Water and Waste Management, University of Duisburg-Essen, Universitätsstr. 15, 45141 Essen, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| |
Collapse
|
8
|
Henneberger R, Chiri E, Bodelier PEL, Frenzel P, Lüke C, Schroth MH. Field-scale tracking of active methane-oxidizing communities in a landfill cover soil reveals spatial and seasonal variability. Environ Microbiol 2014; 17:1721-37. [PMID: 25186436 DOI: 10.1111/1462-2920.12617] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 08/31/2014] [Indexed: 01/11/2023]
Abstract
Aerobic methane-oxidizing bacteria (MOB) in soils mitigate methane (CH4 ) emissions. We assessed spatial and seasonal differences in active MOB communities in a landfill cover soil characterized by highly variable environmental conditions. Field-based measurements of CH4 oxidation activity and stable-isotope probing of polar lipid-derived fatty acids (PLFA-SIP) were complemented by microarray analysis of pmoA genes and transcripts, linking diversity and function at the field scale. In situ CH4 oxidation rates varied between sites and were generally one order of magnitude lower in winter compared with summer. Results from PLFA-SIP and pmoA transcripts were largely congruent, revealing distinct spatial and seasonal clustering. Overall, active MOB communities were highly diverse. Type Ia MOB, specifically Methylomonas and Methylobacter, were key drivers for CH4 oxidation, particularly at a high-activity site. Type II MOB were mainly active at a site showing substantial fluctuations in CH4 loading and soil moisture content. Notably, Upland Soil Cluster-gamma-related pmoA transcripts were also detected, indicating concurrent oxidation of atmospheric CH4 . Spatial separation was less distinct in winter, with Methylobacter and uncultured MOB mediating CH4 oxidation. We propose that high diversity of active MOB communities in this soil is promoted by high variability in environmental conditions, facilitating substantial removal of CH4 generated in the waste body.
Collapse
Affiliation(s)
- Ruth Henneberger
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
9
|
Nauer PA, Chiri E, Schroth MH. Poly-use multi-level sampling system for soil-gas transport analysis in the vadose zone. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:11122-11130. [PMID: 23962070 DOI: 10.1021/es401958u] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Soil-gas turnover is important in the global cycling of greenhouse gases. The analysis of soil-gas profiles provides quantitative information on below-ground turnover and fluxes. We developed a poly-use multi-level sampling system (PMLS) for soil-gas sampling, water-content and temperature measurement with high depth resolution and minimal soil disturbance. It is based on perforated access tubes (ATs) permanently installed in the soil. A multi-level sampler allows extraction of soil-gas samples from 20 locations within 1 m depth, while a capacitance probe is used to measure volumetric water contents. During idle times, the ATs are sealed and can be equipped with temperature sensors. Proof-of-concept experiments in a field lysimeter showed good agreement of soil-gas samples and water-content measurements compared with conventional techniques, while a successfully performed gas-tracer test demonstrated the feasibility of the PMLS to determine soil-gas diffusion coefficients in situ. A field application of the PMLS to quantify oxidation of atmospheric CH4 in a field lysimeter and in the forefield of a receding glacier yielded activity coefficients and soil-atmosphere fluxes well in agreement with previous studies. With numerous options for customization, the presented tool extends the methodological choices to investigate soil-gas transport in the vadose zone.
