1
|
Liu Y, Du M, Shu S, Wei J, Zhu K, Wang G. Bacterial surface properties and transport behavior actively respond to an extracellular polymeric substance gradient in saturated porous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173889. [PMID: 38876335 DOI: 10.1016/j.scitotenv.2024.173889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/16/2024]
Abstract
The transport and retention of bacteria in porous media, such as aquifer, are governed by the solid-liquid interface characteristics and bacterial mobility. The secretion of extracellular polymeric substance (EPS) by bacteria modifies their surface property, and thereby has effects on their adhesion to surface. The role of EPS in bacterial mobility within saturated quartz sand media is uncertain, as both promoting and inhibitory effects have been reported, and underlying mechanisms remain unclear. In this study, the effects of EPS on bacterial transport behavior and possible underlying mechanism were investigated at 4 concentrations (0 mg L-1, 50 mg L-1, 200 mg L-1 and 1000 mg L-1) using laboratory simulation experiments in conjunction with Extend Derjaguin-Landau-Verweu-Overbeek (XDLVO) modeling. The results showed that EPS facilitated bacterial mobility at all tested concentrations. It could be partially explained by the increased energy barrier between bacterial cells and quartz sand surface in the presence of EPS. The XDLVO sphere-plate model predicted that EPS induced a higher electrostatic double layer (EDL) repulsive force, Lewis acid-base (AB) and steric stabilization (ST), as well as a lower Lifshitz-van der Waals (LW) attractive force. However, at the highest EPS concentration (1000 mg L-1), the promotion of EPS on bacterial mobility weakened as a result of lower repulsive interactions between cells, which was supported by observed enhanced bacterial aggregation. Consequently, the increased aggregation led to greater bio-colloidal straining and ripening in the sand column, weakening the positive impact of EPS on bacterial transport. These findings suggested that EPS exhibited concentration-dependent effects on bacterial surface properties and transport behavior and revealed non-intuitive dual effects of EPS on those processes.
Collapse
Affiliation(s)
- Ying Liu
- Department of Soil and Water Sciences, National Black Soil & Agriculture Research, China Agricultural University, Beijing 100193, China
| | - Mengya Du
- Department of Soil and Water Sciences, National Black Soil & Agriculture Research, China Agricultural University, Beijing 100193, China
| | - Shangyi Shu
- Department of Soil and Water Sciences, National Black Soil & Agriculture Research, China Agricultural University, Beijing 100193, China
| | - Jian Wei
- Department of Soil and Water Sciences, National Black Soil & Agriculture Research, China Agricultural University, Beijing 100193, China
| | - Kun Zhu
- Department of Soil and Water Sciences, National Black Soil & Agriculture Research, China Agricultural University, Beijing 100193, China
| | - Gang Wang
- Department of Soil and Water Sciences, National Black Soil & Agriculture Research, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Zhao M, Yang L, Chen F, Zhuang J. Bacterial transport mediated by micro-nanobubbles in porous media. WATER RESEARCH 2024; 258:121771. [PMID: 38768521 DOI: 10.1016/j.watres.2024.121771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/22/2024]
Abstract
Determining the role of micro-nanobubbles (MNBs) in controlling the risk posed by pathogens to soil and groundwater during reclaimed water irrigation requires clarification of the mechanism of how MNBs block pathogenic bacteria. In this study, real-time bioluminescence imaging was used to investigate the effects of MNBs on the transport and spatiotemporal distribution of bioluminescent Escherichia coli 652T7 strain in porous media. The presence of MNBs significantly increased the retention of bacteria in the porous media, decreasing the maximum relative effluent concentration (C/C0) by 78 % from 0.97 (without MNBs) to 0.21 (with MNBs). The results suggested that MNBs provided additional sites at the air-water interface (AWI) for bacterial attachment and acted as physical obstacles to reduce bacterial passage. These effects varied with environmental conditions such as solution ionic strength and pore water velocity. The results indicated that MNBs enhanced electrostatic attachment of bacteria at the AWI and their mechanical straining in pores. This study suggests that adding MNBs in pathogen-containing water is an effective measure for increasing filtration efficiency and reducing the risk of pathogenic contamination during agricultural irrigation.
Collapse
Affiliation(s)
- Mingyang Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Liqiong Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China.
