1
|
Li P, Jin A, Liang Y, Zhang Y, Ding D, Xiang H, Ding Y, Qiu X, Han W, Ye F, Feng H. Biocathode-anode cascade system in PRB: Efficient degradation of p-chloronitrobenzene in groundwater. WATER RESEARCH 2024; 266:122359. [PMID: 39232255 DOI: 10.1016/j.watres.2024.122359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/10/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
The consistent presence of p-chloronitrobenzene (p-CNB) in groundwater has raised concerns regarding its potential harm. In this study, we developed a biocathode-anode cascade system in a permeable reactive barrier (BACP), integrating biological electrochemical system (BES) with permeable reactive barrier (PRB), to address the degradation of p-CNB in the groundwater. BACP efficiently accelerated the formation of biofilms on both the anode and cathode using the polar periodical reversal method, proving more conducive to biofilm development. Notably, BACP demonstrated a remarkable p-CNB removal efficiency of 94.76 % and a dechlorination efficiency of 64.22 % under a voltage of 0.5 V, surpassing the results achieved through traditional electrochemical and biological treatment processes. Cyclic voltammetric results highlighted the primary contributing factor as the synergistic effect between the bioanode and biocathode. It is speculated that this system primarily relies on bioelectrocatalytic reduction as the predominant process for p-CNB removal, followed by subsequent dechlorination. Furthermore, electrochemical and microbiological tests demonstrated that BACP exhibited optimal electron transfer efficiency and selective microbial enrichment ability under a voltage of 0.3-0.5 V. Additionally, we investigated the operational strategy for initiating BACP in engineering applications. The results showed that directly introducing BACP technology effectively enhanced microbial film formation and pollutant removal performance.
Collapse
Affiliation(s)
- Pingli Li
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Anan Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Yuxiang Liang
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China; Zhejiang Bainuo Digital Intelligence Environmental Technology Co., Ltd., Hangzhou, Zhejiang 310061, China
| | - Yanqing Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Danna Ding
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Hai Xiang
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Yangcheng Ding
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Xiawen Qiu
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Wei Han
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Fangfang Ye
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Huajun Feng
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China; Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
2
|
Yang K, Abu-Reesh IM, He Z. Degradation of 4-chlorophenol through cooperative reductive and oxidative processes in an electrochemical system. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130126. [PMID: 36303354 DOI: 10.1016/j.jhazmat.2022.130126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/25/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Electrochemical treatment can be an effective approach for degrading recalcitrant organic contaminants because its anode/cathode produces powerful oxidizing/reducing conditions. Herein, through the cooperation of the cathodic reductive and anodic oxidative processes, 4-chlorophenol (4-CP) was successfully degraded in an electrochemical system. TiO2 nanotube arrays (TNTAs)/Sb-SnO2 and TNTAs/Pd were successfully prepared and served as the anode and cathode electrodes, respectively, to generate oxidative (hydroxyl radical, ·OH) and reductive (chemically adsorbed hydrogen, Hads) agents. The sequential reduction-oxidation (SRO) process provided a reasonable degradation pathway that accomplished reductive detoxification in the cathode and oxidative mineralization in the anode. The SRO mode achieved dechlorination efficiency (DE) of 86.9 ± 3.9% and TOC removal efficiency of 64.8 ± 4.2% within 3 h and under a current density of 8 mA cm-2, both of which were significantly higher than those obtained in the sequential oxidation-reduction or the simultaneous redox modes. The increment of current density and reaction time could improve 4-CP degradation performance, but a high current density would decrease the cathode stability and a longer reaction time led to the generation of ClO4-. This study has demonstrated that sequential reduction-oxidation can be an effective and tunable process for degrading recalcitrant organic contaminants.
Collapse
Affiliation(s)
- Kaichao Yang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
3
|
Ma J, Wang Z, Majima T, Zhao G. Role of Ni in PtNi Alloy for Modulating the Proton–Electron Transfer of Electrocatalytic Hydrogenation Revealed by the In Situ Raman–Rotating Disk Electrode Method. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jianjun Ma
- School of Chemical Science and Engineering, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, Tongji University, Shanghai 200092, China
| | - Zhiming Wang
- School of Chemical Science and Engineering, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, Tongji University, Shanghai 200092, China
| | - Tetsuro Majima
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Guohua Zhao
- School of Chemical Science and Engineering, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, Tongji University, Shanghai 200092, China
| |
Collapse
|
4
|
Zheng D, Geng Z, Huang W, Cao L, Wan Z, Li G, Zhang F. Enhanced semi-volatile DNAPL accessibility at sub-boiling temperature during electrical resistance heating in heterogeneous porous media. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129633. [PMID: 35882169 DOI: 10.1016/j.jhazmat.2022.129633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/01/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Successful remediation of semi-volatile contaminants using electrical resistance heating (ERH) coupled technologies requires a deep understanding of contaminant migration and accessibility, especially with stratigraphic heterogeneity and dense nonaqueous phase liquid (DNAPL) occurrence. Here, we chose nitrobenzene (NB) as a model contaminant of semi-volatile DNAPL and uniquely demonstrated that temperature variation during ERH could induce NB DNAPL migration out of the low permeability zone (LPZ) even below water boiling temperature. When heating the system using alternating current (AC) of 140 V to a temperature range of 50-79 °C, obvious DNAPL migration was visually observed. The upward migration of DNAPL would considerably increase the mass of accessible contaminant by other remediation measures. The downstream cumulative NB mass of 1092 mg in 140 V system raised 56-folds compared to that of 19 mg in the control experiment with only groundwater flow. This migration was mainly attributed to a complex natural convection caused by temperature gradient. Comparing with traditional AC heating, ERH powered by pulsed direct current (PDC-ERH) showed a higher and more uneven heating pattern, resulting in a stronger convection at the same voltage that enhanced the DNAPL migration out of LPZ. These results revealed the importance of natural convection in the ERH process, which could be further optimized to improve the energy efficiency of remediation.
Collapse
Affiliation(s)
- Di Zheng
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, PR China
| | - Zhuning Geng
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, PR China
| | - Wan Huang
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, PR China
| | - Lifeng Cao
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, PR China
| | - Ziren Wan
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, PR China
| | - Guanghe Li
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, PR China; National Engineering Laboratory for Site Remediation Technologies (NEL-SRT), Beijing 100015, PR China
| | - Fang Zhang
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, PR China; National Engineering Laboratory for Site Remediation Technologies (NEL-SRT), Beijing 100015, PR China.
| |
Collapse
|
5
|
Shemer H, Huang Y, Hasson D, Semiat R. Coupling donann dialysis and electro-reduction process for nitrate removal from simulated groundwater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Wei K, Wan Y, Liao M, Cao S, Zhang H, Peng X, Gu H, Ling C, Li M, Shi Y, Ai Z, Gong J, Zhang L. A controllable reduction-oxidation coupling process for chloronitrobenzenes remediation: From lab to field trial. WATER RESEARCH 2022; 218:118453. [PMID: 35489147 DOI: 10.1016/j.watres.2022.118453] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Chloronitrobenzenes (CNBs) are typical refractory aromatic pollutants. The reduction products of CNBs often possess higher toxicity, and the electron-withdrawing substituent groups are detrimental to the ring-opening during the oxidation treatment, leading to ineffective removal of CNBs by either reduction or oxidation technology. Herein we demonstrate a controllable reduction-oxidation coupling (ROC) process composed of zero-valent iron (ZVI) and H2O2 for the effective removal of CNBs from both water and soil. In water, ZVI first reduced p-CNB into 4-chloronitrosobenzene and 4-chloroaniline intermediates, which were then suffered from the subsequent oxidative ring-opening by ·OH generated from the reaction between Fe(II) and H2O2. By controlling the addition time of H2O2, the final mineralization rate of p-CNB reached 6.6 × 10-1 h-1, about 74 times that of oxidation alone (9.0 × 10-3 h-1). More importantly, this controllable ROC process was also applicable for the site remediation of CNBs contaminated soil by either ex-situ treatment or in-situ injection, and, respectively decreased the concentrations of p-CNB, m-CNB, and o-CNB from 1105, 980, and 94 mg/kg to 3, 1, and < 1mg/kg, meeting the remediation goals (p-CNB: < 32.35 mg/kg, o-CNB and m-CNB: < 1.98 mg/kg). These laboratory and field trial results reveal that this controllable ROC strategy is very promising for the treatment of electron-withdrawing groups substituted aromatic contaminates.
