1
|
Luo L, Xue P, Chen X, Gan P, Li X, Yu K, Zhang Y. Possible toxification mechanisms of acute and chronic pentachlorophenol to Montipora digitata: Limitation of energy supply and immunotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175069. [PMID: 39079632 DOI: 10.1016/j.scitotenv.2024.175069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/27/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Pentachlorophenol (PCP) is widely found in coastal environments and has various adverse effects, and its potential impact on coral reef ecosystems concerning. The scleractinian coral Montipora digitata was used for PCP stress experiments in this study. Phenotypes, physiological indicators, microbial diversity analysis and RNA sequencing were used to investigate the mechanisms underlying the responses of corals to acute and chronic PCP exposure. After 96 h of acute exposure, coral bleaching occurred at 1000 μg/LPCP and there was a significant decrease in Symbiodiniaceae density, Fv/Fm, and chlorophyll a content. Exposure to different concentrations of PCP significantly increased the content of malondialdehyde (MDA), leading to oxidative stress in corals. Chronic PCP exposure resulted in bleaching at 60 days, with the Fv/Fm significantly reduced to 0.461. Microbial diversity analysis revealed an increase in the abundance of potential pathogens, such as Vibrio, during acute PCP exposure and the emergence of the degrading bacterium Delftia during chronic PCP exposure. Transcriptional analysis showed that PCP exposure caused abnormal carbohydrate and amino acid metabolism in zooxanthella, which affected energy supply, induced immune responses, and disrupted symbiotic relationships. Corals respond to injury by boosting the expression of genes associated with signal transduction and immune response. Additionally, the expression of genes associated with environmental adaptation increased with chronic PCP exposure, which is consistent with the results of the microbial diversity analysis. These results indicate that PCP exposure might affect the balance of coral- zooxanthellae symbiosis in the stony coral M. digitata, impairing coral health and leading to bleaching.
Collapse
Affiliation(s)
- Lan Luo
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Pengfei Xue
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Xuan Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Pin Gan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Xiaoli Li
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yuanyuan Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| |
Collapse
|
2
|
Zhang W, Tang Y, Han Y, Tian D, Yu Y, Yu Y, Li W, Shi W, Liu G. Pentachlorophenol impairs the antimicrobic capability of blood clam via undermining humoral immunity and disrupting humoral-cellular crosstalk. CHEMOSPHERE 2024; 364:143230. [PMID: 39222693 DOI: 10.1016/j.chemosphere.2024.143230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/27/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Due to past massive usage and persistent nature, pentachlorophenol (PCP) residues are prevalent in environments, posing a potential threat to various organisms such as sessile filter-feeding bivalves. Although humoral immunity and its crosstalk with cellular one are crucial for the maintaining of robust antimicrobic capability, little is known about the impacts of PCP on these critical processes in bivalve mollusks. In this study, pathogenic bacterial challenge and plasma antimicrobic capability assays were carried out to assess the toxic effects of PCP on the immunity of a common bivalve species, blood clam (Tegillarca granosa). Moreover, the impacts of PCP-exposure on the capabilities of pathogen recognition, hemocyte recruitment, and pathogen degradation were analyzed as well. Furthermore, the activation status of downstream immune-related signalling pathways upon PCP exposure was also assessed. Data obtained illustrated that 28-day treatment with environmentally realistic levels of PCP resulted in evident declines in the survival rates of blood clam upon Vibrio challenge along with markedly weakened plasma antimicrobic capability. Additionally, the levels of lectin and peptidoglycan-recognition proteins (PGRPs) in plasma as well as the expression of pattern recognition receptors (PRRs) in hemocytes were found to be significantly inhibited by PCP-exposure. Moreover, along with the downregulation of immune-related signalling pathway, markedly fewer chemokines (interleukin 8 (IL-8), IL-17, and tumor necrosis factor α (TNF-α)) in plasma and significantly suppressed chemotactic activity of hemocytes were also observed in PCP-exposed blood clams. Furthermore, compared to that of the control, blood clams treated with PCP had markedly lower levels of antimicrobic active substances, lysozyme (LZM) and antimicrobial peptides (AMP), in their plasma. In general, the results of this study suggest that PCP exposure could significantly impair the antimicrobic capability of blood clam via undermining humoral immunity and disrupting humoral-cellular crosstalk.
Collapse
Affiliation(s)
- Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu Han
- School of Life and Environmental, Hangzhou Normal University, Hangzhou, 311121, China
| | - Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weifeng Li
- College of Marine Sciences, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535011, China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Huo Y, Wan Y, Li Y, Lan L, Chen S, Xu S, Xiong C, Xia W. Associations of pentachlorophenol exposure during pregnancy with maternal and infant reproductive hormones based on a birth cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172723. [PMID: 38670355 DOI: 10.1016/j.scitotenv.2024.172723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Pentachlorophenol (PCP), a typical environmental endocrine disruptor and a new persistent organic pollutant, has been extensively used as a pesticide worldwide. Although its use has been restricted for decades, PCP remains prevalent in both the environment and human bodies. Despite the known endocrine-disrupting and exogenous hormonal effects of PCP, few epidemiological studies examined such impact, especially among sensitive populations and during critical periods. Based on a prospective birth cohort in Wuhan, China, we collected maternal (first trimester; 13.0 ± 1.02 gestational weeks) and infant urine samples (1.16 ± 0.22 months postpartum) from 720 mother-infant pairs. We aimed to examine the association of PCP exposure during early pregnancy with maternal and infant urinary sex steroid hormones, including estrogens (estrone, E1; estradiol, E2; estriol, E3), progestogens (progesterone, P4; pregnenolone, P5; 17α-OH-Progesterone, 17OHP4; 17α-OH-Pregnenolone, 17OHP5), and androgens (testosterone, Testo; dihydrotestosterone, DHT; dehydroepiandrosterone, DHEA; androstenedione, A4). Additionally, gonadotropins [follicle-stimulating hormone (FSH) and luteinizing hormone (LH)] were measured in infant urine. Detection frequencies of all the sex steroid hormones in the maternal urine samples (>99 %) were higher than those in the infants' [most ≥80 %, except for E1 (3.36 %) and E2 (21.4 %)]. Maternal urinary PCP concentration was found to be significantly related with increased maternal sex steroid hormone concentrations; each interquartile increase in PCP concentration was positively related with percent change of the hormones (%Δ) ranging from 26.6 % to 48.5 %. On the other hand, maternal PCP exposure was associated with significantly increased P4 in male infants [%Δ (95 % confidence interval): 10.5 (0.56, 21.4)] but slightly decreased P4 in female infants [-11.9 (-21.8, 0.68)]. In addition, maternal PCP exposure was significantly associated with decreased FSH [%Δ (95 % CI): -9.90 (-17.0, -2.18)] and LH [-8.44 (-16.0, -0.19)] in the female infants, but not in the male infants. Sensitivity analyses, excluding infertility related treatment, pregnancy complications, preterm birth, or low birth weight, showed generally consistent results. Our findings implied that maternal/prenatal PCP exposure might disrupt the homeostasis of maternal and infant reproductive hormones. However, further studies are needed to confirm the findings.
Collapse
Affiliation(s)
- Yitao Huo
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Yanjian Wan
- Center for Public Health Laboratory Service, Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei 430015, PR China
| | - Ying Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Liwen Lan
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Silan Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Shunqing Xu
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Chao Xiong
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, PR China.
| | - Wei Xia
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
4
|
Lin H, Gao W, Li J, Zhao N, Zhang H, Wei J, Wei X, Wang B, Lin Y, Zheng Y. Exploring Prenatal Exposure to Halogenated Compounds and Its Relationship with Birth Outcomes Using Nontarget Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6890-6899. [PMID: 38606954 DOI: 10.1021/acs.est.3c09534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Halogenated organic compounds (HOCs) are a class of contaminants showing high toxicity, low biodegradability, and high bioaccumulation potential, especially chlorinated and brominated HOCs (Cl/Br-HOCs). Knowledge gaps exist on whether novel Cl/Br-HOCs could penetrate the placental barrier and cause adverse birth outcomes. Herein, 326 cord blood samples were collected in a hospital in Jinan, Shandong Province from February 2017 to January 2022, and 44 Cl/Br-HOCs were identified with communicating confidence level above 4 based on a nontarget approach, covering veterinary drugs, pesticides, and their transformation products, pharmaceutical and personal care products, disinfection byproducts, and so on. To our knowledge, the presence of closantel, bromoxynil, 4-hydroxy-2,5,6-trichloroisophthalonitrile, 2,6-dibromo-4-nitrophenol, and related components in cord blood samples was reported for the first time. Both multiple linear regression (MLR) and Bayesian kernel machine regression (BKMR) models were applied to evaluate the relationships of newborn birth outcomes (birth weight, length, and ponderal index) with individual Cl/Br-HOC and Cl/Br-HOCs mixture exposure, respectively. A significantly negative association was observed between pentachlorophenol exposure and newborn birth length, but the significance vanished after the false discovery rate correction. The BKMR analysis showed that Cl/Br-HOCs mixture exposure was significantly associated with reduced newborn birth length, indicating higher risks of fetal growth restriction. Our findings offer an overview of Cl/Br-HOCs exposome during the early life stage and enhance the understanding of its exposure risks.
Collapse
Affiliation(s)
- Huan Lin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Wei Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jingjing Li
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Nan Zhao
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Hongna Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Juntong Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiaoran Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Bing Wang
- Biomedical Centre, Qingdao University, Qingdao 266071, China
| | - Yongfeng Lin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yuxin Zheng
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
5
|
Yang F, Wan Y, Wang Y, Li S, Xu S, Xia W. Occurrence of pentachlorophenol in surface water from the upper to lower reaches of the Yangtze River and treated water in Wuhan, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25589-25599. [PMID: 38478308 DOI: 10.1007/s11356-024-32821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/04/2024] [Indexed: 04/19/2024]
Abstract
Pentachlorophenol (PCP), a persistent organic pollutant, has been banned in many countries, but it is still used in China as a wood preservative, molluscicide, or reagent for fish-pond cleaning, which may pose risks to the ecosystem and humans. However, data on the occurrence of PCP in the environment are scarce in the recent decade. The Yangtze River was regarded as a priority area of PCP pollution according to previous documents. This study aimed to examine the spatial distribution of PCP in the Yangtze River water, the differences in dry and wet seasons, the ecological risk for aquatic organisms, and its removal efficiency in tap water treatment plants. The river water samples (n = 144) were collected from the upper, middle, and lower reaches across ten provinces (or municipalities) in December 2020 and June 2021, respectively. PCP was detected in 88.9% of all the samples, ranging from
Collapse
Affiliation(s)
- Fengting Yang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Yanjian Wan
- Center for Public Health Laboratory Service, Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei, 430024, People's Republic of China
| | - Yan Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Shulan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China.
| |
Collapse
|
6
|
Changotra R, Rajput H, Liu B, Murray G, He QS. Occurrence, fate, and potential impacts of wood preservatives in the environment: Challenges and environmentally friendly solutions. CHEMOSPHERE 2024; 352:141291. [PMID: 38280646 DOI: 10.1016/j.chemosphere.2024.141291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Wood preservation has gained global prevalence in recent years, primarily owing to the renewable nature of wood and its capacity to act as a carbon sink. Wood, in its natural form, lacks intrinsic resilience and is prone to decay if left untreated; hence, wood preservatives (WPs) are used to improve wood's longevity. The fate and potential hazards of wood preservatives to human health, ecosystems, and the environment are complex and depend on various aspects, including the type of the preservative compounds, their physicochemical properties, application methods, exposure pathways, environmental conditions, and safety measures and guidelines. The occurrence and distribution of WPs in environmental matrices such as soil and water can result in hazardous pollutants seeping into surface water, groundwater, and soil, posing health hazards, and polluting the environment. Bioremediation is crucial to safeguarding the environment and effectively removing contaminants through hydrolytic and/or photochemical reactions. Phytoremediation, vermicomposting, and sustainable adsorption have demonstrated significant efficacy in the remediation of WPs in the natural environment. Adsorbents derived from biomass waste have been acknowledged for their ability to effectively remove WPs, while also offering cost-efficiency and environmental sustainability. This paper aims to identify wood preservatives' sources and fate in the environment and present a comprehensive overview of the latest advancements in environmentally friendly methods relevant to the removal of the commonly observed contaminants associated with WPs in environmental matrices.
