1
|
Landwehr KR, Mead-Hunter R, O'Leary RA, Kicic A, Mullins BJ, Larcombe AN. The respiratory health effects of acute in vivo diesel and biodiesel exhaust in a mouse model. CHEMOSPHERE 2024; 362:142621. [PMID: 38880256 DOI: 10.1016/j.chemosphere.2024.142621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 06/14/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Biodiesel, a renewable diesel fuel that can be created from almost any natural fat or oil, is promoted as a greener and healthier alternative to commercial mineral diesel without the supporting experimental data to back these claims. The aim of this research was to assess the health effects of acute exposure to two types of biodiesel exhaust, or mineral diesel exhaust or air as a control in mice. Male BALB/c mice were exposed for 2-hrs to diluted exhaust obtained from a diesel engine running on mineral diesel, Tallow biodiesel or Canola biodiesel. A room air exposure group was used as a control. Twenty-four hours after exposure, a variety of respiratory related end point measurements were assessed, including lung function, responsiveness to methacholine and airway and systemic immune responses. RESULTS Tallow biodiesel exhaust exposure resulted in the greatest number of significant effects compared to Air controls, including increased airway hyperresponsiveness (178.1 ± 31.3% increase from saline for Tallow biodiesel exhaust exposed mice compared to 155.8 ± 19.1 for Air control), increased airway inflammation (63463 ± 13497 cells/mL in the bronchoalveolar lavage of Tallow biodiesel exhaust exposed mice compared to 40561 ± 11800 for Air exposed controls) and indications of immune dysregulation. In contrast, exposure to Canola biodiesel exhaust resulted in fewer significant effects compared to Air controls with a slight increase in airway resistance at functional residual capacity and indications of immune dysregulation. Exposure to mineral diesel exhaust resulted in significant effects between that of the two biodiesels with increased airway hyperresponsiveness and indications of immune dysregulation. CONCLUSION These data show that a single, brief exposure to biodiesel exhaust can result in negative health impacts in a mouse model, and that the biological effects of exposure change depending on the feedstock used to make the biodiesel.
Collapse
Affiliation(s)
- Katherine R Landwehr
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA, 6009, Australia.
| | - Ryan Mead-Hunter
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia
| | - Rebecca A O'Leary
- Department of Primary Industries and Regional Development, Perth, WA, 6151, Australia
| | - Anthony Kicic
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA, 6009, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Perth, WA, 6009, Australia; Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth, WA, 6009, Australia
| | - Benjamin J Mullins
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia
| | - Alexander N Larcombe
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA, 6009, Australia
| |
Collapse
|
2
|
Tilly TB, Ward RX, Morea AF, Nelson MT, Robinson SE, Eiguren-Fernandez A, Lewis GS, Lednicky JA, Sabo-Attwood T, Hussain SM, Wu CY. Toxicity assessment of CeO₂ and CuO nanoparticles at the air-liquid interface using bioinspired condensational particle growth. HYGIENE AND ENVIRONMENTAL HEALTH ADVANCES 2023; 7:100074. [PMID: 37711680 PMCID: PMC10500621 DOI: 10.1016/j.heha.2023.100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
CeO2 and CuO nanoparticles (NPs) are used as additives in petrodiesel to enhance engine performance leading to reduced diesel combustion emissions. Despite their benefits, the additive application poses human health concerns by releasing inhalable NPs into the ambient air. In this study, a bioinspired lung cell exposure system, Dosimetric Aerosol in Vitro Inhalation Device (DAVID), was employed for evaluating the toxicity of aerosolized CeO2 and CuO NPs with a short duration of exposure (≤10 min vs. hours in other systems) and without exerting toxicity from non-NP factors. Human epithelial A549 lung cells were cultured and maintained within DAVID at the air-liquid interface (ALI), onto which aerosolized NPs were deposited, and experiments in submerged cells were used for comparison. Exposure of the cells to the CeO2 NPs did not result in detectable IL-8 release, nor did it produce a significant reduction in cell viability based on lactate dehydrogenase (LDH) assay, with a marginal decrease (10%) at the dose of 388 μg/cm2 (273 cm2/cm2). In contrast, exposure to CuO NPs resulted in a concentration dependent reduction in LDH release based on LDH leakage, with 38% reduction in viability at the highest dose of 52 μg/cm2 (28.3 cm2/cm2). Cells exposed to CuO NPs resulted in a dose dependent cellular membrane toxicity and expressed IL-8 secretion at a global dose five times lower than cells exposed under submerged conditions. However, when comparing the ALI results at the local cellular dose of CuO NPs to the submerged results, the IL-8 secretion was similar. In this study, we demonstrated DAVID as a new exposure tool that helps evaluate aerosol toxicity in simulated lung environment. Our results also highlight the necessity in choosing the right assay endpoints for the given exposure scenario, e.g., LDH for ALI and Deep Blue for submerged conditions for cell viability.