Collapse
Affiliation(s)
- Kai Wei
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, PR China
| | - Yanyan Wan
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, PR China
| | - Minzi Liao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, PR China
| | - Shiyu Cao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, PR China
| | - Hao Zhang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, PR China
| | - Xing Peng
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, PR China
| | - Huayu Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, PR China
| | - Cancan Ling
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, PR China
| | - Meiqi Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, PR China
| | - Yanbiao Shi
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Zhihui Ai
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, PR China.
| | - Jingming Gong
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, PR China
| | - Lizhi Zhang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, PR China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
7
|
Shultz LR, Preradovic K, Ghimire S, Hadley HM, Xie S, Kashyap V, Beazley MJ, Crawford KE, Liu F, Mukhopadhyay K, Jurca T. Nickel foam supported porous copper oxide catalysts with noble metal-like activity for aqueous phase reactions. Catal Sci Technol 2022; 12:3804-3816. [PMID: 35965882 PMCID: PMC9373473 DOI: 10.1039/d1cy02313f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Contiguous metal foams offer a multitude of advantages over conventional powders as supports for nanostructured heterogeneous catalysts; most critically a preformed 3-D porous framework ensuring full directional coverage of supported catalyst, and intrinsic ease of handling and recyclability. Nonetheless, metal foams remain comparatively underused in thermal catalysis compared to more conventional supports such as amorphous carbon, metal oxides, zeolites and more recently MOFs. Herein, we demonstrate a facile preparation of highly-reactive, robust, and easy to handle Ni foam-supported Cu-based metal catalysts. The highly sustainable synthesis requires no specialized equipment, no surfactants or additive redox reagents, uses water as solvent, and CuCl2(H2O)2 as precursor. The resulting material seeds as well-separated micro-crystalline Cu2(OH)3Cl evenly covering the Ni foam. Calcination above 400 °C transforms the Cu2(OH)3Cl to highly porous CuO. All materials display promising activity towards the reduction of 4-nitrophenol and methyl orange. Notably, our leading CuO-based material displays 4-nitrophenol reduction activity comparable with very reactive precious-metal based systems. Recyclability studies highlight the intrinsic ease of handling for the Ni foam support, and our results point to a very robust, highly recyclable catalyst system.
Collapse
Affiliation(s)
- Lorianne R Shultz
- Department of Chemistry, University of Central Florida, Orlando, Florida, 32816, USA
| | - Konstantin Preradovic
- Department of Chemistry, University of Central Florida, Orlando, Florida, 32816, USA
| | - Suvash Ghimire
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, 32816, USA
| | - Hayden M Hadley
- Department of Chemistry, University of Central Florida, Orlando, Florida, 32816, USA
| | - Shaohua Xie
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, Florida, 32816, USA
| | - Varchaswal Kashyap
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, 32816, USA
| | - Melanie J Beazley
- Department of Chemistry, University of Central Florida, Orlando, Florida, 32816, USA
| | - Kaitlyn E Crawford
- Department of Chemistry, University of Central Florida, Orlando, Florida, 32816, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, 32816, USA
- NanoScience and Technology Center (NSTC), University of Central Florida, Orlando, Florida, 32826, USA
- Biionix Faculty Cluster, University of Central Florida, Orlando, Florida, 32816, USA
| | - Fudong Liu
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, Florida, 32816, USA
- Biionix Faculty Cluster, University of Central Florida, Orlando, Florida, 32816, USA
- Renewable Energy and Chemical Transformation Faculty Cluster (REACT), University of Central Florida, Orlando, Florida, 32816, USA
| | - Kausik Mukhopadhyay
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, 32816, USA
- Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, Florida, 32826, USA
| | - Titel Jurca
- Department of Chemistry, University of Central Florida, Orlando, Florida, 32816, USA
- NanoScience and Technology Center (NSTC), University of Central Florida, Orlando, Florida, 32826, USA
- Renewable Energy and Chemical Transformation Faculty Cluster (REACT), University of Central Florida, Orlando, Florida, 32816, USA
| |
Collapse
|
8
|
Sharma R, Kumari R, Pant D, Malaviya P. Bioelectricity generation from human urine and simultaneous nutrient recovery: Role of Microbial Fuel Cells. CHEMOSPHERE 2022; 292:133437. [PMID: 34973250 DOI: 10.1016/j.chemosphere.2021.133437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Urine is a 'valuable waste' that can be exploited to generate bioelectricity and recover key nutrients for producing NPK-rich biofertilizers. In recent times, improved and innovative waste management technologies have emerged to manage the rapidly increasing environmental pollution and to accomplish the goal of sustainable development. Microbial fuel cells (MFCs) have attracted the attention of environmentalists worldwide to treat human urine and produce power through bioelectrochemical reactions in presence of electroactive bacteria growing on the anode. The bacteria break down the complex organic matter present in urine into simpler compounds and release the electrons which flow through an external circuit generating current at the cathode. Many other useful products are harvested at the end of the process. So, in this review, an attempt has been made to synthesize the information on MFCs fuelled with urine to generate bioelectricity and recover value-added resources (nutrients), and their modifications to enhance productivity. Moreover, configuration and mode of system operation, and factors enhancing the performance of MFCs have been also presented.
Collapse
Affiliation(s)
- Rozi Sharma
- Department of Environmental Sciences, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Rekha Kumari
- Department of Environmental Sciences, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Deepak Pant
- Separation & Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, 2400, Belgium
| | - Piyush Malaviya
- Department of Environmental Sciences, University of Jammu, Jammu, Jammu and Kashmir, India.
| |
Collapse
|
9
|
Nagendranatha Reddy C, Kondaveeti S, Mohanakrishna G, Min B. Application of bioelectrochemical systems to regulate and accelerate the anaerobic digestion processes. CHEMOSPHERE 2022; 287:132299. [PMID: 34627010 DOI: 10.1016/j.chemosphere.2021.132299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 08/23/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic digestion (AD) serves as a potential bioconversion process to treat various organic wastes/wastewaters, including sewage sludge, and generate renewable green energy. Despite its efficiency, AD has several limitations that need to be overcome to achieve maximum energy recovery from organic materials while regulating inhibitory substances. Hence, bioelectrochemical systems (BESs) have been widely investigated to treat inhibitory compounds including ammonia in AD processes and improve the AD operational efficiency, stability, and economic viability with various integrations. The BES operations as a pretreatment process, inside AD or after the AD process aids in the upgradation of biogas (CO2 to methane) and residual volatile fatty acids (VFAs) to valuable chemicals and fuels (alcohols) and even directly to electricity generation. This review presents a comprehensive summary of BES technologies and operations for overcoming the limitations of AD in lab-scale applications and suggests upscaling and future opportunities for BES-AD systems.