| | - Fengxian Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Jie Zhuang
- Department of Biosystems Engineering and Soil Science, Institute for a Secure and Sustainable Environment, The University of Tennessee, Knoxville, TN 37996, United States
| |
Collapse
|
3
|
Yu S, Kim S, Kim J, Kim JW, Kim SY, Yeom B, Kim H, Choi WII, Sung D. Highly Water-Dispersed and Stable Deinoxanthin Nanocapsule for Effective Antioxidant and Anti-Inflammatory Activity. Int J Nanomedicine 2023; 18:4555-4565. [PMID: 37581101 PMCID: PMC10423574 DOI: 10.2147/ijn.s401808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/05/2023] [Indexed: 08/16/2023] Open
Abstract
Introduction Deinoxanthin (DX), a carotenoid, has excellent antioxidant and anti-inflammatory properties. However, owing to its lipophilicity, it is unfavorably dispersed in water and has low stability, limiting its application in cosmetics, food, and pharmaceuticals. Therefore, it is necessary to study nanoparticles to increase the loading capacity and stability of DX. Methods In this study, DX-loaded nanocapsules (DX@NCs) were prepared by nanoprecipitation by loading DX into nanocapsules. The size, polydispersity index, surface charge, and morphology of DX@NCs were confirmed through dynamic light scattering and transmission electron microscopy. The loading content and loading efficiency of DX in DX@NCs were analyzed using high-performance liquid chromatography. The antioxidant activity of DX@NCs was evaluated by DPPH assay and in vitro ROS. The biocompatibility of DX@NCs was evaluated using an in vitro MTT assay. In vitro NO analysis was performed to determine the effective anti-inflammatory efficacy of DX@NCs. Results DX@NCs exhibited increased stability and antioxidant efficacy owing to the improved water solubility of DX. The in situ and in vitro antioxidant activity of DX@NCs was higher than that of unloaded DX. In addition, it showed a strong anti-inflammatory effect by regulating the NO level in an in vitro cell model. Conclusion This study presents a nanocarrier to improve the water-soluble dispersion and stability of DX. These results demonstrate that DX@NC is a carrier with excellent stability and has a high potential for use in cosmetic and pharmaceutical applications owing to its antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Sohyeon Yu
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju, 28160, Republic of Korea
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sangwoo Kim
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju, 28160, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jisu Kim
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju, 28160, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Ji-Woong Kim
- Materials Science Research Institute, LABIO Co., Ltd, Seoul, 08501, Republic of Korea
| | - Su Young Kim
- Materials Science Research Institute, LABIO Co., Ltd, Seoul, 08501, Republic of Korea
| | - Bongjun Yeom
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, Gyeongbuk, 39177, Republic of Korea
| | - Won I I Choi
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju, 28160, Republic of Korea
| | - Daekyung Sung
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju, 28160, Republic of Korea
| |
Collapse
|
4
|
He L, Li M, Wu D, Guo J, Zhang M, Tong M. Freeze-thaw cycles induce diverse bacteria release behaviors from quartz sand columns with different water saturations. WATER RESEARCH 2022; 221:118683. [PMID: 35716413 DOI: 10.1016/j.watres.2022.118683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Bacteria present in natural environment especially those in cold regions would experience freeze-thaw (FT) process during day-night and season turns. However, knowledge about the influence of FT on bacteria release behaviors in porous media was limited. In present study, the bacteria release behaviors from quartz sand columns without and with 1 and 3 FT treatment cycles under three water saturations (θ=100%, 90%, and 60%) were investigated. We found that for all three water saturated columns without FT treatment, negligible bacteria released from columns via background salt solution elution, while the subsequent release of bacteria from sand columns via low ionic strength (IS) solution elution decreased with decreasing column water saturations. More importantly, we found unlike the negligible bacteria release in columns without FT treatment, for columns with high saturations (θ=100% and 90%), FT treatment could promote bacteria release with background salt solution elution. Moreover, for high saturated columns, FT treatment would decrease subsequent bacteria release with low IS solution elution. This phenomenon was more obvious with increasing FT treatment cycles. In contrast, FT treatment had negligible influence on bacteria release from columns with lower saturation (θ=60%). The decreased bacterial sizes, the loss of bacterial flagella, as well as the change of local configuration of porous media (via changing water into ice and ice back into water) during the FT processes contributed to increased bacteria release via background salt solution elution from high saturated sand columns. While, the reduced amount of bacteria being retained at secondary energy minima drove to the subsequently decreased bacteria release via low IS solution elution. The results of this study clearly showed that for porous media with high saturations, FT cycles would increase the risk of bacteria detaching from porous media with flushing by the background solution.
Collapse
Affiliation(s)
- Lei He
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Meng Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Dan Wu
- Beijing Institute of Metrology, Beijing 100029, China
| | - Jia Guo
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Beijing Key Laboratory of Water Resources and Environmental, Engineering, China University of Geosciences (Beijing), Beijing 100083, China
| | - Mengya Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
5
|
Bai H, Chen J, Hu Y, Wang G, Liu W, Lamy E. Biocolloid transport and deposition in porous media: A review. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-0941-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Barrios RE, Bartelt-Hunt SL, Li Y, Li X. Modeling the vertical transport of antibiotic resistance genes in agricultural soils following manure application. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117480. [PMID: 34087637 DOI: 10.1016/j.envpol.2021.117480] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 05/21/2023]
Abstract
Antibiotic resistance genes (ARGs) may be introduced to agricultural soil through the land application of cattle manure. During a rainfall event, manure-borne ARGs may infiltrate into subsurface soil and leach into groundwater. The objective of this study was to characterize and model the vertical transport of manure-borne ARGs through soil following the land application of beef cattle manure on soil surface. In this study, soil column experiments were conducted to evaluate the influence of manure application on subsurface transport of four ARGs: erm(C), erm(F), tet(O) and tet(Q). An attachment-detachment model with the decay of ARGs in the soil was used to simulate the breakthrough of ARGs in leachates from the control column (without manure) and treatment (with manure) soil columns. Results showed that the first-order attachment coefficient (ka) was five to six orders of magnitude higher in the treatment column than in the control column. Conversely, the first-order detachment and decay coefficients (kd and μs) were not significantly changed due to manure application. These findings suggest that in areas where manure is land-applied, some manure-borne bacteria-associated ARGs will be attached to the soil, instead of leaching to groundwater in near terms.
