1
|
Fang F, Ding L, Zhang Y, Qiao X, Qian L, Wei R, Chen H, Ji H, Pi B, Wong MH, Tao H, Xu N, Zhang L. Bacterial mercury methylation modulated by vitamin B9: An overlooked pathway leads to increased environmental risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135625. [PMID: 39191012 DOI: 10.1016/j.jhazmat.2024.135625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/06/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
There has been a serious health and environmental concern in conversion of inorganic mercury (Hg) to the neurotoxin, methylmercury (MeHg) by anaerobic microbes, while very little is known about the potential role of vitamin B9 (VB9) regulator in the biochemical generation of MeHg. This study innovatively investigated bacterial Hg methylation by Geobacter sulfurreducens PCA in the presence of VB9 under two existing scenarios. In the low-complexing scenario, the bacterial MeHg yield reached 68 % higher than that without VB9 within 72 h, which was attributed to free VB9-protected PCA cells relieving oxidative stress, as manifested by the increased expression of Hg methylation gene (hgcAB cluster by 19-48 %). The high-complexing scenario emphasized the intracellular Hg accumulation (38-45 %) after 12 h, as indicated by the increased expression of outer membrane protein-related and mercuric reductase-encoding genes, indicating the inefficient bioavailability of Hg due to a gradual shift from Hg reduction toward Hg0 re-oxidation controlled by competitive ligand exchange. These results suggested that VB9 application significantly raised the potential for bacterial Hg methylation and cellular accumulation, thus proposing insights into the biochemical behaviors of hazardous Hg in farming environments where vulnerable organisms are more possibly co-exposed to higher levels of Hg and VB9.
Collapse
Affiliation(s)
- Fang Fang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Lingyun Ding
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Yaoyu Zhang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xuejiao Qiao
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Lu Qian
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ruqian Wei
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Hanchun Chen
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Haodong Ji
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Bin Pi
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 510700, China
| | - Ming Hung Wong
- Soil Health Laboratory, Southern Federal University, Rostov-on-Don, Russia; Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Huchun Tao
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Lijuan Zhang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
2
|
Wallace SM, Zhou L, Ma Q, Denslow ND, Bonzongo JCJ, Gaillard JF. An XAS study of Hg(II) sorption to Al-based drinking water treatment residuals. CHEMOSPHERE 2024; 349:140922. [PMID: 38101479 DOI: 10.1016/j.chemosphere.2023.140922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Drinking water treatment residuals (DWTRs) are produced from the coagulation and flocculation processes in conventional drinking water treatment. The abundant metal oxide content of these materials resulting from the use of coagulants, like alum and ferric chloride, has driven strong research interest into the reuse of DWTRs as sorptive materials. Using a suite of aluminum-based DWTRs, we provide new insights into Hg(II) sorption mechanisms. Experiments performed at circum-neutral pH show that sorption capacities are related to the amount of organic carbon/matter present in DWTRs. We found that carbon rich samples can scavenge about 9000 mg/kg of Hg, in contrast to 2000 mg/kg for lime based DWTRs. X-ray absorption spectroscopy (XAS) at the Hg L3 edge further characterizes mercury coordination. X-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) results point to a partial association of mercury with sulfur at low mass loadings, transitioning to a full association with oxygen/carbon at higher concentrations of sorbed Hg(II) and in DWTRs with limited sulfur content. These results suggest that sorption of Hg(II) is primarily controlled by the carbon/organic matter fraction of DWTRs, but not by the coagulants.
Collapse
Affiliation(s)
- Samuel M Wallace
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, 60208, Illinois, USA
| | - Lang Zhou
- Department of Environmental Engineering Sciences, University of Florida, A. P. Black Hall, Gainesville, 32611, Florida, USA
| | - Qing Ma
- DND-CAT Synchrotron Research Center, Northwestern University, 9700 South Cass Avenue, Argonne, 60439, Illinois, USA
| | - Nancy D Denslow
- Department of Physiological Sciences, Department of Biochemistry and Molecular Biology, and Center for Environmental and Human Toxicology, University of Florida, Mowry Road, Building 471, Gainesville, 32611, Florida, USA
| | - Jean-Claude J Bonzongo
- Department of Environmental Engineering Sciences, University of Florida, A. P. Black Hall, Gainesville, 32611, Florida, USA
| | - Jean-Francois Gaillard
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, 60208, Illinois, USA.
| |
Collapse
|
3
|
Schwab L, Gallati N, Reiter SM, Kimber RL, Kumar N, McLagan DS, Biester H, Kraemer SM, Wiederhold JG. Mercury Isotope Fractionation during Dark Abiotic Reduction of Hg(II) by Dissolved, Surface-Bound, and Structural Fe(II). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15243-15254. [PMID: 37748105 PMCID: PMC10569049 DOI: 10.1021/acs.est.3c03703] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/27/2023]
Abstract
Stable mercury (Hg) isotope ratios are an emerging tracer for biogeochemical transformations in environmental systems, but their application requires knowledge of isotopic enrichment factors for individual processes. We investigated Hg isotope fractionation during dark, abiotic reduction of Hg(II) by dissolved iron(Fe)(II), magnetite, and Fe(II) sorbed to boehmite or goethite by analyzing both the reactants and products of laboratory experiments. For homogeneous reduction of Hg(II) by dissolved Fe(II) in continuously purged reactors, the results followed a Rayleigh distillation model with enrichment factors of -2.20 ± 0.16‰ (ε202Hg) and 0.21 ± 0.02‰ (E199Hg). In closed system experiments, allowing reequilibration, the initial kinetic fractionation was overprinted by isotope exchange and followed a linear equilibrium model with -2.44 ± 0.17‰ (ε202Hg) and 0.34 ± 0.02‰ (E199Hg). Heterogeneous Hg(II) reduction by magnetite caused a smaller isotopic fractionation (-1.38 ± 0.07 and 0.13 ± 0.01‰), whereas the extent of isotopic fractionation of the sorbed Fe(II) experiments was similar to the kinetic homogeneous case. Small mass-independent fractionation of even-mass Hg isotopes with 0.02 ± 0.003‰ (E200Hg) and ≈ -0.02 ± 0.01‰ (E204Hg) was consistent with theoretical predictions for the nuclear volume effect. This study contributes significantly to the database of Hg isotope enrichment factors for specific processes. Our findings show that Hg(II) reduction by dissolved Fe(II) in open systems results in a kinetic MDF with a larger ε compared to other abiotic reduction pathways, and combining MDF with the observed MIF allows the distinction from photochemical or microbial Hg(II) reduction pathways.