Collapse
Affiliation(s)
- C Nagendranatha Reddy
- Department of Environmental Science and Engineering, Kyung Hee University, Seocheon-dong, Yongin-si, Gyeonggi-do, 446-701, Republic of Korea; Department of Biotechnology, Chaitanya Bharathi Institute of Technology (Autonomous), Gandipet, 500075, Hyderabad, Telangana State, India
| | - Sanath Kondaveeti
- Division of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029, South Korea
| | | | - Booki Min
- Department of Environmental Science and Engineering, Kyung Hee University, Seocheon-dong, Yongin-si, Gyeonggi-do, 446-701, Republic of Korea.
| |
Collapse
|
10
|
Sustainable approach for wastewater treatment using microbial fuel cells and green energy generation – A comprehensive review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117795] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Ahmadi A, Wu T. Towards full cell potential utilization during water purification using Co/Bi/TiO2 nanotube electrodes. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Shultz LR, Hu L, Feng X, Jurca T. Using a Nitrophenol Cocktail Screen to Improve Catalyst Down-selection. Chemphyschem 2020; 21:1627-1631. [PMID: 32529796 DOI: 10.1002/cphc.202000400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/09/2020] [Indexed: 11/05/2022]
Abstract
The catalytic reduction of 4-nitrophenol (4NP) with excess NaBH4 is the benchmark model for quantifying catalytic activity of nanoparticles. Although broadly useful, the reaction can be very selective. This can lead to false positives and negatives when utilized for catalyst down-selection from a broader materials candidate pool. We report a multi-nitrophenol cocktail screening methodology incorporating 4NP and other amino-nitrophenols, utilizing Ag, Au, Pt, and Pd nanoparticles on carbon support. The reduction of the cocktail proceeds with no deleterious side reactions on the time-scale tested. The resulting kinetic rates provide an improved correlation of relative catalyst activity when compared to performance with other reducible moieties (e. g. azo bonds), or when compared to solely 4NP screening.
Collapse
Affiliation(s)
- Lorianne R Shultz
- Department of Chemistry, University of Central Florida, Orlando, Florida, 32816, USA.,Renewable Energy and Chemical Transformations Cluster, University of Central Florida, Orlando, Florida, 32816, USA
| | - Lin Hu
- Renewable Energy and Chemical Transformations Cluster, University of Central Florida, Orlando, Florida, 32816, USA.,Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, 32816, USA
| | - Xiaofeng Feng
- Renewable Energy and Chemical Transformations Cluster, University of Central Florida, Orlando, Florida, 32816, USA.,Department of Physics, University of Central Florida, Orlando, Florida, 32816, USA
| | - Titel Jurca
- Department of Chemistry, University of Central Florida, Orlando, Florida, 32816, USA.,Renewable Energy and Chemical Transformations Cluster, University of Central Florida, Orlando, Florida, 32816, USA.,NanoScience Technology Center, University of Central Florida, Orlando, Florida, 32826, USA
| |
Collapse
|
13
|
Shultz LR, McCullough B, Newsome WJ, Ali H, Shaw TE, Davis KO, Uribe-Romo FJ, Baudelet M, Jurca T. A Combined Mechanochemical and Calcination Route to Mixed Cobalt Oxides for the Selective Catalytic Reduction of Nitrophenols. Molecules 2019; 25:E89. [PMID: 31881734 PMCID: PMC6982874 DOI: 10.3390/molecules25010089] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/14/2019] [Accepted: 12/15/2019] [Indexed: 12/28/2022] Open
Abstract
Para-, or 4-nitrophenol, and related nitroaromatics are broadly used compounds in industrial processes and as a result are among the most common anthropogenic pollutants in aqueous industrial effluent; this requires development of practical remediation strategies. Their catalytic reduction to the less toxic and synthetically desirable aminophenols is one strategy. However, to date, the majority of work focuses on catalysts based on precisely tailored, and often noble metal-based nanoparticles. The cost of such systems hampers practical, larger scale application. We report a facile route to bulk cobalt oxide-based materials, via a combined mechanochemical and calcination approach. Vibratory ball milling of CoCl2(H2O)6 with KOH, and subsequent calcination afforded three cobalt oxide-based materials with different combinations of CoO(OH), Co(OH)2, and Co3O4 with different crystallite domains/sizes and surface areas; Co@100, Co@350 and Co@600 (Co@###; # = calcination temp). All three prove active for the catalytic reduction of 4-nitrophenol and related aminonitrophenols. In the case of 4-nitrophenol, Co@350 proved to be the most active catalyst, therein its retention of activity over prolonged exposure to air, moisture, and reducing environments, and applicability in flow processes is demonstrated.
Collapse
Affiliation(s)
- Lorianne R. Shultz
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816, USA; (L.R.S.); (B.M.); (W.J.N.); (T.E.S.)
- Renewable Energy and Chemical Transformations Cluster, University of Central Florida, 4353 Scorpius Street, Orlando, FL 32816, USA
| | - Bryan McCullough
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816, USA; (L.R.S.); (B.M.); (W.J.N.); (T.E.S.)
- National Center for Forensic Science, University of Central Florida, 12354 Research Parkway #225, Orlando, FL 32826, USA
| | - Wesley J. Newsome
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816, USA; (L.R.S.); (B.M.); (W.J.N.); (T.E.S.)
| | - Haider Ali
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA; (H.A.); (K.O.D.)
| | - Thomas E. Shaw
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816, USA; (L.R.S.); (B.M.); (W.J.N.); (T.E.S.)
- Renewable Energy and Chemical Transformations Cluster, University of Central Florida, 4353 Scorpius Street, Orlando, FL 32816, USA
| | - Kristopher O. Davis
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA; (H.A.); (K.O.D.)
- CREOL—The College of Optics & Photonics, Building 53, University of Central Florida, 4304 Scorpius Street, Orlando, FL 32816, USA
| | - Fernando J. Uribe-Romo
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816, USA; (L.R.S.); (B.M.); (W.J.N.); (T.E.S.)
- Renewable Energy and Chemical Transformations Cluster, University of Central Florida, 4353 Scorpius Street, Orlando, FL 32816, USA
| | - Matthieu Baudelet
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816, USA; (L.R.S.); (B.M.); (W.J.N.); (T.E.S.)
- National Center for Forensic Science, University of Central Florida, 12354 Research Parkway #225, Orlando, FL 32826, USA
- CREOL—The College of Optics & Photonics, Building 53, University of Central Florida, 4304 Scorpius Street, Orlando, FL 32816, USA
| | - Titel Jurca
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816, USA; (L.R.S.); (B.M.); (W.J.N.); (T.E.S.)
- Renewable Energy and Chemical Transformations Cluster, University of Central Florida, 4353 Scorpius Street, Orlando, FL 32816, USA
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| |
Collapse
|
14
|
Moghiseh Z, Rezaee A, Dehghani S, Esrafili A. Microbial electrochemical system for the phenol degradation using alternating current: Metabolic pathway study. Bioelectrochemistry 2019; 130:107230. [DOI: 10.1016/j.bioelechem.2018.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/02/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022]
|
15
|
Kondaveeti S, Abu-Reesh IM, Mohanakrishna G, Pant D, He Z. Utilization of residual organics of Labaneh whey for renewable energy generation through bioelectrochemical processes: Strategies for enhanced substrate conversion and energy generation. BIORESOURCE TECHNOLOGY 2019; 286:121409. [PMID: 31078076 DOI: 10.1016/j.biortech.2019.121409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Labaneh whey (LW) that is rich in residual organics was evaluated for bioelectricity generation using microbial fuel cell (MFC) in two different configurations namely single chamber (MFC-SC) and dual chamber (MFC-DC) MFCs. The whole study was executed in three stages: The first stage evidenced promising amount of bioelectricity generation (DC, 643 mV; SC, 545 mV) along with chemical oxygen demand removal (CODr: DC, 60.63%; SC, CODr: 55.25%). In the second phase, activity of anodic electrogenic microbes was improved with short time poising at potentials of 400, 600 and 800 mV, among which 800 mV evidenced 2.24 (DC) and 1.60 (SC) fold enhancement in power generation along with significant improvement in substrate degradation. The third phase was solely focused on bioelectrochemical treatment of LW through applied potentials for extended period. This phase achieved 89 and 94% chemical oxygen demand (COD) degradation using SC and DC configurations, respectively at 800 mV.