Collapse
Affiliation(s)
- Philipp A Nauer
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich , Zurich, Switzerland
| | | | | |
Collapse
|
10
|
Henneberger R, Chiri E, Blees J, Niemann H, Lehmann MF, Schroth MH. Field-scale labelling and activity quantification of methane-oxidizing bacteria in a landfill-cover soil. FEMS Microbiol Ecol 2012; 83:392-401. [DOI: 10.1111/j.1574-6941.2012.01477.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 08/15/2012] [Accepted: 08/18/2012] [Indexed: 01/20/2023] Open
Affiliation(s)
- Ruth Henneberger
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich; Zurich; Switzerland
| | - Eleonora Chiri
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich; Zurich; Switzerland
| | - Jan Blees
- Department of Environmental Sciences; University of Basel; Basel; Switzerland
| | - Helge Niemann
- Department of Environmental Sciences; University of Basel; Basel; Switzerland
| | - Moritz F. Lehmann
- Department of Environmental Sciences; University of Basel; Basel; Switzerland
| | - Martin H. Schroth
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich; Zurich; Switzerland
| |
Collapse
|
11
|
Schroth MH, Eugster W, Gómez KE, Gonzalez-Gil G, Niklaus PA, Oester P. Above- and below-ground methane fluxes and methanotrophic activity in a landfill-cover soil. WASTE MANAGEMENT (NEW YORK, N.Y.) 2012; 32:879-889. [PMID: 22143049 DOI: 10.1016/j.wasman.2011.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 10/28/2011] [Accepted: 11/08/2011] [Indexed: 05/31/2023]
Abstract
Landfills are a major anthropogenic source of the greenhouse gas methane (CH(4)). However, much of the CH(4) produced during the anaerobic degradation of organic waste is consumed by methanotrophic microorganisms during passage through the landfill-cover soil. On a section of a closed landfill near Liestal, Switzerland, we performed experiments to compare CH(4) fluxes obtained by different methods at or above the cover-soil surface with below-ground fluxes, and to link methanotrophic activity to estimates of CH(4) ingress (loading) from the waste body at selected locations. Fluxes of CH(4) into or out of the cover soil were quantified by eddy-covariance and static flux-chamber measurements. In addition, CH(4) concentrations at the soil surface were monitored using a field-portable FID detector. Near-surface CH(4) fluxes and CH(4) loading were estimated from soil-gas concentration profiles in conjunction with radon measurements, and gas push-pull tests (GPPTs) were performed to quantify rates of microbial CH(4) oxidation. Eddy-covariance measurements yielded by far the largest and probably most representative estimates of overall CH(4) emissions from the test section (daily mean up to ∼91,500μmolm(-2)d(-1)), whereas flux-chamber measurements and CH(4) concentration profiles indicated that at the majority of locations the cover soil was a net sink for atmospheric CH(4) (uptake up to -380μmolm(-2)d(-1)) during the experimental period. Methane concentration profiles also indicated strong variability in CH(4) loading over short distances in the cover soil, while potential methanotrophic activity derived from GPPTs was high (v(max)∼13mmolL(-1)(soil air)h(-1)) at a location with substantial CH(4) loading. Our results provide a basis to assess spatial and temporal variability of CH(4) dynamics in the complex terrain of a landfill-cover soil.
Collapse
Affiliation(s)
- M H Schroth
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland.
| | | | | | | | | | | |
Collapse
|
12
|
Henneberger R, Lüke C, Mosberger L, Schroth MH. Structure and function of methanotrophic communities in a landfill-cover soil. FEMS Microbiol Ecol 2012; 81:52-65. [PMID: 22172054 DOI: 10.1111/j.1574-6941.2011.01278.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/23/2011] [Accepted: 12/05/2011] [Indexed: 11/30/2022] Open
Abstract
In landfill-cover soils, aerobic methane-oxidizing bacteria (MOB) convert CH(4) to CO(2), mitigating emissions of the greenhouse gas CH(4) to the atmosphere. We investigated overall MOB community structure and assessed spatial differences in MOB diversity, abundance and activity in a Swiss landfill-cover soil. Molecular cloning, terminal restriction-fragment length polymorphism (T-RFLP) and quantitative PCR of pmoA genes were applied to soil collected from 16 locations at three different depths to study MOB community structure, diversity and abundance; MOB activity was measured in the field using gas push-pull tests. The MOB community was highly diverse but dominated by Type Ia MOB, with novel pmoA sequences present. Type II MOB were detected mainly in deeper soil with lower nutrient and higher CH(4) concentrations. Substantial differences in MOB community structure were observed between one high- and one low-activity location. MOB abundance was highly variable across the site [4.0 × 10(4) to 1.1 × 10(7) (g soil dry weight)(-1)]. Potential CH(4) oxidation rates were high [1.8-58.2 mmol CH(4) (L soil air)(-1) day(-1) ] but showed significant lateral variation and were positively correlated with mean CH(4) concentrations (P < 0.01), MOB abundance (P < 0.05) and MOB diversity (weak correlation, P < 0.17). Our findings indicate that Methylosarcina and closely related MOB are key players and that MOB abundance and community structure are driving factors in CH(4) oxidation at this landfill.