Collapse
Affiliation(s)
- Trevor B. Tilly
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, United States
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, United States
| | - Ryan X. Ward
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, United States
| | - Alyssa F. Morea
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, United States
| | - M. Tyler Nelson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, United States
| | - Sarah E. Robinson
- Department of Environmental & Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | | | | | - John A. Lednicky
- Department of Environmental & Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Tara Sabo-Attwood
- Department of Environmental & Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Saber M. Hussain
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, United States
| | - Chang-Yu Wu
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, United States
| |
Collapse
|
3
|
Landwehr KR, Mead-Hunter R, O'Leary RA, Kicic A, Mullins BJ, Larcombe AN. Respiratory Health Effects of In Vivo Sub-Chronic Diesel and Biodiesel Exhaust Exposure. Int J Mol Sci 2023; 24:ijms24065130. [PMID: 36982203 PMCID: PMC10049281 DOI: 10.3390/ijms24065130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Biodiesel, which can be made from a variety of natural oils, is currently promoted as a sustainable, healthier replacement for commercial mineral diesel despite little experimental data supporting this. The aim of our research was to investigate the health impacts of exposure to exhaust generated by the combustion of diesel and two different biodiesels. Male BALB/c mice (n = 24 per group) were exposed for 2 h/day for 8 days to diluted exhaust from a diesel engine running on ultra-low sulfur diesel (ULSD) or Tallow or Canola biodiesel, with room air exposures used as control. A variety of respiratory-related end-point measurements were assessed, including lung function, responsiveness to methacholine, airway inflammation and cytokine response, and airway morphometry. Exposure to Tallow biodiesel exhaust resulted in the most significant health impacts compared to Air controls, including increased airway hyperresponsiveness and airway inflammation. In contrast, exposure to Canola biodiesel exhaust resulted in fewer negative health effects. Exposure to ULSD resulted in health impacts between those of the two biodiesels. The health effects of biodiesel exhaust exposure vary depending on the feedstock used to make the fuel.
Collapse
Affiliation(s)
- Katherine R Landwehr
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA 6845, Australia
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA 6009, Australia
| | - Ryan Mead-Hunter
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA 6845, Australia
| | - Rebecca A O'Leary
- Department of Primary Industries and Regional Development, Perth, WA 6151, Australia
| | - Anthony Kicic
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA 6845, Australia
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA 6009, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Perth, WA 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth, WA 6009, Australia
| | - Benjamin J Mullins
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA 6845, Australia
| | - Alexander N Larcombe
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA 6845, Australia
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA 6009, Australia
| |
Collapse
|
4
|
Kaur K, Mohammadpour R, Sturrock A, Ghandehari H, Reilly C, Paine R, Kelly KE. Comparison of biological responses between submerged, pseudo-air-liquid interface, and air-liquid interface exposure of A549 and differentiated THP-1 co-cultures to combustion-derived particles. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:540-551. [PMID: 35722658 PMCID: PMC9354920 DOI: 10.1080/10934529.2022.2083429] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 06/10/2023]
Abstract
Air liquid interface (ALI) exposure systems are gaining interest, and studies suggest enhanced response of lung cells exposed to particles at ALI as compared to submerged exposure, although the results have been somewhat inconsistent. Previous studies have used monocultures and measured particle deposition using assumptions including consistent particle deposition, particle density, and shape. This study exposed co-cultures of A549 and differentiated THP-1 cells to flame-generated particles using three exposure methods: ALI, pseudo-ALI, and submerged. The dose at ALI was measured directly, reducing the need for assumptions about particle properties and deposition. For all exposure methods an enhanced pro-inflammatory response (TNFα) and Cytochrome P450 (CYP1A1) gene expression, compared to their corresponding negative controls, was observed. ALI exposure induced a significantly greater TNFα response compared to submerged exposure. The submerged exposures exhibited greater induction of CYP1A1 than other exposure methods, although not statistically significant. Some of the factors behind the observed difference in responses for the three exposure methods include differences in physicochemical properties of particles in suspending media, delivered dose, and potential contribution of gas-phase species to cellular response in ALI exposure. However, given the difficulty and expense of ALI exposures, submerged exposure may still provide relevant information for particulate exposures.