Collapse
Affiliation(s)
- Sanath Kondaveeti
- Department of Chemical Engineering, College of Engineering, Qatar University, PO Box 2713, Doha, Qatar
| | - Ibrahim M Abu-Reesh
- Department of Chemical Engineering, College of Engineering, Qatar University, PO Box 2713, Doha, Qatar.
| | - Gunda Mohanakrishna
- Department of Chemical Engineering, College of Engineering, Qatar University, PO Box 2713, Doha, Qatar
| | - Deepak Pant
- Separation & Conversion Technologies, VITO - Flemish Institute for Technological Research, Boeretang 200, 2400 Mol, Belgium
| | - Zhen He
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
16
|
Shultz LR, Hu L, Preradovic K, Beazley MJ, Feng X, Jurca T. A Broader‐scope Analysis of the Catalytic Reduction of Nitrophenols and Azo Dyes with Noble Metal Nanoparticles. ChemCatChem 2019. [DOI: 10.1002/cctc.201900260] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lorianne R. Shultz
- Department of ChemistryUniversity of Central Florida Orlando, Florida 32816 USA
| | - Lin Hu
- Department of Materials Science and EngineeringUniversity of Central Florida Orlando, Florida 32816 USA
| | | | - Melanie J. Beazley
- Department of ChemistryUniversity of Central Florida Orlando, Florida 32816 USA
| | - Xiaofeng Feng
- Department of Materials Science and EngineeringUniversity of Central Florida Orlando, Florida 32816 USA
- Department of PhysicsUniversity of Central Florida Orlando, Florida 32816 USA
- Renewable Energy and Chemical Transformations ClusterUniversity of Central Florida Orlando, Florida 32816 USA
| | - Titel Jurca
- Department of ChemistryUniversity of Central Florida Orlando, Florida 32816 USA
- Renewable Energy and Chemical Transformations ClusterUniversity of Central Florida Orlando, Florida 32816 USA
| |
Collapse
|
17
|
Li Y, Mitch WA. Capture and Reductive Transformation of Halogenated Pesticides by an Activated Carbon-Based Electrolysis System for Treatment of Runoff. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1435-1443. [PMID: 29281267 DOI: 10.1021/acs.est.7b05259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study evaluates an electrochemical system to treat the halogenated pesticides, fipronil, permethrin, and bifenthrin, in urban runoff. Compared to the poor sorption capacity of metal-based electrodes, granular activated carbon (GAC)-based electrodes could sorb halogenated pesticides, permitting electrochemical degradation to occur over longer timescales than reactor hydraulic residence times. In a dual-cell configuration, a cathode constructed of loose GAC containing sorbed pesticides was separated from the anode by an ion-exchange membrane to prevent chloride transport and oxidation to chlorine at the anode. When -1 V was applied to the cathode, fipronil concentrations declined by 92% over 15 h, releasing molar equivalents of chloride (2) and fluoride (6), suggesting complete dehalogenation of fipronil. An electrode constructed of crushed GAC particles attached to a carbon cloth current distributor achieved >90% degradation of fipronil, permethrin, and bifenthrin within 2 h under the same conditions. To evaluate a simpler single-cell configuration suitable for scale-up, two of the carbon cloth-based electrodes were placed in parallel without an ion-exchange membrane. For -1 V applied to the cathode, fipronil degradation was >95% over 2 h, and energy consumption declined with closer electrode spacing. However, chloride oxidation at the anode produced chlorine, and the anode degraded. Application of an alternating potential (-1 to +1 V at 0.0125 Hz) to the parallel-plate electrodes achieved >90% degradation of fipronil, bifenthrin, and permethrin over 4 h, releasing chloride at 50-70% of that expected for complete dechlorination. No loss of performance or formation of chlorine or halogenated byproducts was observed over 5 cycles of treating fipronil-spiked surface water.
Collapse
Affiliation(s)
- Yuanqing Li
- Department of Civil and Environmental Engineering, Stanford University , 473 Via Ortega, Stanford, California 94305, United States
| | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University , 473 Via Ortega, Stanford, California 94305, United States
| |
Collapse
|
18
|
Peng X, Pan X, Wang X, Li D, Huang P, Qiu G, Shan K, Chu X. Accelerated removal of high concentration p-chloronitrobenzene using bioelectrocatalysis process and its microbial communities analysis. BIORESOURCE TECHNOLOGY 2018; 249:844-850. [PMID: 29136940 DOI: 10.1016/j.biortech.2017.10.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/09/2017] [Accepted: 10/18/2017] [Indexed: 06/07/2023]
Abstract
p-Chloronitrobenzene (p-CNB) is a persistent refractory and toxic pollutant with a concentration up to 200 mg/L in industrial wastewater. Here, a super-fast removal rate was found at 0.2-0.8 V of external voltage over a p-CNB concentration of 40-120 mg/L when a bioelectrochemical technology is used comparing to the natural biodegradation and electrochemical methods. The reduction kinetics (k) was fitted well according to pseudo-first order model with respect to the different initial concentration, indicating a 1.12-fold decrease from 1.80 to 0.85 h-1 within the experimental range. Meanwhile, the highest k was provided at 0.5 V with the characteristic of energy saving. It was revealed that the functional bacterial (Propionimicrobium, Desulfovibrio, Halanaerobium, Desulfobacterales) was selectively enriched under electro-stimulation, which possibly processed Cl-substituted nitro-aromatics reduction. The possible degradation pathway was also proposed. This work provides the beneficial choice on the rapid treatment of high-concentration p-CNB wastewater.
Collapse
Affiliation(s)
- Xinhong Peng
- Institute of Seawater Desalination and Multipurpose Utilization, State Oceanic Administration (SOA), Nankai District, Tianjin 300192, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| | - Xianhui Pan
- Institute of Seawater Desalination and Multipurpose Utilization, State Oceanic Administration (SOA), Nankai District, Tianjin 300192, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Dongyang Li
- Institute of Seawater Desalination and Multipurpose Utilization, State Oceanic Administration (SOA), Nankai District, Tianjin 300192, China
| | - Pengfei Huang
- Institute of Seawater Desalination and Multipurpose Utilization, State Oceanic Administration (SOA), Nankai District, Tianjin 300192, China
| | - Guanhua Qiu
- Institute of Seawater Desalination and Multipurpose Utilization, State Oceanic Administration (SOA), Nankai District, Tianjin 300192, China
| | - Ke Shan
- Institute of Seawater Desalination and Multipurpose Utilization, State Oceanic Administration (SOA), Nankai District, Tianjin 300192, China
| | - Xizhang Chu
- Institute of Seawater Desalination and Multipurpose Utilization, State Oceanic Administration (SOA), Nankai District, Tianjin 300192, China
| |
Collapse
|
19
|
Jasmann JR, Gedalanga PB, Borch T, Mahendra S, Blotevogel J. Synergistic Treatment of Mixed 1,4-Dioxane and Chlorinated Solvent Contaminations by Coupling Electrochemical Oxidation with Aerobic Biodegradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:12619-12629. [PMID: 29023103 DOI: 10.1021/acs.est.7b03134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Biodegradation of the persistent groundwater contaminant 1,4-dioxane is often hindered by the absence of dissolved oxygen and the co-occurrence of inhibiting chlorinated solvents. Using flow-through electrolytic reactors equipped with Ti/IrO2-Ta2O5 mesh electrodes, we show that combining electrochemical oxidation with aerobic biodegradation produces an overadditive treatment effect for degrading 1,4-dioxane. In reactors bioaugmented by Pseudonocardia dioxanivorans CB1190 with 3.0 V applied, 1,4-dioxane was oxidized 2.5 times faster than in bioaugmented control reactors without an applied potential, and 12 times faster than by abiotic electrolysis only. Quantitative polymerase chain reaction analyses of CB1190 abundance, oxidation-reduction potential, and dissolved oxygen measurements indicated that microbial growth was promoted by anodic oxygen-generating reactions. At a higher potential of 8.0 V, however, the cell abundance near the anode was diminished, likely due to unfavorable pH and/or redox conditions. When coupled to electrolysis, biodegradation of 1,4-dioxane was sustained even in the presence of the common co-contaminant trichloroethene in the influent. Our findings demonstrate that combining electrolytic treatment with aerobic biodegradation may be a promising synergistic approach for the treatment of mixed contaminants.