Collapse
Affiliation(s)
- Ruth Henneberger
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
13
|
Streese-Kleeberg J, Rachor I, Gebert J, Stegmann R. Use of gas push-pull tests for the measurement of methane oxidation in different landfill cover soils. WASTE MANAGEMENT (NEW YORK, N.Y.) 2011; 31:995-1001. [PMID: 20971626 DOI: 10.1016/j.wasman.2010.08.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/24/2010] [Accepted: 08/31/2010] [Indexed: 05/30/2023]
Abstract
In order to optimise methane oxidation in landfill cover soils, it is important to be able to accurately quantify the amount of methane oxidised. This research considers the gas push-pull test (GPPT) as a possible method to quantify oxidation rates in situ. During a GPPT, a gas mixture consisting of one or more reactive gases (e.g., CH(4), O(2)) and one or more conservative tracers (e.g., argon), is injected into the soil. Following this, the mixture of injected gas and soil air is extracted from the same location and periodically sampled. The kinetic parameters for the biological oxidation taking place in the soil can be derived from the differences in the breakthrough curves. The original method of Urmann et al. (2005) was optimised for application in landfill cover soils and modified to reduce the analytical effort required. Optimised parameters included the flow rate during the injection phase and the duration of the experiment. 50 GPPTs have been conducted at different landfills in Germany during different seasons. Generally, methane oxidation rates ranged between 0 and 150 g m(soil air)(-3)h(-1). At one location, rates up to 440 g m(soil air)(-3)h(-1) were measured under particularly favourable conditions. The method is simple in operation and does not require expensive equipment besides standard laboratory gas chromatographs.
Collapse
Affiliation(s)
- Jan Streese-Kleeberg
- Institute of Environmental Technology and Energy Economics, Bioconversion and Emission Control Group, Hamburg University of Technology - Harburger Schlossstrasse 36, 21079 Hamburg, Germany.
| | | | | | | |
Collapse
|
14
|
Sihota NJ, Singurindy O, Mayer KU. CO2-efflux measurements for evaluating source zone natural attenuation rates in a petroleum hydrocarbon contaminated aquifer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:482-488. [PMID: 21142178 DOI: 10.1021/es1032585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In order to gain regulatory approval for source zone natural attenuation (SZNA) at hydrocarbon-contaminated sites, knowledge regarding the extent of the contamination, its tendency to spread, and its longevity is required. However, reliable quantification of biodegradation rates, an important component of SZNA, remains a challenge. If the rate of CO(2) gas generation associated with contaminant degradation can be determined, it may be used as a proxy for the overall rate of subsurface biodegradation. Here, the CO(2)-efflux at the ground surface is measured using a dynamic closed chamber (DCC) method to evaluate whether this technique can be used to assess the areal extent of the contaminant source zone and the depth-integrated rate of contaminant mineralization. To this end, a field test was conducted at the Bemidji, MN, crude oil spill site. Results indicate that at the Bemidji site the CO(2)-efflux method is able to both delineate the source zone and distinguish between the rates of natural soil respiration and contaminant mineralization. The average CO(2)-efflux associated with contaminant degradation in the source zone is estimated at 2.6 μmol m(-2) s(-1), corresponding to a total petroleum hydrocarbon mineralization rate (expressed as C(10)H(22)) of 3.3 g m(-2) day(-1).