Collapse
Affiliation(s)
- Renys E Barrios
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, United States
| | - Shannon L Bartelt-Hunt
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, United States
| | - Yusong Li
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, United States
| | - Xu Li
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, United States.
| |
Collapse
|
7
|
Chandrasekar A, Binder M, Liedl R, U Berendonk T. Reactive-transport modelling of Enterococcus faecalis JH2-2 passage through water saturated sediment columns. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125292. [PMID: 33582469 DOI: 10.1016/j.jhazmat.2021.125292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
The reuse of treated wastewater (e.g. for irrigation) is a common practice to combat water scarcity problems world-wide. However, the potential spread of opportunistic pathogens and fecal contaminants like Enterococci within the subsoil could pose serious health hazards. Additional sources (e.g., leaky sewer systems, livestock farming) aggravate this situation. This study contributes to an understanding of pathogen spread in the environment, using a combined modelling and experimental approach. The impact of quartz sediment and certain wastewater characteristics on the dissemination of Enterococcus faecalis JH2-2 is investigated. The transport processes of advection-dispersion and straining were studied by injecting conservative saline tracer and fluorescent microspheres through sediment packed columns, and evaluating resulting breakthrough curves using models. Similarly, simultaneously occurring reactive processes of microbial attachment, decay, respiration and growth were studied by injecting Enterococcus faecalis JH2-2 suspended in water with or without dissolved oxygen (DO) and nutrients through sediment, and evaluating resulting inlet and outlet concentration curves. The processes of straining, microbial decay and growth, were important when DO was absent. Irreversible attachment was important when DO was present. Sensitivity analysis of each parameter was conducted, and field scale behavior of the processes was predicted, to facilitate future work.
Collapse
Affiliation(s)
- Aparna Chandrasekar
- Technische Universität Dresden, Institute of Groundwater Management, Bergstraße 66, 01069 Dresden, Germany; Technische Universität Dresden, Institute of Hydrobiology, Zellescher Weg 40, 01217 Dresden, Germany.
| | - Martin Binder
- Technische Universität Dresden, Institute of Groundwater Management, Bergstraße 66, 01069 Dresden, Germany; Helmholtz-Centre for Environmental Research - UFZ, Department of Environmental Informatics, Permoserstraße 15, 04318 Leipzig, Germany; Technische Universität Bergakademie Freiberg, Institute of Geology, Section of Hydrogeology and Hydrochemistry, Gustav-Zeuner-Str. 12, 09599 Freiberg, Germany
| | - Rudolf Liedl
- Technische Universität Dresden, Institute of Groundwater Management, Bergstraße 66, 01069 Dresden, Germany
| | - Thomas U Berendonk
- Technische Universität Dresden, Institute of Hydrobiology, Zellescher Weg 40, 01217 Dresden, Germany
| |
Collapse
|
8
|
Liu L, Liu G, Zhou J, Jin R. Energy Taxis toward Redox-Active Surfaces Decreases the Transport of Electroactive Bacteria in Saturated Porous Media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5559-5568. [PMID: 33728915 DOI: 10.1021/acs.est.0c08355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The fate and transport of bacteria in porous media are essential for bioremediation and water quality control. However, the influence of biological activities like extracellular electron transfer (EET) and swimming motility toward granular media on cell transport remains unknown. Here, electroactive bacteria with higher Fe(III) reduction abilities were found to demonstrate greater retention in ferrihydrite-coated sand. Increasing the concentrations of the electron donor (1-10 mM lactate), shuttle (0-50 μM anthraquinone-2,6-disulfonate), and acceptor (ferrihydrite, MnO2, or biochar) under flow conditions significantly reduced Shewanella oneidensis MR-1's mobility through redox-active porous media. The deficiency of EET ability or flagellar motion and inhibition of intracellular proton motive force, all of which are essential for energy taxis, enhanced MR-1's transport. It was proposed that EET could facilitate MR-1 to sense, tactically move toward, and attach on redox-active media surface, eventually improving its retention. Positive linear correlations were established among parameters describing MR-1's energy taxis ability (relative taxis index), cell transport behavior (dispersion coefficient and relative change of effluent percentage), and redox activity of media surface (reduction potential or electron-accepting rate), providing novel insights into the critical impacts of bacterial microscale motility on macroscale cell transport through porous media.
Collapse
Affiliation(s)
- Lecheng Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Guangfei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ruofei Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
9
|
Jin R, Liu Y, Liu G, Liu L, Zhou J. Influence of chromate adsorption and reduction on transport and retention of biochar colloids in saturated porous media. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Xu N, Cheng X, Zhou K, Xu X, Li Z, Chen J, Wang D, Li D. Facilitated transport of titanium dioxide nanoparticles via hydrochars in the presence of ammonium in saturated sands: Effects of pH, ionic strength, and ionic composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:1348-1357. [PMID: 28898941 DOI: 10.1016/j.scitotenv.2017.09.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/02/2017] [Accepted: 09/03/2017] [Indexed: 06/07/2023]
Abstract
The widespread use of nanoparticles (NPs) has led to their inevitable introduction into environmental systems. How the existence of hydrochars in crop soils will affect the mobility of nanoparticle titanium dioxide (nTiO2), especially in the presence of ammonium (NH4+), remains unknown. Research is needed to study the effects of hydrochars on the transport and retention of nTiO2 and to uncover the mechanisms of these effects on nTiO2 transport. Column experiments with nTiO2 and hydrochars were performed in various electrolyte (NaCl, NH4Cl, and CaCl2) solutions under a controlled pH (6.0 and 8.0). Additionally, the size distributions and scanning electron microscope (SEM) and transmission electron microscope (TEM) images of the NPs were observed. The experimental results suggested that the mobility of the hydrochars was much better than that of nTiO2. Thus, the mobility of nTiO2 was improved upon their attachment to the hydrochars. The facilitated transport of nTiO2 in the presence of hydrochars was stronger at pH8.0 than at pH6.0, and facilitated transport was nearly independent of the electrolyte cation at pH8.0. However, at pH6.0, the facilitated transport in various electrolytes had the following order: NaCl>NH4Cl>CaCl2. The conversion from a completely reversible to a partially irreversible deposition of nTiO2 in sand was induced by the partially irreversible retention of hydrochars, and this phenomenon was more pronounced in the presence of NH4+ than in the presence of Na+. In particular, the irreversible deposition of nTiO2-hydrochars was enhanced as the cation concentration increased. The increased irreversible retention of nTiO2 was related to the greater k2 value (irreversible attachment coefficients) on site 2 for hydrochars based on two-site kinetic retention modeling. Thus, there is a potential risk of contaminating crops, soil, and underground water when nTiO2 exists in a hydrochar-amended environment, especially when associated with NH4-N fertilizer.