Collapse
Affiliation(s)
- Jeramy R Jasmann
- Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523, United States
| | - Phillip B Gedalanga
- Department of Civil and Environmental Engineering, University of California , Los Angeles, California 90095, United States
| | - Thomas Borch
- Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523, United States
- Department of Civil and Environmental Engineering, Colorado State University , Fort Collins, Colorado 80523, United States
- Department of Soil and Crop Sciences, Colorado State University , Fort Collins, Colorado 80523, United States
| | - Shaily Mahendra
- Department of Civil and Environmental Engineering, University of California , Los Angeles, California 90095, United States
| | - Jens Blotevogel
- Department of Civil and Environmental Engineering, Colorado State University , Fort Collins, Colorado 80523, United States
| |
Collapse
|
20
|
Gu D, Shao N, Zhu Y, Wu H, Wang B. Solar-driven thermo- and electrochemical degradation of nitrobenzene in wastewater: Adaptation and adoption of solar STEP concept. JOURNAL OF HAZARDOUS MATERIALS 2017; 321:703-710. [PMID: 27710892 DOI: 10.1016/j.jhazmat.2016.09.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/17/2016] [Accepted: 09/29/2016] [Indexed: 06/06/2023]
Abstract
The STEP concept has successfully been demonstrated for driving chemical reaction by utilization of solar heat and electricity to minimize the fossil energy, meanwhile, maximize the rate of thermo- and electrochemical reactions in thermodynamics and kinetics. This pioneering investigation experimentally exhibit that the STEP concept is adapted and adopted efficiently for degradation of nitrobenzene. By employing the theoretical calculation and thermo-dependent cyclic voltammetry, the degradation potential of nitrobenzene was found to be decreased obviously, at the same time, with greatly lifting the current, while the temperature was increased. Compared with the conventional electrochemical methods, high efficiency and fast degradation rate were markedly displayed due to the co-action of thermo- and electrochemical effects and the switch of the indirect electrochemical oxidation to the direct one for oxidation of nitrobenzene. A clear conclusion on the mechanism of nitrobenzene degradation by the STEP can be schematically proposed and discussed by the combination of thermo- and electrochemistry based the analysis of the HPLC, UV-vis and degradation data. This theory and experiment provide a pilot for the treatment of nitrobenzene wastewater with high efficiency, clean operation and low carbon footprint, without any other input of energy and chemicals from solar energy.
Collapse
Affiliation(s)
- Di Gu
- Institute of New Energy Chemistry and Environmental Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, PR China
| | - Nan Shao
- Institute of New Energy Chemistry and Environmental Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, PR China
| | - Yanji Zhu
- Institute of New Energy Chemistry and Environmental Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, PR China
| | - Hongjun Wu
- Institute of New Energy Chemistry and Environmental Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, PR China
| | - Baohui Wang
- Institute of New Energy Chemistry and Environmental Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, PR China.
| |
Collapse
|
21
|
Bioelectrochemical Systems for Heavy Metal Removal and Recovery. SUSTAINABLE HEAVY METAL REMEDIATION 2017. [DOI: 10.1007/978-3-319-58622-9_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Nájera-Aguilar HA, Gutiérrez-Hernández RF, González de Los Santos R, García-Lara C, Méndez-Novelo R, Rojas-Valencia MN. Degradation of gestodene (GES)-17α-ethinylestradiol (EE2) mixture by electrochemical oxidation. JOURNAL OF WATER AND HEALTH 2016; 14:980-988. [PMID: 27959876 DOI: 10.2166/wh.2016.104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Evidence of the negative effects of several pharmaceutical molecules, such as hormones and steroids, on the environment can be observed throughout the world. This paper presents the results of the anodic oxidation of the mixture of gestodene steroid hormones and 17 α-ethinylestradiol present in aqueous medium. The tests were conducted in an undivided cell containing a working volume of 50 mL, using a Na2SO4 solution as support electrolyte and boron-doped diamond electrodes. The experiments were adjusted to the structure of a 33 factorial design. The evaluated factors were: support electrolyte concentration (0.02, 0.05, and 0.10 M), pH of the reaction media (2, 3, and 4), and current density (16, 32, and 48 mA cm-2). Under the optimum conditions (0.02 M Na2SO4, pH 4, and current density of 32 mA cm-2), the degradation of at least 93% of the initial concentration of gestodene and 17α-ethinylestradiol was reached in a reaction time of 5 and 10 min, respectively. The complete degradation of both molecules required 15 min of reaction. Under these conditions, the degradation profile of the pharmaceutical mixture as each one of the active ingredients, followed a pseudo-first order kinetic behavior (kmix = 0.0321, kGES = 0.4206, and kEE2 = 0.3209 min-1).
Collapse
Affiliation(s)
- Hugo Alejandro Nájera-Aguilar
- Escuela de Ingeniería Ambiental, Facultad de Ingeniería de la Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. No. 1150, Colonia Lajas Maciel, Tuxtla Gutiérrez, Chiapas C.P. 29039, México
| | - Rubén Fernando Gutiérrez-Hernández
- Departamento de Ingeniería Química y Bioquímica, Instituto Tecnológico de Tapachula, Km. 2 carretera a Puerto Madero, Tapachula, Chiapas C.P. 30700, México E-mail:
| | - Rocío González de Los Santos
- Escuela de Ingeniería Ambiental, Facultad de Ingeniería de la Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. No. 1150, Colonia Lajas Maciel, Tuxtla Gutiérrez, Chiapas C.P. 29039, México
| | - Carlos García-Lara
- Escuela de Ingeniería Ambiental, Facultad de Ingeniería de la Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. No. 1150, Colonia Lajas Maciel, Tuxtla Gutiérrez, Chiapas C.P. 29039, México
| | - Roger Méndez-Novelo
- Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias no contaminantes por Periférico Nte. s/n, Mérida, Yucatán, México
| | - María Neftalí Rojas-Valencia
- Universidad Nacional Autónoma de México, Instituto de Ingeniería, Coordinación de Ingeniería Ambiental, Cd. de México C.P. 04510, México
| |
Collapse
|
23
|
Xu X, Shao J, Li M, Gao K, Jin J, Zhu L. Reductive Transformation of p-chloronitrobenzene in the upflow anaerobic sludge blanket reactor coupled with microbial electrolysis cell: performance and microbial community. BIORESOURCE TECHNOLOGY 2016; 218:1037-1045. [PMID: 27455127 DOI: 10.1016/j.biortech.2016.07.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/02/2016] [Accepted: 07/09/2016] [Indexed: 06/06/2023]
Abstract
A microbial electrolysis cell (MEC) combined with an upflow anaerobic sludge blanket (UASB) reactor was operated to degrade p-chloronitrobenzenes (p-ClNB) effectively. The results indicated that p-ClNB was transformed to p-chloroaniline (p-ClAn) and then reduced via dechlorination pathways. In the MEC-UASB coupled system, p-ClNB, p-ClAn removal efficiency and dechlorination efficiency reached 99.63±0.37%, 40.39±9.26% and 32.16±8.12%, respectively, which was significantly improved in comparison with the control UASB system. In addition, the coupled system could maintain appropriate pH and promote anaerobic sludge granulation to exert a positive effect on reductive transformation of p-ClNB. PCR-DGGE experiment and 454 pyrophosphate sequencing analysis indicated that applied voltage would significantly influence the succession of microbial community and promote oriented enrichment of the functional bacteria, which could be the underlying reasons for the improved performance. This study demonstrated that MEC-UASB coupled system had a promising application prospect to remove the recalcitrant pollutants effectively.