Collapse
Affiliation(s)
- Lorenz Schwab
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Doctoral
School in Microbiology and Environmental Science, University of Vienna, 1030 Vienna, Austria
- Environmental
Engineering Institute IIE-ENAC, Soil Biogeochemistry Laboratory, École Polytechnique Fédérale
de Lausanne (EPFL), Route
des Ronquos 86, 1951 Sion, Switzerland
| | - Niklas Gallati
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Sofie M. Reiter
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Richard L. Kimber
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Naresh Kumar
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Soil
Chemistry and Chemical Soil Quality Group, Department of Environmental
Sciences, University of Wageningen, Droevendaalsesteeg 3a, 6708 Wageningen, Netherlands
| | - David S. McLagan
- Environmental
Geochemistry Group, Institute of Geoecology, Technische Universität Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
- Department
of Geological Sciences and Geological Engineering, Queen’s University, Kingston, Ontario K7L 3N6, Canada
- School
of Environmental Studies, Queen’s
University, Kingston, Ontario K7L 3N6, Canada
| | - Harald Biester
- Environmental
Geochemistry Group, Institute of Geoecology, Technische Universität Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
| | - Stephan M. Kraemer
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Jan G. Wiederhold
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
4
|
Wang T, Yang X, Li Z, Chen W, Wen X, He Y, Ma C, Yang Z, Zhang C. MeHg production in eutrophic lakes: Focusing on the roles of algal organic matter and iron-sulfur-phosphorus dynamics. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131682. [PMID: 37270963 DOI: 10.1016/j.jhazmat.2023.131682] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/06/2023]
Abstract
The mechanisms by which eutrophication affects methylmercury (MeHg) production have not been comprehensively summarized, which hinders accurately predicting the MeHg risk in eutrophic lakes. In this review, we first discussed the effects of eutrophication on biogeochemical cycle of mercury (Hg). Special attentions were paid to the roles of algal organic matter (AOM) and iron (Fe)-sulfur (S)-phosphorus (P) dynamics in MeHg production. Finally, the suggestions for risk control of MeHg in eutrophic lakes were proposed. AOM can affect in situ Hg methylation by stimulating the abundance and activities of Hg methylating microorganisms and regulating Hg bioavailability, which are dependent on bacteria-strain and algae species, the molecular weight and composition of AOM as well as environmental conditions (e.g., light). Fe-S-P dynamics under eutrophication including sulfate reduction, FeS formation and P release could also play crucial but complicated roles in MeHg production, in which AOM may participate through influencing the dissolution and aggregation processes, structural order and surface properties of HgS nanoparticles (HgSNP). Future studies should pay more attention to the dynamics of AOM in responses to the changing environmental conditions (e.g., light penetration and redox fluctuations) and how such variations will subsequently affect MeHg production. The effects of Fe-S-P dynamics on MeHg production under eutrophication also deserve further investigations, especially the interactions between AOM and HgSNP. Remediation strategies with lower disturbance, greater stability and less cost like the technology of interfacial O2 nanobubbles are urgent to be explored. This review will deepen our understanding of the mechanisms of MeHg production in eutrophic lakes and provide theoretical guidance for its risk control.
Collapse
Affiliation(s)
- Tantan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zihao Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Wenhao Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xin Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yubo He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chi Ma
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zhongzhu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
5
|
McLagan DS, Schwab L, Wiederhold JG, Chen L, Pietrucha J, Kraemer SM, Biester H. Demystifying mercury geochemistry in contaminated soil-groundwater systems with complementary mercury stable isotope, concentration, and speciation analyses. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1406-1429. [PMID: 34981096 PMCID: PMC9491299 DOI: 10.1039/d1em00368b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/30/2021] [Indexed: 05/08/2023]
Abstract
Interpretation of mercury (Hg) geochemistry in environmental systems remains a challenge. This is largely associated with the inability to identify specific Hg transformation processes and species using established analytical methods in Hg geochemistry (total Hg and Hg speciation). In this study, we demonstrate the improved Hg geochemical interpretation, particularly related to process tracing, that can be achieved when Hg stable isotope analyses are complemented by a suite of more established methods and applied to both solid- (soil) and liquid-phases (groundwater) across two Hg2+-chloride (HgCl2) contaminated sites with distinct geological and physicochemical properties. This novel approach allowed us to identify processes such as Hg2+ (i.e., HgCl2) sorption to the solid-phase, Hg2+ speciation changes associated with changes in groundwater level and redox conditions (particularly in the upper aquifer and capillary fringe), Hg2+ reduction to Hg0, and dark abiotic redox equilibration between Hg0 and Hg(II). Hg stable isotope analyses play a critical role in our ability to distinguish, or trace, these in situ processes. While we caution against the non-critical use of Hg isotope data for source tracing in environmental systems, due to potentially variable source signatures and overprinting by transformation processes, our study demonstrates the benefits of combining multiple analytical approaches, including Hg isotope ratios as a process tracer, to obtain an improved picture of the enigmatic geochemical behavior and fate of Hg at contaminated legacy sites.
Collapse
Affiliation(s)
- D S McLagan
- Institute for Geoecology, Technical University of Braunschweig, 38106 Braunschweig, Germany.
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, M1C1A4, Canada
| | - L Schwab
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1090 Vienna, Austria
| | - J G Wiederhold
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1090 Vienna, Austria
| | - L Chen
- Institute for Geoecology, Technical University of Braunschweig, 38106 Braunschweig, Germany.
| | - J Pietrucha
- Institute for Geoecology, Technical University of Braunschweig, 38106 Braunschweig, Germany.
| | - S M Kraemer
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1090 Vienna, Austria
| | - H Biester
- Institute for Geoecology, Technical University of Braunschweig, 38106 Braunschweig, Germany.
| |
Collapse
|
6
|
Zhao Q, Wang J, OuYang S, Chen L, Liu M, Li Y, Jiang F. The exacerbation of mercury methylation by Geobacter sulfurreducens PCA in a freshwater algae-bacteria symbiotic system throughout the lifetime of algae. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125691. [PMID: 33773254 DOI: 10.1016/j.jhazmat.2021.125691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Mine-polluted wastewater with mercury (Hg) poses severe environmental pollution since Hg(II) can be converted to highly neurotoxic methylmercury (MeHg) under anaerobic conditions. Previous studies on Hg methylation have focused on aquatic sediments, but few have investigated the MeHg formation in water layers containing algae. In this study, we investigated the dynamic effect of algae on Hg methylation throughout the lifetime of algae. We found that Chlorella pyrenoidosa was a non-methylating alga and exhibited good tolerance to Hg stress (1-20 μg/L); thus Hg(II) could not inhibit the process of eutrophication. However, the presence of C. pyrenoidosa significantly enhanced the Hg methylation by Geobacter sulfurreducens PCA. Compared to the control sample without algae, the MeHg production rate of algae-bacteria samples remarkably exacerbated by 62.3-188.3% with the algal growth period at cell densities of 1.5 × 106-25 × 106 cells/mL. The increase of algal organic matter and thiols with the algal growth period resulted in the exacerbation of MeHg production. The Hg methylation was also enhanced with the presence of dead algae, of which the enhancement was ~62.4% lower than that with the presence of live algae. Accordingly, the potential mechanism of Hg methylation in a freshwater algae-bacteria symbiotic system throughout the algal lifetime was proposed.
Collapse
Affiliation(s)
- Qingxia Zhao
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Jinting Wang
- Department of Civil and Environmental Engineering, Water Technology Lab, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shenyu OuYang
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Laiguo Chen
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China
| | - Ming Liu
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China
| | - Yu Li
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Feng Jiang
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
7
|
Etique M, Bouchet S, Byrne JM, ThomasArrigo LK, Kaegi R, Kretzschmar R. Mercury Reduction by Nanoparticulate Vivianite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3399-3407. [PMID: 33554594 PMCID: PMC7931808 DOI: 10.1021/acs.est.0c05203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 05/24/2023]
Abstract
Mercury (Hg) is a toxic trace element of global environmental concern which has been increasingly dispersed into the environment since the industrial revolution. In aquatic and terrestrial systems, Hg can be reduced to elemental Hg (Hg0) and escape to the atmosphere or converted to methylmercury (MeHg), a potent neurotoxin that accumulates in food webs. FeII-bearing minerals such as magnetite, green rusts, siderite, and mackinawite are recognized HgII reducers. Another potentially Hg-reducing mineral, which commonly occurs in Fe- and organic/P-rich sediments and soils, is the ferrous iron phosphate mineral vivianite (FeII3(PO4)2·8H2O), but its reaction with HgII has not been studied to date. Here, nanoparticulate vivianite (particle size ∼ 50 nm; FeII content > 98%) was chemically synthesized and characterized by a combination of chemical, spectroscopic, and microscopic analyses. Its ability to reduce HgII was investigated at circumneutral pH under anoxic conditions over a range of FeII/HgII ratios (0.1-1000). For FeII/HgII ratios ≥1, which are representative of natural environments, HgII was very quickly and efficiently reduced to Hg0. The ability of vivianite to reduce HgII was found to be similar to those of carbonate green rust and siderite, two of the most effective Hg-reducing minerals. Our results suggest that vivianite may be involved in abiotic HgII reduction in Fe and organic/P-rich soils and sediments, potentially contributing to Hg evasion while also limiting MeHg formation in these ecosystems.
