1
|
Chitsaz M, Fennell DE, Rodenburg LA. Sources of polychlorinated biphenyls to Upper Hudson River sediment post-dredging. CHEMOSPHERE 2020; 259:127438. [PMID: 32585460 DOI: 10.1016/j.chemosphere.2020.127438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
The Upper Hudson River (UHR) has been contaminated with polychlorinated biphenyls (PCBs) since the 1940s due to the manufacture of capacitors at two plants near Hudson Falls and Fort Edward, NY by General Electric (GE). Dredging of portions of the UHR was conducted from 2009 to 2015 as a partial remedy for this contamination. In 2017, the New York State Department of Environmental Conservation undertook a comprehensive post-dredging survey of sediment contamination in the UHR. Thousands of samples were collected, and 130 of these were analyzed for PCBs using EPA method 1668A. This data set was analyzed using Positive Matrix Factorization. Six factors were observed. One factor resembled the dominant Aroclors used by GE with little alteration. Three factors represented different pathways and/or extents of microbial dechlorination. One factor resembled a mixture of microbial dechlorination products and a higher molecular weight Aroclor used by GE. The congener patterns of the dechlorination factors suggest that removal of chlorines at the ortho position does occur in the UHR sediment, in agreement with several laboratory studies showing that such ortho dechlorination is possible. This ortho dechlorination could theoretically lead to complete dechlorination of PCBs to biphenyl in UHR sediment. Only one factor was not attributable to GE. It represents inputs of PCBs from tributaries and urban areas and explains 1.7% of the PCB mass in the sediments. The small contribution from the non-GE PCB source suggests that recontamination of the sediment after dredging was minor.
Collapse
Affiliation(s)
- Mahdi Chitsaz
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ, 08901, USA
| | - Donna E Fennell
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ, 08901, USA
| | - Lisa A Rodenburg
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
2
|
Jing R, Kjellerup BV. Predicting the potential for organohalide respiration in wastewater: Comparison of intestinal and wastewater microbiomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135833. [PMID: 31818564 DOI: 10.1016/j.scitotenv.2019.135833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Halogenated compounds such as polychlorinated biphenyl (PCBs) and polybrominated diphenyl ethers (PBDEs) enter wastewater treatment plants (WWTPs) via the sewage system. These organic contaminants partition between the aqueous and the biosolid phase, where the former is discharged as wastewater effluent. Biosolids from a WWTP provide a hydrophobic surface for adsorption and thus the presence and potential growth of organohalide respiring (OHR) bacteria. In this study, the aim was to assess the potential organohalide respiration capacity in wastewater biosolids by investigating actively organohalide respiring bacteria with a focus on organohalide respiration of PCBs and PCE. The results of the biosolids analysis showed increased amounts of products from PCB respiration. Simultaneously, experiments with organohalide respiration of PCE in biosolids samples showed significant decreases PCE concentration after 46 days (28-92%). Subsequently, it was evaluated if the OHR microbial populations in biosolids were similar to those present in intestinal human biofilms by applying a bioinformatic approach. The OHR populations of the communities were analyzed from existing American and Chinese human intestinal microbiomes. The overall groups Proteobacteria, Bacteroides, Actinobacteria, and Firmicutes phyla dominated the microbiomes in all datasets. The OHR groups in biosolids and intestinal biofilms included Dehalogenimonas, Dehalobacter, Desulfitibacter, Desulfovibrio, Sulfurospirillum, Clostridium, and Comamonas. The results of this study showed that several OHR phyla were present in all samples independent of origin. Wastewater and intestinal microbiomes also contained OHR phyla. Overall, the results points towards using bacterial communities in biosolids as indicators of organohalide respiration in wastewater and intestinal microbiomes, which is related to ingestion or halogenated compounds.
Collapse
Affiliation(s)
- Ran Jing
- Department of Civil and Environmental Engineering, University of Maryland, 1173 Glenn L. Martin Hall, 4298 Campus Dr, College Park, MD 20742, USA
| | - Birthe V Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, 1173 Glenn L. Martin Hall, 4298 Campus Dr, College Park, MD 20742, USA.
| |
Collapse
|
3
|
Kaya D, Sowers KR, Demirtepe H, Stiell B, Baker JE, Imamoglu I, Kjellerup BV. Assessment of PCB contamination, the potential for in situ microbial dechlorination and natural attenuation in an urban watershed at the East Coast of the United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:154-165. [PMID: 31129325 DOI: 10.1016/j.scitotenv.2019.05.193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/07/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
Sediment contamination is a major environmental issue in many urban watersheds and coastal areas due to the potential toxic effects of contaminants on biota and human health. Characterizing and delineating areas of sediment contamination and toxicity are important goals of coastal resource management in terms of ecological and economical perspectives. Core and surficial sediment samples were collected from an industrialized urban watershed at the East Coast of the United Stated and analyzed to evaluate the PCB contamination profile and toxicity resulting from dioxin-like PCBs as well as reductive dechlorination potential of indigenous PCB halorespiring bacteria through dechlorination activity assays. To support the experimental results an anaerobic dechlorination model was applied to identify microbial dechlorination pathways. The total PCB concentration in core samples ranged from 3.9 to 225.6 ng/g·dry weight (dw) decreasing with depth compared to 353.2 to 1213.7 ng/g·dw in surficial samples. The results of this study indicated an increase in PCB contamination over the last century as the industrial activity intensified. The toxicity resulting from dioxin-like PCBs was reduced up to 94% in core samples via 21 pathways resulting from the dechlorination model. Dechlorination rates in surficial sediment were between 1.8 and 13.2 · 10-3 mol% PCB116/day, while lower rates occurred in the core sediment samples. Dechlorination was achieved mainly through meta followed by para dechlorination. However, the rarer ortho dechlorination was also observed. Detection of indigenous PCB dechlorinating bacteria in the sediments and reduction of toxicity indicated potential for natural attenuation when point and nonpoint source PCBs in the urban watershed are controlled and PCB loading reduced.