Collapse
Affiliation(s)
- Kamaljeet Kaur
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Raziye Mohammadpour
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Anne Sturrock
- Division of Pulmonary and Critical Care Medicine, University of Utah, Salt Lake City, UT, USA
| | - Hamidreza Ghandehari
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Christopher Reilly
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA
- Department of Pharmacology and Toxicology and Center for Human Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Robert Paine
- Division of Pulmonary and Critical Care Medicine, University of Utah, Salt Lake City, UT, USA
| | - Kerry E. Kelly
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
5
|
Colafarina S, Di Carlo P, Zarivi O, Aloisi M, Di Serafino A, Aruffo E, Arrizza L, Limongi T, Poma A. Genotoxicity Response of Fibroblast Cells and Human Epithelial Adenocarcinoma In Vitro Model Exposed to Bare and Ozone-Treated Silica Microparticles. Cells 2022; 11:226. [PMID: 35053344 PMCID: PMC8773945 DOI: 10.3390/cells11020226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 12/04/2022] Open
Abstract
Indoor air pollutants (IAP), which can pose a serious risk to human health, include biological pollutants, nitric oxide (NO), nitrogen dioxide (NO2), volatile organic compounds (VOC), sulfur dioxide (SO2), carbon monoxide (CO), carbon dioxide (CO2), silica, metals, radon, and particulate matter (PM). The aim of our work is to conduct a multidisciplinary study of fine silica particles (<2.5 μm) in the presence or absence of ozone (O3), and evaluate their potential cytotoxicity using MTS, micronucleus, and the comet test in two cell lines. We analyzed A549 (human basal alveolar epithelial cell adenocarcinoma) and Hs27 (human normal fibroblasts) exposed to dynamic conditions by an IRC simulator under ozone flow (120 ppb) and in the presence of silica particles (40 μg/h). The viability of A549 and Hs27 cells at 48 and 72 h of exposure to silica or silica/ozone decreases, except at 72 h in Hs27 treated with silica/ozone. The micronucleus and comet tests showed a significant increase in the number of micronuclei and the % of DNA in the queue, compared to the control, in both lines in all treatments, even if in different cell times/types. We found that silica alone or with more O3 causes more pronounced genotoxic effects in A549 tumor cells than in normal Hs27 fibroblasts.
Collapse
Affiliation(s)
- Sabrina Colafarina
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.C.); (O.Z.); (M.A.); (L.A.)
| | - Piero Di Carlo
- Department of Psychological, Health and Territorial Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (P.D.C.); (A.D.S.); (E.A.)
- Center for Advanced Studies and Technology-CAST, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Osvaldo Zarivi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.C.); (O.Z.); (M.A.); (L.A.)
| | - Massimo Aloisi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.C.); (O.Z.); (M.A.); (L.A.)
| | - Alessandra Di Serafino
- Department of Psychological, Health and Territorial Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (P.D.C.); (A.D.S.); (E.A.)
| | - Eleonora Aruffo
- Department of Psychological, Health and Territorial Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (P.D.C.); (A.D.S.); (E.A.)
- Center for Advanced Studies and Technology-CAST, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Lorenzo Arrizza
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.C.); (O.Z.); (M.A.); (L.A.)
| | - Tania Limongi
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy;
| | - Anna Poma
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.C.); (O.Z.); (M.A.); (L.A.)
| |
Collapse
|
6
|
Rossner P, Cervena T, Vojtisek-Lom M. In vitro exposure to complete engine emissions - a mini-review. Toxicology 2021; 462:152953. [PMID: 34537260 DOI: 10.1016/j.tox.2021.152953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/14/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Outdoor air pollution is classified as carcinogenic to humans and exposure to it contributes to increased incidence of various diseases, including cardiovascular, neurological or pulmonary disorders. Vehicle engine emissions represent a significant part of outdoor air pollutants, particularly in large cities with high population density. Considering the potentially negative health impacts of engine emissions exposure, the application of reliable test systems allowing assessment of the biological effects of these pollutants is crucial. The exposure systems should use relevant, preferably multicellular, cell models that are treated with the complete engine exhaust (i.e. a realistic mixture of particles, chemical compounds bound to them and gaseous phase) at the air-liquid interface. The controlled delivery and characterization of chemical and/or particle composition of the exhaust should be possible. In this mini-review we report on such exposure systems that have been developed to date. We focus on a brief description and technical characterization of the systems, and discuss the biological parameters detected following exposure to a gasoline/diesel exhaust. Finally, we summarize and compare findings from the individual systems, including their advantages/limitations.