Collapse
Affiliation(s)
- Rahil Changotra
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Himadri Rajput
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Baoshu Liu
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, China
| | - Gordon Murray
- Stella-Jones Inc. Truro, Nova Scotia, B2N 5C1, Canada
| | - Quan Sophia He
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada.
| |
Collapse
|
7
|
Bhardwaj G, Riadi Y, Afzal M, Bansal P, Kaur H, Deorari M, Tonk RK, Almalki WH, Kazmi I, Alzarea SI, Kukreti N, Thangavelu L, Saleem S. The hidden threat: Environmental toxins and their effects on gut microbiota. Pathol Res Pract 2024; 255:155173. [PMID: 38364649 DOI: 10.1016/j.prp.2024.155173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/18/2024]
Abstract
The human gut microbiota (GM), which consists of a complex and diverse ecosystem of bacteria, plays a vital role in overall wellness. However, the delicate balance of this intricate system is being compromised by the widespread presence of environmental toxins. The intricate connection between contaminants in the environment and human well-being has garnered significant attention in recent times. Although many environmental pollutants and their toxicity have been identified and studied in laboratory settings and animal models, there is insufficient data concerning their relevance to human physiology. Consequently, research on the toxicity of environmental toxins in GM has gained prominence in recent years. Various factors, such as air pollution, chemicals, heavy metals, and pesticides, have a detrimental impact on the composition and functioning of the GM. This comprehensive review aims to comprehend the toxic effects of numerous environmental pollutants, including antibiotics, endocrine-disrupting chemicals, heavy metals, and pesticides, on GM by examining recent research findings. The current analysis concludes that different types of environmental toxins can lead to GM dysbiosis and have various potential adverse effects on the well-being of animals. We investigate the alterations to the GM composition induced by contaminants and their impact on overall well-being, providing a fresh perspective on research related to pollutant exposure.
Collapse
Affiliation(s)
- Gautam Bhardwaj
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar sector-3, M-B Road, New Delhi 110017, India
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Rajiv Kumar Tonk
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar sector-3, M-B Road, New Delhi 110017, India.
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341 Sakaka, Aljouf, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Lakshmi Thangavelu
- Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Shakir Saleem
- Department of Public Health. College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia.
| |
Collapse
|
8
|
Yin P, Wang Q, Li S, Hao L, Wang C, Wang Z, Wu Q. One-step preparation of carboxyl-functionalized porous organic polymer as sorbent for enrichment of phenols in bottled water, juice and honey samples. J Chromatogr A 2024; 1714:464568. [PMID: 38086188 DOI: 10.1016/j.chroma.2023.464568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
Herein, a novel carboxyl-functionalized porous organic polymer (COOH-POP) was prepared as sorbent. Due to multiple hydrogen bonds and π-π interactions between COOH-POP and phenols, COOH-POP shows good enrichment ability and very fast adsorption rate for phenols. Then, an analytical method was developed for determination of five phenols (2-chlorophenol, bisphenol A, 2,6-dichlorophenol, 2,4-dichlorophenol and p-tert-butylphenol) in bottled water, lemon juice, peach juice and honey samples using COOH-POP as solid phase extraction sorbent in combination with high performance liquid chromatography. Under optimal conditions, the COOH-POP based method gave the detection limits (S/N = 3) of 0.02-0.10 ng mL-1 for bottled water, 0.03-0.12 ng mL-1 for lemon juice, 0.03-0.25 ng mL-1 for peach juice and 0.7-1.5 ng g-1 for honey samples. The recoveries for spiked samples ranged from 84.0 % to 119.0 % with relative standard deviation less than 7.6 %. This study provides a new yet effective method for enrichment of phenols by designing carboxyl-functionalized porous organic polymer as sorbent.
Collapse
Affiliation(s)
- Peiying Yin
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Qianqian Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Shuofeng Li
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Lin Hao
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
9
|
Zhang Y, Luo L, Gan P, Chen X, Li X, Pang Y, Yu X, Yu K. Exposure to pentachlorophenol destructs the symbiotic relationship between zooxanthellae and host and induces pathema in coral Porites lutea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167956. [PMID: 37884147 DOI: 10.1016/j.scitotenv.2023.167956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
Stress from chemical pollutants is among the key issues that have adverse impacts on coral reefs. As a persistent organic pollutant, pentachlorophenol (PCP) has been detected in the seawater of Weizhou Island and was proved to have significant adverse effects on aquatic animals. However, little is known about its effects on scleractinian coral. Therefore, we investigated the response of the coral Porites lutea to PCP stress. Coral bleaching, photosynthesis parameters and antioxidant enzyme activities of P. lutea under PCP exposure were documented. After 96 h of exposure, significant tissue loss and bleaching occurred when the PCP concentration exceeded 100 μg/L. The density of symbiotic zooxanthellae decreased from 2.06 × 106 cells/cm2 to 0.93 × 106 cells/cm2 when the PCP concentration increased from 1 μg/L- 1000 μg/L. Long-term exposure of 120 days to PCP at 0.1 μg/L also led to coral bleaching, the maximum photochemical quantum yield of PSII in P. lutea nubbins significantly decreased to 0.482. The analysis of microbial community distribution indicated that the increase of the pathogenic bacterium Citrobacter may be one of the inducers of coral bleaching. Conjoint analysis of transcriptomics and proteomics showed that the metabolism of amino acids and carbohydrates in zooxanthellae was abnormal, leading to the destruction of its symbiotic relationship with the host. The immune system of the host was disrupted, which could be linked to the prevalence of coral pathema. The toxic responses of PCP on both zooxanthellae and its host were further confirmed by the upregulation of the differential metabolites including 1-naphthylamine and phosphatidylcholine, etc.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Lan Luo
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Pin Gan
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Xuan Chen
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Xiaoli Li
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Yan Pang
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Xiaopeng Yu
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| |
Collapse
|
10
|
Liu B, Wei J, Zhang S, Shad A, Tang X, Allam AA, Wang Z, Qu R. Insights into oxidation of pentachlorophenol (PCP) by low-dose ferrate(VI) catalyzed with α-Fe 2O 3 nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131983. [PMID: 37406528 DOI: 10.1016/j.jhazmat.2023.131983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/08/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
In this study, the catalytic performance of α-Fe2O3 nanoparticles (nα-Fe2O3) in the low-dose ferrate (Fe(VI)) system was systematically studied through the degradation of pentachlorophenol (PCP). Based on the established quadratic functions between nα-Fe2O3 amount and observed pseudo first-order rate constant (kobs), two linear correlation equations were offered to predict the optimum catalyst dosage and the maximum kobs at an applied Fe(VI) amount. Moreover, characterization and cycling experiments showed that nα-Fe2O3 has good stability and recyclability. According to the results of reactive species identification and quenching experiment and galvanic oxidation process, the catalytic mechanism was proposed that Fe(III) on the surface of nα-Fe2O3 may react with Fe(VI) to enhance the generation of highly reactive Fe(IV)/Fe(V) species, which rapidly extracted a single electron from PCP molecule for its further reaction. Besides, two possible PCP degradation pathways, i.e., single oxygen transfer mediated hydroxylation and single electron transfer initiated polymerization were proposed. The formation of coupling products that are prone to precipition and separation was largely improved. This study proved that nα-Fe2O3 can effectively catalyze PCP removal at low-dose Fe(VI), which provides some support for the application of Fe(VI) oxidation technology in water treatment in the context of low-carbon emissions.
Collapse
Affiliation(s)
- Boying Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Junyan Wei
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Shengnan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Asam Shad
- Department of Environmental Sciences, Comsats University, Abbottabad Campus, Islamabad, Pakistan
| | - Xiaosheng Tang
- Jiangsu Yangtze River Delta Environmental Science and Technology Research Institute Co., Ltd., Changzhou 213100, Jiangsu, PR China
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef 65211, Egypt
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| |
Collapse
|
11
|
Xu Q, Ai S, Ge G, Wang X, Li J, Gao X, Zhao S, Liu Z. Human health ambient water quality criteria and risk assessment of pentachlorophenol in Poyang Lake Basin, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3669-3682. [PMID: 36474059 DOI: 10.1007/s10653-022-01443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/24/2022] [Indexed: 06/01/2023]
Abstract
Pentachlorophenol (PCP) has been widely used as an insecticide for killing oncomelania (the intermediate host of schistosome) in China and leads to severe environmental contamination. Poyang Lake, as the largest freshwater lake and bird habitat in China, was once a schistosomiasis epidemic area. In this study, the concentrations of PCP in water and aquatic products from Poyang Lake were determined and analyzed, and then the human health ambient water quality criteria (AWQC) was derived based on native parameters of Poyang Lake basin. Finally, a comprehensive analysis of the health risks of drinking water and different types of aquatic products consumption was carried out. The results showed that PCP concentrations were ranged from 0.01 to 0.43 μg/L in surface water and 3.90 to 85.95 μg/kg in aquatic products. Due to the carcinogenicity of PCP, the human health AWQC for PCP are 0.02 μg/L for consumption of water and organisms and 0.03 μg/L for consumption of organisms only. Deterministic and probabilistic risk analysis indicated that the non-carcinogenic risk of PCP were acceptable in Poyang Lake, while the carcinogenic risk cannot be ignored. The health risks of PCP caused by aquatic products consumption were higher than that by drinking water. The percentages of acceptable risk for the population in Poyang Lake Basin were 99.95% at acceptable level of 10-4. Based on the sensitivity analysis, the impact of PCP concentrations on health risk values ranged from 53 to 82%. The study provided valuable information for regional water quality criteria development and water quality assessment.
Collapse
Affiliation(s)
- Qianyun Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Shunhao Ai
- The College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Gang Ge
- The College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Xiaonan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ji Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Xiangyun Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Shiqing Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
12
|
Sun Y, Liu Z, Xia W, He Z, Wan Y. Urinary pentachlorophenol in general population of central China: reproducibility, predictors, and associations with oxidative stress biomarkers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37598-37606. [PMID: 36574129 DOI: 10.1007/s11356-022-24802-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
Pentachlorophenol (PCP) is a ubiquitous environmental persistent organic pollutant and a Group 1 carcinogen. Human exposure level of PCP was reported to be relatively higher in China than in many other countries, because sodium pentachlorophenate was abused as molluscicide in China. PCP can induce oxidative stress; however, the relationship of PCP exposure with oxidative stress biomarkers (OSBs) in human beings has rarely been documented. In this study, 404 first-morning urine samples (including repeated samples in three days donated by 74 participants) were collected from 128 healthy adults (general population without occupational exposure to PCP) in autumn and winter of 2018, respectively, in Wuhan, central China. Urinary concentrations of PCP and three select OSBs [including 8-OHG (abbreviation of 8-hydroxy-guanosine), 8-OHdG (8-hydroxy-2'-deoxyguanosine), and 4-HNEMA (4-hydroxy-2-nonenal mercapturic acid), which reflect oxidative damage of RNA, DNA, and lipid, respectively] were determined. PCP was detectable in 100% of the urine samples (specific gravity-adjusted median concentration: 0.44 ng/mL; range: 0.02-14.2 ng/mL). Interday reproducibility of urinary PCP concentrations was excellent (intraclass correlation coefficient: 0.88) in three days. Significant differences in PCP concentrations were found among different age groups; the group of participants aged 20-45 y (median: 0.72 ng/mL) had higher concentrations than those in the elders (aged 45-60 y and > 60 y). Spatial disparity was observed in autumn, and urban residents had higher PCP concentrations than rural residents (median: 0.60 vs. 0.31 ng/mL), whereas such disparity was not found in winter. There were no season-, sex-, or BMI-related differences between the corresponding subgroups. The urinary PCP concentrations were found to be associated with increases in 8-OHdG and 8-OHG rather than 4-HNEMA. An interquartile range increase in urinary PCP concentration was associated with a 23.5% (95% CI: 9.18-39.6) increase in 8-OHdG and a 21.3% (95% CI: 9.18-32.4) increase in 8-OHG, implied that PCP exposure at environmental relevant dose might be associated with nucleic acid oxidative damage in the general population. This pilot study reported associations between PCP exposure and OSBs in human beings. Future studies are needed to elucidate the mediating roles of OSBs in the association between PCP exposure and certain adverse health outcomes.