Collapse
Affiliation(s)
- Devrim Kaya
- University of Maryland College Park, Department of Civil and Environmental Engineering, 1146 Glenn L. Martin Hall, College Park, MD 20742, USA
| | - Kevin R Sowers
- University of Maryland Baltimore County, Institute of Marine & Environmental Technology, 701 E. Pratt Street, Baltimore, MD 21202, USA
| | - Hale Demirtepe
- Middle East Technical University, Department of Environmental Engineering, Ankara, Turkey
| | | | - Joel E Baker
- University of Washington Tacoma, The Center for Urban Waters, 1900 Commerce Street, Tacoma, WA 98402-3100, USA
| | - Ipek Imamoglu
- Middle East Technical University, Department of Environmental Engineering, Ankara, Turkey
| | - Birthe V Kjellerup
- University of Maryland College Park, Department of Civil and Environmental Engineering, 1146 Glenn L. Martin Hall, College Park, MD 20742, USA.
| |
Collapse
|
4
|
Jing R, Fusi S, Chan A, Capozzi S, Kjellerup BV. Distribution of polychlorinated biphenyls in effluent from a large municipal wastewater treatment plant: Potential for bioremediation? J Environ Sci (China) 2019; 78:42-52. [PMID: 30665655 DOI: 10.1016/j.jes.2018.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 06/09/2023]
Abstract
This study involved an evaluation of the potential for bioremediation of polychlorinated biphenyls (PCBs) in the effluent from a large municipal wastewater treatment plant. It was focused on the presence of PCBs in two types of effluents: the continuous effluent present during dry weather conditions and the intermittently present effluent that was present during wet weather due to incoming stormwater. The annual discharge of PCBs for both types of effluent was calculated based on a five-year dataset (2011-2015). In addition, the toxicity and bioremediation potential of the PCBs in the effluent were also assessed. It was found that the continuous effluent was responsible for the majority of the discharged PCB into the receiving river (1821 g for five years), while the intermittent effluent contributed 260 g over the five years. The average number of chlorine per biphenyl for the detected PCB congeners showed a 19% difference between the two types of effluent, which indicated a potential for organohalide respiration of PCBs during the continuous treatment. This was further supported by a high level of tri-, tetra- and penta-chlorinated congeners accounting for 75% of the anaerobically respired PCBs. Potential for aerobic degradation and thus biomineralization of PCBs was identified for both effluents. Furthermore, toxicity of 12 dioxin-like PCBs showed that normal operation of the wastewater reduced the toxicity throughout the wastewater treatment plant.
Collapse
Affiliation(s)
- Ran Jing
- University of Maryland at College Park, Department of Civil and Environmental Engineering, 1147 Glenn L. Martin Hall, College Park, MD 20742, USA
| | - Soliver Fusi
- University of Maryland at College Park, Department of Civil and Environmental Engineering, 1147 Glenn L. Martin Hall, College Park, MD 20742, USA
| | - Alisha Chan
- University of Maryland at College Park, Department of Civil and Environmental Engineering, 1147 Glenn L. Martin Hall, College Park, MD 20742, USA
| | - Staci Capozzi
- University of Maryland at College Park, Department of Civil and Environmental Engineering, 1147 Glenn L. Martin Hall, College Park, MD 20742, USA
| | - Birthe V Kjellerup
- University of Maryland at College Park, Department of Civil and Environmental Engineering, 1147 Glenn L. Martin Hall, College Park, MD 20742, USA.
| |
Collapse
|
5
|
Capozzi SL, Bodenreider C, Prieto A, Payne RB, Sowers KR, Kjellerup BV. Colonization and growth of dehalorespiring biofilms on carbonaceous sorptive amendments. BIOFOULING 2019; 35:50-58. [PMID: 30786761 DOI: 10.1080/08927014.2018.1563892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
Removal of polychlorinated biphenyls (PCBs) from contaminated sediments is a priority due to accumulation in the food chain. Recent success with reduction of PCB bioavailability due to adsorption onto activated carbon led to the recognition of in situ treatment as a remediation approach. In this study, reduced bioavailability and subsequent break-down of PCBs in dehalorespiring biofilms was investigated using Dehalobium chlorocoercia DF1. DF1 formed a patchy biofilm ranging in thickness from 3.9 to 6.7 µm (average 4.6 ± 0.87 µm), while the biofilm coverage varied from 5.5% (sand) to 20.2% (activated carbon), indicating a preference for sorptive materials. Quantification of DF1 biofilm bacteria showed 1.2-15.3 × 109 bacteria per gram of material. After 22 days, coal activated carbon, bone biochar, polyoxymethylene, and sand microcosms had dechlorinated 73%, 93%, 100%, and 83%, respectively. These results show that a biofilm-based inoculum for bioaugmentation of PCBs in sediment can be an efficient approach.