Collapse
Affiliation(s)
- Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Tereza Cervena
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20, Prague, Czech Republic
| | - Michal Vojtisek-Lom
- Centre of Vehicles for Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 160 00, Prague, Czech Republic
| |
Collapse
|
7
|
Sharma J, Parsai K, Raghuwanshi P, Ali SA, Tiwari V, Bhargava A, Mishra PK. Emerging role of mitochondria in airborne particulate matter-induced immunotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116242. [PMID: 33321436 DOI: 10.1016/j.envpol.2020.116242] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/23/2020] [Accepted: 12/06/2020] [Indexed: 05/05/2023]
Abstract
The immune system is one of the primary targets of airborne particulate matter. Recent evidence suggests that mitochondria lie at the center of particulate matter-induced immunotoxicity. Particulate matter can directly interact with mitochondrial components (proteins, lipids, and nucleic acids) and impairs the vital mitochondrial processes including redox mechanisms, fusion-fission, autophagy, and metabolic pathways. These disturbances impede different mitochondrial functions including ATP production, which acts as an important platform to regulate immunity and inflammatory responses. Moreover, the mitochondrial DNA released into the cytosol or in the extracellular milieu acts as a danger-associated molecular pattern and triggers the signaling pathways, involving cGAS-STING, TLR9, and NLRP3. In the present review, we discuss the emerging role of mitochondria in airborne particulate matter-induced immunotoxicity and its myriad biological consequences in health and disease.
Collapse
Affiliation(s)
- Jahnavi Sharma
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Kamakshi Parsai
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pragati Raghuwanshi
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Sophiya Anjum Ali
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Vineeta Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
8
|
Wang G, Zhang X, Liu X, Zheng J. Co-culture of human alveolar epithelial (A549) and macrophage (THP-1) cells to study the potential toxicity of ambient PM 2.5: a comparison of growth under ALI and submerged conditions. Toxicol Res (Camb) 2020; 9:636-651. [PMID: 33178424 DOI: 10.1093/toxres/tfaa072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/10/2020] [Accepted: 08/16/2020] [Indexed: 12/14/2022] Open
Abstract
Fine particulate matter (PM2.5) in the ambient atmosphere is strongly associated with detrimental health effects. However, these particles from various sources and regions are unlikely equally toxic. While animal studies are impractical for high-throughput toxicity testing, appropriate in vitro models are urgently needed. Co-culture of A549 and THP-1 macrophages grown at air-liquid interface (ALI) or under submerged conditions was exposed to same concentrations of ambient PM2.5 to provide accurate comparisons between culture methods. Following 24-h incubation with PM2.5 collected in Harbin in China, biological endpoints being investigated include cytotoxicity, reactive oxygen species (ROS) levels and pro-inflammatory mediators. The co-culture grown under submerged condition demonstrated a significant increase in ROS levels and all tested pro-inflammatory indicators [interleukin (IL)-1β, IL-6, IL-8 and tumor necrosis factor-α] in mRNA expression and released protein levels. Similar but a declining response trend was observed using the same PM2.5 incubation after grown at ALI. We further observed a significant increase of PM2.5-induced phosphorylation of p38 MAPK and activation of NF-κB p65 in a dose-dependent trend for co-cultures grown under submerged condition. These results provide important implications that culture conditions (ALI versus submerged) can induce different extents of biological responses to ambient PM2.5; the co-culture grown at ALI is less likely to produce false-positive results than submerged culture. Hence, culture conditions should be discussed when comparing in vitro methods used for high-throughput PM2.5 toxicity assessment in future.
Collapse
Affiliation(s)
- Guanghe Wang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Huangpu District, Shanghai 200025, China
| | - Xiaofeng Zhang
- Department of Toxicology, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang 150081, China
| | - Xinyan Liu
- Department of Hygiene, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Jing Zheng
- Department of Environmental Health, Heilongjiang Provincial Center for Disease Control and Prevention, 40 Youfang Road, Xiangfang District, Harbin, 150030, China
| |
Collapse
|
9
|
Ward RX, Tilly TB, Mazhar SI, Robinson SE, Eiguren-Fernandez A, Wang J, Sabo-Attwood T, Wu CY. Mimicking the human respiratory system: Online in vitro cell exposure for toxicity assessment of welding fume aerosol. JOURNAL OF HAZARDOUS MATERIALS 2020; 395:122687. [PMID: 32330784 PMCID: PMC7276288 DOI: 10.1016/j.jhazmat.2020.122687] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/03/2020] [Accepted: 04/07/2020] [Indexed: 05/05/2023]
Abstract
In assessing the biological impact of airborne particles in vitro, air-liquid interface (ALI) exposure chambers are increasingly preferred over classical submerged exposure techniques, albeit historically limited by their inability to deliver sufficient aerosolized dose. A novel ALI system, the Dosimetric Aerosol in Vitro Inhalation Device (DAVID), bioinspired by the human respiratory system, uses water-based condensation for highly efficient aerosol deposition to ALI cell culture. Here, welding fumes (well-studied and inherently toxic ultrafine particles) were used to assess the ability of DAVID to generate toxicological responses between differing welding conditions. After fume exposure, ALI-cultured cells showed reductions in viability that were both distinct between welding conditions and linearly dose-dependent with respect to exposure time; comparatively, submerged cell cultures ran in parallel did not show these trends across exposure levels. DAVID delivers a substantial dose in minutes (> 100 μg/cm2), making it preferable over previous ALI systems, which require hours of exposure to deliver sufficient dose, and over submerged techniques, which lack comparable physiological relevance. DAVID has the potential to provide the most accurate assessment of in vitro toxicity yet from the perspectives of physiological relevance to the human respiratory system and efficiency in collecting ultrafine aerosol common to hazardous exposure conditions.