Collapse
Affiliation(s)
- Yanfeng Sun
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei, 430024, People's Republic of China
| | - Zhi Liu
- Jiangxia District Centers for Disease Control and Prevention, Wuhan, Hubei, 430200, People's Republic of China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Zhenyu He
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei, 430024, People's Republic of China
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei, 430024, People's Republic of China.
| |
Collapse
|
13
|
Zhang Y, Mhungu F, Zhang W, Wang Y, Li H, Liu Y, Li Y, Gan P, Pan X, Huang J, Zhong X, Song S, Liu Y, Chen K. Probabilistic risk assessment of dietary exposure to pentachlorophenol in Guangzhou, China. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:262-270. [PMID: 36634160 DOI: 10.1080/19440049.2022.2163301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Pentachlorophenol (PCP) is a ubiquitous environmental contaminant commonly existing as its sodium salt (NaPCP), which enters the human body primarily through long term but low-level dietary exposure. PCP contributes to chemical carcinogenesis and teratogenesis. In this study, the probabilistic risk of dietary exposure to PCP in Guangzhou citizens was investigated. In total, 923 food samples in the categories of pork, livestock (beef and lamb), poultry, offal, eggs, and freshwater fish (considered to be relatively susceptible to PCP contamination) were collected from various markets in Guangzhou and tested for PCP. Probabilistic risk assessment model calculations for PCP dietary exposure and margin of exposure (MOE) values were performed using @RISK software, based on a Monte Carlo simulation with 10,000 iterations. The overall detection rate of PCP (above 1 μg kg-1, the detection limit) was 19.9% (184/923), with an average of 7.9 μg kg-1. The highest rate of PCP detection, 28.2%, was in livestock (beef and lamb). The MOE value for dietary PCP exposure in general Guangzhou residents averaged 400, which was far below 5,000 (the borderline for judging a health risk). The lowest MOE value, 190, was observed in the 3- to-6-year old population and indicates a significant risk. In conclusion, this study suggests that PCP exposure in Guangzhou residents is of considerable health risk, especially for the pre-school young children.
Collapse
Affiliation(s)
- Yuhua Zhang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China.,Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Florence Mhungu
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Weiwei Zhang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China.,Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Yanyan Wang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China.,Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Hailin Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China.,Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Yufei Liu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China.,Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Yan Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China.,Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Pingsheng Gan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China.,Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Xinhong Pan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China.,Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Jie Huang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China.,Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Xianwu Zhong
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China.,Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Shaofang Song
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China.,Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Yungang Liu
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Kuncai Chen
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China.,Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| |
Collapse
|
14
|
Huo Y, Wan Y, Qian X, Mahai G, Wang A, He Z, Xu S, Xia W. Variability, determinants, and associations with oxidative stress biomarkers of pentachlorophenol among Chinese pregnant women: A longitudinal study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158843. [PMID: 36122716 DOI: 10.1016/j.scitotenv.2022.158843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Pentachlorophenol (PCP) is ubiquitous and moderately persistent in the environment, and it is an identified human carcinogen. Previous animal experiments indicate that toxic mechanisms of PCP include oxidative stress. However, no epidemiological study has reported the association between PCP exposure and oxidative stress; such association in pregnant women, a vulnerable population, is of particular interest. This study aimed to characterize PCP concentrations in 2304 urine samples from 768 pregnant women, explore its determinants, and evaluate the associations between PCP exposure and three oxidative stress biomarkers across three trimesters. The median concentrations of PCP (100% detected) in the first, second, and third trimester were 0.61, 0.59, and 0.48 ng/mL, respectively, with a significant decrease trend. The intraclass correlation coefficient of specific gravity (SG)-adjusted PCP was 0.26, indicating high variability for PCP across the three trimesters. PCP concentrations were significantly higher in older, pre-pregnancy overweight, multiparous, high-income, and employed women during pregnancy. Urinary PCP was markedly lower in samples collected during spring compared to other seasons. Linear mixed effect models for repeated measures revealed that ln-transformed SG-adjusted PCP was significantly associated with increased 8-hydroxy-2'-deoxyguanosine (8-OHdG; percent change [%Δ] caused by each interquartile range increase of PCP: 46.2, 95% confidence interval [CI]: 40.2, 52.5) and 8-hydroxyguanosine (8-OHG;%Δ [95% CI]: 44.8 [40.1, 49.8]), but the positive association with 4-hydroxy2-nonenal-mercapturic acid (HNE-MA) was not significant. PCP was also positively associated with increased 8-OHdG and 8-OHG in each trimester using general linear models, and its associations with HNE-MA were only significant at T1 (%Δ [95% CI]: 19.1 [1.05, 40.3]) and T2 (%Δ [95% CI]: 12.6 [0.32, 26.3]). Our findings provide valuable information about PCP exposure characteristics during pregnancy and the potential effects of PCP exposure on oxidative stress in pregnant women.
Collapse
Affiliation(s)
- Yitao Huo
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei 430015, PR China.
| | - Xi Qian
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Gaga Mahai
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Aizhen Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Zhenyu He
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei 430015, PR China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
15
|
Chen L, Mao X, Li Z, Pan Y, Cao M, Zhang X, Wang P, Liang Y, Zhang Q. Polychlorinated dibenzo-p-dioxins/dibenzofurans and mercury in vegetable of the contaminated Ya-Er Lake area: Concentrations, sources, and health risk. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114374. [PMID: 36508824 DOI: 10.1016/j.ecoenv.2022.114374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/16/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The Ya-Er Lake is a seriously polychlorinated dibenzo-p-dioxins/dibenzo-furans (PCDD/Fs) and mercury (Hg)-contaminated lake by pesticide and chlor-alkali plants in China. The oxidation pond method has been conducted to control pollution, moreover, the contaminated sediment was dredged and stacked, becoming a sediment stack yard for vegetable cultivation. To assess effects of oxidation pond method and dredging programme on pollution management and long-term risks of PCDD/Fs and Hg, the concentrations of PCDD/Fs, total Hg (THg), and methylmercury (MeHg) in soil and vegetable sampled from the sediment stack yard were measured and analyzed. Significantly positive relationships between concentrations of PCDD/Fs (p < 0.01), THg, and MeHg (p < 0.05) in edible parts of vegetable and soil were found, suggesting that bioaccumulation from contaminated soil derived from sediment dredging is important sources of PCDD/Fs and Hg in vegetable. Much higher PCDD/Fs (12 ± 9 pg/g dw) and Hg (THg, 0.14 ± 0.23 μg/g dw; MeHg,12.63 ± 13.31 ng/g dw) levels in vegetable were found compared with those from other contaminated regions, indicative of serious PCDD/Fs and Hg pollution in vegetable harvested from contaminated soil. Finally, the calculated provisional tolerable daily intake (PTDI) values showed higher health risk of PCDD/Fs and Hg exposure to local residents through consumption of purple and white flowering stalk, and oilseed rape. Our study established a good model to evaluate the long-term risks of PCDD/Fs and Hg. Moreover, the results indicate that the oxidation pond method and dredging programme were not effective to remove PCDD/Fs and Hg in sediment, which shed new light on management strategy of PCDD/Fs and Hg pollution in contaminated regions.
Collapse
Affiliation(s)
- Lufeng Chen
- State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaowei Mao
- State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhunjie Li
- State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yu Pan
- State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Mengxi Cao
- State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Xing Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Pu Wang
- State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Yong Liang
- State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
16
|
Zhang W, Tang Y, Han Y, Huang L, Zhou W, Zhou C, Hu Y, Lu R, Wang F, Shi W, Liu G. Immunotoxicity of pentachlorophenol to a marine bivalve species and potential toxification mechanisms underpinning. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129681. [PMID: 36104908 DOI: 10.1016/j.jhazmat.2022.129681] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/06/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
The ubiquitous presence of pentachlorophenol (PCP) in ocean environments threatens marine organisms. However, its effects on immunity of marine invertebrates at environmentally realistic levels are still largely unknown. In this study, the immunotoxicity of PCP to a representative bivalve species was evaluated. In addition, its impacts on metabolism, energy supply, detoxification, and oxidative stress status were also analysed by physiological examination as well as comparative transcriptomic and metabolomic analyses to reveal potential mechanisms underpinning. Results illustrated that the immunity of blood clams was evidently hampered upon PCP exposure. Additionally, significant alterations in energy metabolism were detected in PCP-exposed clams. Meanwhile, the expressions of key detoxification genes and the in vivo contents (or activity) of key detoxification enzymes were markedly altered. Exposure to PCP also triggered significant elevations in intracellular ROS and MDA whereas evident suppression of haemocyte viability. The abovementioned findings were further supported by transcriptomic and metabolomic analyses. Our results suggest that PCP may hamper the immunity of the blood clam by (i) constraining the cellular energy supply through disrupting metabolism; and (ii) damaging haemocytes through inducing oxidative stress. Considering the high similarity of immunity among species, many marine invertebrates may be threatened by PCP, which deserves more attention.
Collapse
Affiliation(s)
- Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaosheng Zhou
- Zhejiang Mariculture Research Institute, Wenzhou 325005, China
| | - Yuan Hu
- Zhejiang Mariculture Research Institute, Wenzhou 325005, China
| | - Rongmao Lu
- Zhejiang Mariculture Research Institute, Wenzhou 325005, China
| | - Fang Wang
- Zhejiang Mariculture Research Institute, Wenzhou 325005, China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
17
|
Feng X, Sun H, Liu X, Zhu B, Liang W, Ruan T, Jiang G. Occurrence and Ecological Impact of Chemical Mixtures in a Semiclosed Sea by Suspect Screening Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10681-10690. [PMID: 35839457 DOI: 10.1021/acs.est.2c00966] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Stress from mixtures of synthetic chemicals is among the key issues that have significant adverse impacts on the marine ecosystems. A robust screening workflow integrating toxicological-based ranking schemes is still deficient for comprehensive investigation on the main constituents in chemical mixtures that contribute to the ecological risks. In this study, the presence and compositions of a collection of priority pollutants were monitored by suspect screening analysis of seawater and estuarine water samples from the semiclosed Bohai Sea. In total, 108 organic pollutants in nine use categories were identified. Pesticides, intermediates, plastic additives, and per- and polyfluoroalkyl substances were the extensively detected chemical groups. Varied distribution patterns of the pollutants were illustrated intuitively in distinctive sampling areas by hierarchical cluster analysis, which were mainly influenced by run-off inputs, ocean currents, and chemical use history. Ecological risks of chemicals with quantified residue levels were first assessed by the toxicity-weighted concentration ranking scheme, and pentachlorophenol was found as the main contributor in the investigating areas. By optimization of multiple alternative variables (e.g., instrumental response and detection frequency), extended ranking of all the identified pollutants was plausible under the toxicological priority index framework. Similarity in toxicological endpoints of the prioritized pollutants could further been screened by ToxAlerts. Aromatic amine was highlighted as the most frequently detected structural alert (SA) for genotoxic carcinogenicity and mutagenicity. These findings fully demonstrate rationality of the ranking schemes integrated into the suspect screening analysis for profiling contamination characteristics, assessing ecological risk potentials, and prioritizing SAs.