Collapse
Affiliation(s)
- Nan Xu
- Jiangsu Province Key Laboratory of Environmental Functional Materials, School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xueying Cheng
- Jiangsu Province Key Laboratory of Environmental Functional Materials, School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Kairong Zhou
- Jiangsu Province Key Laboratory of Environmental Functional Materials, School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiaoting Xu
- Jiangsu Province Key Laboratory of Environmental Functional Materials, School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zuling Li
- Jiangsu Province Key Laboratory of Environmental Functional Materials, School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jianping Chen
- Jiangsu Province Key Laboratory of Intelligent Building Energy Efficiency, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Dongtian Wang
- Jiangsu Province Key Laboratory of Environmental Functional Materials, School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Duo Li
- Jiangsu Province Key Laboratory of Environmental Functional Materials, School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
11
|
Zhong H, Liu G, Jiang Y, Yang J, Liu Y, Yang X, Liu Z, Zeng G. Transport of bacteria in porous media and its enhancement by surfactants for bioaugmentation: A review. Biotechnol Adv 2017; 35:490-504. [DOI: 10.1016/j.biotechadv.2017.03.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 03/20/2017] [Accepted: 03/22/2017] [Indexed: 12/13/2022]
|
12
|
Xu X, Xu N, Cheng X, Guo P, Chen Z, Wang D. Transport and aggregation of rutile titanium dioxide nanoparticles in saturated porous media in the presence of ammonium. CHEMOSPHERE 2017; 169:9-17. [PMID: 27855333 DOI: 10.1016/j.chemosphere.2016.11.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/25/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
The widely used artificial nanoparticles (NPs) and the excess of ammonium (NH4+) fertilizers are easily released into the natural environment. So, clarifying the mobility of NPs in the presence of NH4+ is therefore of great urgency and high priority. Currently, few studies focus on the transport and deposition of nanoparticle titanium dioxide (nTiO2) in single and binary systems containing NH4+, especially describing this process by a mathematical model. In this work, the comparison between the transport and retention of rutile nTiO2 in single and binary electrolyte solutions of NH4Cl and/or NaCl (0.5-50 mM) were conducted at pH 6.0 and 8.0 through running the column experiments. Experimental results show that the aggregation and retention of nTiO2 in solution containing mono-valence cations obeys the order as follows: NH4+ > Na+ > Na+ + NH4+ at the same ion strength (IS). It is attributed to the lower critical coagulation concentration (CCC) of rutile nTiO2 in NH4+ than that in Na+ solution. In particular, the simultaneous presence of NH4+ and Na+ favors the transportability of nTiO2 due to the strong competitive adsorption on the surface of NPs. The two-site kinetic retention model provides the good simulation for their transport behavior. The likely mechanism is that the secondary energy minimum of nTiO2 in NH4+ system associated with the greater K2 at surface Site 2 (from model) on sand can be explained for the more reversible deposition. Ammonium leachate associated with NPs can thus be considered a serious concern.
Collapse
Affiliation(s)
- Xiaoting Xu
- Jiangsu Key Laboratory of Environmental Functional Materials, School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Nan Xu
- Jiangsu Key Laboratory of Environmental Functional Materials, School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xueying Cheng
- Jiangsu Key Laboratory of Environmental Functional Materials, School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Peng Guo
- Jiangsu Key Laboratory of Environmental Functional Materials, School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhigang Chen
- Jiangsu Key Laboratory of Environmental Functional Materials, School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Dongtian Wang
- Jiangsu Key Laboratory of Environmental Functional Materials, School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
13
|
Bai H, Cochet N, Pauss A, Lamy E. DLVO, hydrophobic, capillary and hydrodynamic forces acting on bacteria at solid-air-water interfaces: Their relative impact on bacteria deposition mechanisms in unsaturated porous media. Colloids Surf B Biointerfaces 2017; 150:41-49. [DOI: 10.1016/j.colsurfb.2016.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/07/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022]
|
14
|
Kuyukina MS, Ivshina IB, Korshunova IO, Stukova GI, Krivoruchko AV. Diverse effects of a biosurfactant from Rhodococcus ruber IEGM 231 on the adhesion of resting and growing bacteria to polystyrene. AMB Express 2016; 6:14. [PMID: 26888203 PMCID: PMC4759446 DOI: 10.1186/s13568-016-0186-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/10/2016] [Indexed: 11/10/2022] Open
Abstract
This study evaluated the effects of a trehalolipid biosurfactant produced by Rhodococcus ruber IEGM 231 on the bacterial adhesion and biofilm formation on the surface of polystyrene microplates. The adhesion of Gram-positive (Arthrobacter simplex, Bacillus subtilis, Brevibacterium linens, Corynebacterium glutamicum, Micrococcus luteus) and Gram-negative (Escherichia coli, Pseudomonas fluorescencens) bacteria correlated differently with the cell hydrophobicity and surface charge. In particular, exponentially growing bacterial cells with increased hydrophobicities adhered stronger to polystyrene compared to more hydrophilic stationary phase cells. Also, a moderate correlation (0.56) was found between zeta potential and adhesion values of actively growing bacteria, suggesting that less negatively charged cells adhered stronger to polystyrene. Efficient biosurfactant concentrations (10-100 mg/L) were determined, which selectively inhibited (up to 76 %) the adhesion of tested bacterial cultures, however without inhibiting their growth. The biosurfactant was more active against growing bacteria rather than resting cells, thus showing high biofilm-preventing properties. Contact angle measurements revealed more hydrophilic surface of the biosurfactant-covered polystyrene compared to bare polystyrene, which allowed less adhesion of hydrophobic bacteria. Furthermore, surface free-energy calculations showed a decrease in the Wan der Waals (γ(LW)) component and an increase in the acid-based (γ(AB)) component caused by the biosurfactant coating of polysterene. However, our results suggested that the biosurfactant inhibited the adhesion of bacteria independently on their surface charges. AFM scanning revealed three-type biosurfactant structures (micelles, cord-like assemblies and large vesicles) formed on glass, depending on concentrations used, that could lead to diverse anti-adhesive effects against different bacterial species.