Collapse
Affiliation(s)
- Ryan X Ward
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure & Environment, University of Florida, 1128 Center Dr, 220 Black Hall, Gainesville, FL, 32611, USA.
| | - Trevor B Tilly
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure & Environment, University of Florida, 1128 Center Dr, 220 Black Hall, Gainesville, FL, 32611, USA.
| | - Syeda Irsa Mazhar
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure & Environment, University of Florida, 1128 Center Dr, 220 Black Hall, Gainesville, FL, 32611, USA; Department of Environmental Science, International Islamic University, Female Campus, Room No. 23, Hazrat Maryam Block, H-10 Islamabad, Pakistan.
| | - Sarah E Robinson
- Department of Environmental & Global Health, College of Public Health and Health Professions, University of Florida, HPNP 4157, 1225 Center Dr, PO Box 100188, Gainesville, FL, 32610, USA.
| | | | - Jun Wang
- Department of Occupational and Environmental Health, Hudson College of Public Health, University of Oklahoma Health Sciences Center, 801 Northeast 13thSt, Oklahoma City, OK, 73104, USA.
| | - Tara Sabo-Attwood
- Department of Environmental & Global Health, College of Public Health and Health Professions, University of Florida, HPNP 4157, 1225 Center Dr, PO Box 100188, Gainesville, FL, 32610, USA.
| | - Chang-Yu Wu
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure & Environment, University of Florida, 1128 Center Dr, 220 Black Hall, Gainesville, FL, 32611, USA.
| |
Collapse
|
10
|
Glencross DA, Ho TR, Camiña N, Hawrylowicz CM, Pfeffer PE. Air pollution and its effects on the immune system. Free Radic Biol Med 2020; 151:56-68. [PMID: 32007522 DOI: 10.1016/j.freeradbiomed.2020.01.179] [Citation(s) in RCA: 290] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/22/2022]
Abstract
A well-functioning immune system is vital for a healthy body. Inadequate and excessive immune responses underlie diverse pathologies such as serious infections, metastatic malignancies and auto-immune conditions. Therefore, understanding the effects of ambient pollutants on the immune system is vital to understanding how pollution causes disease, and how that pathology could be abrogated. The immune system itself consists of multiple types of immune cell that act together to generate (or fail to generate) immune responses and in this article we review evidence of how air pollutants can affect different immune cell types such as particle-clearing macrophages, inflammatory neutrophils, dendritic cells that orchestrate adaptive immune responses and lymphocytes that enact those responses. Common themes that emerge are of the capacity of air pollutants to stimulate pro-inflammatory immune responses across multiple classes of immune cell. Air pollution can enhance T helper lymphocyte type 2 (Th2) and T helper lymphocyte type 17 (Th17) adaptive immune responses, as seen in allergy and asthma, and dysregulate anti-viral immune responses. The clinical effects of air pollution, in particular the known association between elevated ambient pollution and exacerbations of asthma and chronic obstructive pulmonary disease (COPD), are consistent with these identified immunological mechanisms. Further to this, as inhaled air pollution deposits primarily on the respiratory mucosa this review focuses on mechanisms of respiratory disease. However, as discussed in the article, air pollution also affects the wider immune system for example in the neonate and gastrointestinal tract. Whilst the many identified actions of air pollution on the immune system are notably diverse, immunological research does suggest potential strategies to ameliorate such effects, for example with vitamin D supplementation. An in-depth understanding of the immunological effects of ambient pollutants should hopefully yield new ideas on how to reduce the adverse health effects of air pollution.