Collapse
Affiliation(s)
- Marjorie Etique
- Soil Chemistry Group, Institute of Biogeochemistry and
Pollutant Dynamics, Department of Environmental Systems Science, ETH
Zürich, Universitätstrasse 16, CHN, 8092 Zürich,
Switzerland
| | - Sylvain Bouchet
- Soil Chemistry Group, Institute of Biogeochemistry and
Pollutant Dynamics, Department of Environmental Systems Science, ETH
Zürich, Universitätstrasse 16, CHN, 8092 Zürich,
Switzerland
| | - James M. Byrne
- School of Earth Sciences, University of
Bristol, Wills Memorial Building, Queens Road, BS8 1RJ Bristol,
U.K.
| | - Laurel K. ThomasArrigo
- Soil Chemistry Group, Institute of Biogeochemistry and
Pollutant Dynamics, Department of Environmental Systems Science, ETH
Zürich, Universitätstrasse 16, CHN, 8092 Zürich,
Switzerland
| | - Ralf Kaegi
- Eawag, Swiss Federal Institute of Aquatic
Science and Technology, Überlandstrasse 133, 8600 Dübendorf,
Switzerland
| | - Ruben Kretzschmar
- Soil Chemistry Group, Institute of Biogeochemistry and
Pollutant Dynamics, Department of Environmental Systems Science, ETH
Zürich, Universitätstrasse 16, CHN, 8092 Zürich,
Switzerland
| |
Collapse
|
8
|
Abstract
Aluminosilicate clay minerals are often a major component of soils and sediments and many of these clays contain structural Fe (e.g., smectites and illites). Structural Fe(III) in smectite clays is redox active and can be reduced to Fe(II) by biotic and abiotic processes. Fe(II)-bearing minerals such as magnetite and green rust can reduce Hg(II) to Hg(0); however, the ability of other environmentally relevant Fe(II) phases, such as structural Fe(II) in smectite clays, to reduce Hg(II) is largely undetermined. We conducted experiments examining the potential for reduction of Hg(II) by smectite clay minerals containing 0–25 wt% Fe. Fe(III) in the clays (SYn-1 synthetic mica-montmorillonite, SWy-2 montmorillonite, NAu-1 and NAu-2 nontronite, and a nontronite from Cheney, Washington (CWN)) was reduced to Fe(II) using the citrate-bicarbonate-dithionite method. Experiments were initiated by adding 500 µM Hg(II) to reduced clay suspensions (4 g clay L−1) buffered at pH 7.2 in 20 mM 3-morpholinopropane-1-sulfonic acid (MOPS). The potential for Hg(II) reduction in the presence of chloride (0–10 mM) and at pH 5–9 was examined in the presence of reduced NAu-1. Analysis of the samples by Hg LIII-edge X-ray absorption fine structure (XAFS) spectroscopy indicated little to no reduction of Hg(II) by SYn-1 (0% Fe), while reduction of Hg(II) to Hg(0) was observed in the presence of reduced SWy-2, NAu-1, NAu-2, and CWN (2.8–24.8% Fe). Hg(II) was reduced to Hg(0) by NAu-1 at all pH and chloride concentrations examined. These results suggest that Fe(II)-bearing smectite clays may contribute to Hg(II) reduction in suboxic/anoxic soils and sediments.
Collapse
|
9
|
Thomas SA, Catty P, Hazemann JL, Michaud-Soret I, Gaillard JF. The role of cysteine and sulfide in the interplay between microbial Hg(ii) uptake and sulfur metabolism. Metallomics 2020; 11:1219-1229. [PMID: 31143907 DOI: 10.1039/c9mt00077a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biogenic thiols, such as cysteine, have been used to control the speciation of Hg(ii) in bacterial exposure experiments. However, the extracellular biodegradation of excess cysteine leads to the formation of Hg(ii)-sulfide species, convoluting the interpretation of Hg(ii) uptake results. Herein, we test the hypothesis that Hg(ii)-sulfide species formation is a critical step during bacterial Hg(ii) uptake in the presence of excess cysteine. An Escherichia coli (E. coli) wild-type and mutant strain lacking the decR gene that regulates cysteine degradation to sulfide were exposed to 50 and 500 nM Hg with 0 to 2 mM cysteine. The decR mutant released ∼4 times less sulfide from cysteine degradation compared to the wild-type for all tested cysteine concentrations during a 3 hour exposure period. We show with thermodynamic calculations that the predicted concentration of Hg(ii)-cysteine species remaining in the exposure medium (as opposed to forming HgS(s)) is a good proxy for the measured concentration of dissolved Hg(ii) (i.e., not cell-bound). Likewise, the measured cell-bound Hg(ii) correlates with thermodynamic calculations for HgS(s) formation in the presence of cysteine. High resolution X-ray absorption near edge structure (HR-XANES) spectra confirm the existence of cell-associated HgS(s) at 500 nM total Hg and suggest the formation of Hg-S clusters at 50 nM total Hg. Our results indicate that a speciation change to Hg(ii)-sulfide controls Hg(ii) cell-association in the presence of excess cysteine.
Collapse
Affiliation(s)
- Sara A Thomas
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA. and Université Grenoble Alpes, CNRS, CEA, BIG-LCBM, 38000 Grenoble, France.
| | - Patrice Catty
- Université Grenoble Alpes, CNRS, CEA, BIG-LCBM, 38000 Grenoble, France.
| | - Jean-Louis Hazemann
- Institut Néel, UPR 2940 CNRS-Université Grenoble Alpes, F-38000 Grenoble, France
| | | | - Jean-François Gaillard
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| |
Collapse
|
10
|
Thomas SA, Mishra B, Myneni SCB. Cellular Mercury Coordination Environment, and Not Cell Surface Ligands, Influence Bacterial Methylmercury Production. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3960-3968. [PMID: 32097551 DOI: 10.1021/acs.est.9b05915] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The conversion of inorganic mercury (Hg(II)) to methylmercury (MeHg) is central to the understanding of Hg toxicity in the environment. Hg methylation occurs in the cytosol of certain obligate anaerobic bacteria and archaea possessing the hgcAB gene cluster. However, the processes involved in Hg(II) biouptake and methylation are not well understood. Here, we examined the role of cell surface thiols, cellular ligands with the highest affinity for Hg(II) that are located at the interface between the outer membrane and external medium, on the sorption and methylation of Hg(II) by Geobacter sulfurreducens. The effect of added cysteine (Cys), which is known to greatly enhance Hg(II) biouptake and methylation, was also explored. By quantitatively blocking surface thiols with a thiol binding ligand (qBBr), we show that surface thiols have no significant effect on Hg(II) methylation, regardless of Cys addition. The results also identify a significant amount of cell-associated Hg-S3/S4 species, as studied by high energy-resolution X-ray absorption near edge structure (HR-XANES) spectroscopy, under conditions of high MeHg production (with Cys addition). In contrast, Hg-S2 are the predominant species during low MeHg production. Hg-S3/S4 species may be related to enhanced Hg(II) biouptake or the ability of Hg(II) to become methylated by HgcAB and should be further explored in this context.