Collapse
Affiliation(s)
- Natasha J Sihota
- University of British Columbia, Department of Earth and Ocean Sciences, Vancouver, BC, Canada
| | | | | |
Collapse
|
15
|
Lee JH, Dolan M, Field J, Istok J. Monitoring bioaugmenation with single-well push-pull tests in sediment systems contaminated with trichloroethene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:1085-1092. [PMID: 20030401 DOI: 10.1021/es9019645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Bioaugmentation to enhance the rate and extent of reductive dechlorination of chlorinated ethenes was investigated in intermediate ( approximately 1 m) scale physical aquifer models (PAMs) designed to simulate the groundwater flow field near an injection well. Push-pull tests were used to quantify the reductive dechlorination of injected trichloroethene (TCE) and trichlorofluoroethene (TCFE) in prepared sediment packs with and without an added dechlorinating culture containing Dehalococcoides spp. Distribution of the added culture throughout the sediment pack was confirmed by microscopic observation. Repeated additions of TCE (100-350 microM) were completely transformed to ethene in 14 days and a subsequent TCFE addition (114 microM) was completely transformed to fluoroethene (FE) in 24 days. Similar transformation rates, product distributions, and time courses for TCE and TCFE transformation were observed when these compounds were added together at similar initial concentrations. In the control PAM (nonbioaugmented), TCE and TCFE were transformed to only cis-DCE and cis-DCFE, respectively, and transformation rates were 6-12 times slower than those in the bioaugmented PAM. The use of TCFE for push-pull tests is shown to be an effective tool for detecting and quantifying the effects of bioaugmentation on TCE transformation.
Collapse
Affiliation(s)
- Jae-Hyuk Lee
- California Department of Transportation, Marysville, CA, USA
| | | | | | | |
Collapse
|
16
|
Gómez KE, Gonzalez-Gil G, Lazzaro A, Schroth MH. Quantifying methane oxidation in a landfill-cover soil by gas push-pull tests. WASTE MANAGEMENT (NEW YORK, N.Y.) 2009; 29:2518-2526. [PMID: 19525106 DOI: 10.1016/j.wasman.2009.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 05/12/2009] [Accepted: 05/14/2009] [Indexed: 05/27/2023]
Abstract
Methane (CH(4)) oxidation by aerobic methanotrophs in landfill-cover soils decreases emissions of landfill-produced CH(4) to the atmosphere. To quantify in situ rates of CH(4) oxidation we performed five gas push-pull tests (GPPTs) at each of two locations in the cover soil of the Lindenstock landfill (Liestal, Switzerland) over a 4 week period. GPPTs consist of the injection of a gas mixture containing CH(4), O(2) and noble gas tracers followed by extraction from the same location. Quantification of first-order rate constants was based upon comparison of breakthrough curves of CH(4) with either Ar or CH(4) itself from a subsequent inactive GPPT containing acetylene as an inhibitor of CH(4) oxidation. The maximum calculated first-order rate constant was 24.8+/-0.8 h(-1) at location 1 and 18.9+/-0.6 h(-1) at location 2. In general, location 2 had higher background CH(4) concentrations in vertical profile samples than location 1. High background CH(4) concentrations in the cover soil during some experiments adversely affected GPPT breakthrough curves and data interpretation. Real-time PCR verified the presence of a large population of methanotrophs at the two GPPT locations and comparison of stable carbon isotope fractionation of CH(4) in an active GPPT and a subsequent inactive GPPT confirmed that microbial activity was responsible for the CH(4) oxidation. The GPPT was shown to be a useful tool to reproducibly estimate in situ rates of CH(4) oxidation in a landfill-cover soil when background CH(4) concentrations were low.