Collapse
|
15
|
Bai H, Cochet N, Pauss A, Lamy E. Bacteria cell properties and grain size impact on bacteria transport and deposition in porous media. Colloids Surf B Biointerfaces 2016; 139:148-55. [DOI: 10.1016/j.colsurfb.2015.12.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/25/2015] [Accepted: 12/07/2015] [Indexed: 11/25/2022]
|
16
|
Mellage A, Eckert D, Grösbacher M, Inan AZ, Cirpka OA, Griebler C. Dynamics of suspended and attached aerobic toluene degraders in small-scale flow-through sediment systems under growth and starvation conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:7161-9. [PMID: 26009808 DOI: 10.1021/es5058538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The microbially mediated reactions, that are responsible for field-scale natural attenuation of organic pollutants, are governed by the concurrent presence of a degrading microbial community, suitable energy and carbon sources, electron acceptors, as well as nutrients. The temporal lack of one of these essential components for microbial activity, arising from transient environmental conditions, might potentially impair in situ biodegradation. This study presents results of small scale flow-through experiments aimed at ascertaining the effects of substrate-starvation periods on the aerobic degradation of toluene by Pseudomonas putida F1. During the course of the experiments, concentrations of attached and mobile bacteria, as well as toluene and oxygen were monitored. Results from a fitted reactive-transport model, along with the observed profiles, show the ability of attached cells to survive substrate-starvation periods of up to four months and suggest a highly dynamic exchange between attached and mobile cells under growth conditions and negligible cell detachment under substrate-starvation conditions. Upon reinstatement of toluene, it was readily degraded without a significant lag period, even after a starvation period of 130 days. Our experimental and modeling results strongly suggest that aerobic biodegradation of BTEX-hydrocarbons at contaminated field sites is not hampered by intermittent starvation periods of up to four months.
Collapse
Affiliation(s)
- Adrian Mellage
- †University of Tübingen, Center for Applied Geoscience, Hölderlinstrasse, 12, 72074 Tübingen, Germany
- ‡now at: University of Waterloo, Department of Earth and Environmental Sciences, 200 University Ave. W, Waterloo, Ontario Canada N2L 3G1
| | - Dominik Eckert
- †University of Tübingen, Center for Applied Geoscience, Hölderlinstrasse, 12, 72074 Tübingen, Germany
| | - Michael Grösbacher
- §Helmholtz Zentrum München, Institute of Groundwater Ecology, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Ayse Z Inan
- §Helmholtz Zentrum München, Institute of Groundwater Ecology, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Olaf A Cirpka
- †University of Tübingen, Center for Applied Geoscience, Hölderlinstrasse, 12, 72074 Tübingen, Germany
| | - Christian Griebler
- §Helmholtz Zentrum München, Institute of Groundwater Ecology, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| |
Collapse
|
17
|
Retention in treated wastewater affects survival and deposition of Staphylococcus aureus and Escherichia coli in sand columns. Appl Environ Microbiol 2015; 81:2199-205. [PMID: 25595758 DOI: 10.1128/aem.03740-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fate and transport of pathogenic bacteria from wastewater treatment facilities in the Earth's subsurface have attracted extensive concern over recent decades, while the impact of treated-wastewater chemistry on bacterial viability and transport behavior remains unclear. The influence of retention time in effluent from a full-scale municipal wastewater treatment plant on the survival and deposition of Staphylococcus aureus and Escherichia coli strains in sand columns was investigated in this paper. In comparison to the bacteria cultivated in nutrient-rich growth media, retention in treated wastewater significantly reduced the viability of all strains. Bacterial surface properties, e.g., zeta potential, hydrophobicity, and surface charges, varied dramatically in treated wastewater, though no universal trend was found for different strains. Retention in treated wastewater effluent resulted in changes in bacterial deposition in sand columns. Longer retention periods in treated wastewater decreased bacterial deposition rates for the strains evaluated and elevated the transport potential in sand columns. We suggest that the wastewater quality should be taken into account in estimating the fate of pathogenic bacteria discharged from wastewater treatment facilities and the risks they pose in the aquatic environment.