Collapse
Affiliation(s)
- Sara A Thomas
- Department of Geosciences, Princeton University, Guyot Hall, Princeton, New Jersey 08544, United States
| | - Bhoopesh Mishra
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - Satish C B Myneni
- Department of Geosciences, Princeton University, Guyot Hall, Princeton, New Jersey 08544, United States
| |
Collapse
|
11
|
Kallithrakas-Kontos N, Foteinis S, Vazgiouraki EM, Karydas AG, Osán J, Chatzisymeon E. Solid-state polymer membranes for simple, sensitive, and low-cost monitoring of mercury in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134099. [PMID: 32380604 DOI: 10.1016/j.scitotenv.2019.134099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 06/11/2023]
Abstract
Solid-state Hg(II) selective membranes were produced and assessed by means of X-ray absorption near edge structure in the total reflection X-ray fluorescence (TXRF-XANES) setup and by the energy dispersive X-ray fluorescence (EDXRF) technique. Membranes were functionalized using four promising ligands for mercury complexation, i.e.: i) 4-(2-Pyridylazo) resorcinol (PAR), ii) thiourea, iii) calconcarboxylic acid (CCS), and iv) dithizone. A simple analytical procedure was followed, using miniscule reagent quantities, thus suggesting the process is also cost-effective. TXRF-XANES revealed that mercury complexes with the ligands, and is not simply adsorbed onto the PVC matrix, while the complexation was found to not be affected by the matrix existence. Mercury exhibited an increased oxidation grade and was covalently bound to the ligand functional groups, via a strong chemical bond. EDXRF revealed that the solid-state membranes can be used for mercury speciation and trace analysis from environmentally relevant matrices, such as tap water. The membranes could be a promising alternative to polymer inclusion membranes (PIMs), due to their simple configuration and high Hg (II) selectivity in aqueous media, but more research is needed. PAR appears to be the most promising ligand, followed by dithizone and thiourea. CCS had a minuscule preconcentration efficiency since it was preferably bound with Cu in tap water, indicating limited usefulness for mercury preconcentration. However, results suggest that, depending on the ligand, the solid-state membranes could be also possibly used for multi-elemental heavy metals analysis in water.
Collapse
Affiliation(s)
- Nikolaos Kallithrakas-Kontos
- Technical University of Crete, Laboratory of Analytical and Environmental Chemistry, University Campus, GR-73100 Chania, Greece
| | - Spyros Foteinis
- Technical University of Crete, Laboratory of Analytical and Environmental Chemistry, University Campus, GR-73100 Chania, Greece; Public Power Corporation (PPC) Renewables S.A., Attica, Greece.
| | - Eleftheria M Vazgiouraki
- Technical University of Crete, Laboratory of Analytical and Environmental Chemistry, University Campus, GR-73100 Chania, Greece
| | - Andreas G Karydas
- Nuclear Science and Instrumentation Laboratory (NSIL), IAEA Laboratories, Friedensstrasse 1, Seibersdorf A-2444, Austria; Institute of Nuclear and Particle Physics, NCSR "Demokritos", 15310 Aghia Paraskevi, Athens, Greece
| | - János Osán
- Nuclear Science and Instrumentation Laboratory (NSIL), IAEA Laboratories, Friedensstrasse 1, Seibersdorf A-2444, Austria; Hungarian Academy of Sciences, Centre for Energy Research, Konkoly-Thege M. út 29-33, H-1121 Budapest, Hungary
| | - Efthalia Chatzisymeon
- School of Engineering, Institute for Infrastructure and Environment, University of Edinburgh, Edinburgh EH9 3JL, United Kingdom
| |
Collapse
|
12
|
Zheng W, Demers JD, Lu X, Bergquist BA, Anbar AD, Blum JD, Gu B. Mercury Stable Isotope Fractionation during Abiotic Dark Oxidation in the Presence of Thiols and Natural Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1853-1862. [PMID: 30371069 DOI: 10.1021/acs.est.8b05047] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Mercury (Hg) stable isotope fractionation has been widely used to trace Hg sources and transformations in the environment, although many important fractionation processes remain unknown. Here, we describe Hg isotope fractionation during the abiotic dark oxidation of dissolved elemental Hg(0) in the presence of thiol compounds and natural humic acid. We observe equilibrium mass-dependent fractionation (MDF) with enrichment of heavier isotopes in the oxidized Hg(II) and a small negative mass-independent fractionation (MIF) owing to nuclear volume effects. The measured enrichment factors for MDF and MIF (ε202Hg and E199Hg) ranged from 1.10‰ to 1.56‰ and from -0.16‰ to -0.18‰, respectively, and agreed well with theoretically predicted values for equilibrium fractionation between Hg(0) and thiol-bound Hg(II). We suggest that the observed equilibrium fractionation was likely controlled by isotope exchange between Hg(0) and Hg(II) following the production of the Hg(II)-thiol complex. However, significantly attenuated isotope fractionation was observed during the initial stage of Hg(0) oxidation by humic acid and attributed to the kinetic isotope effect (KIE). This research provides additional experimental constraints on interpreting Hg isotope signatures with important implications for the use of Hg isotope fractionation as a tracer of the Hg biogeochemical cycle.
Collapse
Affiliation(s)
- Wang Zheng
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37830 , United States
| | - Jason D Demers
- Department of Earth and Environmental Sciences , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Xia Lu
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37830 , United States
| | - Bridget A Bergquist
- Department of Earth Sciences , University of Toronto , 22 Russell Street , Toronto , Ontario M5S 3B1 , Canada
| | | | - Joel D Blum
- Department of Earth and Environmental Sciences , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Baohua Gu
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37830 , United States
- Department of Biosystems Engineering and Soil Science , University of Tennessee , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
13
|
Wang Y, Yu Q, Mishra B, Schaefer JK, Fein JB, Yee N. Adsorption of Methylmercury onto Geobacter bemidijensis Bem. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11564-11572. [PMID: 30207459 DOI: 10.1021/acs.est.8b01987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The anaerobic bacterium Geobacter bemidijensis Bem has the unique ability to both produce and degrade methylmercury (MeHg). While the adsorption of MeHg onto bacterial surfaces can affect the release of MeHg into aquatic environments as well as the uptake of MeHg for demethylation, the binding of MeHg to the bacterial envelope remains poorly understood. In this study, we quantified the adsorption of MeHg onto G. bemidijensis and applied X-ray absorption spectroscopy (XAS) to elucidate the mechanism of MeHg binding. The results showed MeHg adsorption onto G. bemidijensis cell surfaces was rapid and occurred via complexation to sulfhydryl functional groups. Titration experiments yielded cell surface sulfhydryl concentrations of 3.8 ± 0.2 μmol/g (wet cells). A one-site adsorption model with MeHg binding onto sulfhydryl sites provided excellent fits to adsorption isotherms conducted at different cell densities. The log K binding constant of MeHg onto the sulfhydryl sites was determined to be 10.5 ± 0.4. These findings provide a quantitative framework to describe MeHg binding onto bacterial cell surfaces and elucidate the importance of bacterial cells as possible carriers of adsorbed MeHg in natural aquatic systems.
Collapse
Affiliation(s)
- Yuwei Wang
- Department of Environmental Sciences , Rutgers University , New Brunswick , New Jersey 08901 , United States
| | - Qiang Yu
- Department of Civil & Environmental Engineering & Earth Sciences , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Bhoopesh Mishra
- School of Chemical and Process Engineering , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Jeffra K Schaefer
- Department of Environmental Sciences , Rutgers University , New Brunswick , New Jersey 08901 , United States
| | - Jeremy B Fein
- Department of Civil & Environmental Engineering & Earth Sciences , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Nathan Yee
- Department of Environmental Sciences , Rutgers University , New Brunswick , New Jersey 08901 , United States
| |
Collapse
|
14
|
Mercury isotope signatures record photic zone euxinia in the Mesoproterozoic ocean. Proc Natl Acad Sci U S A 2018; 115:10594-10599. [PMID: 30275325 DOI: 10.1073/pnas.1721733115] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photic zone euxinia (PZE) is a condition where anoxic, H2S-rich waters occur in the photic zone (PZ). PZE has been invoked as an impediment to the evolution of complex life on early Earth and as a kill mechanism for Phanerozoic mass extinctions. Here, we investigate the potential application of mercury (Hg) stable isotopes in marine sedimentary rocks as a proxy for PZE by measuring Hg isotope compositions in late Mesoproterozoic (∼1.1 Ga) shales that have independent evidence of PZE during discrete intervals. Strikingly, a significantly negative shift of Hg mass-independent isotope fractionation (MIF) was observed during euxinic intervals, suggesting changes in Hg sources or transformations in oceans coincident with the development of PZE. We propose that the negative shift of Hg MIF was most likely caused by (i) photoreduction of Hg(II) complexed by reduced sulfur ligands in a sulfide-rich PZ, and (ii) enhanced sequestration of atmospheric Hg(0) to the sediments by thiols and sulfide that were enriched in the surface ocean as a result of PZE. This study thus demonstrates that Hg isotope compositions in ancient marine sedimentary rocks can be a promising proxy for PZE and therefore may provide valuable insights into changes in ocean chemistry and its impact on the evolution of life.