Collapse
Affiliation(s)
- Staci L Capozzi
- a Department of Civil and Environmental Engineering , University of Maryland , College Park , MD , USA
- b Geosyntec Consultants , Columbia , MD , USA
| | - Coline Bodenreider
- a Department of Civil and Environmental Engineering , University of Maryland , College Park , MD , USA
| | - Ana Prieto
- c Department of Civil Engineering , Universidad de Chile , Santiago , Chile
| | - Rayford B Payne
- d Department of Marine Biotechnology, Institute of Marine and Environmental Technology , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Kevin R Sowers
- d Department of Marine Biotechnology, Institute of Marine and Environmental Technology , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Birthe Veno Kjellerup
- a Department of Civil and Environmental Engineering , University of Maryland , College Park , MD , USA
| |
Collapse
|
6
|
Xu Y, Gregory KB, VanBriesen JM. Effects of Ferric Oxyhydroxide on Anaerobic Microbial Dechlorination of Polychlorinated Biphenyls in Hudson and Grasse River Sediment Microcosms: Dechlorination Extent, Preferences, Ortho Removal, and Its Enhancement. Front Microbiol 2018; 9:1574. [PMID: 30079053 PMCID: PMC6062599 DOI: 10.3389/fmicb.2018.01574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/25/2018] [Indexed: 02/02/2023] Open
Abstract
Microbial reductive dechlorination of polychlorinated biphenyls (PCBs) has been observed in many PCB-impacted sediments. However, this biodegradation is relatively site-specific and can be affected by PCB compositions and sediment geochemical conditions. To better understand the influence of a common competing electron acceptor, ferric oxyhydroxide (FeOOH), on dechlorination, two sediments (Hudson River and Grasse River sediments), and two PCB mixtures (PCB 5/12, 64/71, 105/114, and 149/153/170 in Mixture 1 and PCB 5/12, 64/71, 82/97/99, 144/170 in Mixture 2) were used for this microcosm study. The addition of 40 mmole/kg FeOOH completely inhibited PCB dechlorination in the Hudson sediment, but only moderately inhibited PCB dechlorination in the Grasse sediment with a 3-week longer lag time. The inhibitory effect in the Grasse sediment was mainly due to the loss of unflanked para dechlorination activity. Fe(II) analysis showed that dechlorination started prior to the consumption of Fe(III), which indicates PCB reduction and Fe(III) reduction were able to take place concurrently. Dehalococcoides 16S rRNA genes increased with the commencement of dechlorination in the Grasse sediment, but not in the completely inhibited Hudson sediment. Rare ortho dechlorination pathways were identified in FeOOH-amended Grasse sediment microcosms, dominated by transformations of PCB 25(24-3-CB) to PCB 13(3-4-CB) and PCB 28(24-4-CB) to PCB 15(4-4-CB). The addition of carbon sources (acetate or a fatty acid mixture with acetate, propionate, and butyrate) after 27 weeks of incubation reinitiated dechlorination in FeOOH-amended Hudson sediment microcosms. Also, the addition of carbon sources greatly enhanced ortho dechlorination in FeOOH-amended Grasse microcosms, indicating the utilization of acetate and/or the fatty acid mixture for ortho dechlorination-related microorganisms. A dechlorination pathway analysis approach revealed that para-flanked meta dechlorination was primarily preferred followed by ortho-/double-flanked meta dechlorination and single-/double-flanked para dechlorination in the Grasse sediment.
Collapse
Affiliation(s)
- Yan Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, China
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Kelvin B. Gregory
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Jeanne M. VanBriesen
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
7
|
Matturro B, Frascadore E, Rossetti S. High-throughput sequencing revealed novel Dehalococcoidia in dechlorinating microbial enrichments from PCB-contaminated marine sediments. FEMS Microbiol Ecol 2018; 93:4443194. [PMID: 29040506 DOI: 10.1093/femsec/fix134] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/10/2017] [Indexed: 01/07/2023] Open
Abstract
In this study, six PCE-to-ethene dechlorinating cultures, fed with a fermentable substrate (lactate) or hydrogen as electron donor, were obtained from PCB and PCE dechlorinating microcosms constructed with PCB-contaminated marine sediments. A novel Chloroflexi member (OTU-DIS1) affiliated to Dehalococcoidales Incertae Sedis, only distantly related to known dechlorinating bacteria, dominated the enrichment cultures (up to 86% of total OTUs). Sulfate-, thiosulfate- and sulfur-reducing bacteria affiliated to genera Desulfobacter, Dethiosulfatibacter and Desulfuromusa were also found to lesser extent. Remarkably, tceA, vcrA and the bifunctional PCE/PCB dehalogenase genes pcbA1, pcbA4 and pcbA5 were found in all dechlorinating microbial enrichments indicating the coexistence of different Dehalococcoides mccartyi strains. The reductive dechlorination rate in each culture remained unvaried over long-term operation (≈ 30 months) and ranged between 0.85 and 0.97 mmol Cl-1 released L-1 d-1 in the lactate-fed microbial enrichments and between 0.66 and 0.85 mmol Cl-1 released L-1 d-1 in the H2-fed microbial enrichments. Overall, this study highlights the presence of yet unexplored biodiversity in PCBs contaminated marine sediments and indicates these environments as promising sources of novel organohalide-respiring bacteria.
Collapse
Affiliation(s)
- Bruna Matturro
- Water Research Institute, IRSA-CNR, Via Salaria km 29,300, 00015 Monterotondo (RM), Italy
| | - Emanuela Frascadore
- Water Research Institute, IRSA-CNR, Via Salaria km 29,300, 00015 Monterotondo (RM), Italy
| | - Simona Rossetti
- Water Research Institute, IRSA-CNR, Via Salaria km 29,300, 00015 Monterotondo (RM), Italy
| |
Collapse
|
8
|
Kaya D, Imamoglu I, Sanin FD, Sowers KR. A comparative evaluation of anaerobic dechlorination of PCB-118 and Aroclor 1254 in sediment microcosms from three PCB-impacted environments. JOURNAL OF HAZARDOUS MATERIALS 2018; 341:328-335. [PMID: 28800567 PMCID: PMC5593791 DOI: 10.1016/j.jhazmat.2017.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 06/07/2023]
Abstract
Aroclor 1254 (A1254) is the most toxic commercial PCB mixture produced, primarily due to its relatively high concentrations of dioxin-like congeners. This study demonstrates a comparative evaluation of dechlorination of A1254 and PCB-118 by indigenous organohalide respiring bacteria enriched from three PCB impacted sites: Grasse River (GR), NY; Fox River (FR), WI; and Baltimore Harbor (BH), MD. PCB-118 dechlorination rates in GR, BH, and FR was 0.0308, 0.015, and 0.0006 Cl-/biphenyl/day, respectively. A1254 dechlorination rates in GR, FR, and BH were 0.0153, 0.0144, and 0.0048 Cl-/biphenyl/day, respectively. A1254 dechlorination was achieved through the removal of doubly-/singly-flanked chlorines in meta and para positions of mostly penta- followed by hexa- and hepta-chlorinated congeners by 88%, 69%, and 51% in GR, and 88%, 87%, and 83% in FR, respectively, while in BH mostly hepta- (70%) followed by hexa-chlorinated congeners (66%) were dechlorinated. A previously developed Anaerobic Dechlorination Model (ADM) quantified a total of 17 toxicity-related dechlorination pathways in all three sediment microcosms. The toxic equivalency of A1254 based on seven dioxin-like congeners decreased by about 53%, 45% and 21%, in GR, FR and BH microcosms, respectively. The dechlorination products were generally tetra- and tri-chlorinated congeners with unflanked chlorines, all of which is susceptible to further degradation by aerobic bacteria. Concerning the toxic congeners, ADM can be useful to initiate further research focusing on the stimulation of the toxicity reducing pathways for risk assessment and effective remediation strategies.