Collapse
Affiliation(s)
- K E Gómez
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland.
| | | | | | | |
Collapse
|
17
|
Huber-Humer M, Röder S, Lechner P. Approaches to assess biocover performance on landfills. WASTE MANAGEMENT (NEW YORK, N.Y.) 2009; 29:2092-2104. [PMID: 19282167 DOI: 10.1016/j.wasman.2009.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 01/29/2009] [Accepted: 02/02/2009] [Indexed: 05/27/2023]
Abstract
Methane emissions from active or closed landfills can be reduced by means of methane oxidation enhanced in properly designed landfill covers, known as "biocovers". Biocovers usually consist of a coarse gas distribution layer to balance gas fluxes placed beneath an appropriate substrate layer. The application of such covers implies use of measurement methods and evaluation approaches, both during the planning stage and throughout the operation of biocovers in order to demonstrate their efficiency. Principally, various techniques, commonly used to monitor landfill surface emissions, can be applied to control biocovers. However, particularly when using engineered materials such as compost substrates, biocovers often feature several altered, specific properties when compared to conventional covers, e.g., respect to gas permeability, physical parameters including water retention capacity and texture, and methane oxidation activity. Therefore, existing measuring methods should be carefully evaluated or even modified prior to application on biocovers. This paper discusses possible strategies to be applied in monitoring biocover functionality. On the basis of experiences derived from investigations and large-scale field trials with compost biocovers in Austria, an assessment approach has been developed. A conceptual draft for monitoring biocover performance and recommendations for practical application are presented.
Collapse
Affiliation(s)
- M Huber-Humer
- BOKU - University of Natural Resources and Applied Life Sciences Vienna, Institute of Waste Management, A-1190 Vienna, Austria.
| | | | | |
Collapse
|
18
|
Measurement of ethylene and methane production in a temperate forest soil using inhibition of acetylene and carbon monoxide. Sci Bull (Beijing) 2008. [DOI: 10.1007/s11434-008-0085-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Urmann K, Schroth MH, Noll M, Gonzalez-Gil G, Zeyer J. Assessment of microbial methane oxidation above a petroleum-contaminated aquifer using a combination of in situ techniques. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2006jg000363] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Karina Urmann
- Institute of Biogeochemistry and Pollutant Dynamics; ETH Zurich; Zurich Switzerland
| | - Martin H. Schroth
- Institute of Biogeochemistry and Pollutant Dynamics; ETH Zurich; Zurich Switzerland
| | - Matthias Noll
- Institute of Biogeochemistry and Pollutant Dynamics; ETH Zurich; Zurich Switzerland
| | | | - Josef Zeyer
- Institute of Biogeochemistry and Pollutant Dynamics; ETH Zurich; Zurich Switzerland
| |
Collapse
|
20
|
Gómez K, Gonzalez-Gil G, Schroth MH, Zeyer J. Transport of methane and noble gases during gas push-pull tests in variably saturated porous media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:2515-2521. [PMID: 18504990 DOI: 10.1021/es072036y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The gas push-pull test (GPPT) is a single-well gas-tracer method to quantify in situ rates of CH4 oxidation in soils. To improve the design and interpretation of GPPT field experiments, gas component transport during GPPTs was examined in abiotic porous media over a range of water saturations (0.0 < or = Sw < or = 0.61). A series of GPPTs using He, Ne, and Ar as tracers for CH4 were performed at two injection/extraction gas flow rates (approximately 200 and approximately 700 mL min(-1)) in a laboratory tank. Extraction phase breakthrough curves and mass recovery curves of the gaseous components became more similar at higher Sw as water in the pore space restricted diffusive gas-phase transport. Diffusional fractionation of the stable carbon isotopes of CH4 during the extraction period of GPPTs also decreased with increasing Sw (particularly when Sw > 0.42). Gas-component transport during GPPTs was numerically simulated using estimated hydraulic parameters for the porous media and no fitting of data for the GPPTs. Numerical simulations accurately predicted the relative decline of the gaseous components in the breakthrough curves, but slightly overestimated recoveries at low Sw (< or = 0.35) and underestimated recoveries at high Sw (> or = 0.49). Comparison of numerical simulations considering and not considering air-water partitioning indicated that removal of gaseous components through dissolution in pore water was not significant during GPPTs, even at Sw = 0.61. These data indicate that Ar is a good tracer for CH4 physical transport over the full range of Sw studied, whereas, at Sw > 0.61, any of the tracers could be used. Greater mass recovery at higher Sw raises the possibility to reduce gas flow rates, thereby extending GPPT times in environments such as tundra soils where low activity due to low temperatures may require longer test times to establish a quantifiable difference between reactant and tracer breakthrough curves.