Collapse
|
15
|
Abstract
Mercury (Hg) is a global pollutant emitted primarily as gaseous Hg0 that is deposited in aquatic and terrestrial ecosystems following its oxidation to HgII. From that point, microbes play a key role in determining Hg’s fate in the environment by participating in sequestration, oxidation, reduction, and methylation reactions. A wide diversity of chemotrophic and phototrophic microbes occupying oxic and anoxic habitats are known to participate directly in Hg cycling. Over the last few years, new findings have come to light that have greatly improved our mechanistic understanding of microbe-mediated Hg cycling pathways in the environment. In this review, we summarize recent advances in microbially mediated Hg cycling and take the opportunity to compare the relatively well-studied chemotrophic pathways to poorly understood phototrophic pathways. We present how the use of genomic and analytical tools can be used to understand Hg transformations and the physiological context of recently discovered cometabolic Hg transformations supported in anaerobes and phototrophs. Finally, we propose a conceptual framework that emphasizes the role that phototrophs play in environmental Hg redox cycling and the importance of better characterizing such pathways in the face of the environmental changes currently underway.
Collapse
Affiliation(s)
- Daniel S. Grégoire
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Alexandre J. Poulain
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
16
|
Song Y, Jiang T, Liem-Nguyen V, Sparrman T, Björn E, Skyllberg U. Thermodynamics of Hg(II) Bonding to Thiol Groups in Suwannee River Natural Organic Matter Resolved by Competitive Ligand Exchange, Hg L III-Edge EXAFS and 1H NMR Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8292-8301. [PMID: 29983050 DOI: 10.1021/acs.est.8b00919] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A molecular level understanding of the thermodynamics and kinetics of the chemical bonding between mercury, Hg(II), and natural organic matter (NOM) associated thiol functional groups (NOM-RSH) is required if bioavailability and transformation processes of Hg in the environment are to be fully understood. This study provides the thermodynamic stability of the Hg(NOM-RS)2 structure using a robust method in which cysteine (Cys) served as a competing ligand to NOM (Suwannee River 2R101N sample) associated RSH groups. The concentration of the latter was quantified to be 7.5 ± 0.4 μmol g-1 NOM by Hg LIII-edge EXAFS spectroscopy. The Hg(Cys)2 molecule concentration in chemical equilibrium with the Hg(II)-NOM complexes was directly determined by HPLC-ICPMS and losses of free Cys due to secondary reactions with NOM was accounted for in experiments using 1H NMR spectroscopy and 13C isotope labeled Cys. The log K ± SD for the formation of the Hg(NOM-RS)2 molecular structure, Hg2+ + 2NOM-RS- = Hg(NOM-RS)2, and for the Hg(Cys)(NOM-RS) mixed complex, Hg2+ + Cys- + NOM-RS- = Hg(Cys)(NOM-RS), were determined to be 40.0 ± 0.2 and 38.5 ± 0.2, respectively, at pH 3.0. The magnitude of these constants was further confirmed by 1H NMR spectroscopy and the Hg(NOM-RS)2 structure was verified by Hg LIII-edge EXAFS spectroscopy. An important finding is that the thermodynamic stabilities of the complexes Hg(NOM-RS)2, Hg(Cys)(NOM-RS) and Hg(Cys)2 are very similar in magnitude at pH values <7, when all thiol groups are protonated. Together with data on 15 low molecular mass (LMM) thiols, as determined by the same method ( Liem-Ngyuen et al. Thermodynamic stability of mercury(II) complexes formed with environmentally relevant low-molecular-mass thiols studied by competing ligand exchange and density functional theory . Environ. Chem. 2017 , 14 , ( 4 ), 243 - 253 .), the constants for Hg(NOM-RS)2 and Hg(Cys)(NOM-RS) represent an internally consistent thermodynamic data set that we recommend is used in studies where the chemical speciation of Hg(II) is determined in the presence of NOM and LMM thiols.
Collapse
Affiliation(s)
- Yu Song
- Department of Forest Ecology and Management , Swedish University of Agricultural Science , SE-901 83 Umeå , Sweden
| | - Tao Jiang
- Department of Forest Ecology and Management , Swedish University of Agricultural Science , SE-901 83 Umeå , Sweden
| | - Van Liem-Nguyen
- Department of Forest Ecology and Management , Swedish University of Agricultural Science , SE-901 83 Umeå , Sweden
- School of Science and Technology , Örebro University , SE-701 82 Örebro , Sweden
| | - Tobias Sparrman
- Department of Chemistry , Umeå University , SE-901 87 Umeå , Sweden
| | - Erik Björn
- Department of Chemistry , Umeå University , SE-901 87 Umeå , Sweden
| | - Ulf Skyllberg
- Department of Forest Ecology and Management , Swedish University of Agricultural Science , SE-901 83 Umeå , Sweden
| |
Collapse
|
17
|
Thomas SA, Gaillard JF. Cysteine Addition Promotes Sulfide Production and 4-Fold Hg(II)-S Coordination in Actively Metabolizing Escherichia coli. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4642-4651. [PMID: 28353340 DOI: 10.1021/acs.est.6b06400] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The bacterial uptake of mercury(II), Hg(II), is believed to be energy-dependent and is enhanced by cysteine in diverse species of bacteria under aerobic and anaerobic conditions. To gain insight into this Hg(II) biouptake pathway, we have employed X-ray absorption spectroscopy (XAS) to investigate the relationship between exogenous cysteine, cellular metabolism, cellular localization, and Hg(II) coordination in aerobically respiring Escherichia coli (E. coli). We show that cells harvested in exponential growth phase consistently display mixtures of 2-fold and 4-fold Hg(II) coordination to sulfur (Hg-S2 and Hg-S4), with added cysteine enhancing Hg-S4 formation. In contrast, cells in stationary growth phase or cells treated with a protonophore causing a decrease in cellular ATP predominantly contain Hg-S2, regardless of cysteine addition. Our XAS results favor metacinnabar (β-HgS) as the Hg-S4 species, which we show is associated with both the cell envelope and cytoplasm. Additionally, we observe that added cysteine abiotically oxidizes to cystine and exponentially growing E. coli degrade high cysteine concentrations (100-1000 μM) into sulfide. Thermodynamic calculations confirm that cysteine-induced sulfide biosynthesis can promote the formation of dissolved and particulate Hg(II)-sulfide species. This report reveals new complexities arising in Hg(II) bioassays with cysteine and emphasizes the need for considering changes in chemical speciation as well as growth stage.