Collapse
Affiliation(s)
- Devrim Kaya
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey; Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA.
| | - Ipek Imamoglu
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey
| | - F Dilek Sanin
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey
| | - Kevin R Sowers
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| |
Collapse
|
9
|
Payne RB, Ghosh U, May HD, Marshall CW, Sowers KR. Mesocosm Studies on the Efficacy of Bioamended Activated Carbon for Treating PCB-Impacted Sediment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10691-10699. [PMID: 28809549 DOI: 10.1021/acs.est.7b01935] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
This report describes results of a bench-scale treatability study to evaluate the efficacy of bioaugmentation with bioamended activated carbon (AC) for in situ treatment of polychlorinated biphenyl (PCB) impacted sediments. To this end, the ability of PCB transforming microorganisms to degrade and reduce the overall concentration of PCBs in sediment was determined in 2 L recirculating mesocosms designed to simulate conditions in Abraham's Creek in Quantico, Virginia. Ten sediment mesocosms were tested for the effects of AC alone, AC with slow release electron donor (cellulose) and different concentrations and combinations of PCB dehalogenating and degrading microorganisms added as bioamendments. A 78% reduction of total PCBs was observed using a cell titer of 5 × 105 Dehalobium chlorocoercia and Paraburkholderia xenovorans cells g-1 sediment with 1.5% AC as a delivery system. Levels of both higher and lower chlorinated congeners were reduced throughout the sediment column indicating that both anaerobic reductive dechlorination and aerobic degradation occurred concurrently. Porewater concentrations of all PCB homologues were reduced 94-97% for bioaugmented treatments. Toxicity associated with coplanar PCBs was reduced by 90% after treatment based on toxic equivalency of dioxin-like congeners. These results suggest that an in situ treatment employing the simultaneous application of anaerobic and aerobic microorganisms on AC could be an effective, environmentally sustainable strategy to reduce PCB levels in contaminated sediment.
Collapse
Affiliation(s)
- Rayford B Payne
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County , Baltimore, Maryland 21202, United States
| | - Upal Ghosh
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County , Baltimore, Maryland 21202, United States
| | - Harold D May
- Marine Biomedicine and Environmental Science Center, Department of Microbiology and Immunology, Medical University of South Carolina , Charleston, South Carolina 29425, United States
| | - Christopher W Marshall
- Biosciences Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Kevin R Sowers
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County , Baltimore, Maryland 21202, United States
| |
Collapse
|
10
|
Karakas F, Imamoglu I. Estimation of rate constants of PCB dechlorination reactions using an anaerobic dehalogenation model. JOURNAL OF HAZARDOUS MATERIALS 2017; 324:554-563. [PMID: 27889179 DOI: 10.1016/j.jhazmat.2016.11.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 10/04/2016] [Accepted: 11/08/2016] [Indexed: 06/06/2023]
Abstract
This study aims to estimate anaerobic dechlorination rate constants (km) of reactions of individual PCB congeners using data from four laboratory microcosms set up using sediment from Baltimore Harbor. Pathway km values are estimated by modifying a previously developed model as Anaerobic Dehalogenation Model (ADM) which can be applied to any halogenated hydrophobic organic (HOC). Improvements such as handling multiple dechlorination activities (DAs) and co-elution of congeners, incorporating constraints, using new goodness of fit evaluation led to an increase in accuracy, speed and flexibility of ADM. DAs published in the literature in terms of chlorine substitutions as well as specific microorganisms and their combinations are used for identification of pathways. The best fit explaining the congener pattern changes was found for pathways of Phylotype DEH10, which has the ability to remove doubly flanked chlorines in meta and para positions, para flanked chlorines in meta position. The range of estimated km values is between 0.0001-0.133d-1, the median of which is found to be comparable to the few available published biologically confirmed rate constants. Compound specific modelling studies such as that performed by ADM can enable monitoring and prediction of concentration changes as well as toxicity during bioremediation.
Collapse
Affiliation(s)
- Filiz Karakas
- Department of Environmental Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | - Ipek Imamoglu
- Department of Environmental Engineering, Middle East Technical University, 06800 Ankara, Turkey.
| |
Collapse
|
11
|
Kaya D, Imamoglu I, Sanin FD, Payne RB, Sowers KR. Potential risk reduction of Aroclor 1254 by microbial dechlorination in anaerobic Grasse River sediment microcosms. JOURNAL OF HAZARDOUS MATERIALS 2017; 321:879-887. [PMID: 27745958 DOI: 10.1016/j.jhazmat.2016.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/20/2016] [Accepted: 10/04/2016] [Indexed: 06/06/2023]
Abstract
Aroclor 1254 was the second most produced commercial PCB mixture and is found in soils, sediments and sewage throughout the globe. This commercial PCB mixture is considered particularly toxic because of the relatively high concentrations of congeners with dioxin-like properties. The potential for risk reduction by microbial reductive dechlorination of Aroclor 1254 (A1254) was investigated in sediment microcosms from Grasse River (GR), Massena, NY. The specificity of A1254 dechlorination was doubly- and singly-flanked chlorines in meta positions and to a less extent doubly-flanked para chlorines of 2345-substituted chlorobiphenyl rings. The average dechlorination rate of A1254 was 0.0153 Cl-/biphenyl/day, and dechlorination rates of single congeners ranged between 0.001 and 0.0074 Cl-/biphenyl/day. Potential risk associated with A1254 based on the toxic equivalency factors of the dioxin-like congeners was reduced by 83%. Additional potential risk associated with bioaccumulation in fish was reduced by 35% based on biota-sediment accumulation factor estimates for all detected congeners. Finally, the dechlorination end-products were tri- and tetra-chlorobiphenyls with unflanked chlorines, all of which are susceptible to further degradation by aerobic microorganisms. The combined results indicate that microbial reductive dechlorination has the potential for reducing risk associated with toxicity and bioaccumulation in fish in sites contaminated with A1254.