Collapse
Affiliation(s)
- Xiangyang Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China
| | - Junjie Shao
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology University, NJ 07102, United States
| | - Kaituo Gao
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; Equipment Engineering Company, China United Engineering Corporation, Hangzhou 310052, China
| | - Jie Jin
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Liang Zhu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China.
| |
Collapse
|
24
|
Preparation and characterization of cerium-doped multiwalled carbon nanotubes electrode for the electrochemical degradation of low-concentration ceftazidime in aqueous solutions. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.03.090] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Huang LZ, Hansen HCB, Bjerrum MJ. Electrochemical reduction of nitroaromatic compounds by single sheet iron oxide coated electrodes. JOURNAL OF HAZARDOUS MATERIALS 2016; 306:175-183. [PMID: 26716570 DOI: 10.1016/j.jhazmat.2015.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/02/2015] [Accepted: 12/07/2015] [Indexed: 06/05/2023]
Abstract
Nitroaromatic compounds are substantial hazard to the environment and to the supply of clean drinking water. We report here the successful reduction of nitroaromatic compounds by use of iron oxide coated electrodes, and demonstrate that single sheet iron oxides formed from layered iron(II)-iron(III) hydroxides have unusual electrocatalytic reactivity. Electrodes were produced by coating of single sheet iron oxides on indium tin oxide electrodes. A reduction current density of 10 to 30μAcm(-2) was observed in stirred aqueous solution at pH 7 with concentrations of 25 to 400μM of the nitroaromatic compound at a potential of -0.7V vs. SHE. Fast mass transfer favors the initial reduction of the nitroaromatic compound which is well explained by a diffusion layer model. Reduction was found to comprise two consecutive reactions: a fast four-electron first-order reduction of the nitro-group to the hydroxylamine-intermediate (rate constant=0.28h(-1)) followed by a slower two-electron zero-order reduction resulting in the final amino product (rate constant=6.9μM h(-1)). The zero-order of the latter reduction was attributed to saturation of the electrode surface with hydroxylamine-intermediates which have a more negative half-wave potential than the parent compound. For reduction of nitroaromatic compounds, the SSI electrode is found superior to metal electrodes due to low cost and high stability, and superior to carbon-based electrodes in terms of high coulombic efficiency and low over potential.
Collapse
Affiliation(s)
- Li-Zhi Huang
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| | - Hans Christian B Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Morten Jannik Bjerrum
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 København Ø, Denmark
| |
Collapse
|
26
|
Liang C, Lin YT, Shiu JW. Reduction of nitrobenzene with alkaline ascorbic acid: Kinetics and pathways. JOURNAL OF HAZARDOUS MATERIALS 2016; 302:137-143. [PMID: 26453825 DOI: 10.1016/j.jhazmat.2015.09.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 07/20/2015] [Accepted: 09/14/2015] [Indexed: 06/05/2023]
Abstract
Alkaline ascorbic acid (AA) exhibits the potential to reductively degrade nitrobenzene (NB), which is the simplest of the nitroaromatic compounds. The nitro group (NO2(-)) of NB has a +III oxidation state of the N atom and tends to gain electrons. The effect of alkaline pH ranging from 9 to 13 was initially assessed and the results demonstrated that the solution pH, when approaching or above the pKa2 of AA (11.79), would increase reductive electron transfer to NB. The rate equation for the reactions between NB and AA at pH 12 can be described as r=((0.89±0.11)×10(-4) mM(1-(a+b))h(-1))×[NB](a=1.35±0.10)[AA](b=0.89±0.01). The GC/MS analytical method identified nitrosobenzene, azoxybenzene, and azobenzene as NB reduction intermediates, and aniline (AN) as a final product. These experimental results indicate that the alkaline AA reduction of NB to AN mainly proceeds via the direct route, consisting of a series of two-electron or four-electron transfers, and the condensation reaction plays a minor route. Preliminary evaluation of the remediation of spiked NB contaminated soils revealed that maintenance of alkaline pH and a higher water to soil ratio are essential for a successful alkaline AA application.
Collapse
Affiliation(s)
- Chenju Liang
- Department of Environmental Engineering, National Chung Hsing University 250, Kuo-kuang Road, Taichung 402, Taiwan.
| | - Ya-Ting Lin
- Department of Environmental Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li District, Taoyuan City 320, Taiwan
| | - Jia-Wei Shiu
- Department of Environmental Engineering, National Chung Hsing University 250, Kuo-kuang Road, Taichung 402, Taiwan
| |
Collapse
|
27
|
Yu L, Chen Y, Han W, Sun X, Li J, Wang L. Preparation of porous TiO2-NTs/m-SnO2-Sb electrode for electrochemical degradation of benzoic acid. RSC Adv 2016. [DOI: 10.1039/c5ra26605j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel porous SnO2-Sb electrode with excellent electrocatalytic performance was fabricated through the electrodeposition method with a templating agent.
Collapse
Affiliation(s)
- Lirong Yu
- School of Environmental and Biological Engineering
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Yong Chen
- Jiangsu Key Laboratory of Environmental Engineering
- Jiangsu Provincial Academy of Environmental Science
- Nanjing 210036
- China
| | - Weiqing Han
- School of Environmental and Biological Engineering
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Xiuyun Sun
- School of Environmental and Biological Engineering
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Jiansheng Li
- School of Environmental and Biological Engineering
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Lianjun Wang
- School of Environmental and Biological Engineering
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| |
Collapse
|
28
|
Zhang L, Jiang X, Shen J, Xu K, Li J, Sun X, Han W, Wang L. Enhanced bioelectrochemical reduction of p-nitrophenols in the cathode of self-driven microbial fuel cells. RSC Adv 2016. [DOI: 10.1039/c6ra04293g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Reduction from PNP to PAP was enhanced by diverse bacteria on the cathode, with no energy input to the system.
Collapse
Affiliation(s)
- Libin Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Xinbai Jiang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Kaichun Xu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Weiqing Han
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing
- China
| |
Collapse
|
29
|
Wang X, Xing D, Ren N. p-Nitrophenol degradation and microbial community structure in a biocathode bioelectrochemical system. RSC Adv 2016. [DOI: 10.1039/c6ra17446a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The biocathode bioelectrochemical system (bioc-BES) was used forp-nitrophenol (PNP) degradation with sodium bicarbonate as the carbon source.
Collapse
Affiliation(s)
- Xinyu Wang
- State Key Laboratory of Urban Water Resource and Environment
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150090
- PR China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150090
- PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150090
- PR China
| |
Collapse
|
30
|
Gao G, Zhang Q, Hao Z, Vecitis CD. Carbon nanotube membrane stack for flow-through sequential regenerative electro-Fenton. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:2375-83. [PMID: 25602741 DOI: 10.1021/es505679e] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Electro-Fenton is a promising advanced oxidation process for water treatment consisting a series redox reactions. Here, we design and examine an electrochemical filter for sequential electro-Fenton reactions to optimize the treatment process. The carbon nanotube (CNT) membrane stack (thickness ∼ 200 μm) used here consisted of 1) a CNT network cathode for O2 reduction to H2O2, 2) a CNT-COOFe(2+) cathode to chemical reduction H2O2 to (•)OH and HO(-) and to regenerate Fe(2+) in situ, 3) a porous PVDF or PTFE insulating separator, and 4) a CNT filter anode for remaining intermediate oxidation intermediates. The sequential electro-Fenton was compared to individual electrochemical and Fenton process using oxalate, a persistent organic, as a target molecule. Synergism is observed during the sequential electro-Fenton process. For example, when [DO]in = 38 ± 1 mg L(-1), J = 1.6 mL min(-1), neutral pH, and Ecell = 2.89 V, the sequential electro-Fenton oxidation rate was 206.8 ± 6.3 mgC m(-2) h(-1), which is 4-fold greater than the sum of the individual electrochemistry (16.4 ± 3.2 mgC m(-2) h(-1)) and Fenton (33.3 ± 1.3 mgC m(-2) h(-1)) reaction fluxes, and the energy consumption was 45.8 kWh kgTOC(-1). The sequential electro-Fenton was also challenged with the refractory trifluoroacetic acid (TFA) and trichloroacetic acid (TCA), and they can be transferred at a removal rate of 11.3 ± 1.2 and 21.8 ± 1.9 mmol m(-2) h(-1), respectively, with different transformation mechanisms.