Collapse
Affiliation(s)
- Xiaoxia Feng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Helin Sun
- Key Laboratory for Ecological Environment in Coastal Areas, Ministry of Ecology and Environment, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Xing Liu
- Key Laboratory for Ecological Environment in Coastal Areas, Ministry of Ecology and Environment, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Bao Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqing Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Huo Y, Wan Y, Huang Q, Wang A, Mahai G, He Z, Xu S, Xia W. Pentachlorophenol exposure in early pregnancy and gestational diabetes mellitus: A nested case-control study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154889. [PMID: 35364152 DOI: 10.1016/j.scitotenv.2022.154889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/12/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Pentachlorophenol (PCP) is an endocrine-disrupting chemical that is ubiquitously found in the environment. Few studies have reported PCP exposure in pregnant women and its association with gestational diabetes mellitus (GDM). This nested case-control study aimed to determine the concentration of urinary PCP in early pregnancy and explore the association between PCP exposure and GDM risk. This study included 293 GDM cases and 586 non-GDM controls matched by fetal sex and maternal age from a birth cohort in Wuhan, China. PCP concentrations in spot urine samples collected between 8 and 16 weeks of gestation were measured by ultra-performance liquid chromatography-tandem mass spectrometry. Conditional logistic regression was used to assess the association between PCP exposure and the odds ratio of GDM. The median concentrations of specific gravity-adjusted PCP in controls and cases were 0.70 and 0.80 ng/mL, respectively, with no significant differences (P > 0.05). The multivariate-adjusted odds ratios (ORs) (95% confidence intervals) for GDM across quartiles of urinary PCP were 1 (reference), 1.63 (1.06-2.50), 1.70 (1.11-2.61), and 1.35 (0.87-2.08), respectively, showing a potential "inverted-U" shaped association. In addition, PCP levels and maternal age or fetal sex had significant interactions with GDM risk (both P for interaction < 0.05). Among older women and those carrying female fetuses, the ORs of GDM risk were higher. This study suggests that pregnant women in central China are widely exposed to PCP, and this is the first time to report that PCP exposure may increase the risk of GDM (with potential effect modifications by maternal age and fetal sex). The association observed is in agreement with PCP's "inverted-U" anti-estrogenic effect in vivo; thus, such an effect in humans at environmentally relevant doses should be studied further.
Collapse
Affiliation(s)
- Yitao Huo
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei 430015, PR China.
| | - Qingzhu Huang
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei 430015, PR China.
| | - Aizhen Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Gaga Mahai
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Zhenyu He
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei 430015, PR China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
19
|
Shi X, He C, Wang Y, Lu J, Guo H, Zhang B. Concurrent anaerobic chromate bio-reduction and pentachlorophenol bio-degradation in a synthetic aquifer. WATER RESEARCH 2022; 216:118326. [PMID: 35364351 DOI: 10.1016/j.watres.2022.118326] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Chromate [Cr(VI)] and pentachlorophenol (PCP) coexist widely in the environment and are highly toxic to public health. However, whether Cr(VI) bio-reduction is accompanied by PCP bio-degradation and how microbial communities can keep long-term stability to mediate these bioprocesses in aquifer remain elusive. Herein, we conducted a 365-day continuous column experiment, during which the concurrent removals of Cr(VI) and PCP were realized under anaerobic condition. This process allowed for complete Cr(VI) bio-reduction and PCP bio-degradation at an efficiency of 92.8 ± 4.2% using ethanol as a co-metabolic substrate. More specifically, Cr(VI) was reduced to insoluble chromium (III) and PCP was efficiently dechlorinated with chloride ion release. Collectively, Acinetobacter and Spirochaeta regulated Cr(VI) bio-reduction heterotrophically, while Pseudomonas mediated not only Cr(VI) bio-reduction but also PCP bio-dechlorination. The bio-dechlorinated products were further mineralized by Azospira and Longilinea. Genes encoding proteins for Cr(VI) bio-reduction (chrA and yieF) and PCP bio-degradation (pceA) were upregulated. Cytochrome c and intracellular nicotinamide adenine dinucleotide were involved in Cr(VI) and PCP detoxification by promoting electron transfer. Taken together, our findings provide a promising bioremediation strategy for concurrent removal of Cr(VI) and PCP in aquifers through bio-stimulation with supplementation of appropriate substrates.
Collapse
Affiliation(s)
- Xinyue Shi
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Chao He
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Ya'nan Wang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Jianping Lu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Huaming Guo
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China.
| |
Collapse
|
20
|
Thota S, Begum R, Kaur G, Bagam P, Dorsey W, Batra S. Pentachlorophenol mediated regulation of DAMPs and inflammation: In vitro study. Toxicol In Vitro 2022; 83:105378. [PMID: 35550411 DOI: 10.1016/j.tiv.2022.105378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/09/2022] [Accepted: 05/05/2022] [Indexed: 11/19/2022]
Abstract
Pentachlorophenol (PCP) was once widely employed organochlorine pesticide and wood preservative in United States. Due to its toxicity, the U.S. Environmental Protection Agency classified it as a restricted-use pesticide and established as a liver carcinogen. Earlier reports have indicated increased production of inflammatory mediators like IL-1β and TNF-α by immune cells, including NK cells, lymphocytes, or monocytes, on PCP exposure. Yet, there is little to no knowledge regarding the molecular mechanisms affected by acute and chronic exposure to PCP in humans. Considering this, we examined PCP-induced inflammation and downstream signaling in-(a) human lung adenocarcinoma cells (A549) with type II alveolar epithelial characteristics; and (b) human liver carcinoma cells (HepG2). We treated A549 and HepG2 cells with 1 μM and 10 μM of PCP for 24 h duration. We observed a significant induction of cytokine/chemokine production (IL-1β, IL-6, TNF-α, IL-8, CCL2, and CCL5) in PCP-treated- HepG2 and A549 cells. The mRNA expression analyses showed upregulated levels of danger associated molecular patterns (DAMPs)-HMGB1 and heat shock protein 70 (Hsp70); and TLR-4 receptor in PCP-challenged cells. Increased expression of transcription factors-NF-kB and STAT3 provide further insights into PCP-induced molecular mechanisms. Interestingly, antibody mediated blocking of DAMPs abrogated PCP-mediated transcriptional induction of cytokines/chemokines and transcription factors in HepG2 and A549 cells. Overall, our findings demonstrate important role of DAMPs in PCP-induced inflammatory responses.
Collapse
Affiliation(s)
- Shilpa Thota
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, Louisiana 70813, USA
| | - Rizwana Begum
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, Louisiana 70813, USA
| | - Gagandeep Kaur
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, Louisiana 70813, USA
| | - Prathyusha Bagam
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, Louisiana 70813, USA
| | - Waneene Dorsey
- Department of Biological Sciences, Grambling State University, Grambling, Louisiana, USA
| | - Sanjay Batra
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, Louisiana 70813, USA.
| |
Collapse
|
21
|
Namit A, Dowell W, Matiasek S, Webster J, Stachura DL. Pentachlorophenol has significant adverse effects on hematopoietic and immune system development in zebrafish (Danio rerio). PLoS One 2022; 17:e0265618. [PMID: 35333877 PMCID: PMC8956169 DOI: 10.1371/journal.pone.0265618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/04/2022] [Indexed: 11/18/2022] Open
Abstract
In November 2018, the Camp Fire devastated the mountain community of Paradise, CA. The burning of plastic pipes, wiring, construction materials, paint, and car batteries released toxic chemicals into the environment, contaminating the air, soil, and local waterways. Examples of toxins that were identified in the creeks and waterways in and around Paradise included pentachlorophenol (PCP), chrysene, and polyaromatic hydrocarbons. The effects of some of these chemicals on embryonic development, hematopoiesis (blood formation), and the immune system have not been thoroughly studied. Defining safe levels and the long-term effects of exposure is imperative to understanding and mitigating potential negative future outcomes. To perform these studies, we utilized zebrafish (Danio rerio), a commonly used vertebrate model system to study development. We observed the adverse effects of PCP on the development of zebrafish by using fluorescence microscopy, and saw that increased concentrations of PCP decreased the numbers of normal red blood cells and myeloid cells. Additionally, we observed that animal survival decreased in response to increasing concentrations of PCP. Furthermore, the prevalence of characteristic physical deformities such as tail curvature were greater in the treatment groups. Lastly, runx1, cmyb, and cd41 expression was reduced in fish treated with PCP. These results suggest that PCP has a previously underappreciated effect on blood and immune cell development and future studies should be performed to determine the molecular mechanisms involved.
Collapse
Affiliation(s)
- Aleeza Namit
- Department of Biological Sciences, California State University Chico, Chico, CA, United States of America
| | - William Dowell
- Department of Biological Sciences, California State University Chico, Chico, CA, United States of America
| | - Sandrine Matiasek
- Department of Geological and Environmental Sciences, California State University Chico, Chico, CA, United States of America
| | - Jackson Webster
- Department of Civil Engineering, California State University Chico, Chico, CA, United States of America
| | - David L. Stachura
- Department of Biological Sciences, California State University Chico, Chico, CA, United States of America
| |
Collapse
|
22
|
Valdez CA, Salazar EP, Leif RN. Trimethyloxonium-mediated methylation strategies for the rapid and simultaneous analysis of chlorinated phenols in various soils by electron impact gas chromatography-mass spectrometry. Sci Rep 2022; 12:1401. [PMID: 35082365 PMCID: PMC8792036 DOI: 10.1038/s41598-022-05463-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/24/2021] [Indexed: 11/11/2022] Open
Abstract
The efficient methylation of a panel of five industrial and environmentally-relevant chlorophenols (CPs) employing trimethyloxonium tetrafluoroborate (TMO) for their qualitative detection and identification by electron impact gas chromatography–mass spectrometry (EI-GC–MS) is presented. The protocol’s execution is simple and smoothly converts the phenols into their O-methylated counterparts conveniently at ambient temperature. The efficiency of two versions of the protocol was successfully tested in their ability to simultaneously derivatize five CPs (2-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, pentachlorophenol and triclosan) in six distinct, separate soil matrices (Nebraska EPA standard soil, Virginia Type A soil, Ottawa sand, Baker sand, Silt and Georgia EPA standard soil) when present at low levels (~ 10 μgg−1). The first version involves the direct derivatization of the spiked soils with the methylating salt while the second one involves an initial soil extraction step of the CPs followed by methylation. The MDL values for each methylated CP were determined and lower values were found (4.1–13.2 ng.mL−1) for both sand matrices (Ottawa and Baker) as well as for the Georgia EPA standard soil, while larger values (8.2–21.8 ng.mL−1) were found for the Virginia Type soil, Nebraska EPA standard soil and Silt. The presented protocol offers a safer and more practical alternative to the universally employed diazomethane method and can be readily applicable to matrices other than soils. Furthermore, the protocols described herein may find applicability to the methylation of other analytes bearing acidic protons.