Collapse
Affiliation(s)
- Devrim Kaya
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey; Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA; Department of Environmental Engineering, Kocaeli University, Kocaeli, Turkey
| | - Ipek Imamoglu
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey
| | - F Dilek Sanin
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey
| | - Rayford B Payne
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Kevin R Sowers
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
12
|
Xu Y, Gregory KB, VanBriesen JM. Microbial-Catalyzed Reductive Dechlorination of Polychlorinated Biphenyls in Hudson and Grasse River Sediment Microcosms: Determination of Dechlorination Preferences and Identification of Rare Ortho Removal Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:12767-12778. [PMID: 27786438 DOI: 10.1021/acs.est.6b03892] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Biodegradation of polychlorinated biphenyls (PCBs) is an important transformation and detoxification route in the environment. To better understand the influence of PCB congener compositions on dechlorination, sediments from two rivers, Hudson and Grasse, and two PCB mixtures (PCB 5/12, 64/71, 105/114, and 149/153/170 in Mixture 1 and PCB 5/12, 64/71, 82/97/99, and 144/170 in Mixture 2) were used for this microcosm study. The Grasse River sediment microcosms exhibited more extensive dechlorination than the Hudson River sediment microcosms. The extent of dechlorination was predominantly controlled by sediment itself, not by the PCB compositions. Rare ortho dechlorination, targeting mono-ortho PCB congeners was observed in Grasse sediment, indicating a potential for full dechlorination of some PCBs in this sediment. The identified ortho dechlorination pathways were PCB 28 (24-4-CB) to PCB 15 (4-4-CB) and PCB 25 (24-3-CB) to PCB 13(3-4-CB). The relative abundances of Dehalococcoides were much higher in both sediments spiked with PCBs. An apparent increase of Dehalococcoides 16S rRNA genes coincided with the commencement of dechlorination. The dechlorination preferences were identified using a modified data analysis approach focusing on chlorine neighboring conditions. In both sediments, the overall dechlorination preferred meta > para > ortho. Specially, ortho-/double-flanked meta-chlorines were primarily targeted followed by single-/double-flanked para-chlorines.
Collapse
Affiliation(s)
- Yan Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University , Nanjing, Jiangsu China , 210096
- Department of Civil and Environmental Engineering, Carnegie Mellon University , 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| | - Kelvin B Gregory
- Department of Civil and Environmental Engineering, Carnegie Mellon University , 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| | - Jeanne M VanBriesen
- Department of Civil and Environmental Engineering, Carnegie Mellon University , 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| |
Collapse
|
13
|
Matturro B, Ubaldi C, Grenni P, Caracciolo AB, Rossetti S. Polychlorinated biphenyl (PCB) anaerobic degradation in marine sediments: microcosm study and role of autochthonous microbial communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:12613-12623. [PMID: 26162439 DOI: 10.1007/s11356-015-4960-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/24/2015] [Indexed: 06/04/2023]
Abstract
Polychlorobiphenyl (PCB) biodegradation was followed for 1 year in microcosms containing marine sediments collected from Mar Piccolo (Taranto, Italy) chronically contaminated by this class of hazardous compounds. The microcosms were performed under strictly anaerobic conditions with or without the addition of Dehalococcoides mccartyi, the main microorganism known to degrade PCBs through the anaerobic reductive dechlorination process. Thirty PCB congeners were monitored during the experiments revealing that the biodegradation occurred in all microcosms with a decrease in hepta-, hexa-, and penta-chlorobiphenyls (CBs) and a parallel increase in low chlorinated PCBs (tri-CBs and tetra-CBs). The concentrations of the most representative congeners detected in the original sediment, such as 245-245-CB and 2345-245-CB, and of the mixture 2356-34-CB+234-245-CB, decreased by 32.5, 23.8, and 46.7 %, respectively, after only 70 days of anaerobic incubation without any bioaugmentation treatment. Additionally, the structure and population dynamics of the microbial key players involved in the biodegradative process and of the entire mixed microbial community were accurately defined by Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) in both the original sediment and during the operation of the microcosm. The reductive dehalogenase genes of D. mccartyi, specifically involved in PCB dechlorination, were also quantified using real-time PCR (qPCR). Our results demonstrated that the autochthonous microbial community living in the marine sediment, including D. mccartyi (6.32E+06 16S rRNA gene copy numbers g(-1) sediment), was able to efficiently sustain the biodegradation of PCBs when controlled anaerobic conditions were imposed.
Collapse
Affiliation(s)
- Bruna Matturro
- Water Research Institute, IRSA-CNR, Via Salaria km 29, 300, Monterotondo, RM, Italy
| | - Carla Ubaldi
- ENEA, Technical Unit for Environmental Characterization, Prevention and Remediation, UTPRA, C.R Casaccia, Rome, Italy
| | - Paola Grenni
- Water Research Institute, IRSA-CNR, Via Salaria km 29, 300, Monterotondo, RM, Italy
| | | | - Simona Rossetti
- Water Research Institute, IRSA-CNR, Via Salaria km 29, 300, Monterotondo, RM, Italy.
| |
Collapse
|
14
|
Microbial dehalogenation of organohalides in marine and estuarine environments. Curr Opin Biotechnol 2015; 33:287-95. [DOI: 10.1016/j.copbio.2015.03.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 03/19/2015] [Accepted: 03/23/2015] [Indexed: 11/22/2022]
|
15
|
Kjellerup BV, Naff C, Edwards SJ, Ghosh U, Baker JE, Sowers KR. Effects of activated carbon on reductive dechlorination of PCBs by organohalide respiring bacteria indigenous to sediments. WATER RESEARCH 2014; 52:1-10. [PMID: 24440760 DOI: 10.1016/j.watres.2013.12.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 12/11/2013] [Accepted: 12/23/2013] [Indexed: 06/03/2023]
Abstract
Polychlorinated biphenyls (PCBs) have accumulated in aquatic sediments due to their inherent chemical stability and their presence poses a risk due to their potential toxicity in humans and animals. Granular activated carbon (GAC) has been applied to PCB contaminated sediment sites to reduce the aqueous concentration by sequestration thus reducing the PCB exposure and toxicity to both benthic and aquatic organisms. However, it is not known how the reduction of PCB bioavailability by adsorption to GAC affects bacterial transformation of PCBs by indigenous organohalide respiring bacteria. In this study, the impact of GAC on anaerobic dechlorination by putative organohalide respiring bacteria indigenous to sediment from Baltimore Harbor was examined. It was shown that the average Cl/biphenyl after dehalogenation of Aroclor 1260 was similar between treatments with and without GAC amendment. However, GAC caused a substantial shift in the congener distribution whereby a smaller fraction of highly chlorinated congeners was more extensively dechlorinated to mono- through tri-chlorinated congeners compared to the formation of tri- through penta-chlorinated congeners in unamended sediment. The results combined with comparative sequence analysis of 16S rRNA gene sequences suggest that GAC caused a community shift to putative organohalide respiring phylotypes that coincided with more extensive dechlorination of ortho and unflanked chlorines. This shift in activity by GAC shown here for the first time has the potential to promote greater degradation in situ by promoting accumulation of less chlorinated congeners that are generally more susceptible to complete mineralization by aerobic PCB degrading bacteria.