Collapse
Affiliation(s)
- Drew A Glencross
- Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, Guy's Hospital, London, SE1 9RT, UK; MRC Centre for Environment and Health, King's College London, Franklin Wilkins Building, London, SE1 9NH, UK
| | - Tzer-Ren Ho
- Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, Guy's Hospital, London, SE1 9RT, UK; MRC Centre for Environment and Health, King's College London, Franklin Wilkins Building, London, SE1 9NH, UK
| | - Nuria Camiña
- MRC Centre for Environment and Health, King's College London, Franklin Wilkins Building, London, SE1 9NH, UK
| | - Catherine M Hawrylowicz
- Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, Guy's Hospital, London, SE1 9RT, UK.
| | - Paul E Pfeffer
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| |
Collapse
|
11
|
Pardo M, Qiu X, Zimmermann R, Rudich Y. Particulate Matter Toxicity Is Nrf2 and Mitochondria Dependent: The Roles of Metals and Polycyclic Aromatic Hydrocarbons. Chem Res Toxicol 2020; 33:1110-1120. [PMID: 32302097 PMCID: PMC7304922 DOI: 10.1021/acs.chemrestox.0c00007] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Particulate matter
(PM), an important component of air pollution,
induces significant adverse health effects. Many of the observed health
effects caused by inhaled PM are associated with oxidative stress
and inflammation. This association has been linked in particular to
the particles’ chemical components, especially the inorganic/metal
and the organic/polycyclic aromatic hydrocarbon (PAH) fractions, and
their ability to generate reactive oxygen species in biological systems.
The transcription factor NF-E2 nuclear factor erythroid-related factor
2 (Nrf2) is activated by redox imbalance and regulates the expression
of phase II detoxifying enzymes. Nrf2 plays a key role in preventing
PM-induced toxicity by protecting against oxidative damage and inflammation.
This review focuses on specific PM fractions, particularly the dissolved
metals and PAH fractions, and their roles in inducing oxidative stress
and inflammation in cell and animal models with respect to Nrf2 and
mitochondria.
Collapse
Affiliation(s)
- Michal Pardo
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, P.R. China
| | - Ralf Zimmermann
- Joint Mass Spectrometry Centre, University of Rostock, 18055 Rostock, Germany.,Joint Mass Spectrometry Centre, Comprehensive Molecular Analytics (CMA) Cooperation Group Helmholtz Zentrum, 81379 München, Germany
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
12
|
New Approach Methods to Evaluate Health Risks of Air Pollutants: Critical Design Considerations for In Vitro Exposure Testing. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17062124. [PMID: 32210027 PMCID: PMC7143849 DOI: 10.3390/ijerph17062124] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/11/2020] [Accepted: 03/19/2020] [Indexed: 12/20/2022]
Abstract
Air pollution consists of highly variable and complex mixtures recognized as major contributors to morbidity and mortality worldwide. The vast number of chemicals, coupled with limitations surrounding epidemiological and animal studies, has necessitated the development of new approach methods (NAMs) to evaluate air pollution toxicity. These alternative approaches include in vitro (cell-based) models, wherein toxicity of test atmospheres can be evaluated with increased efficiency compared to in vivo studies. In vitro exposure systems have recently been developed with the goal of evaluating air pollutant-induced toxicity; though the specific design parameters implemented in these NAMs-based studies remain in flux. This review aims to outline important design parameters to consider when using in vitro methods to evaluate air pollutant toxicity, with the goal of providing increased accuracy, reproducibility, and effectiveness when incorporating in vitro data into human health evaluations. This review is unique in that experimental considerations and lessons learned are provided, as gathered from first-hand experience developing and testing in vitro models coupled to exposure systems. Reviewed design aspects include cell models, cell exposure conditions, exposure chambers, and toxicity endpoints. Strategies are also discussed to incorporate in vitro findings into the context of in vivo toxicity and overall risk assessment.
Collapse
|
13
|
Kaur K, Mohammadpour R, Jaramillo IC, Ghandehari H, Reilly C, Paine R, Kelly KE. Application of a Quartz Crystal Microbalance to Measure the Mass Concentration of Combustion Particle Suspensions. JOURNAL OF AEROSOL SCIENCE 2019; 137:105445. [PMID: 32863423 PMCID: PMC7448758 DOI: 10.1016/j.jaerosci.2019.105445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Researchers studying the biological effects of combustion particles typically rely on suspending particles in de-ionized (DI) water, buffer, and/or media prior to in vitro or in vivo experiments. However, the hydrophobic nature of combustion particles makes it difficult to obtain well-suspended, evenly dispersed mixtures, which also makes it difficult to obtain equivalent dosing and endpoint comparisons. This study explored the use of a quartz crystal microbalance (QCM) to measure the mass concentration of combustion particle suspensions. It compared the QCM mass concentration to that estimated by placing a known mass of combustion particles in DI water. It also evaluated the effect of drop volume and combustion particle type on QCM measurements. The results showed that QCM is a promising direct method for measuring suspended combustion particle mass concentrations, and it is particularly effective for quantifying concentrations of difficult-to-suspend particles and for combustion particles placed in polystyrene containers, which can lead to substantial particle losses.