Collapse
Affiliation(s)
- Katherine Gómez
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland.
| | | | | | | |
Collapse
|
21
|
Mitsakou C, Mitrakos D, Neofytou P, Housiadas C. A Simple Mechanistic Model of Deposition of Water-Soluble Aerosol Particles in the Mouth and Throat. ACTA ACUST UNITED AC 2007; 20:519-29. [DOI: 10.1089/jam.2007.0625] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Christina Mitsakou
- “Demokritos” National Centre for Scientific Research, Agia Paraskevi, Athens, Greece
| | - Dimitris Mitrakos
- “Demokritos” National Centre for Scientific Research, Agia Paraskevi, Athens, Greece
- National Technical University of Athens, Faculty of Mechanical Engineering, Athens, Greece
| | - Panagiotis Neofytou
- “Demokritos” National Centre for Scientific Research, Agia Paraskevi, Athens, Greece
| | - Christos Housiadas
- “Demokritos” National Centre for Scientific Research, Agia Paraskevi, Athens, Greece
| |
Collapse
|
22
|
Urmann K, Norina ES, Schroth MH, Zeyer J. Methanotrophic activity in a diffusive methane/oxygen counter-gradient in an unsaturated porous medium. JOURNAL OF CONTAMINANT HYDROLOGY 2007; 94:126-38. [PMID: 17658656 DOI: 10.1016/j.jconhyd.2007.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 04/11/2007] [Accepted: 05/23/2007] [Indexed: 05/16/2023]
Abstract
Microbial methane (CH4) oxidation is a main control on emissions of this important greenhouse gas from ecosystems such as contaminated aquifers or wetlands under aerobic onditions. Due to a lack of suitable model systems, we designed a laboratory column to study this process in diffusional CH4/O2 counter-gradients in unsaturated porous media. Analysis and simulations of the steady-state CH4, CO2 and O2 gas profiles showed that in a 15-cm-deep active zone, CH4 oxidation followed first-order kinetics with respect to CH4 with a high apparent first-order rate constant of approximately 30 h(-1). Total cell counts obtained using DAPI-staining suggested growth of methanotrophic bacteria, resulting in a high capacity for CH4 oxidation. This together with apparent tolerance to anoxic conditions enabled a rapid response of the methanotrophic community to changing substrate availability, which was induced by changes in O2 concentrations at the top of the column. Microbial oxidation was confirmed by a approximately 7 per thousand enrichment in CH4 stable carbon isotope ratios along profiles. Using a fractionation factor of 1.025+/-0.0005 for microbial oxidation estimated from this shift and the fractionation factor for diffusion, simulations of isotope profiles agreed well with measured data confirming large fractionation associated with microbial oxidation. The designed column should be valuable for investigating response of methanotrophic bacteria to environmental parameters in future studies.
Collapse
Affiliation(s)
- Karina Urmann
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätsstrasse 16, 8092 Zurich, Switzerland.
| | | | | | | |
Collapse
|
23
|
Gonzalez-Gil G, Schroth MH, Zeyer J. Transport of methane and noble gases during gas push-pull tests in dry porous media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:3262-8. [PMID: 17539535 DOI: 10.1021/es0618752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A field method called the gas push-pull test (GPPT) was previously developed and tested for the in situ quantification of aerobic methane (CH4) oxidation by soil microorganisms. The GPPT consists of an injection followed by extraction of reactant and tracer gases into and out of the soil. Quantification of microbial activities from GPPTs requires insight in the transport of reactant and tracer gases under diverse field conditions. We investigated how the transport of differenttracer gases (He, Ne, and Ar) compares to that of the reactant gas CH4 during GPPTs conducted in a well-defined, dry porous media that mimicked an open system. Transport of gaseous components during GPPT is mainly driven by advection resulting from injection and extraction and diffusion driven by concentration gradients. Regardless of the advective component (selected injection/ extraction, flow rates 0.2-0.8 L min(-1)), diffusion was the dominant transport mechanism for gaseous components. This resulted in dissimilar transport of CH4 and the tracers He and Ne. Numerical simulations of GPPTs showed that similar transport of these components is only achieved at very high injection/extraction rates that, in practice, are not feasible since they would imply extremely short duration times of GPPTs to allow for consumption of a measurable amount of reactant(s) by soil microorganisms. However, Ar transport was similar to that of CH4. Hence, Ar may be a good tracer provided that it is injected at high concentrations (e.g., >25% [v/v]) to overcome its background concentration in soil air. Using moderate injection/ extraction rates (e.g., 0.6 L min(-1)) with injected volumes of 10-30 L will result in GPPT durations of 1-3 h, which would suffice to attain a measurable consumption of reactant(s) in soils having relatively high (e.g., first-order rate constants >0.3 h(-1)) microbial activities.