Collapse
Affiliation(s)
- B V Kjellerup
- Goucher College, Department of Biological Sciences, 1021 Dulaney Valley Road, Baltimore, MD 21204, USA.
| | - C Naff
- Institute of Marine and Environmental Technology, Columbus Center, University of Maryland, 701 E. Pratt Street, Baltimore, MD 21202, USA
| | - S J Edwards
- Goucher College, Department of Biological Sciences, 1021 Dulaney Valley Road, Baltimore, MD 21204, USA
| | - U Ghosh
- University of Maryland Baltimore County, Department of Civil and Environmental Engineering, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - J E Baker
- Center for Urban Waters, University of Washington-Tacoma, 326 East D Street, Tacoma, WA 98421, USA
| | - K R Sowers
- Institute of Marine and Environmental Technology, Columbus Center, University of Maryland, 701 E. Pratt Street, Baltimore, MD 21202, USA
| |
Collapse
|
16
|
Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Appl Microbiol Biotechnol 2013; 97:9909-21. [PMID: 24150788 DOI: 10.1007/s00253-013-5216-z] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/23/2013] [Accepted: 08/24/2013] [Indexed: 12/25/2022]
Abstract
In this review, the strategies being employed to exploit the inherent durability of biofilms and the diverse nutrient cycling of the microbiome for bioremediation are explored. Focus will be given to halogenated compounds, hydrocarbons, pharmaceuticals, and personal care products as well as some heavy metals and toxic minerals, as these groups represent the majority of priority pollutants. For decades, industrial processes have been creating waste all around the world, resulting in contaminated sediments and subsequent, far-reaching dispersal into aquatic environments. As persistent pollutants have accumulated and are still being created and disposed, the incentive to find suitable and more efficient solutions to effectively detoxify the environment is even greater. Indigenous bacterial communities are capable of metabolizing persistent organic pollutants and oxidizing heavy metal contaminants. However, their low abundance and activity in the environment, difficulties accessing the contaminant or nutrient limitations in the environment all prevent the processes from occurring as quickly as desired and thus reaching the proposed clean-up goals. Biofilm communities provide among other things a beneficial structure, possibility for nutrient, and genetic exchange to participating microorganisms as well as protection from the surrounding environment concerning for instance predation and chemical and shear stresses. Biofilms can also be utilized in other ways as biomarkers for monitoring of stream water quality from for instance mine drainage. The durability and structure of biofilms together with the diverse array of structural and metabolic characteristics make these communities attractive actors in biofilm-mediated remediation solutions and ecosystem monitoring.
Collapse
|
17
|
Use of a glass bead-containing liquid medium for efficient production of a soil-free culture with polychlorinated biphenyl-dechlorination activity. World J Microbiol Biotechnol 2013; 29:1461-71. [DOI: 10.1007/s11274-013-1310-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/07/2013] [Indexed: 11/26/2022]
|
18
|
Fagervold SK, Watts JEM, May HD, Sowers KR. Effects of bioaugmentation on indigenous PCB dechlorinating activity in sediment microcosms. WATER RESEARCH 2011; 45:3899-3907. [PMID: 21601905 DOI: 10.1016/j.watres.2011.04.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/27/2011] [Accepted: 04/27/2011] [Indexed: 05/30/2023]
Abstract
Bioaugmentation is an attractive mechanism for reducing recalcitrant pollutants in sediments, especially if this technology could be applied in situ. To examine the potential effectiveness of a bioaugmentation strategy for PCB contamination, PCB dehalorespiring populations were inoculated into Baltimore Harbor sediment microcosms. A culture containing the two most predominant indigenous PCB dehalorespiring microorganisms and a culture containing a strain with a rare ortho dechlorination activity and a non-indigenous strain that attacks double-flanked chlorines, were inoculated into sediment microcosms amended with 2,2',3,5,5',6-hexachlorobiphenyl (PCB 151) and Aroclor 1260. Although we observed a similar reduction in the concentration of PCB 151 in all microcosms at day 300, a reduced lag time for dechlorination activity was observed only in the bioaugmented microcosms and the pattern of dechlorination was altered depending on the initial combination of microorganisms added. Dechlorination of Aroclor 1260 was most extensive when dehalorespiring microorganisms were added to sediment. Overall numbers of dehalorespiring microorganisms in both bioaugmented and non-bioaugmented microcosms increased 100- and 1000-fold with PCB 151 and Aroclor 1260, respectively, and they were sustained for the full 300 days of the experiments. The ability of bioaugmentation to redirect dechlorination reactions in the sediment microcosms indicates that the inoculated PCB dehalorespiring microorganisms effectively competed with the indigenous microbial populations and cooperatively enhanced or altered the specific pathways of PCB dechlorination. These observations indicate that bioaugmentation with PCB dehalorespiring microorganisms is a potentially tractable approach for in situ treatment of PCB impacted sites.