Collapse
Affiliation(s)
- Sara A Thomas
- Department of Civil and Environmental Engineering, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jean-François Gaillard
- Department of Civil and Environmental Engineering, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
18
|
Wang Y, Schaefer JK, Mishra B, Yee N. Intracellular Hg(0) Oxidation in Desulfovibrio desulfuricans ND132. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11049-11056. [PMID: 27654630 DOI: 10.1021/acs.est.6b03299] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The disposal of elemental mercury (Hg(0)) wastes in mining and manufacturing areas has caused serious soil and groundwater contamination issues. Under anoxic conditions, certain anaerobic bacteria can oxidize dissolved elemental mercury and convert the oxidized Hg to neurotoxic methylmercury. In this study, we conducted experiments with the Hg-methylating bacterium Desulfovibrio desulfuricans ND132 to elucidate the role of cellular thiols in anaerobic Hg(0) oxidation. The concentrations of cell-surface and intracellular thiols were measured, and specific fractions of D. desulfuricans ND132 were examined for Hg(0) oxidation activity and analyzed with extended X-ray absorption fine structure (EXAFS) spectroscopy. The experimental data indicate that intracellular thiol concentrations are approximately six times higher than those of the cell wall. Cells reacted with a thiol-blocking reagent were severely impaired in Hg(0) oxidation activity. Spheroplasts lacking cell walls rapidly oxidized Hg(0) to Hg(II), while cell wall fragments exhibited low reactivity toward Hg(0). EXAFS analysis of spheroplast samples revealed that multiple different forms of Hg-thiols are produced by the Hg(0) oxidation reaction and that the local coordination environment of the oxidized Hg changes with reaction time. The results of this study indicate that Hg(0) oxidation in D. desulfuricans ND132 is an intracellular process that occurs by reaction with thiol-containing molecules.
Collapse
Affiliation(s)
- Yuwei Wang
- Department of Environmental Sciences, Rutgers University , New Brunswick, New Jersey 08901, United States
| | - Jeffra K Schaefer
- Department of Environmental Sciences, Rutgers University , New Brunswick, New Jersey 08901, United States
| | - Bhoopesh Mishra
- Department of Physics, Illinois Institute of Technology , Chicago, Illinois 60616, United States
| | - Nathan Yee
- Department of Environmental Sciences, Rutgers University , New Brunswick, New Jersey 08901, United States
| |
Collapse
|
19
|
Yu Q, Fein JB. Sulfhydryl Binding Sites within Bacterial Extracellular Polymeric Substances. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:5498-5505. [PMID: 27177017 DOI: 10.1021/acs.est.6b00347] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study, the concentration of sulfhydryl sites on bacterial biomass samples with and without extracellular polymeric substances (EPS) was measured in order to determine the distribution of sulfhydryl sites on bacteria. Three different approaches were employed for EPS removal from Pseudomonas putida, and the measured sulfhydryl concentrations on bacterial EPS molecules are independent of the EPS removal protocols used. Prior to EPS removal, the measured sulfhydryl sites within P. putida samples was 34.9 ± 9.5 μmol/g, and no sulfhydryl sites were detected after EPS removal, indicating that virtually all of the sulfhydryl sites are located on the EPS molecules produced by P. putida. In contrast, the sulfhydryl sites within the S. oneidensis samples increased from 32.6 ± 3.6 μmol/g to 51.9 ± 7.2 μmol/g after EPS removal, indicating that the EPS produced by S. oneidensis contained fewer sulfhydryl sites than those present on the untreated cells. This study suggests that the sulfhydryl concentrations on EPS molecules may vary significantly from one bacterial species to another, thus it is crucial to quantify the concentration of sulfhydryl sites on EPS molecules of other bacterial species in order to determine the effect of bacterial EPS on metal cycling in the environment.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Jeremy B Fein
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame , Notre Dame, Indiana 46556, United States
| |
Collapse
|
20
|
Thomas SA, Ma Q, Gaillard JF. Probing changes in Hg(II) coordination during its bacterial uptake. ACTA ACUST UNITED AC 2016. [DOI: 10.1088/1742-6596/712/1/012078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Richard JH, Bischoff C, Ahrens CGM, Biester H. Mercury (II) reduction and co-precipitation of metallic mercury on hydrous ferric oxide in contaminated groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 539:36-44. [PMID: 26352645 DOI: 10.1016/j.scitotenv.2015.08.116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 05/24/2023]
Abstract
Mercury (Hg) speciation and sorption analyses in contaminated aquifers are useful for understanding transformation, retention, and mobility of Hg in groundwater. In most aquifers hydrous ferric oxides (HFOs) are among the most important sorbents for trace metals; however, their role in sorption or mobilization of Hg in aquifers has been rarely analyzed. In this study, we investigated Hg chemistry and Hg sorption to HFO under changing redox conditions in a highly HgCl2-contaminated aquifer (up to 870μgL(-1) Hg). Results from aqueous and solid phase Hg measurements were compared to modeled (PHREEQC) data. Speciation analyses of dissolved mercury indicated that Hg(II) forms were reduced to Hg(0) under anoxic conditions, and adsorbed to or co-precipitated with HFO. Solid phase Hg thermo-desorption measurements revealed that between 55 and 93% of Hg bound to HFO was elemental Hg (Hg(0)). Hg concentrations in precipitates reached more than 4 weight %, up to 7000 times higher than predicted by geochemical models that do not consider unspecific sorption to and co-precipitation of elemental Hg with HFO. The observed process of Hg(II) reduction and Hg(0) formation, and its retention and co-precipitation by HFO is thought to be crucial in HgCl2-contaminated aquifers with variable redox-conditions regarding the related decrease in Hg solubility (factor of ~10(6)), and retention of Hg in the aquifer.
Collapse
Affiliation(s)
- Jan-Helge Richard
- Institut für Geoökologie, Abt. Umweltgeochemie, Technische Universität Braunschweig, Germany.
| | - Cornelia Bischoff
- Institut für Geoökologie, Abt. Umweltgeochemie, Technische Universität Braunschweig, Germany
| | - Christian G M Ahrens
- Institut für Geoökologie, Abt. Umweltgeochemie, Technische Universität Braunschweig, Germany
| | - Harald Biester
- Institut für Geoökologie, Abt. Umweltgeochemie, Technische Universität Braunschweig, Germany
| |
Collapse
|
22
|
Ramanan N, Lahiri D, Rajput P, Varma RC, Arun A, Muraleedharan TS, Pandey KK, Maiti N, Jha SN, Sharma SM. Investigating structural aspects to understand the putative/claimed non-toxicity of the Hg-based Ayurvedic drug Rasasindura using XAFS. JOURNAL OF SYNCHROTRON RADIATION 2015; 22:1233-1241. [PMID: 26289275 DOI: 10.1107/s1600577515012473] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/29/2015] [Indexed: 06/04/2023]
Abstract
XANES- and EXAFS-based analysis of the Ayurvedic Hg-based nano-drug Rasasindura has been performed to seek evidence of its non-toxicity. Rasasindura is determined to be composed of single-phase α-HgS nanoparticles (size ∼24 nm), free of Hg(0) or organic molecules; its structure is determined to be robust (<3% defects). The non-existence of Hg(0) implies the absence of Hg-based toxicity and establishes that chemical form, rather than content of heavy metals, is the correct parameter for evaluating the toxicity in these drugs. The stable α-HgS form (strong Hg-S covalent bond and robust particle character) ensures the integrity of the drug during delivery and prevention of its reduction to Hg(0) within the human body. Further, these comparative studies establish that structural parameters (size dispersion, coordination configuration) are better controlled in Rasasindura. This places the Ayurvedic synthesis method on par with contemporary techniques of nanoparticle synthesis.