Collapse
Affiliation(s)
| | | | | | - Hamidreza Ghandehari
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah
- Department of Bioengineering, University of Utah
| | - Christopher Reilly
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah
- Department of Pharmacology and Toxicology, University of Utah
| | - Robert Paine
- Department of Pulmonary Medicine, University of Utah
| | - Kerry E. Kelly
- Department of Chemical Engineering, University of Utah
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah
| |
Collapse
|
14
|
Tong H, Zavala J, McIntosh-Kastrinsky R, Sexton KG. Cardiovascular effects of diesel exhaust inhalation: photochemically altered versus freshly emitted in mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:944-955. [PMID: 31566091 PMCID: PMC7308149 DOI: 10.1080/15287394.2019.1671278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This study was designed to compare the cardiovascular effects of inhaled photochemically altered diesel exhaust (aged DE) to freshly emitted DE (fresh DE) in female C57Bl/6 mice. Mice were exposed to either fresh DE, aged DE, or filtered air (FA) for 4 hr using an environmental irradiation chamber. Cardiac responses were assessed 8 hr after exposure utilizing Langendorff preparation with a protocol consisting of 20 min of perfusion and 20 min of ischemia followed by 2 hr of reperfusion. Cardiac function was measured by indices of left-ventricular-developed pressure (LVDP) and contractility (dP/dt) prior to ischemia. Recovery of post-ischemic LVDP was examined on reperfusion following ischemia. Fresh DE contained 460 µg/m3 of particulate matter (PM), 0.29 ppm of nitrogen dioxide (NO2) and no ozone (O3), while aged DE consisted of 330 µg/m3 of PM, 0.23 ppm O3 and no NO2. Fresh DE significantly decreased LVDP, dP/dtmax, and dP/dtmin compared to FA. Aged DE also significantly reduced LVDP and dP/dtmax. Data demonstrated that acute inhalation to either fresh or aged DE lowered LVDP and dP/dt, with a greater fall noted with fresh DE, suggesting that the composition of DE may play a key role in DE-induced adverse cardiovascular effects in female C57Bl/6 mice.
Collapse
Affiliation(s)
- Haiyan Tong
- Environmental Public Health Division, NHEERL, US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Jose Zavala
- Department of Environmental Sciences and Engineering, Gilling’s School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rachel McIntosh-Kastrinsky
- Department of Environmental Sciences and Engineering, Gilling’s School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kenneth G. Sexton
- Department of Environmental Sciences and Engineering, Gilling’s School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
15
|
Zheng L, Dong H, Zhao W, Zhang X, Duan X, Zhang H, Liu S, Sui G. An Air-Liquid Interface Organ-Level Lung Microfluidics Platform for Analysis on Molecular Mechanisms of Cytotoxicity Induced by Cancer-Causing Fine Particles. ACS Sens 2019; 4:907-917. [PMID: 30843693 DOI: 10.1021/acssensors.8b01672] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Fine particulate matter less than 2.5 μm in diameter (PM2.5) is regarded as a carcinogenic factor, but the mechanism has been left unexplored. Our goal was to reveal the carcinogenic mechanism at the gene and protein level under the inhalational air-liquid interface (ALI) condition. Herein, we developed an ALI organ-level lung microfluidic platform (ALI-OLMP) carrying lung epithelial cell line BEAS-2B and human pulmonary microvascular endothelial cells (HPMEC); the cell viability was above 98% within 14 days on this system, which was used to mimic the practical alveolar microenvironment for the multiomics analysis, to identify the global gene and protein expression after exposure to PM2.5 in Shanghai, China from 2014 to 2015. The combined RNA-Seq and iTRAQ analysis indicated that the unique set was 2532 genes at 10 μg/cm2 of PM2.5, and there were also at least 25 identical activated signal transduction cascades including bladder cancer, transcriptional dysregulation in cancer, the TP53 (p53) signaling pathway, Jak-STAT signaling pathway, and PI3K-Akt signaling pathway, which could lead to blocking of differentiation, cell proliferation and survival, and sustained angiogenesis. The images obtained by the transmission electron microscopy (TEM) showed that the particles could enter the mitochondria, and even get into the nucleus. The Pearson's correlation coefficient test elucidated that inorganics (EC), organics (OC, PAHs, and alkane), and metals (Cr, Mn, and Sb) were significantly correlated to the dysregulated oncoproteins (VEGF, IL6, MDM2, AKT1, STAT, and P53). The findings may to some extent explain the molecular mechanism of carcinogenicity caused by fine-particle exposure.