Collapse
Affiliation(s)
- Carlos A Valdez
- Forensic Science Center, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA, 94550, USA. .,Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA. .,Nuclear and Chemical Sciences Division, L-090, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA.
| | - Edmund P Salazar
- Forensic Science Center, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA, 94550, USA.,Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA.,Nuclear and Chemical Sciences Division, L-090, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| | - Roald N Leif
- Forensic Science Center, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA, 94550, USA.,Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA.,Nuclear and Chemical Sciences Division, L-090, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| |
Collapse
|
23
|
Asgari G, Seid-Mohammadi A, Samargandi MR, Jamshidi R. Mineralization, kinetics, and degradation pathway of pentachlorophenol degradation from aqueous media via persulfate/dithionite process. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
24
|
Li M, Pei J, Xu M, Shu T, Qin C, Hu M, Zhang Y, Jiang M, Zhu C. Changing incidence and projections of thyroid cancer in mainland China, 1983-2032: evidence from Cancer Incidence in Five Continents. Cancer Causes Control 2021; 32:1095-1105. [PMID: 34152517 DOI: 10.1007/s10552-021-01458-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE An increasing incidence of thyroid cancer has been seen in China during the past several decades. The aim of this study was to analyze potential age, period, and cohort effects on the incidence of thyroid cancer in mainland China and to predict new cases up to 2032. METHODS We calculated age-adjusted and age-specific incidence rates of thyroid cancer, conducted an age-period-cohort analysis of 35,037 thyroid cancer incidence cases reported to Cancer Incidence in Five Continents from 1983 to 2012 in mainland China, and predicted incidence up to 2032 using the Bayesian age-period-cohort method. RESULTS The age-adjusted overall incidence rate of thyroid cancer increased from 1.93/100,000 in 1983-1987 to 12.18/100,000 in 2008-2012 among females and from 0.77/100,000 in 1983-1987 to 3.89/100,000 in 2008-2012 among males, with a female-to-male ratio of approximately 3.0 during the three decades. Strong birth cohort and period effects on the incidence of thyroid cancer were observed for both sexes, and such an increasing trend is predicted to continue for at least the next 20 years. More than 3.7 million new cases are projected in the 2028-2032 period. CONCLUSION The increasing trend of thyroid cancer in mainland China will cause a great burden in the future. In addition to the potential impact of improvement in medical diagnostics, potential exposure to risk factors have played a role in the observed rising trend. Further population-based epidemiologic studies are required to identify risk factors to aid in thyroid cancer prevention and control.
Collapse
Affiliation(s)
- Mandi Li
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jiao Pei
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.,Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Minghan Xu
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ting Shu
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chengjie Qin
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Meijing Hu
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yawei Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Jiang
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| | - Cairong Zhu
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
25
|
Kraševec I, Nemeček N, Lozar Štamcar M, Kralj Cigić I, Prosen H. Non-Destructive Detection of Pentachlorophenol Residues in Historical Wooden Objects. Polymers (Basel) 2021; 13:polym13071052. [PMID: 33801630 PMCID: PMC8036368 DOI: 10.3390/polym13071052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 11/25/2022] Open
Abstract
Wood is a natural polymeric material that is an important constituent of many heritage collections. Because of its susceptibility to biodegradation, it is often chemically treated with substances that can be harmful to human health. One of the most widely used wood preservatives was pentachlorophenol (PCP), which is still present in museum objects today, although its use has been restricted for about forty years. The development of non-destructive methods for its determination, suitable for the analysis of valuable objects, is therefore of great importance. In this work, two non-destructive solid-phase microextraction (SPME) methods were developed and optimized, using either headspace or contact mode. They were compared with a destructive solvent extraction method and found to be suitable for quantification in the range of 7.5 to 75 mg PCP/kg wood at room temperature. The developed semi-quantitative methods were applied in the wooden furniture depot of National Museum of Slovenia. PCP was detected inside two furniture objects using headspace mode. The pesticide lindane was also detected in one object. The indoor air of the depot with furniture was also sampled with HS SPME, and traces of PCP were found. According to the results, SPME methods are suitable for the detection of PCP residues in museum objects and in the environment.
Collapse
Affiliation(s)
- Ida Kraševec
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (I.K.); (H.P.)
| | - Nataša Nemeček
- National Museum of Slovenia, 1000 Ljubljana, Slovenia; (N.N.); (M.L.Š.)
| | | | - Irena Kralj Cigić
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (I.K.); (H.P.)
- Correspondence: ; Tel.: +386-1-479-8549
| | - Helena Prosen
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (I.K.); (H.P.)
| |
Collapse
|
26
|
Zhou Q, Wu WL, Lin CQ, Liang H, Long CY, Lv F, Pan JL, Liu ZT, Wang BY, Yang XF, Deng XL, Jiang AM. Occurrence and dietary exposure assessment of pentachlorophenol in livestock, poultry, and aquatic foods marketed in Guangdong Province, China: Based on food monitoring data from 2015 to 2018. J Food Sci 2021; 86:1132-1143. [PMID: 33598948 DOI: 10.1111/1750-3841.15653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 11/29/2022]
Abstract
As a persistent organic pollutant, pentachlorophenol (PCP) has serious impacts on human health. However, its presence in animal source food products sold in the Guangdong Province (GD) of China, and the resultant dietary exposure have not been elucidated. To address this gap, 3,100 samples from seven food categories, including beef, pork, mutton, offals, broilers, hen eggs, and farmed freshwater fish, marketed throughout four geographical regions of GD, were collected from 2015 to 2018. Gas chromatography coupled with mass spectrometry was employed to detect PCP levels in these food matrices. PCP was found in all food categories, but the average contamination levels were low, ranging from 0.40 µg/kg wet weight (ww) (hen eggs) to 5.85 µg/kg ww (offals). However, higher concentrations of PCP were detected (P < 0.05) in animal source food from the North region. Additionally, a temporal declining trend was observed in this four-year consecutive survey. The estimated human dietary exposure of PCP to population groups, including the general population and subgroups (male and female, children, and adults), was found to be far below the permissible daily intake (3 µg/kg body weight). Therefore, the health impacts of PCP should be correspondingly low for local residents, based on current toxicological knowledge. Regional exposure patterns varied due to different extents of contamination in the four areas, and pork, broilers, and freshwater fish were the major sources of dietary PCP exposure. PRACTICAL APPLICATION: As a persistent organic pollutant, pentachlorophenol (PCP) has serious impacts on human health. However, its presence in animal source food products sold in Guangdong Province of China, and the resultant dietary exposure have not been elucidated. In this study, we conducted an in-depth investigation on the occurrence of PCP in major foodstuff categories, including beef, pork, mutton, broilers, offals, hen eggs, and farmed freshwater fish, marketed in all 21 prefecture-level divisions of Guangdong Province, in order to provide integral insights for regulatory authorities.
Collapse
Affiliation(s)
- Quan Zhou
- College of Food Science, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Wei-Liang Wu
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, P. R. China.,Institute of Nutrition and Food Safety, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, P. R. China.,Academy of Preventive Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Chang-Qin Lin
- Testing Department of Chemistry and Light Industry, Zhongshan Supervision Testing Institute of Quality & Metrology, Zhongshan, 528405, P. R. China
| | - Hui Liang
- Institute of Nutrition and Food Safety, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, P. R. China.,Academy of Preventive Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Chao-Yang Long
- Institute of Nutrition and Food Safety, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, P. R. China.,Academy of Preventive Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Fen Lv
- Institute of Nutrition and Food Safety, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, P. R. China.,Academy of Preventive Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Jia-Liang Pan
- Academy of Preventive Medicine, Southern Medical University, Guangzhou, 510515, P. R. China.,Department of Hygiene Detection Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Zhi-Ting Liu
- Institute of Nutrition and Food Safety, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, P. R. China.,Academy of Preventive Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Bo-Yuan Wang
- Department of Public Health and Food Hygiene, Zhongshan Center for Disease Control and Prevention, Zhongshan, 528403, P. R. China
| | - Xing-Fen Yang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, P. R. China.,Academy of Preventive Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Xiao-Ling Deng
- Institute of Nutrition and Food Safety, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, P. R. China.,Academy of Preventive Medicine, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Ai-Min Jiang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, P. R. China
| |
Collapse
|
27
|
Torquetti CG, Guimarães ATB, Soto-Blanco B. Exposure to pesticides in bats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142509. [PMID: 33032135 DOI: 10.1016/j.scitotenv.2020.142509] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Bats provide a variety of ecological services that are essential to the integrity of ecosystems. Indiscriminate use of pesticides has been a threat to biodiversity, and the exposure of bats to these xenobiotics is a threat to their populations. This study presents a review of articles regarding the exposure of bats to pesticides published in the period from January 1951 to July 2020, addressing the temporal and geographical distribution of research, the studied species, and the most studied classes of pesticides. The research was concentrated in the 1970s and 1980s, mostly in the Northern Hemisphere, mainly in the USA. Of the total species in the world, only 5% of them have been studied, evaluating predominantly insectivorous species of the Family Vespertilionidae. Insecticides, mainly organochlorines, were the most studied pesticides. Most research was observational, with little information available on the effects of pesticides on natural bat populations. Despite the advances in analytical techniques for detecting contaminants, the number of studies is still insufficient compared to the number of active ingredients used. The effects of pesticides on other guilds and tropical species remain poorly studied. Future research should investigate the effects of pesticides, especially in sublethal doses causing chronic exposure. It is crucial to assess the impact of these substances on other food guilds and investigate how natural populations respond to the exposure to mixtures of pesticides found in the environment.
Collapse
Affiliation(s)
- Camila Guimarães Torquetti
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos 6627, Belo Horizonte, MG 30123-970, Brazil
| | - Ana Tereza Bittencourt Guimarães
- Laboratório de Investigações Biológicas, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Rua Universitária 2069, Cascavel, PR 85819-110, Brazil
| | - Benito Soto-Blanco
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos 6627, Belo Horizonte, MG 30123-970, Brazil.
| |
Collapse
|
28
|
Lachapelle A, Yavari S, Pitre FE, Courchesne F, Brisson J. Co-planting of Salix interior and Trifolium pratense for phytoremediation of trace elements from wood preservative contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:632-640. [PMID: 33222513 DOI: 10.1080/15226514.2020.1847034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Phytoextraction potential of a co-planting system was evaluated using a shrub and an herbaceous species and compared with monocultures. A greenhouse experiment with Salix interior and Trifolium pratense grown in combination or alone was conducted for 120 days in soil either uncontaminated or contaminated with wood preservatives containing mixed chromated copper arsenate and pentachlorophenol (PCP). The results showed that the plant species produced similar amounts of dry biomass per pot in monoculture and co-planting, whether growing in contaminated or uncontaminated soil. Arsenic (As), chromium (Cr) and copper (Cu) concentrations in root tissue of S. interior increased 8.6%, 65.9% and 4.5%, respectively, in co-planting compared to its monoculture. T. pratense had superior concentration of As (14% higher) in root tissue when co-planted. However, the higher trace elements concentrations in the plant tissues did not translate into measurable differences in total trace element removal per pot, except for As. The bioconcentration factor for Cu and As was high in the belowground portions of the plants in co-planting. PCP levels in the soil decreased to values near the limit of detection in all treatments. These results suggest that co-planting S. interior with T. pratense could lead to higher phytoextraction potential than monoculture.
Collapse
Affiliation(s)
- Anne Lachapelle
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Canada
| | - Sara Yavari
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Canada
| | - Frédéric E Pitre
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Canada
| | | | - Jacques Brisson
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Canada
| |
Collapse
|
29
|
Yan L, Yang P, Cai H, Chen L, Wang Y, Li M. ZIF-8-modified Au-Ag/Si nanoporous pillar array for active capture and ultrasensitive SERS-based detection of pentachlorophenol. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4064-4071. [PMID: 32760947 DOI: 10.1039/d0ay00388c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A novel SERS substrate based on a zeolitic imidazolate framework-8 (ZIF-8) film-modified Au-Ag/Si nanoporous pillar array (ZIF-8/Au-Ag/Si-NPA) was successfully fabricated for pentachlorophenol (PCP) detection. The Au-Ag/Si-NPA was synthesized through immersion plating and replacement reaction on the Si-NPA, which was prepared by the hydrothermal etching. The ZIF-8 film was coated via layer-by-layer growth technique. The ZIF-8 film is nanoporous and its thickness can be controlled by varying the growing number, which can significantly influence the SERS performance of the substrate. The substrate with optimal ZIF-8 thickness exhibited an excellent SERS response to PCP molecules. The SERS enhancement factor reached up to 1.8 × 107 and the detection limit was down to 10-13 M. Moreover, the substrate showed good uniformity with a relative standard deviation (RSD) of 8.7% and good selectivity. The PCP detection is hardly interfered by the coexisting organic compounds. The high SERS performance may be due to the enrichment effect of the ZIF-8 film. The ZIF-8 film could capture and enrich the trace PCP molecules by electrostatic interaction between the negatively charged PCP- and the positively charged ZIF-8. This work suggests that the ZIF-8/Au-Ag/Si-NPA substrate has potential application in SERS analysis of the polar organic pollutant detection in environmental media.