Collapse
Affiliation(s)
- Sonja K Fagervold
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, 701 E. Pratt St., Baltimore, MD 21202, USA
| | | | | | | |
Collapse
|
19
|
Hölscher T, Lisec J, Baani M, Duan TH, Adrian L. Bacterial cultures preferentially removing singly flanked chlorine substituents from chlorobenzenes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:8936-8942. [PMID: 21043517 DOI: 10.1021/es101971m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The wide though not ubiquitous distribution of chlorobenzene-dechlorinating bacteria in anaerobic sludge from German sewage plants is demonstrated. The model substrates 1,2,3- and 1,2,4-trichlorobenzene (TCB) were dechlorinated to dichlorobenzenes (DCBs) and monochlorobenzene (MCB) via distinct pathways. For easy visualization and differentiation of the pathways, a novel plotting method was developed. While many of the cultures showed a dechlorination pattern similar to that previously found for Dehalococcoides species, removing doubly flanked rather than singly flanked chlorine substituents from TCBs, some cultures formed 1,2-DCB from 1,2,3-TCB and/or 1,3-DCB from 1,2,4-TCB. Stable cultures preferentially catalyzing the removal of singly flanked chlorines were obtained by repeated subcultivation in sediment-free synthetic medium. This dechlorination pattern is potentially of great benefit for remediation as the accumulation of persistent intermediates such as 1,3,5-TCB from highly chlorinated compounds can be avoided. In addition, the cultures dechlorinated 1,3,5-TCB, pentachlorobenzene (PeCB), and hexachlorobenzene (HCB). Nested PCR demonstrated the presence of low numbers of Dehalococcoides species. However, the observed insensitivity of the dechlorinating bacteria in our cultures to oxygen and sensitivity to vancomycin is not in accordance with the reported properties of Dehalococcoides species, suggesting that other bacteria than Dehalococcoides catalyzed the removal of singly flanked chlorines from TCB.
Collapse
Affiliation(s)
- Tina Hölscher
- Department Isotopenbiogeochemie, Helmholtzzentrum für Umweltforschung-UFZ, Permoserstrasse 15, D-04318 Leipzig, Germany
| | | | | | | | | |
Collapse
|
20
|
Hughes AS, Vanbriesen JM, Small MJ. Identification of structural properties associated with polychlorinated biphenyl dechlorination processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:2842-2848. [PMID: 20025283 DOI: 10.1021/es902109w] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Polychlorinated biphenyl molecules can be biologically dechlorinated through sequential losses of a chlorine atom, following 840 pathways from higher chlorinated to lesser-chlorinated congeners and biphenyl. Previously, eight recurring sets of pathways, herein referred to as explicitly reported pathways in dechlorination processes, have been identified through qualitative analysis of shifts in congener masses in field and laboratory studies. Dechlorination process generalizations were qualitatively extrapolated based on limited attributes of the congeners dechlorinated in the explicitly reported pathways. They are valuable because they allow comparisons of dechlorination patterns across laboratory experiments and contaminated sites. However, due to analytical limitations and a paucity of studies, the explicitly reported pathways in dechlorination processes likely do not represent all of the pathways that could occur at contaminated sites. This work presents an alternative, quantitative, and replicable approach to the identification of candidate pathways for inclusion in dechlorination process generalizations through use of classification trees. This method considers 46 structural and property attributes of dechlorination pathways. Trees fit for pathway inclusion in each of the eight dechlorination processes with alternative assumptions are compared in terms of critical congener attributes. The classification trees correctly classify explicitly reported pathways into dechlorination processes at rates of 0.90 to 0.99. While many of the attributes used in the original generalizations were also selected as predictors by the classification trees, the extra attributes allow identification of additional dechlorination pathways that can be considered as candidates for monitoring in future studies.
Collapse
Affiliation(s)
- Amanda S Hughes
- Department of Engineering & Public Policy, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
21
|
Bedard DL. A case study for microbial biodegradation: anaerobic bacterial reductive dechlorination of polychlorinated biphenyls-from sediment to defined medium. Annu Rev Microbiol 2008; 62:253-70. [PMID: 18729735 DOI: 10.1146/annurev.micro.62.081307.162733] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The history of anaerobic microbial polychlorinated biphenyl (PCB) dechlorination is traced over 20 years using a case study of PCB dechlorination in the Housatonic River (Massachusetts) as an example. The history progresses from the characterization of the PCBs in the sediment, to cultivation in sediment microcosms, to the identification of four distinct types of PCB dechlorination, to a successful field test, to the cultivation in defined medium of the organisms responsible for extensive dechlorination of Aroclor 1260, and finally to the identification of a Dehalococcoides population that links its growth to the dechlorination of Aroclor 1260. Other PCB dechlorinators have also been identified. Two bacterial strains, o-17 and DF-1, that link their growth to the dechlorination of several PCB congeners belong to a novel clade of putative dechlorinating bacteria within the phylum Chloroflexi. Dehalococcoides ethenogenes strain 195 also dechlorinates several PCB congeners when grown on chlorinated ethenes. Evidence is mounting that Dehalococcoides and other dechlorinating Chloroflexi may play a significant role in the dechlorination of commercial PCBs in situ.
Collapse
Affiliation(s)
- Donna L Bedard
- Department of Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, USA.
| |
Collapse
|
22
|
Field JA, Sierra-Alvarez R. Microbial transformation and degradation of polychlorinated biphenyls. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2008; 155:1-12. [PMID: 18035460 DOI: 10.1016/j.envpol.2007.10.016] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 10/14/2007] [Indexed: 05/25/2023]
Abstract
This paper reviews the potential of microorganisms to transform polychlorinated biphenyls (PCBs). In anaerobic environments, higher chlorinated biphenyls can undergo reductive dehalogenation. Meta- and para-chlorines in PCB congeners are more susceptible to dechlorination than ortho-chlorines. Anaerobes catalyzing PCB dechlorination have not been isolated in pure culture but there is strong evidence from enrichment cultures that some Dehalococcoides spp. and other microorganisms within the Chloroflexi phylum can grow by linking the oxidation of H(2) to the reductive dechlorination of PCBs. Lower chlorinated biphenyls can be co-metabolized aerobically. Some aerobes can also grow by utilizing PCB congeners containing only one or two chlorines as sole carbon/energy source. An example is the growth of Burkholderia cepacia by transformation of 4-chlorobiphenyl to chlorobenzoates. The latter compounds are susceptible to aerobic mineralization. Higher chlorinated biphenyls therefore are potentially fully biodegradable in a sequence of reductive dechlorination followed by aerobic mineralization of the lower chlorinated products.