Collapse
Affiliation(s)
- Nitya Ramanan
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Purnima Labs Trombay, Mumbai, Maharashtra 400085, India
| | - Debdutta Lahiri
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Purnima Labs Trombay, Mumbai, Maharashtra 400085, India
| | - Parasmani Rajput
- Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Purnima Labs Trombay, Mumbai, Maharashtra 400085, India
| | | | - A Arun
- Arya Vaidya Sala, Kottakkal, Kerala 676503, India
| | | | - K K Pandey
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Purnima Labs Trombay, Mumbai, Maharashtra 400085, India
| | - Nandita Maiti
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra 400085, India
| | - S N Jha
- Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Purnima Labs Trombay, Mumbai, Maharashtra 400085, India
| | - Surinder M Sharma
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Purnima Labs Trombay, Mumbai, Maharashtra 400085, India
| |
Collapse
|
23
|
Remy PP, Etique M, Hazotte AA, Sergent AS, Estrade N, Cloquet C, Hanna K, Jorand FPA. Pseudo-first-order reaction of chemically and biologically formed green rusts with HgII and C₁₅H₁₅N₃O₂: effects of pH and stabilizing agents (phosphate, silicate, polyacrylic acid, and bacterial cells). WATER RESEARCH 2015; 70:266-278. [PMID: 25543237 DOI: 10.1016/j.watres.2014.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 11/24/2014] [Accepted: 12/03/2014] [Indexed: 06/04/2023]
Abstract
The kinetics of Hg(II) and methyl red (MR) reduction by hydroxycarbonate green rust (GR1) and by hydroxysulfate green rust (GR2) were studied in the presence of naturally occurring organic and inorganic ligands (phosphate, polyacrylic acid, bacterial cells, silicate). The reducing ability of biogenic hydroxycarbonate green rust (GR1bio), obtained after microbial reduction of lepidocrocite by Shewanella putrefaciens, was also investigated and compared to those of chemically synthesized GR1 and GR2 (GR1ab and GR2ab). Pseudo first-order rate constants (kobs) of Hg(II) reduction (at pH 7.0, 8.2, and 9.5) and MR reduction (at pH 7.0) were determined and were normalized to the structural Fe(II) content of GRs (kFeII) and to the estimated concentration of surface Fe(II) sites (kS). The kS values ranged from 0.3 L mmol(-1) min(-1) to 43 L mmol(-1) min(-1) for the Hg reduction, and from 0.007 L mmol(-1) min(-1) to 3.4 L mmol(-1) min(-1) for the MR reduction. No significant discrepancy between GRab and GRbio was observed in term of reactivity. However, the reduction kinetics of MR was generally slower than the Hg(II) reduction kinetics for all tested GRs. While a slight difference in Hg(II) reduction rate was noted whatever the pH values (7.0, 8.2, or 9.5), the reduction of MR was significantly affected in the presence of ligands. A decrease by a factor of 2-200, depending on the type of ligand used, was observed. These data give new insights into the reactivity of GRs in the presence of co-occurring organic and inorganic ligands, and have major implications in the characterization of contaminated systems as well as water treatment processes.
Collapse
Affiliation(s)
- P-Ph Remy
- Université de Lorraine, LCPME, UMR 7564, Institut Jean Barriol, Villers-lès-Nancy F-54601, France; CNRS, LCPME, UMR 7564, Institut Jean Barriol, Villers-lès-Nancy F-54601, France
| | - M Etique
- Université de Lorraine, LCPME, UMR 7564, Institut Jean Barriol, Villers-lès-Nancy F-54601, France; CNRS, LCPME, UMR 7564, Institut Jean Barriol, Villers-lès-Nancy F-54601, France
| | - A A Hazotte
- Université de Lorraine, LCPME, UMR 7564, Institut Jean Barriol, Villers-lès-Nancy F-54601, France; CNRS, LCPME, UMR 7564, Institut Jean Barriol, Villers-lès-Nancy F-54601, France
| | - A-S Sergent
- Université de Lorraine, LCPME, UMR 7564, Institut Jean Barriol, Villers-lès-Nancy F-54601, France; CNRS, LCPME, UMR 7564, Institut Jean Barriol, Villers-lès-Nancy F-54601, France
| | - N Estrade
- CNRS, CRPG, UMR 7358, BP 20, Vandœuvre-lès-Nancy F-54501, France; Université de Lorraine, CRPG, UMR 7358, BP 20, Vandœuvre-lès-Nancy F-54501, France
| | - C Cloquet
- CNRS, CRPG, UMR 7358, BP 20, Vandœuvre-lès-Nancy F-54501, France; Université de Lorraine, CRPG, UMR 7358, BP 20, Vandœuvre-lès-Nancy F-54501, France
| | - K Hanna
- ENSCR, CNRS, UMR 6226, CS 50837, Rennes Cedex 7 F-35708, France; Université européenne de Bretagne, Rennes F-35000, France
| | - F P A Jorand
- Université de Lorraine, LCPME, UMR 7564, Institut Jean Barriol, Villers-lès-Nancy F-54601, France; CNRS, LCPME, UMR 7564, Institut Jean Barriol, Villers-lès-Nancy F-54601, France.
| |
Collapse
|
24
|
Lin H, Morrell-Falvey JL, Rao B, Liang L, Gu B. Coupled mercury-cell sorption, reduction, and oxidation on methylmercury production by Geobacter sulfurreducens PCA. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:11969-76. [PMID: 25268220 DOI: 10.1021/es502537a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
G. sulfurreducens PCA cells have been shown to reduce, sorb, and methylate Hg(II) species, but it is unclear whether this organism can oxidize and methylate dissolved elemental Hg(0) as shown for Desulfovibrio desulfuricans ND132. Using Hg(II) and Hg(0) separately as Hg sources in washed cell assays in phosphate buffered saline (pH 7.4), we report how cell-mediated Hg reduction and oxidation compete or synergize with sorption, thus affecting the production of toxic methylmercury by PCA cells. Methylation is found to be positively correlated to Hg sorption (r = 0.73) but negatively correlated to Hg reduction (r = -0.62). These reactions depend on the Hg and cell concentrations or the ratio of Hg to cellular thiols (-SH). Oxidation and methylation of Hg(0) are favored at relatively low Hg to cell-SH molar ratios (e.g., <1). Increasing Hg to cell ratios from 0.25 × 10(-19) to 25 × 10(-19) moles-Hg/cell (equivalent to Hg/cell-SH of 0.71 to 71) shifts the major reaction from oxidation to reduction. In the absence of five outer membrane c-type cytochromes, mutant ΔomcBESTZ also shows decreases in Hg reduction and increases in methylation. However, the presence of competing thiol-binding ions such as Zn(2+) leads to increased Hg reduction and decreased methylation. These results suggest that the coupled cell-Hg sorption and redox transformations are important in controlling the rates of Hg uptake and methylation by G. sulfurreducens PCA in anoxic environments.
Collapse
Affiliation(s)
- Hui Lin
- Environmental Sciences Division and ‡Biosciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | | | | | | | | |
Collapse
|
25
|
Bone SE, Bargar JR, Sposito G. Mackinawite (FeS) reduces mercury(II) under sulfidic conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:10681-10689. [PMID: 25180562 PMCID: PMC4167055 DOI: 10.1021/es501514r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 08/12/2014] [Accepted: 08/16/2014] [Indexed: 05/30/2023]
Abstract
Mercury (Hg) is a toxicant of global concern that accumulates in organisms as methyl Hg. The production of methyl Hg by anaerobic bacteria may be limited in anoxic sediments by the sequestration of divalent Hg [Hg(II)] into a solid phase or by the formation of elemental Hg [Hg(0)]. We tested the hypothesis that nanocrystalline mackinawite (tetragonal FeS), which is abundant in sediments where Hg is methylated, both sorbs and reduces Hg(II). Mackinawite suspensions were equilibrated with dissolved Hg(II) in batch reactors. Examination of the solid phase using Hg LIII-edge extended X-ray absorption fine structure (EXAFS) spectroscopy showed that Hg(II) was indeed reduced in FeS suspensions. Measurement of purgeable Hg using cold vapor atomic fluorescence spectrometry (CVAFS) from FeS suspensions and control solutions corroborated the production of Hg(0) that was observed spectroscopically. However, a fraction of the Hg(II) initially added to the suspensions remained in the divalent state, likely in the form of β-HgS-like clusters associated with the FeS surface or as a mixture of β-HgS and surface-associated species. Complexation by dissolved S(-II) in anoxic sediments hinders Hg(0) formation, but, by contrast, Hg(II)-S(-II) species are reduced in the presence of mackinawite, producing Hg(0) after only 1 h of reaction time. The results of our work support the idea that Hg(0) accounts for a significant fraction of the total Hg in wetland and estuarine sediments.