Collapse
|
18
|
Bradford SA, Wang Y, Kim H, Torkzaban S, Šimůnek J. Modeling microorganism transport and survival in the subsurface. JOURNAL OF ENVIRONMENTAL QUALITY 2014; 43:421-440. [PMID: 25602644 DOI: 10.2134/jeq2013.05.0212] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An understanding of microbial transport and survival in the subsurface is needed for public health, environmental applications, and industrial processes. Much research has therefore been directed to quantify mechanisms influencing microbial fate, and the results demonstrate a complex coupling among many physical, chemical, and biological factors. Mathematical models can be used to help understand and predict the complexities of microbial transport and survival in the subsurface under given assumptions and conditions. This review highlights existing model formulations that can be used for this purpose. In particular, we discuss models based on the advection-dispersion equation, with terms for kinetic retention to solid-water and/or air-water interfaces; blocking and ripening; release that is dependent on the resident time, diffusion, and transients in solution chemistry, water velocity, and water saturation; and microbial decay (first-order and Weibull) and growth (logistic and Monod) that is dependent on temperature, nutrient concentration, and/or microbial concentration. We highlight a two-region model to account for microbe migration in the vicinity of a solid phase and use it to simulate the coupled transport and survival of species under a variety of environmentally relevant scenarios. This review identifies challenges and limitations of models to describe and predict microbial transport and survival. In particular, many model parameters have to be optimized to simulate a diversity of observed transport, retention, and survival behavior at the laboratory scale. Improved theory and models are needed to predict the fate of microorganisms in natural subsurface systems that are highly dynamic and heterogeneous.
Collapse
|
19
|
Kasel D, Bradford SA, Simůnek J, Pütz T, Vereecken H, Klumpp E. Limited transport of functionalized multi-walled carbon nanotubes in two natural soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 180:152-158. [PMID: 23770315 DOI: 10.1016/j.envpol.2013.05.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/08/2013] [Accepted: 05/16/2013] [Indexed: 06/02/2023]
Abstract
Column experiments were conducted in undisturbed and in repacked soil columns at water contents close to saturation (85-96%) to investigate the transport and retention of functionalized (14)C-labeled multi-walled carbon nanotubes (MWCNT) in two natural soils. Additionally, a field lysimeter experiment was performed to provide long-term information at a larger scale. In all experiments, no breakthrough of MWCNTs was detectable and more than 85% of the applied radioactivity was recovered in the soil profiles. The retention profiles exhibited a hyper-exponential shape with greater retention near the column or lysimeter inlet and were successfully simulated using a numerical model that accounted for depth-dependent retention. In conclusion, results indicated that the soils acted as a strong sink for MWCNTs. Little transport of MWCNTs is therefore likely to occur in the vadose zone, and this implies limited potential for groundwater contamination in the investigated soils.
Collapse
Affiliation(s)
- Daniela Kasel
- Agrosphere Institute (IBG-3), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Wang D, Bradford SA, Harvey RW, Hao X, Zhou D. Transport of ARS-labeled hydroxyapatite nanoparticles in saturated granular media is influenced by surface charge variability even in the presence of humic acid. JOURNAL OF HAZARDOUS MATERIALS 2012; 229-230:170-176. [PMID: 22721835 DOI: 10.1016/j.jhazmat.2012.05.089] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/18/2012] [Accepted: 05/25/2012] [Indexed: 06/01/2023]
Abstract
Hydroxyapatite nanoparticle (nHAP) is increasingly being used to remediate soils and water polluted by metals and radionuclides. The transport and retention of Alizarin red S (ARS)-labeled nHAP were investigated in water-saturated granular media. Experiments were carried out over a range of ionic strength (I(c), 0-50mM NaCl) conditions in the presence of 10 mg L(-1) humic acid. The transport of ARS-nHAP was found to decrease with increasing suspension I(c) in part, because of enhanced aggregation and chemical heterogeneity. The retention profiles (RPs) of ARS-nHAP exhibited hyperexponential shapes (a decreasing rate of retention with increasing transport distance) for all test conditions, suggesting that some of the attachment was occurring under unfavorable conditions. Surface charge heterogeneities on the collector surfaces and especially within the ARS-nHAP population were contributing causes for the hyperexponential RPs. Consideration of the effect(s) of I(c) in the presence of HA is needed to improve the efficacy of nHAP for scavenging metals and actinides in real soils and groundwater environments.
Collapse
Affiliation(s)
- Dengjun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing 210008, China
| | | | | | | | | |
Collapse
|
21
|
Zhang L, Hou L, Wang L, Kan AT, Chen W, Tomson MB. Transport of fullerene nanoparticles (nC60) in saturated sand and sandy soil: controlling factors and modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:7230-7238. [PMID: 22681192 DOI: 10.1021/es301234m] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Understanding subsurface transport of fullerene nanoparticles (nC(60)) is of critical importance for the benign use and risk management of C(60). We examined the effects of several important environmental factors on nC(60) transport in saturated porous media. Decreasing flow velocity from approximately 10 to 1 m/d had little effect on nC(60) transport in Ottawa sand (mainly pure quartz), but significantly inhibited the transport in Lula soil (a sandy, low-organic-matter soil). The difference was attributable to the smaller grain size, more irregular and rougher shape, and greater heterogeneity of Lula soil. Increasing ionic strength and switching background solution from NaCl to CaCl(2) enhanced the deposition of nC(60) in both sand and soil columns, but the effects were more significant for soil. This was likely because the clay minerals (and possibly soil organic matter) in soil responded to changes of ionic strength and species differently than quartz. Anions in the mobile phase had little effect on nC(60) transport, and fulvic acid in the mobile phase (5.0 mg/L) had a small effect in the presence of 0.5 mM Ca(2+). A two-site transport model that takes into account both the blocking-affected attachment process and straining effects can effectively model the breakthrough of nC(60).