Collapse
Affiliation(s)
- Lingling Yan
- School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, 454000, P. R. China.
| | - Peng Yang
- School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, 454000, P. R. China.
| | - Hongxin Cai
- School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, 454000, P. R. China.
| | - Liang Chen
- School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, 454000, P. R. China.
| | - Yongqiang Wang
- School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, 454000, P. R. China.
| | - Ming Li
- School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, 454000, P. R. China.
| |
Collapse
|
30
|
Ghaemi F, Amiri A. Microcrystalline cellulose/metal−organic framework hybrid as a sorbent for dispersive micro-solid phase extraction of chlorophenols in water samples. J Chromatogr A 2020; 1626:461386. [DOI: 10.1016/j.chroma.2020.461386] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022]
|
31
|
Lei L, Qiao K, Guo Y, Han J, Zhou B. Titanium dioxide nanoparticles enhanced thyroid endocrine disruption of pentachlorophenol rather than neurobehavioral defects in zebrafish larvae. CHEMOSPHERE 2020; 249:126536. [PMID: 32217413 DOI: 10.1016/j.chemosphere.2020.126536] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
This study investigated the influences of titanium dioxide nanoparticles (n-TiO2) on the thyroid endocrine disruption and neurobehavioral defects induced by pentachlorophenol (PCP) in zebrafish (Danio rerio). Embryos (2 h post-fertilization) were exposed to PCP (0, 3, 10, and 30 μg/L) or in combination with n-TiO2 (0.1 mg/L) until 6 days post-fertilization. The results showed that n-TiO2 alone did not affect thyroid hormones levels or transcriptions of related genes. Exposure to PCP significantly decreased thyroid hormone thyroxine (T4) content, thyroid stimulating hormone (TSH) level and transcription of thyroglobulin (tg), but significantly increased 3,5,3'-triiodothyronine (T3) level and upregulation of deiodinase 2 (dio2). In comparison, the co-exposure with n-TiO2 significantly reduced the content of T3 by depressing the potential targets, tg and dio2. For neurotoxicity, the single and co-exposure resulted in similar effects with significant downregulation of neurodevelopment-related genes (ELAV like RNA Binding Protein 3, elavl3; Growth associated protein-43, gap43; α-tubulin) and inhibited locomotor activity. The results indicated that the presence of n-TiO2 significantly enhanced the PCP-induced thyroid endocrine disruption but not the neurobehavioral defects in zebrafish larvae.
Collapse
Affiliation(s)
- Lei Lei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Science, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kun Qiao
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
| | - Yongyong Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Science, Wuhan, 430072, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Science, Wuhan, 430072, China.
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Science, Wuhan, 430072, China
| |
Collapse
|
32
|
Priority Setting for Management of Hazardous Biocides in Korea Using Chemical Ranking and Scoring Method. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17061970. [PMID: 32192129 PMCID: PMC7143513 DOI: 10.3390/ijerph17061970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 11/20/2022]
Abstract
Biocides are non-agricultural chemical agents for the prevention of unhygienic pests. The worldwide demand for biocidal products has been rapidly increasing. Meanwhile, biocides have been causing negative health effects for decades, resulting in public health scares. Therefore, governments around the world have tried to strictly control biocides, and it is necessary to prioritize the health risks of biocides for efficient management. Chemical ranking and scoring (CRS) methods have been developed for the effective management of chemicals. However, existing methods do not use suitable variables to evaluate biocides, thus possibly underestimating or overestimating the actual health risks. We developed a new CRS method that reflects the exposure and toxicity characteristics of biocides. Eleven indicators were chosen as appropriate for prioritizing biocides, and scoring based on the globally harmonized system of classification and labeling of chemicals (GHS) improved the efficiency of the method. Correlations between individual indicators in this study were low (−0.151–0.325), indicating that each indicator was independent and well-chosen for prioritizing biocides. The effect of each indicator on the total score showed that carcinogenicity, mutagenicity, and reproductive toxicity (CMR) chemicals ranked high with r = 0.558. This result demonstrated that the most dangerous toxicants should play a more decisive role in the top ranking than the others. We expect that our method can be efficiently used to screen regulated biocides by prioritizing their health hazards, thus leading to better policy decision making about biocide use.
Collapse
|
33
|
Zhu M, Lv X, Franks AE, Brookes PC, Xu J, He Y. Maize straw biochar addition inhibited pentachlorophenol dechlorination by strengthening the predominant soil reduction processes in flooded soil. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:122002. [PMID: 31901711 DOI: 10.1016/j.jhazmat.2019.122002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 12/04/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Biochar has received increasing attention for its multifunctional applications as a soil amendment. The dual effect of biochar on reductive organic pollutants and soil biogeochemical processes under anaerobic environments in parallel has yet to be fully explored. In this study, anaerobic batch experiments were conducted to examine the effect of biochar on both reductive transformation of pentachlorophenol (PCP) and soil redox processes in flooded soil. Compared to biochar-free controls, the reductive dechlorination of PCP was significantly inhibited following biochar addition, with the inhibition degree increased with increasing amount of biochar. Dissimilatory iron and sulfate reduction, as well as the production of methane, were significantly enhanced following biochar addition. The bacterial and archaeal communities showed a functional selection responded to the addition of biochar and PCP, with the core functional groups at the genus level including Dethiobacter, Clostridium, Geosporobacter, Desulfuromonas, Desulfatitalea, and Methanosarcina. These findings indicated that biochar could affect soil microbial redox processes and may act as an electron mediator altering electron distribution from PCP dechlorination to the predominant soil reduction processes, and increase understanding regarding biochar's comprehensive effects on the remediation of natural flooded soil polluted by chlorinated organic pollutants that can be degraded reductively.
Collapse
Affiliation(s)
- Min Zhu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Xiaofei Lv
- Department of Environmental Engineering, China Jiliang University, Hangzhou 310018, China
| | - Ashley E Franks
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Victoria 3086, Australia; Centre for Future Landscape, La Trobe University, Melbourne, Victoria, Australia
| | - Philip C Brookes
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Yan He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China.
| |
Collapse
|
34
|
Zhu BZ, Xu D, Qin L, Huang CH, Xie LN, Mao L, Shao J, Kalyanaraman B. An unexpected new pathway for nitroxide radical production via more reactve nitrogen-centered amidyl radical intermediate during detoxification of the carcinogenic halogenated quinones by N-alkyl hydroxamic acids. Free Radic Biol Med 2020; 146:150-159. [PMID: 31302229 DOI: 10.1016/j.freeradbiomed.2019.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 01/11/2023]
Abstract
We found previously that nitroxide radical of desferrioxamine (DFO•) could be produced from the interaction between the classic iron chelating agent desferrioxamine (DFO, an N-alkyl trihydroxamic acid) and tetrachlorohydroquinone (TCHQ), one of the carconogenic quinoind metabolites of the widely used wood preservative pentachlorophenol. However, the underlying molecular mechanism remains unclear. Here N-methylacetohydroxamic acid (N-MeAHA) was synthesized and used as a simple model compound of DFO for further mechanistic study. As expected, direct ESR studies showed that nitroxide radical of N-MeAHA (Ac-(CH3)NO•) can be produced from N-MeAHA/TCHQ. Interestingly and unexpectedly, when TCHQ was substituted by its oxidation product tetrachloro-1,4-benzoquinone (TCBQ), although Ac-(CH3)NO• could also be produced, no concurrent formation of tetrachlorosemiquinone radical (TCSQ•) and TCHQ was detected, suggesting that Ac-(CH3)NO• did not result from direct oxidation of N-MeAHA by TCSQ• or TCBQ as proposed previously. To our surprise, a new nitrogen-centered amidyl radical was found to be generated from N-MeAHA/TCBQ, which was observed by ESR with the spin-trapping agents and further unequivacally identified as Ac-(CH3)N• by HPLC-MS. The final product of amidyl radical was isolated and identified as its corresponding amine. Analogous radical homolysis mechanism was observed with other halogenated quinoid compounds and N-alkyl hydroxamic acids including DFO. Interestingly, amidyl radicals were found to induce both DNA strand breaks and DNA adduct formation, suggesting that N-alkyl hydroxamic acids may exert their potential side-toxic effects via forming the reactive amidyl radical species. This study represents the first report of an unexpected new pathway for nitroxide radical production via hydrogen abstration reaction of a more reactive amidyl radical intermediate during the detoxification of the carcinogenic polyhalogenated quinones by N-alkyl hydroxamic acids, which provides more direct experimental evidence to better explain not only our previous finding that excess DFO can provide effective but only partial protection against TCHQ (or TCBQ)-induced biological damage, and also the potential side-toxic effects induced by DFO and other N-alkyl hydroxamic acid drugs.
Collapse
Affiliation(s)
- Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA.
| | - Dan Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Li Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Lin-Na Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Li Mao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jie Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | | |
Collapse
|
35
|
El-Bialy HA, Khalil OAA, Gomaa OM. Bacterial-mediated biodegradation of pentachlorophenol via electron shuttling. ENVIRONMENTAL TECHNOLOGY 2019; 40:2416-2424. [PMID: 29455620 DOI: 10.1080/09593330.2018.1442501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/15/2018] [Indexed: 06/08/2023]
Abstract
Pentachlorophenol (PCP) degradation by soil indigenous bacteria represents a practical and cost-effective solution. In the present study, bacteria isolated from paddy soil was investigated and the role of electron shuttling (ES) in the PCP degradation process was assessed. Two strains demonstrated the highest PCP degradation of 93.5% and 94.88% in the presence of citrate and were identified using 16S rRNA phylogenetic analysis as Pseudomonas chengduensis and Pseudomonas plecoglossicida, respectively. Both strains showed higher PCP degradation in free form as opposed to a reduced activity in immobilized and respiratory impaired form. The addition of pyruvate resulted in about 80% PCP degradation in 5 days for P. chengduensis, on the other hand, P. plecoglossicida showed the same result under anaerobic conditions whether pyruvate was added or not. Phenazine and the outer membrane c-type cytochrome were reported only for P. chengduensis as opposed to P. plecoglossicida. The results indicate that despite following different approaches in PCP degradation, both strains are useful in PCP clean-up under aerobic and anaerobic conditions and in free direct contact. The degradation is enhanced via ES. This is considered both an effective and feasible technology for in situ clean-up of contaminated sites or on-site bioreactors.
Collapse
Affiliation(s)
- Heba A El-Bialy
- a Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) , Cairo , Egypt
| | - Ola A A Khalil
- a Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) , Cairo , Egypt
| | - Ola M Gomaa
- a Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) , Cairo , Egypt
| |
Collapse
|
36
|
Ma HY, Zhao L, Guo LH, Zhang H, Chen FJ, Yu WC. Roles of reactive oxygen species (ROS) in the photocatalytic degradation of pentachlorophenol and its main toxic intermediates by TiO 2/UV. JOURNAL OF HAZARDOUS MATERIALS 2019; 369:719-726. [PMID: 30831524 DOI: 10.1016/j.jhazmat.2019.02.080] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
Pentachlorophenol (PCP) caused water quality problems owe to its past widespread application and stability, harmful to human health. Photocatalysis, which was mainly involved in the reactive oxygen species (ROS) reaction, has large potential as water treatment process. However, the roles of ROS on the degradation process of PCP are not yet clearly defined. The main objectives of this work were to investigate the roles of ROS involved in the whole degradation of PCP and main toxic intermediates and elucidate the degradation mechanisms. Tetrachloro-1,4-benzo/hydroquinone (TCBQ/TCHQ), trichlorohydroxy-1,4-benzoquinone (OH-TrCBQ) and 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone (OH-DCBQ) were identified as main intermediates. The roles of generated ROS including OH, O2- and H2O2 were systematically explored for the degradation of PCP and its main intermediates using radical quenchers. The results showed that, OH played the dominant role for the degradation of PCP, O2- played more contributing roles for the degradation of TCBQ, H2O2 exhibited major contribution for the degradation of OH-TrCBQ and OH-DCBQ. These results offered us an insight into the degradation mechanism of PCP involved with ROS. It can also serve as the basis for controlling and blocking the generation of highly toxic substances through regulating the ROS generation during the PCP degradation.