Collapse
Affiliation(s)
- Guandao Gao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| | | | | | | |
Collapse
|
31
|
Self-Driven Bioelectrochemical Mineralization of Azobenzene by Coupling Cathodic Reduction with Anodic Intermediate Oxidation. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2014.12.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Zhang J, Zhang Y, Quan X. Bio-electrochemical enhancement of anaerobic reduction of nitrobenzene and its effects on microbial community. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2014.11.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Zhu L, Gao K, Qi J, Jin J, Xu X. Enhanced reductive transformation of p-chloronitrobenzene in a novel bioelectrode-UASB coupled system. BIORESOURCE TECHNOLOGY 2014; 167:303-309. [PMID: 24997372 DOI: 10.1016/j.biortech.2014.05.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 05/27/2014] [Accepted: 05/31/2014] [Indexed: 06/03/2023]
Abstract
The laboratory-scale upflow anaerobic sludge blanket (UASB) reactor equipped with a pair of bioelectrodes was established for the enhancement of p-chloronitrobenzene (p-ClNB) reductive transformation via the electrolysis. Results showed that a stable COD removal efficiency over 99% and high p-ClNB transformation rate of 0.328 h(-1) were achieved in the bioelectrode-UASB coupled system with influent COD and p-ClNB loading rates of 2.1-4.2 kg COD m(-3)d(-1) and 60 gm(-3)d(-1), respectively. The bioelectrodes were supplied with a voltage of 2.5-5.0 V and the effective current was above 2 mA, which resulted in a continuous supply of H2. Compared with the traditional UASB reactor (R1), the production of H2 was promoted in the bioelectrode-UASB coupled system (R2), and was consumed as an internal electron donor for p-ClNB reductive transformation by anaerobic microbes simultaneously. Furthermore, the cyclic voltammetry curve (CV) analysis of biocathodes showed a positive shift in the reductive peak potential and a dramatic increase in the reductive peak current, which demonstrated the catalytic reduction of p-ClNB by biocathode in the combined system.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China.
| | - Kaituo Gao
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jiaoqin Qi
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; Yixing Urban Supervision and Inspection Administration of Product Quality, National Supervision and Inspection Center of Environmental Protection Equipment Quality, Yixing 214205, China
| | - Jie Jin
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xiangyang Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China.
| |
Collapse
|
34
|
Venkata Mohan S, Velvizhi G, Vamshi Krishna K, Lenin Babu M. Microbial catalyzed electrochemical systems: a bio-factory with multi-facet applications. BIORESOURCE TECHNOLOGY 2014; 165:355-364. [PMID: 24791713 DOI: 10.1016/j.biortech.2014.03.048] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/08/2014] [Accepted: 03/12/2014] [Indexed: 06/03/2023]
Abstract
Microbial catalyzed electrochemical systems (MCES) have been intensively pursued in both basic and applied research as a futuristic and sustainable platform specifically in harnessing energy and generating value added bio-products. MCES have documented multiple/diverse applications which include microbial fuel cell (for harnessing bioelectricity), bioelectrochemical treatment system (waste remediation), bioelectrochemical system (bio-electrosynthesis of various value added products) and microbial electrolytic cell (H2 production at lower applied potential). Microorganisms function as biocatalyst in these fuel cell systems and the resulting electron flux from metabolism plays pivotal role in bio-electrogenesis. Exo-electron transfer machineries and strategies that regulate metabolic flux towards exo-electron transport were delineated. This review addresses the contemporary progress and advances made in MCES, focusing on its application towards value addition and waste remediation.
Collapse
Affiliation(s)
- S Venkata Mohan
- Bioengineering and Environmental Centre (BEEC), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India.
| | - G Velvizhi
- Bioengineering and Environmental Centre (BEEC), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - K Vamshi Krishna
- Bioengineering and Environmental Centre (BEEC), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - M Lenin Babu
- Bioengineering and Environmental Centre (BEEC), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| |
Collapse
|
35
|
Kong D, Liang B, Lee DJ, Wang A, Ren N. Effect of temperature switchover on the degradation of antibiotic chloramphenicol by biocathode bioelectrochemical system. J Environ Sci (China) 2014; 26:1689-97. [PMID: 25108725 DOI: 10.1016/j.jes.2014.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/25/2013] [Accepted: 03/07/2014] [Indexed: 05/12/2023]
Abstract
Exposure to chloramphenicol (CAP), a chlorinated nitroaromatic antibiotic, can induce CAP-resistant bacteria/genes in diverse environments. A biocathode bioelectrochemical system (BES) was applied to reduce CAP under switched operational temperatures. When switching from 25 to 10°C, the CAP reduction rate (kCAP) and the maximum amount of the dechlorinated reduced amine product (AMCl, with no antibacterial activity) by the biocathode communities were both markedly decreased. The acetate and ethanol yield from cathodophilic microbial glucose fermentation (with release of electrons) was also reduced. Formation of the product AMCl was enhanced by the biocathode dechloridation reaction compared with that produced from pure electrochemical or microbial dechloridation processes. The electrochemical and morphological analyses of cathode biofilms demonstrated that some cathodophilic microbes could adapt to low temperature and play a key role in CAP degradation. The resilient biocathode BES has a potential for the treatment of CAP-containing wastewater in temperature fluctuating environments.
Collapse
Affiliation(s)
- Deyong Kong
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Duu-Jong Lee
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China; Key laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
36
|
Shi L, Wang W, Yuan SJ, Hu ZH. Electrochemical stimulation of microbial roxarsone degradation under anaerobic conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:7951-7958. [PMID: 24937023 DOI: 10.1021/es501398j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Roxarsone (4-hydroxy-3-nitrophenylarsonic acid) has been commonly used in animal feed as an organoarsenic additive, most of which is excreted in manure. Roxarsone is easily biodegraded to 4-hydroxy-3-aminophenylarsonic acid (HAPA) under anaerobic conditions, but HAPA persists for long periods in the environment, increasing the risk of arsenic contamination through diffusion. We investigated the electrochemical stimulation of the microbial degradation of roxarsone under anaerobic conditions. After the carbon sources in the substrate were depleted, HAPA was slowly degraded to form arsenite under anaerobic conditions. The degradation rate of HAPA was significantly increased when 0.5 V was applied without adding a carbon source. The two-cell membrane reactor assays reveal that the HAPA was degraded in the anode chambers, confirming that the anode enhanced the electron transfer process by acting as an electron acceptor. The degradation product formed with electrochemical stimulation was arsenate, which facilitates the removal of arsenic from wastewater. Based on the high performance liquid chromatography-ultraviolet-hydride generation-atomic fluorescence spectrometry (HPLC-UV-HG-AFS) and gas chromatography-mass spectrometry (GC-MS) data, the pathway for the biodegradation of roxarsone and the mechanisms for the electrochemically stimulated degradation are proposed. This method provides a potential solution for the removal of arsenic from organoarsenic-contaminated wastewater.