Collapse
Affiliation(s)
- Graciela Gonzalez-Gil
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland.
| | | | | |
Collapse
|
24
|
Schroth MH, Istok JD. Models to determine first-order rate coefficients from single-well push-pull tests. GROUND WATER 2006; 44:275-83. [PMID: 16556209 DOI: 10.1111/j.1745-6584.2005.00107.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Push-pull tests (PPTs) have been successfully employed to quantify various microbially mediated processes in the subsurface. Current models for determining first-order rate coefficients (k) from PPTs assume complete and instantaneous mixing of injected test solution in the portion of the aquifer investigated by the test, i.e., the system is treated like a well-mixed reactor. Here we present two alternative models to estimate k that are based on different mixing assumptions, i.e., plug-flow and variably mixed reactor models. Rate coefficients estimated by the models were compared using a sensitivity analysis and numerical simulations of PPTs. Results indicated that all models yielded reasonably accurate k estimates (errors < 13%), while best accuracy (errors < 1%) was obtained using the variably mixed reactor model. The well-mixed reactor model generally overestimated true (simulation input) k values, whereas true k values were consistently underestimated by the plug-flow reactor model. However, estimates of k obtained with the latter models bracketed true k values in all cases. As the variably mixed reactor model is more difficult to apply, we suggest using the well-mixed and plug-flow reactor models to obtain intervals for k estimates that will encompass true k values with high certainty. In an example application, we used all models to reanalyze a published PPT data set to obtain k estimates for nitrate consumption in a petroleum-contaminated aquifer. Similar results were obtained for all three models (relative differences < 10% between k estimates), indicating that all three models are robust tools for estimating k values from PPT experimental data.
Collapse
|
25
|
Scow KM, Hicks KA. Natural attenuation and enhanced bioremediation of organic contaminants in groundwater. Curr Opin Biotechnol 2005; 16:246-53. [PMID: 15961025 DOI: 10.1016/j.copbio.2005.03.009] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 03/15/2005] [Accepted: 03/24/2005] [Indexed: 11/22/2022]
Abstract
An area of intense scientific and practical interest is the biogeochemical and microbial processes determining the success of natural attenuation, biostimulation and/or bioaugmentation treatments for organic contaminants in groundwater. Recent studies in this area have focused on the reductive dechlorination of chlorinated solvents, the degradation of the fuel additive methyl tert-butyl ether, and the removal of long-term hydrocarbon contamination. These studies have been facilitated by the use of stable isotope analysis to demonstrate in situ bioremediation and push-pull tests, in which isotopes are injected into aquifers and then quickly retrieved and analyzed, to measure in situ activity. Molecular tools such as quantitative PCR, the detection of mRNA expression, and numerous DNA fingerprinting methods have also proved valuable, being employed to identify and sometimes quantify environmentally important organisms or changes in communities. Methods to track bacteria and tools to characterize bacterial attachment properties have also offered insight into bacterial transport in situ.
Collapse
Affiliation(s)
- Kate M Scow
- Land, Air and Water Resources, University of California, 1 Shields Avenue Davis, California 95616, USA
| | | |
Collapse
|