Collapse
Affiliation(s)
- Hai-Yan Ma
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lixia Zhao
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Liang-Hong Guo
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hui Zhang
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing 100085, China
| | - Feng-Jie Chen
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wan-Chao Yu
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
37
|
Maheshwari N, Khan FH, Mahmood R. Pentachlorophenol-induced cytotoxicity in human erythrocytes: enhanced generation of ROS and RNS, lowered antioxidant power, inhibition of glucose metabolism, and morphological changes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:12985-13001. [PMID: 30895543 DOI: 10.1007/s11356-019-04736-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
Pentachlorophenol (PCP) is a class 2B human carcinogen that is used as an insecticide, herbicide, and wood preservative. PCP is rapidly absorbed and enters the blood where it can interact with erythrocytes. We have examined the effect of PCP on human erythrocytes. Treatment of erythrocytes with PCP increased the intracellular generation of reactive oxygen and nitrogen species. It also increased lipid and protein oxidation accompanied by decrease in glutathione levels and total sulfhydryl content. The activities of all major antioxidant enzymes were altered. The antioxidant power was significantly impaired resulting in lower free radical quenching and metal reducing ability of the PCP-treated cells. PCP exposure also inhibited the activities of enzymes of glycolysis and pentose phosphate shunt, the two pathways of glucose metabolism in erythrocytes. Heme degradation was enhanced leading to the release of free iron. Incubation of erythrocytes with PCP caused significant cell lysis suggesting plasma membrane damage which was also evident from inhibition of bound enzymes. Scanning electron microscopy of erythrocytes confirmed these biochemical results and showed that PCP treatment converted the normal biconcave discoids to echinocytes and other irregularly shaped cells. Thus, PCP induces oxidative and nitrosative stress in erythrocytes, alters the enzymatic and nonenzymatic antioxidant defense systems, inhibits glucose metabolism, and causes significant modifications in cellular morphology.
Collapse
Affiliation(s)
- Nikhil Maheshwari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Fahim Halim Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India.
| |
Collapse
|
38
|
Degradation of pentachlorophenol by high temperature hydrolysis. ACTA INNOVATIONS 2019. [DOI: 10.32933/actainnovations.31.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The long-term use of plant protection products in agriculture, including pentachlorophenol (PCP), has contributed to their widespread distribution in the natural environment. So far, no cheap and effective techniques for removing chlorophenols by physicochemical or biological methods have been developed. Therefore, alternative methods of neutralizing them are currently being sought. The aim of the study was to investigate the possibility of pentachlorophenol decomposition by high temperature thermohydrolysis. The decomposition process was carried out at a constant pressure of 25 MPa, in the temperature range of 20°C to 500°C and at various volumetric flows of PCP through the reactor. Detailed analysis of the results showed that the process and degree of pentachlorophenol reduction depended on residence time in the reactor and the process temperature. The obtained results indicate that thermohydrolysis in supercritical water is not an effective method to neutralize pentachlorophenol. The high costs of conducting this process together with an average degree of PCP conversion (the conversion of pentachlorophenol at the lowest volumetric flow rate through the reactor reached about 45%) cause that thermohydrolysis at high temperature is not a costeffective method of neutralizing pentachlorophenol.
Collapse
|
39
|
Huang X, Han X, Huang Z, Yu M, Zhang Y, Fan Y, Xu B, Zhou K, Song L, Wang X, Lu C, Xia Y. Maternal pentachlorophenol exposure induces developmental toxicity mediated by autophagy on pregnancy mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:829-836. [PMID: 30597782 DOI: 10.1016/j.ecoenv.2018.11.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
Pentachlorophenol (PCP) is often used as chlorinated hydrocarbon herbicides and insecticides, which has been suggested that toxicity of carcinogenic effect, teratogenic effect and reproductive system. However, there was still precious known about the underlying molecular mechanism of PCP on mammalian early development. To explore the developmental toxicity of PCP and its potential mechanism, pregnancy ICR mice except controls were exposed to PCP (0.02, 0.2 or 2 mg/kg) during gestation day (GD) 0.5 to GD8.5 in this study. We found that the fetal loss rate was increased and placental chorionic villi structure was disorder in hematoxylin-eosin staining (HE) on GD16.5. Meanwhile, autophagosomes were observed in chorionic villi through Transmission Electron Microscope (TEM). Moreover, the mRNA and/or protein expression of P62, LC3-ІІ/LC3-І and Beclin1 were increased in placenta, indicating the occurrence of autophagy. Then, to further explore the autophagy mechanism, microRNA (miR)-30a-5p, an expression inhibitor of Beclin1, was predicted through bioinformatics predictions and RT-PCR, and it was reduced in PCP-treated mice. Transfection and luciferase reporter gene test were used to verify the interaction between Beclin1 and miR-30a-5p. These results firstly indicate that, PCP exposure could downregulate the expression of miR-30a-5p, and then induced autophagy through upregulation of Beclin1 to result in fetal loss. Our study laid a foundation for understanding the PCP developmental toxicity through autophagy.
Collapse
Affiliation(s)
- Xiaomin Huang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiumei Han
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhenyao Huang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mingming Yu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yan Zhang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yun Fan
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Bo Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Kun Zhou
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ling Song
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
40
|
Yu C, Wang C, Lu Z, Zhang C, Dai W, Yu S, Lin S, Zhang Q. The endocrine-disrupting potential of four chlorophenols by in vitro and in silico assay. CHEMOSPHERE 2019; 218:941-947. [PMID: 30609499 DOI: 10.1016/j.chemosphere.2018.11.199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
Chlorophenols (CPs) have mainly been used as a biocide, wood treatment agent and a byproduct of bleaching in paper mills. They have been a topic of concern due to their wide spread and potential effects on human and wildlife. However, data on the thresholds and effects of the number of chlorine atoms on the endocrine-disrupting potential of CPs remain scarce. In this study, we adopted two in vitro models (reporter gene assays and H295R cell line) to investigate the endocrine-disrupting effects of four CPs (pentachlorophenol (PCP), 2,4,6-trichlorophenol (2,4,6-TCP), 2,4-dichlorophenol (2,4-DCP) and 2-chlorophenol (2-CP)). The molecular docking platform was adopted to further confirm the results of the in vitro assessment. Our results revealed that PCP exhibited oestrogen receptor alpha (ERα) agonistic activity at the concentration of 10-5 M and the value of REC20 was 1.9 × 10-6 M. PCP and 2, 4, 6-TCP showed anti-oestrogenic activities with a RIC20 value of 2.8 × 10-7and 2.9 × 10-6 M, respectively. Notably, only PCP exhibited thyroid hormone receptor beta (TRβ) antagonistic activity occurred at the concentration of 10-5 M, with a RIC20 value of 1.3 × 10-6 M. The oestrogenic and thyroid hormone effects of CPs may be dependent on the number of chlorine atoms. A higher number of chlorine atoms indicated the higher effect of four CPs. The results of molecular docking were consistent with the reporter gene assay. For H295R cell line assay, PCP induced the StAR upregulation, while CYP17 was downregulated in a concentration-dependent manner by PCP and 2, 4, 6-TCP.
Collapse
Affiliation(s)
- Chang Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Chi Wang
- Longyou Huashui Drinking Water Industry Company, Quzhou, Zhejiang, 324400, China
| | - Zhengbiao Lu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Chen Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Wei Dai
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Shuqing Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Shu Lin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China.
| |
Collapse
|
41
|
Assefa A, Tysklind M, Bignert A, Josefsson S, Wiberg K. Sources of polychlorinated dibenzo-p-dioxins and dibenzofurans to Baltic Sea herring. CHEMOSPHERE 2019; 218:493-500. [PMID: 30497032 DOI: 10.1016/j.chemosphere.2018.11.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
Levels of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in herring (Clupea harengus) remain high in several parts of the Baltic Sea, despite declines in PCDD/F emissions since the 1980s. The reasons behind this are not well understood. This study applied a statistical modeling approach where sources of PCDD/Fs that contaminate Baltic biota were quantitatively assessed by analyzing existing datasets. PCDD/F patterns were extracted from a herring dataset using positive matrix factorization (PMF). The extracted biota patterns were transformed into sediment patterns using fish-to-sediment transformation factors, and the resulting patterns were compared with known source PCDD/F patterns. The model distinguished three model patterns, which explained 85% of the data. These patterns were matched to tetra-chlorophenol (TCP), penta-chlorophenol/atmospheric background (PCP/AB), and thermal source patterns, respectively. The thermal source was the largest contributor to toxic equivalents (TEQ) in herring, but the level decreased from 42 ± 9.0 pg TEQ g-1 lipid weight (lw) before year 2000 (pre-2000) to 15 ± 2.4 pg TEQ g-1 lw post-2000, i.e., a decline of around one-third in the original TEQ concentration. The contribution of TCP more than doubled, from 2.1 ± 0.62 pg TEQ g-1 lw to 5.6 ± 1.1 pg TEQ g-1 lw, and the relative contribution of PCP/AB also increased. These increasing trends suggest that, as primary air emissions of PCDD/Fs are managed and levels decline, the impact of TCP and PCP/AB sources on Baltic Sea biota will become more important over time and that PCDD/F-contaminated sites in coastal areas and marine environments require more attention.
Collapse
Affiliation(s)
- Anteneh Assefa
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden; Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden.
| | - Mats Tysklind
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden.
| | - Anders Bignert
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden.
| | - Sarah Josefsson
- Geological Survey of Sweden, Box 670, SE-751 28, Uppsala, Sweden.
| | - Karin Wiberg
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden.
| |
Collapse
|
42
|
Long M, Ilhan ZE, Xia S, Zhou C, Rittmann BE. Complete dechlorination and mineralization of pentachlorophenol (PCP) in a hydrogen-based membrane biofilm reactor (MBfR). WATER RESEARCH 2018; 144:134-144. [PMID: 30025265 DOI: 10.1016/j.watres.2018.06.071] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/29/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Complete biodegradation and mineralization of pentachlorophenol (PCP), a priority pollutant in water, is challenging for water treatment. In this study, a hydrogen (H2)-based membrane biofilm reactor (MBfR) was applied to treat PCP, along with nitrate and sulfate, which often coexist in contaminated groundwater. Throughout 120-days of continuous operation, almost 100% of up to 10 mg/L PCP was removed with minimal intermediate accumulation and in parallel with complete denitrification of 20 mg-N/L nitrate. PCP initially was reductively dechlorinated to phenol, which was then mineralized to CO2 through pathways that began with aerobic activation via monooxygenation by Xanthobacter and anaerobic activation via carboxylation by Azospira and Thauera. Sulfur cycling induced by SO42- reduction affected the microbial community: The dominant bacteria became sulfate-reducers Desulfomicrobium, sulfur-oxidizers Sulfuritalea and Flavobacterium. This study provides insights and a promising technology for bioremediation of water contaminated with PCP, nitrate, and sulfate.