Collapse
Affiliation(s)
- Sharon E. Bone
- Environmental
Science, Policy, and Management, University
of California, Berkeley, California 94720, United States
- Geochemistry,
Earth Sciences Division, Lawrence Berkeley
National Laboratory, Berkeley, California 94720, United States
| | - John R. Bargar
- Stanford
Synchrotron Radiation Lightsource, SLAC, 2575 Sand Hill Road, Menlo
Park, California 94025, United States
| | - Garrison Sposito
- Environmental
Science, Policy, and Management, University
of California, Berkeley, California 94720, United States
- Geochemistry,
Earth Sciences Division, Lawrence Berkeley
National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
26
|
Rao B, Simpson C, Lin H, Liang L, Gu B. Determination of thiol functional groups on bacteria and natural organic matter in environmental systems. Talanta 2014; 119:240-7. [DOI: 10.1016/j.talanta.2013.11.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/31/2013] [Accepted: 11/02/2013] [Indexed: 10/26/2022]
|
27
|
Thomas SA, Tong T, Gaillard JF. Hg(ii) bacterial biouptake: the role of anthropogenic and biogenic ligands present in solution and spectroscopic evidence of ligand exchange reactions at the cell surface. Metallomics 2014; 6:2213-22. [DOI: 10.1039/c4mt00172a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
XANES spectra reveal a ligand exchange reaction between an aqueous Hg(ii)–organic ligand complex and thiol moieties at theE. colimembrane.
Collapse
Affiliation(s)
- Sara Anne Thomas
- Department of Civil and Environmental Engineering
- Northwestern University
- Evanston, USA
| | - Tiezheng Tong
- Department of Civil and Environmental Engineering
- Northwestern University
- Evanston, USA
| | | |
Collapse
|
28
|
Hu H, Lin H, Zheng W, Rao B, Feng X, Liang L, Elias DA, Gu B. Mercury reduction and cell-surface adsorption by Geobacter sulfurreducens PCA. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:10922-30. [PMID: 24020841 DOI: 10.1021/es400527m] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Both reduction and surface adsorption of mercuric mercury [Hg(II)] are found to occur simultaneously on G. sulfurreducens PCA cells under dark, anaerobic conditions. Reduction of Hg(II) to elemental Hg(0) initially follows a pseudo-first order kinetics with a half-life of <2 h in the presence of 50 nM Hg(II) and 10(11) cells L(-1) in a phosphate buffer (pH 7.4). Multiple gene deletions of the outer membrane cytochromes in this organism resulted in a decrease in reduction rate from ∼0.3 to 0.05 h(-1), and reduction was nearly absent with heat-killed cells or in the cell filtrate. Adsorption of Hg(II) by cells is found to compete with, and thus inhibit, Hg(II) reduction. Depending on the Hg to cell ratio, maximum Hg(II) reduction was observed at about 5 × 10(-19) mol Hg cell(-1), but reduction terminated at a low Hg to cell ratio (<10(-20) mol Hg cell(-1)). This inhibitory effect is attributed to bonding between Hg(II) and the thiol (-SH) functional groups on cells and validated by experiments in which the sorbed Hg(II) was readily exchanged by thiols (e.g., glutathione) but not by carboxylate compounds such as ethylenediamine-tetraacetate (EDTA). We suggest that coupled Hg(II)-cell interactions, i.e., reduction and surface binding, could be important in controlling Hg species transformation and bioavailability and should therefore be considered in microbial Hg(II) uptake and methylation studies.
Collapse
Affiliation(s)
- Haiyan Hu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou, Guangdong, 510640, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Pasakarnis TS, Boyanov MI, Kemner KM, Mishra B, O'Loughlin EJ, Parkin G, Scherer MM. Influence of chloride and Fe(II) content on the reduction of Hg(II) by magnetite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:6987-94. [PMID: 23621619 DOI: 10.1021/es304761u] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Abiotic reduction of inorganic mercury by natural organic matter and native soils is well-known, and recently there is evidence that reduced iron (Fe) species, such as magnetite, green rust, and Fe sulfides, can also reduce Hg(II). Here, we evaluated the reduction of Hg(II) by magnetites with varying Fe(II) content in both the absence and presence of chloride. Specifically, we evaluated whether magnetite stoichiometry (x = Fe(II)/Fe(III)) influences the rate of Hg(II) reduction and formation of products. In the absence of chloride, reduction of Hg(II) to Hg(0) is observed over a range of magnetite stoichiometries (0.29 < x < 0.50) in purged headspace reactors and unpurged low headspace reactors, as evidenced by Hg recovery in a volatile product trap solution and Hg L(III)-edge X-ray absorption near edge spectroscopy (XANES). In the presence of chloride, however, XANES spectra indicate the formation of a metastable Hg(I) calomel species (Hg2Cl2) from the reduction of Hg(II). Interestingly, Hg(I) species are only observed for the more oxidized magnetite particles that contain lower Fe(II) content (x < 0.42). For the more reduced magnetite particles (x ≥ 0.42), Hg(II) is reduced to Hg(0) even in the presence of high chloride concentrations. As previously observed for nitroaromatic compounds and uranium, magnetite stoichiometry appears to influence the rate of Hg(II) reduction (both in the presence and absence of chloride) confirming that it is important to consider magnetite stoichiometry when assessing the fate of contaminants in Fe-rich subsurface environments.
Collapse
Affiliation(s)
- Timothy S Pasakarnis
- Department of Civil and Environmental Engineering, The University of Iowa, Iowa City, Iowa 52242, United States
| | | | | | | | | | | | | |
Collapse
|
30
|
Detailed assessment of the kinetics of Hg-cell association, Hg methylation, and methylmercury degradation in several Desulfovibrio species. Appl Environ Microbiol 2012; 78:7337-46. [PMID: 22885751 DOI: 10.1128/aem.01792-12] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The kinetics of inorganic Hg [Hg(II)(i)] association, methylation, and methylmercury (MeHg) demethylation were examined for a group of Desulfovibrio species with and without MeHg production capability. We employed a detailed method for assessing MeHg production in cultures, including careful control of medium chemistry, cell density, and growth phase, plus mass balance of Hg(II)(i) and MeHg during the assays. We tested the hypothesis that differences in Hg(II)(i) sorption and/or uptake rates drive observed differences in methylation rates among Desulfovibrio species. Hg(II)(i) associated rapidly and with high affinity to both methylating and nonmethylating species. MeHg production by Hg-methylating strains was rapid, plateauing after ∼3 h. All MeHg produced was rapidly exported. We also tested the idea that all Desulfovibrio species are capable of Hg(II)(i) methylation but that rapid demethylation masks its production, but we found this was not the case. Therefore, the underlying reason why MeHg production capability is not universal in the Desulfovibrio is not differences in Hg affinity for cells nor differences in the ability of strains to degrade MeHg. However, Hg methylation rates varied substantially between Hg-methylating Desulfovibrio species even in these controlled experiments and after normalization to cell density. Thus, biological differences may drive cross-species differences in Hg methylation rates. As part of this study, we identified four new Hg methylators (Desulfovibrio aespoeensis, D. alkalitolerans, D. psychrotolerans, and D. sulfodismutans) and four nonmethylating species (Desulfovibrio alcoholivorans, D. tunisiensis, D. carbinoliphilus, and D. piger) in our ongoing effort to generate a library of strains for Hg methylation genomics.
Collapse
|