Collapse
Affiliation(s)
- Lunliang Zhang
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Wei Jin Road 94, Tianjin 300071, China
| | | | | | | | | | | |
Collapse
|
22
|
Wang D, Paradelo M, Bradford SA, Peijnenburg WJGM, Chu L, Zhou D. Facilitated transport of Cu with hydroxyapatite nanoparticles in saturated sand: effects of solution ionic strength and composition. WATER RESEARCH 2011; 45:5905-5915. [PMID: 21962457 DOI: 10.1016/j.watres.2011.08.041] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 08/23/2011] [Accepted: 08/24/2011] [Indexed: 05/31/2023]
Abstract
Column experiments were conducted to investigate the facilitated transport of Cu in association with hydroxyapatite nanoparticles (nHAP) in water-saturated quartz sand at different solution concentrations of NaCl (0-100 mM) or CaCl(2) (0.1-1.0 mM). The experimental breakthrough curves and retention profiles of nHAP were well described using a mathematical model that accounted for two kinetic retention sites. The retention coefficients for both sites increased with the ionic strength (IS) of a particular salt. However, the amount of nHAP retention was more sensitive to increases in the concentration of divalent Ca(2+) than monovalent Na(+). The effluent concentration of Cu that was associated with nHAP decreased significantly from 2.62 to 0.17 mg L(-1) when NaCl increased from 0 to 100 mM, and from 1.58 to 0.16 mg L(-1) when CaCl(2) increased from 0.1 to 1.0 mM. These trends were due to enhanced retention of nHAP with changes in IS and ionic composition (IC) due to compression of the double layer thickness and reduction of the magnitude of the zeta potentials. Results indicate that the IS and IC had a strong influence on the co-transport behavior of contaminants with nHAP nanoparticles.
Collapse
Affiliation(s)
- Dengjun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | | | | | | | | | | |
Collapse
|
23
|
Kusaka Y, Duval JFL, Adachi Y. Morphology and breaking of latex particle deposits at a cylindrical collector in a microfluidic chamber. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:9413-9418. [PMID: 21082825 DOI: 10.1021/es1026689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We report an analysis for the morphology and breaking behavior of deposits of spherical latex particles (1 and 3.6 μm in diameter) at a cylindrical collector in a microfluidic channel fabricated by soft-lithography. In-situ observation of particle deposition over a large range of flow rate conditions evidence the relationship between deposit morphology and mode of particle transport toward the collector. For low Péclet number (Pe), particle deposits are nearly uniform all over the collector surface except at the rear where particles do not attach. Upon increase of Pe, deposits gradually adopt a columnar morphology at the collector stagnation point. These results are qualitatively consistent with previously reported Monte Carlo simulations of deposits formation in stagnation point flow systems. However, these simulations fail to quantitatively predict the observed deposition at the rear of the collector for sufficiently high flow rate. Additional deposit breaking experiments together with numerical evaluations of particle flux around the collector suggest that such "anomalous" deposition at large Pe is significantly governed by concomitant detachment of deposited particles at the stagnation point and the presence of recirculation flow at the collector rear. Finally, kinetics of deposition are discussed in connection with particle size-dependence of deposit breaking features.
Collapse
Affiliation(s)
- Yasuyuki Kusaka
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan.
| | | | | |
Collapse
|
24
|
Tosco T, Sethi R. Transport of non-newtonian suspensions of highly concentrated micro- and nanoscale iron particles in porous media: a modeling approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:9062-9068. [PMID: 21058641 DOI: 10.1021/es100868n] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The use of zerovalent iron micro- and nanoparticles (MZVI and NZVI) for groundwater remediation is hindered by colloidal instability, causing aggregation (for NZVI) and sedimentation (for MZVI) of the particles. Transportability of MZVI and NZVI in porous media was previously shown to be significantly increased if viscous shear-thinning fluids (xanthan gum solutions) are used as carrier fluids. In this work, a novel modeling approach is proposed and applied for the simulation of 1D flow and transport of highly concentrated (20 g/L) non-newtonian suspensions of MZVI and NZVI, amended with xanthan gum (3 g/L). The coupled model is able to simulate the flow of a shear thinning fluid including the variable apparent viscosity arising from changes in xanthan and suspended iron particle concentrations. The transport of iron particles is modeled using a dual-site approach accounting for straining and physicochemical deposition/release phenomena. A general formulation for reversible deposition is herein proposed, that includes all commonly applied dynamics (linear attachment, blocking, ripening). Clogging of the porous medium due to deposition of iron particles is modeled by tying porosity and permeability to deposited iron particles. The numerical model proved to adequately fit the transport tests conducted using both MZVI and NZVI and can develop into a powerful tool for the design and the implementation of full scale zerovalent iron applications.
Collapse
Affiliation(s)
- Tiziana Tosco
- Dipartimento di Ingegneria del Territorio, dell'Ambiente e delle Geotecnologie, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
| | | |
Collapse
|
25
|
Haznedaroglu BZ, Zorlu O, Hill JE, Walker SL. Identifying the role of flagella in the transport of motile and nonmotile Salmonella enterica serovars. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:4184-4190. [PMID: 20504046 DOI: 10.1021/es100136m] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The influence of bacterial flagella on cell transport has been examined using three Salmonella enterica serovars with different motility phenotypes. Both a packed bed (PB) column and radial stagnation point flow system (RSPF) were employed to investigate bacterial deposition kinetics onto quartz over a range of conditions. The aim of this study was to better understand the role of motility on the deposition behavior of Salmonella, an important food- and waterborne pathogen. In both the PB column and RSPF systems, flagellated strains showed higher deposition, indicating the nonmotile cells can be transported further than the motile. At late-exponential growth phase, the deposition of the functional flagellated motile strain was enhanced, much more so than the dysfunctionally flagellated nonmotile and nonflagellated strains, highlighting the role of flagellar motion in cellular deposition and retention through available pore spaces and irregularities on quartz surfaces.