Collapse
Affiliation(s)
- Min Long
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Biodesign Swette Center for Environmental Biotechnology, Arizona State University, USA
| | - Zehra Esra Ilhan
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, USA
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, USA.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, USA
| |
Collapse
|
43
|
Zhang QQ, Qiao M. Toxic effects of pentachlorophenol and 2,2',4,4'-tetrabromodiphenyl ether on two generations of Folsomia candida. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:499-504. [PMID: 30015196 DOI: 10.1016/j.ecoenv.2018.07.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/02/2018] [Accepted: 07/07/2018] [Indexed: 06/08/2023]
Abstract
The standard Folsomia candida test (ISO 11267), in which only the survival and reproduction of the parental generation (F0) were determined, is insufficient to assess the toxicity of chemicals, like endocrine disrupting chemicals (EDCs), since the effects of EDCs could last for several generations and sometimes can be transgenerational. It's necessary to assess the effects on subsequent generations to address the long-term consequences of these chemicals exposure. In this study, the effects of pentachlorophenol (PCP) and 2,2',4,4'-tetrabromodiphenyl (BDE47) were assessed on F0 and the first filial generation (F1) of F. candida after 28-day or 10-day exposure of F0. In the 28-day exposure method, F0 was exposed to PCP or BD47 for 28 days and F1 was exposed for about 21 days. In the 10-day exposure method, F0 was exposed for 10 days and F1 was not exposed. The F. candida reproduction of F0 and F1 can be assessed in both methods, while transgenerational effects can further be evaluated in the 10-day exposure method. The numbers of F1 and F2 (second filial generation) juveniles in the 28-day exposure method and F1 juveniles in the 10-day exposure method decreased significantly for the PCP treatment. For BDE47, only the number of F1 juveniles in the 28-day exposure method significantly decreased. The EC50 values of F0 reproduction (the number of F1 juveniles) in the 28-day exposure method were 89 and 306 mg/kg dry soil for PCP and BDE47, respectively. Results suggested that PCP could affect F. candida egg hatching or juvenile survival and adult reproductive capacity, while BDE47 was more likely to affect egg hatchability or juvenile survival rather than adult reproductive capacity. It also indicated that F. candida exposed to PCP or BDE47 could recover in clean soil. Transgenerational effects were not observed for neither PCP nor BDE47 in this study.
Collapse
Affiliation(s)
- Qian-Qian Zhang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Qiao
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
44
|
Verbrugge LA, Kahn L, Morton JM. Pentachlorophenol, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo furans in surface soil surrounding pentachlorophenol-treated utility poles on the Kenai National Wildlife Refuge, Alaska USA. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:19187-19195. [PMID: 29858999 PMCID: PMC6061508 DOI: 10.1007/s11356-018-2269-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/07/2018] [Indexed: 06/04/2023]
Abstract
Composite surface soil samples were collected at 0, 25, and 50 cm from the base of 12 utility poles on the Kenai National Wildlife Refuge in Alaska, to assess the extent to which pentachlorophenol, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo furans may have leached from pentachlorophenol-treated poles. Six pairs of utility poles were included, consisting of an "old" pole manufactured in 1959 or 1963, a "new" pole manufactured within the past 20 years, and a suitable background soil sample from the same vicinity. Old poles had greater concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) equivalents (TEQs) near the pole base and at 25 cm than "new" poles did. For all 12 poles combined, the mean pentachlorophenol levels in soil were 1810, 157, and 17.8 ppm dry weight (d.w.) near the pole bases, at 25 and 50 cm from the poles, respectively, while the mean total TEQ levels in soil were 15,200, 5170, and 1510 parts per trillion d.w. at those distances. Surface soil levels of pentachlorophenol and TCDD-TEQs exceeded both human health and ecological risk-based screening levels. The design and results of this study were similar to another project in Montreal, Quebec in Canada. Together the results are cause for concern, indicating that millions of similarly treated utility poles in North America may be point sources of pentachlorophenol and dioxins/furans to soil.
Collapse
Affiliation(s)
- Lori A Verbrugge
- U.S. Fish and Wildlife Service, Alaska Regional Office, 1011 E. Tudor Rd, Anchorage, AK, USA.
| | - Lynnda Kahn
- U.S. Fish and Wildlife Service, Kenai National Wildlife Refuge, P.O. Box 2139, Soldotna, AK, USA
| | - John M Morton
- U.S. Fish and Wildlife Service, Kenai National Wildlife Refuge, P.O. Box 2139, Soldotna, AK, USA
| |
Collapse
|
45
|
Zhu M, Zhang L, Zheng L, Zhuo Y, Xu J, He Y. Typical Soil Redox Processes in Pentachlorophenol Polluted Soil Following Biochar Addition. Front Microbiol 2018; 9:579. [PMID: 29636746 PMCID: PMC5880936 DOI: 10.3389/fmicb.2018.00579] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/13/2018] [Indexed: 11/28/2022] Open
Abstract
Reductive dechlorination is the primary pathway for environmental removal of pentachlorophenol (PCP) in soil under anaerobic condition. This process has been verified to be coupled with other soil redox processes of typical biogenic elements such as carbon, iron and sulfur. Meanwhile, biochar has received increasing interest in its potential for remediation of contaminated soil, with the effect seldom investigated under anaerobic environment. In this study, a 120-day anaerobic incubation experiment was conducted to investigate the effects of biochar on soil redox processes and thereby the reductive dechlorination of PCP under anaerobic condition. Biochar addition (1%, w/w) enhanced the dissimilatory iron reduction and sulfate reduction while simultaneously decreased the PCP reduction significantly. Instead, the production of methane was not affected by biochar. Interestingly, however, PCP reduction was promoted by biochar when microbial sulfate reduction was suppressed by addition of typical inhibitor molybdate. Together with Illumina sequencing data regarding analysis of soil bacteria and archaea responses, our results suggest that under anaerobic condition, the main competition mechanisms of these typical soil redox processes on the reductive dechlorination of PCP may be different in the presence of biochar. In particularly, the effect of biochar on sulfate reduction process is mainly through promoting the growth of sulfate reducer (Desulfobulbaceae and Desulfobacteraceae) but not as an electron shuttle. With the supplementary addition of molybdate, biochar application is suggested as an improved strategy for a better remediation results by coordinating the interaction between dechlorination and its coupled soil redox processes, with minimum production of toxic sulfur reducing substances and relatively small emission of greenhouse gas (CH4) while maximum removal of PCP.
Collapse
Affiliation(s)
- Min Zhu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, China
| | - Lujun Zhang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, China
| | - Liwei Zheng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, China
| | - Ying Zhuo
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, China
| | - Yan He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, China
| |
Collapse
|
46
|
Bettinetti R, Kopp-Schneider A, Vignati DAL. The European water-based environmental quality standard for pentachlorophenol is NOT protective of benthic organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 613-614:39-45. [PMID: 28898810 DOI: 10.1016/j.scitotenv.2017.09.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
Risk management of toxic substances is often based on Environmental Quality Standards (EQS) set for the water compartment, assuming they will also protect benthic organisms. In the absence of experimental data, EQS for sediments can be estimated by the equilibrium partitioning approach. The present study investigates whether this approach is protective of benthic organisms against pentachlorophenol (PCP), a legacy contaminant and EU priority substance still used in some parts of the world. Three freshwater species of invertebrates with different life cycles and feeding behaviors (the oligochaetes Lumbriculus variegatus, Tubifex tubifex and the dipteran insect Chironomus riparius) were exposed to PCP spiked sediments (2.10-46.03mgPCP/kg d.w. plus controls) in laboratory standard tests. Exposure duration was 28days for T. tubifex and L. variegatus and 10 and 28days for C. riparius; according to the corresponding OECD guidelines. For each investigated end-point, dose-response data were normalized to the mean control and fitted to a four-parameter log-logistic model for calculating the corresponding EC50 and EC10. The ranges for EC50 and EC10 estimates were 4.39 (Chironomus riparius-emergence)-27.50 (Tubifex tubifex-cocoon) and 0.30 (T. tubifex-young worms) -16.70 (T. tubifex-cocoon) mg/kg d.w., respectively. The EC50 and the EC10 values of L. variegatus were within these ranges. Following the EU Technical Guidance for deriving EQS, the lowest EC10 value of 0.30mg/kg (T. tubifex-young worms) resulted in a PCP quality standard (QS) for sediments of 30ng/g, about one fourth of the tentative QS of 119ng/g estimated by the equilibrium partitioning (EqP) approach. The response of benthic biota to PCP varied across organisms and across end-points for the same organism, so that the use of sediment PCP-QS calculated using the EqP-approach may be under-protective of the most sensitive organisms. Information on the possible effects of PCP on resident organisms must therefore be collected for appropriately managing aquatic systems.
Collapse
Affiliation(s)
| | - Annette Kopp-Schneider
- Division of Biostatistics, German Cancer Research Center (DKFZ), 69115 Heidelberg, Germany
| | - Davide A L Vignati
- CNRS and Université de Lorraine, LIEC-UMR 7360, 8 rue du Général Delestraint, 57070 Metz, France
| |
Collapse
|
47
|
Ya Y, Jiang C, Yan F, Xie L, Li T, Wang Y, Wei L. A novel electrochemical sensor for chlorophenols based on the enhancement effect of Al-doped mesoporous cellular foam. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.11.074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Deng Y, Chang Q, Yin K, Liu C, Wang Y. A highly stable electrochemiluminescence sensing system of cadmium sulfide nanowires/graphene hybrid for supersensitive detection of pentachlorophenol. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.07.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
49
|
Liu Z, Wang Y, Wang Y, Dong W, Xia X, Song E, Song Y. Effect of Subcellular Translocation of Protein Disulfide Isomerase on Tetrachlorobenzoquinone-Induced Signaling Shift from Endoplasmic Reticulum Stress to Apoptosis. Chem Res Toxicol 2017; 30:1804-1814. [DOI: 10.1021/acs.chemrestox.7b00118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zixuan Liu
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China 400715
| | - Yawen Wang
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China 400715
| | - Yuxin Wang
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China 400715
| | - Wenjing Dong
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China 400715
| | - Xiaomin Xia
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China 400715
| | - Erqun Song
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China 400715
| | - Yang Song
- Key Laboratory of Luminescence
and Real-Time Analytical Chemistry (Southwest University), Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China 400715
| |
Collapse
|
50
|
Guemiza K, Coudert L, Metahni S, Mercier G, Besner S, Blais JF. Treatment technologies used for the removal of As, Cr, Cu, PCP and/or PCDD/F from contaminated soil: A review. JOURNAL OF HAZARDOUS MATERIALS 2017; 333:194-214. [PMID: 28359036 DOI: 10.1016/j.jhazmat.2017.03.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 06/07/2023]
Abstract
The contamination of soils by metals such as arsenic, chromium, copper and organic compounds such as pentachlorophenol (PCP) and dioxins and furans (PCDD/F) is a major problem in industrialized countries. Excavation followed by disposal in an appropriate landfilling is usually used site to manage these contaminated soils. Many researches have been conducted to develop physical, biological, thermal and chemical methods to allow the rehabilitation of contaminated sites. Thermal treatments including thermal desorption seemed to be the most appropriate methods, allowing the removal of more than 99.99% of organic contaminants but, they are ineffective for inorganic compounds. Biological treatments have been developed to remove inorganic and hydrophobic organic contaminants but their applications are limited to soils contaminated by easily biodegradable organic compounds. Among the physical technologies available, attrition is the most commonly used technique for the rehabilitation of soils contaminated by both organic and inorganic contaminants. Chemical processes using acids, bases, redox agents and surfactants seemed to be an interesting option to simultaneously extract organic and inorganic contaminants from soils. This paper will provide an overview of the recent developments in the field of decontamination technologies applicable for the removal of As, Cr, Cu, PCP and/or PCDD/F from contaminated soils.
Collapse
Affiliation(s)
- Karima Guemiza
- Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Université du Québec, 490 rue de la Couronne, Québec, QC, G1 K 9A9, Canada.
| | - Lucie Coudert
- Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Université du Québec, 490 rue de la Couronne, Québec, QC, G1 K 9A9, Canada.
| | - Sabrine Metahni
- Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Université du Québec, 490 rue de la Couronne, Québec, QC, G1 K 9A9, Canada.
| | - Guy Mercier
- Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Université du Québec, 490 rue de la Couronne, Québec, QC, G1 K 9A9, Canada.
| | - Simon Besner
- Institut de recherche d'Hydro-Québec (IREQ), IREQ, 1800, boul. Lionel-Boulet, Varennes, QC, J3X 1S1, Canada.
| | - Jean-François Blais
- Institut national de la recherche scientifique (Centre Eau, Terre et Environnement), Université du Québec, 490 rue de la Couronne, Québec, QC, G1 K 9A9, Canada.
| |
Collapse
|