Collapse
Affiliation(s)
- Lin Shi
- School of Civil Engineering, Hefei University of Technology , Hefei 230009, China
| | | | | | | |
Collapse
|
37
|
Zhang Q, Liu Y, Chen S, Quan X, Yu H. Nitrogen-doped diamond electrode shows high performance for electrochemical reduction of nitrobenzene. JOURNAL OF HAZARDOUS MATERIALS 2014; 265:185-190. [PMID: 24361797 DOI: 10.1016/j.jhazmat.2013.11.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/24/2013] [Accepted: 11/29/2013] [Indexed: 06/03/2023]
Abstract
Effective electrode materials are critical to electrochemical reduction, which is a promising method to pre-treat anti-oxidative and bio-refractory wastewater. Herein, nitrogen-doped diamond (NDD) electrodes that possess superior electrocatalytic properties for reduction were fabricated by microwave-plasma-enhanced chemical vapor deposition technology. Nitrobenzene (NB) was chosen as the probe compound to investigate the material's electro-reduction activity. The effects of potential, electrolyte concentration and pH on NB reduction and aniline (AN) formation efficiencies were studied. NDD exhibited high electrocatalytic activity and selectivity for reduction of NB to AN. The NB removal efficiency and AN formation efficiency were 96.5% and 88.4% under optimal conditions, respectively; these values were 1.13 and 3.38 times higher than those of graphite electrodes. Coulombic efficiencies for NB removal and AN formation were 27.7% and 26.1%, respectively; these values were 4.70 and 16.6 times higher than those of graphite electrodes under identical conditions. LC-MS analysis revealed that the dominant reduction pathway on the NDD electrode was NB to phenylhydroxylamine (PHA) to AN.
Collapse
Affiliation(s)
- Qing Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Yanming Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China.
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Hongtao Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| |
Collapse
|
38
|
Radjenovic J, Flexer V, Donose BC, Sedlak DL, Keller J. Removal of the X-ray contrast media diatrizoate by electrochemical reduction and oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:13686-13694. [PMID: 24261992 DOI: 10.1021/es403410p] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Due to their resistance to biological wastewater treatment, iodinated X-ray contrast media (ICM) have been detected in municipal wastewater effluents at relatively high concentrations (i.e., up to 100 μg L(-1)), with hospitals serving as their main source. To provide a new approach for reducing the concentrations of ICMs in wastewater, electrochemical reduction at three-dimensional graphite felt and graphite felt doped with palladium nanoparticles was examined as a means for deiodination of the common ICM diatrizoate. The presence of palladium nanoparticles significantly enhanced the removal of diatrizoate and enabled its complete deiodination to 3,5-diacetamidobenzoic acid. When the system was employed in the treatment of hospital wastewater, diatrizoate was reduced, but the extent of electrochemical reduction decreased as a result of competing reactions with solutes in the matrix. Following electrochemical reduction of diatrizoate to 3,5-diacetamidobenzoic acid, electrochemical oxidation with boron-doped diamond (BDD) anodes was employed. 3,5-Diacetamidobenzoic acid disappeared from solution at a rate that was similar to that of diatrizoate, but it was more readily mineralized than the parent compound. When electrochemical reduction and oxidation were coupled in a three-compartment reactor operated in a continuous mode, complete deiodination of diatrizoate was achieved at an applied cathode potential of -1.7 V vs SHE, with the released iodide ions electrodialyzed in a central compartment with 80% efficiency. The resulting BDD anode potential (i.e., +3.4-3.5 V vs SHE) enabled efficient oxidation of the products of the reductive step. The presence of other anions (e.g., chloride) was likely responsible for a decrease in I(-) separation efficiency when hospital wastewater was treated. Reductive deiodination combined with oxidative degradation provides benefits over oxidative treatment methods because it does not produce stable iodinated intermediates. Nevertheless, the process must be further optimized for the conditions encountered in hospital wastewater to improve the separation efficiency of halide ions prior to the electrooxidation step.
Collapse
Affiliation(s)
- Jelena Radjenovic
- Advanced Water Management Centre, The University of Queensland , Queensland 4072, Australia
| | | | | | | | | |
Collapse
|
39
|
Aulenta F, Verdini R, Zeppilli M, Zanaroli G, Fava F, Rossetti S, Majone M. Electrochemical stimulation of microbial cis-dichloroethene (cis-DCE) oxidation by an ethene-assimilating culture. N Biotechnol 2013; 30:749-55. [DOI: 10.1016/j.nbt.2013.04.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/11/2013] [Accepted: 04/13/2013] [Indexed: 10/26/2022]
|
40
|
Sun M, Lowry GV, Gregory KB. Selective oxidation of bromide in wastewater brines from hydraulic fracturing. WATER RESEARCH 2013; 47:3723-3731. [PMID: 23726709 DOI: 10.1016/j.watres.2013.04.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/03/2013] [Accepted: 04/21/2013] [Indexed: 06/02/2023]
Abstract
Brines generated from oil and natural gas production, including flowback water and produced water from hydraulic fracturing of shale gas, may contain elevated concentrations of bromide (~1 g/L). Bromide is a broad concern due to the potential for forming brominated disinfection byproducts (DBPs) during drinking water treatment. Conventional treatment processes for bromide removal is costly and not specific. Selective bromide removal is technically challenging due to the presence of other ions in the brine, especially chloride as high as 30-200 g/L. This study evaluates the ability of solid graphite electrodes to selectively oxidize bromide to bromine in flowback water and produced water from a shale gas operation in Southwestern PA. The bromine can then be outgassed from the solution and recovered, as a process well understood in the bromine industry. This study revealed that bromide may be selectively and rapidly removed from oil and gas brines (~10 h(-1) m(-2) for produced water and ~60 h(-1) m(-2) for flowback water). The electrolysis occurs with a current efficiency between 60 and 90%, and the estimated energy cost is ~6 kJ/g Br. These data are similar to those for the chlor-alkali process that is commonly used for chlorine gas and sodium hydroxide production. The results demonstrate that bromide may be selectively removed from oil and gas brines to create an opportunity for environmental protection and resource recovery.
Collapse
Affiliation(s)
- Mei Sun
- Department of Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA
| | | | | |
Collapse
|
41
|
Liang B, Cheng HY, Kong DY, Gao SH, Sun F, Cui D, Kong FY, Zhou AJ, Liu WZ, Ren NQ, Wu WM, Wang AJ, Lee DJ. Accelerated reduction of chlorinated nitroaromatic antibiotic chloramphenicol by biocathode. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:5353-5361. [PMID: 23607616 DOI: 10.1021/es400933h] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Chlorinated nitroaromatic antibiotic chloramphenicol (CAP) is a priority pollutant in wastewaters. A fed-batch bioelectrochemical system (BES) with biocathode with applied voltage of 0.5 V (served as extracellular electron donor) and glucose as intracellular electron donor was applied to reduce CAP to amine product (AMCl2). The biocathode BES converted 87.1 ± 4.2% of 32 mg/L CAP in 4 h, and the removal efficiency reached 96.0 ± 0.9% within 24 h. Conversely, the removal efficiency of CAP in BES with an abiotic cathode was only 73.0 ± 3.2% after 24 h. When the biocathode was disconnected (no electrochemical reaction but in the presence of microbial activities), the CAP removal rate was dropped to 62.0% of that with biocathode BES. Acetylation of one hydroxyl of CAP was noted exclusive in the biocatalyzed process, while toxic intermediates, hydroxylamino (HOAM), and nitroso (NO), from CAP reduction were observed only in the abiotic cathode BES. Electrochemical hydrodechlorination and dehalogenase were responsible for dechlorination of AMCl2 to AMCl in abiotic and microbial cathode BES, respectively. The cyclic voltammetry (CV) highlighted higher peak currents and lower overpotentials for CAP reduction at the biocathode compared with abiotic cathode. With the biocathode BES, antibacterial activity of CAP was completely removed and nitro group reduction combined with dechlorination reaction enhanced detoxication efficiency of CAP. The CAP cathodic transformation pathway was proposed based on intermediates analysis. Bacterial community analysis indicated that the dominate bacteria on the biocathode were belonging to α, β, and γ-Proteobacteria. The biocathode BES could serve as a potential treatment process for CAP-containing wastewater.
Collapse
Affiliation(s)
- Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, P R China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|