Collapse
Affiliation(s)
- B Z Haznedaroglu
- Department of Chemical & Environmental Engineering, University of California, Riverside, California 92521, USA
| | | | | | | |
Collapse
|
26
|
Jansen S, Vereecken H, Klumpp E. On the role of metabolic activity on the transport und deposition of Pseudomonas fluorescens in saturated porous media. WATER RESEARCH 2010; 44:1288-1296. [PMID: 20153499 DOI: 10.1016/j.watres.2010.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 01/19/2010] [Accepted: 01/22/2010] [Indexed: 05/28/2023]
Abstract
A study was conducted to understand the role of cell concentration and metabolic state in the transport and deposition behaviour of Pseudomonas fluorescens with and without substrate addition. Column experiments using the short-pulse technique (pulse was equivalent to 0.028 pore volume) were performed in quartz sand operating under saturated conditions. For comparison, experiments with microspheres and inactive (killed) bacteria were also conducted. The effluent concentrations, the retained particle concentrations and the cell shape were determined by fluorescent microscopy. For the transport of metabolically-active P. fluorescens without substrate addition a bimodal breakthrough curve was observed, which could be explained by the different breakthrough behaviour of the rod-shaped and coccoidal cells of P. fluorescens. The 70:30 rod/coccoid ratio in the influent drastically changed during the transport and it was about 20:80 in the effluent and in the quartz sand packing. It was assumed that the active rod-shaped cells were subjected to shrinkage into coccoidal cells. The change from active rod-shaped cells to coccoidal cells could be explained by oxygen deficiency which occurs in column experiments under saturated conditions. Also the substrate addition led to two consecutive breakthrough peaks and to more bacteria being retained in the column. In general, the presence of substrate made the assumed stress effects more pronounced. In comparison to microspheres and inactive (killed) bacteria, the transport of metabolically-active bacteria with and without substrate addition is affected by differences in physiological state between rod-shaped and the formed stress-resistant coccoidal cells of P. fluorescens.
Collapse
Affiliation(s)
- Sandra Jansen
- Agrosphere Institute, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | | | | |
Collapse
|
27
|
Selected HYDRUS modules for modeling subsurface flow and contaminant transport as influenced by biological processes at various scales. Biologia (Bratisl) 2009. [DOI: 10.2478/s11756-009-0106-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Schaefer CE, Condee CW, Vainberg S, Steffan RJ. Bioaugmentation for chlorinated ethenes using Dehalococcoides sp.: comparison between batch and column experiments. CHEMOSPHERE 2009; 75:141-148. [PMID: 19171368 DOI: 10.1016/j.chemosphere.2008.12.041] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 12/15/2008] [Accepted: 12/16/2008] [Indexed: 05/27/2023]
Abstract
Batch and column experiments were performed to evaluate the transport, growth and dechlorination activity of Dehalococcoides sp. (DHC) during bioaugmentation for chlorinated ethenes. Batch experiments showed that the reductive dechlorination of trichloroethene (TCE), cis-1,2-dichloroethene (DCE), and vinyl chloride (VC), as well as growth of the DHC, were well described by the Monod kinetic model. The measured maximum utilization rate coefficients for TCE, DCE, and VC were 1.3x10(-12), 5.2x10(-13), and 1.4x10(-12)mmol Cl(-) (cellh)(-1), respectively. Results of the column experiments showed that dechlorination occurred throughout the length of the column, and that extractable DHC concentrations associated with the soil phase throughout the column were negligible relative to the aqueous phase concentrations. Dechlorination rates relative to aqueous DHC concentrations in the column were approximately 200-times greater than in the batch experiments. Additional batch experiments performed using column effluent water confirmed this result. Incorporation of these enhanced dechlorination kinetics in the transport model provided a reasonable prediction of the column data. Overall results of this study suggest that aqueous phase (as opposed to soil phase) DHC concentrations can be used to estimate dechlorination activity in saturated soils, and DHC dechlorination activity in porous media may be substantially greater than DHC dechlorination activity measured in batch experiments.
Collapse
|
29
|
Haznedaroglu BZ, Bolster CH, Walker SL. The role of starvation on Escherichia coli adhesion and transport in saturated porous media. WATER RESEARCH 2008; 42:1547-1554. [PMID: 18037467 DOI: 10.1016/j.watres.2007.10.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 10/12/2007] [Accepted: 10/24/2007] [Indexed: 05/25/2023]
Abstract
The influence of bacterial starvation on cell transport has been examined using two Escherichia coli isolates: one from human (HU) and one from dairy cattle (DC). To better understand the fate of starved bacteria, experiments were conducted in a packed bed column using cells that had been incubating at room temperature without nutrients for 6, 12, and 18h, as well as cells, which had not been starved (referred to as time zero). Complimentary cell characterization techniques were conducted to evaluate the hydrophobicity, mobility, size, and surface charge density of the cells at the conditions considered. It was observed that non-starved HU cells were more adhesive than starved HU cells. This behavior is attributed to the relatively high hydrophobicity of the starved cells, which resulted from greater extracellular polymeric substance (EPS) presence. Non-starved DC cells were also the most adhesive whereas 18h starved cells were the least adhesive, although cell characterization results did not correlate to transport trends like HU cells. For both isolates, the cells after 6h of starvation showed high levels of sugar relative to protein in the EPS. Additionally, following 6h of starvation, the cells did not follow expected transport trends as anticipated from the cellular characterization. Our results suggest transport behavior of environmental E. coli isolates differs in terms of isolate host and starvation conditions. Possible mechanisms responsible for this are changes in key cell surface characteristics and synthesis of starvation-induced proteins. This study highlights the importance of consistency in bacterial preparation for experimental studies and has considerable implications for future evaluation and prediction of E. coli fate in subsurface environments.
Collapse
Affiliation(s)
- B Z Haznedaroglu
- Department of Chemical & Environmental Engineering, University of California, Riverside, Riverside, CA 92521, USA
| | | | | |
Collapse
|