Collapse
Affiliation(s)
- Jim A Field
- Department of Chemical and Environmental Engineering, University of Arizona, PO Box 210011, Tucson, AZ 85721, USA.
| | | |
Collapse
|
23
|
Kjellerup BV, Sun X, Ghosh U, May HD, Sowers KR. Site-specific microbial communities in three PCB-impacted sediments are associated with different in situ dechlorinating activities. Environ Microbiol 2008; 10:1296-309. [DOI: 10.1111/j.1462-2920.2007.01543.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Hiraishi A. Biodiversity of Dehalorespiring Bacteria with Special Emphasis on Polychlorinated Biphenyl/Dioxin Dechlorinators. Microbes Environ 2008; 23:1-12. [DOI: 10.1264/jsme2.23.1] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Akira Hiraishi
- Department of Ecological Engineering, Toyohashi University of Technology
| |
Collapse
|
25
|
Fagervold SK, May HD, Sowers KR. Microbial reductive dechlorination of aroclor 1260 in Baltimore harbor sediment microcosms is catalyzed by three phylotypes within the phylum Chloroflexi. Appl Environ Microbiol 2007; 73:3009-18. [PMID: 17351091 PMCID: PMC1892865 DOI: 10.1128/aem.02958-06] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The specific dechlorination pathways for Aroclor 1260 were determined in Baltimore Harbor sediment microcosms developed with the 11 most predominant congeners from this commercial mixture and their resulting dechlorination intermediates. Most of the polychlorinated biphenyl (PCB) congeners were dechlorinated in the meta position, and the major products were tetrachlorobiphenyls with unflanked chlorines. Using PCR primers specific for the 16S rRNA genes of known PCB-dehalogenating bacteria, we detected three phylotypes within the microbial community that had the capability to dechlorinate PCB congeners present in Aroclor 1260 and identified their selective activities. Phylotype DEH10, which has a high level of sequence identity to Dehalococcoides spp., removed the double-flanked chlorine in 234-substituted congeners and exhibited a preference for para-flanked meta-chlorines when no double-flanked chlorines were available. Phylotype SF1 had similarity to the o-17/DF-1 group of PCB-dechlorinating bacteria. Phylotype SF1 dechlorinated all of the 2345-substituted congeners, mostly in the double-flanked meta position and 2356-, 236-, and 235-substituted congeners in the ortho-flanked meta position, with a few exceptions. A phylotype with 100% sequence identity to PCB-dechlorinating bacterium o-17 was responsible for an ortho and a double-flanked meta dechlorination reaction. Most of the dechlorination pathways supported the growth of all three phylotypes based on competitive PCR enumeration assays, which indicates that PCB-impacted environments have the potential to sustain populations of these PCB-dechlorinating microorganisms. The results demonstrate that the variation in dechlorination patterns of congener mixtures typically observed at different PCB impacted sites can potentially be mediated by the synergistic activities of relatively few dechlorinating species.
Collapse
Affiliation(s)
- Sonja K Fagervold
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, 701 E. Pratt St., Baltimore, MD 21202, USA
| | | | | |
Collapse
|
26
|
Bedard DL, Ritalahti KM, Löffler FE. The Dehalococcoides population in sediment-free mixed cultures metabolically dechlorinates the commercial polychlorinated biphenyl mixture aroclor 1260. Appl Environ Microbiol 2007; 73:2513-21. [PMID: 17308182 PMCID: PMC1855590 DOI: 10.1128/aem.02909-06] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial reductive dechlorination of commercial polychlorinated biphenyl (PCB) mixtures (e.g., Aroclors) in aquatic sediments is crucial to achieve detoxification. Despite extensive efforts over nearly two decades, the microorganisms responsible for Aroclor dechlorination remained elusive. Here we demonstrate that anaerobic bacteria of the Dehalococcoides group derived from sediment of the Housatonic River (Lenox, MA) simultaneously dechlorinate 64 PCB congeners carrying four to nine chlorines in Aroclor 1260 in the sediment-free JN cultures. Quantitative real-time PCR showed that the Dehalococcoides cell titer in JN cultures amended with acetate and hydrogen increased from 7.07 x 10(6) +/- 0.42 x 10(6) to 1.67 x 10(8) +/- 0.04 x 10(8) cells/ml, concomitant with a 64.2% decrease of the PCBs with six or more chlorines in Aroclor 1260. No Dehalococcoides growth occurred in parallel cultures without PCBs. Aroclor 1260 dechlorination supported the growth of 9.25 x 10(8) +/- 0.04 x 10(8) Dehalococcoides cells per mumol of chlorine removed. 16S rRNA gene-targeted PCR analysis of known dechlorinators (i.e., Desulfitobacterium, Dehalobacter, Desulfuromonas, Sulfurospirillum, Anaeromyxobacter, Geobacter, and o-17/DF-1-type Chloroflexi organisms) ruled out any involvement of these bacterial groups in the dechlorination. Our results suggest that the Dehalococcoides population present in the JN cultures also catalyzes in situ dechlorination of Aroclor 1260 in the Housatonic River. The identification of Dehalococcoides organisms as catalysts of extensive Aroclor 1260 dechlorination and our ability to propagate the JN cultures under defined conditions offer opportunities to study the organisms' ecophysiology, elucidate nutritional requirements, identify reductive dehalogenase genes involved in PCB dechlorination, and design molecular tools required for bioremediation applications.
Collapse
MESH Headings
- Aroclors/metabolism
- Base Sequence
- Chlorine/metabolism
- Chloroflexi/classification
- Chloroflexi/isolation & purification
- Chloroflexi/metabolism
- Colony Count, Microbial
- DNA, Bacterial/biosynthesis
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Geologic Sediments/microbiology
- Massachusetts
- Molecular Sequence Data
- Polychlorinated Biphenyls/metabolism
- Polymerase Chain Reaction/methods
- RNA, Ribosomal, 16S/genetics
- Rivers/microbiology
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Water Microbiology
Collapse
Affiliation(s)
- Donna L Bedard
- Department of Biology, SC 1W14, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | | | | |
Collapse
|