Collapse
Affiliation(s)
- Lulu Zheng
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
- Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Heng Dong
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Wang Zhao
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Xinlian Zhang
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Xiaoxiao Duan
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Hao Zhang
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Sixiu Liu
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Guodong Sui
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| |
Collapse
|
16
|
Surratt JD, Lin YH, Arashiro M, Vizuete WG, Zhang Z, Gold A, Jaspers I, Fry RC. Understanding the Early Biological Effects of Isoprene-Derived Particulate Matter Enhanced by Anthropogenic Pollutants. Res Rep Health Eff Inst 2019; 2019:1-54. [PMID: 31872748 PMCID: PMC7271660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
INTRODUCTION Airborne fine particulate matter (PM2.5; particulate matter ≤ 2.5 μm in aerodynamic diameter) plays a key role in air quality, climate, and public health. Globally, the largest mass fraction of PM2.5 is organic, dominated by secondary organic aerosol (SOA) formed from atmospheric oxidation of volatile organic compounds (VOCs). Isoprene from vegetation is the most abundant nonmethane VOC emitted into Earth's atmosphere. Isoprene has been recently recognized as one of the major sources of global SOA production that is enhanced by the presence of anthropogenic pollutants, such as acidic sulfate derived from sulfur dioxide (SO2), through multiphase chemistry of its oxidation products. Considering the abundance of isoprene-derived SOA in the atmosphere, understanding mechanisms of adverse health effects through inhalation exposure is critical to mitigating its potential impact on public health. Although previous studies have examined the toxicological effects of certain isoprene-derived gas-phase oxidation products, to date, no systematic studies have examined the potential toxicological effects of isoprene-derived SOA, its constituents, or its SOA precursors on human lung cells. SPECIFIC AIMS The overall objective of this study was to investigate the early biological effects of isoprene-derived SOA and its subtypes on BEAS-2B cells (a human bronchial epithelial cell line), with a particular focus on the alteration of oxidative stress- and inflammation-related genes. To achieve this objective, there were two specific aims. 1. Examine toxicity and early biological effects of SOA derived from the photochemical oxidation of isoprene, considering both urban and downwind-urban types of chemistry. 2. Examine toxicity and early biological effects of SOA derived directly from downstream oxidation products of isoprene (i.e., epoxides and hydroperoxides). METHODS Isoprene-derived SOA was first generated by photooxidation of isoprene under natural sunlight in the presence of nitric oxide (NO) and acidified sulfate aerosols. Experiments were conducted in a 120-m3 outdoor Teflon-film chamber located on the roof of the Gillings School of Global Public Health, University of North Carolina at Chapel Hill (UNC-Chapel Hill). BEAS-2B cells were exposed to chamber- generated isoprene-derived SOA using the Electrostatic Aerosol in Vitro Exposure System (EAVES). This approach allowed us to generate atmospherically relevant compositions of isoprene-derived SOA and to examine its toxicity through in vitro exposures at an air-liquid interface, providing a more biologically relevant exposure model. Isoprene-derived SOA samples were also collected, concurrently with EAVES sampling, onto Teflon membrane filters for in vitro resuspension exposures and for analysis of aerosol chemical composition by gas chromatography/electron ionization-quadrupole mass spectrometry (GC/EI-MS) with prior trimethylsilylation and ultra-performance liquid-chromatography coupled to high-resolution quadrupole time-of-flight mass spectrometry equipped with electrospray ionization (UPLC/ESI-HR-QTOFMS). Isoprene-derived SOA samples were also analyzed by the dithiothreitol (DTT) assay in order to characterize their reactive oxygen species (ROS)-generation potential. Organic synthesis of known isoprene-derived SOA precursors, which included isoprene epoxydiols (IEPOX), methacrylic acid epoxide (MAE), and isoprene-derived hydroxyhydroperoxides (ISOPOOH), was conducted in order to isolate major isoprene-derived SOA formation pathways from each other and to determine which of these pathways (or SOA types) is potentially more toxic. Since IEPOX and MAE produce SOA through multiphase chemistry onto acidic sulfate aerosol, dark reactive uptake experiments of IEPOX and MAE in the presence of acidic sulfate aerosol were performed in a 10-m3 flexible Teflon indoor chamber at UNC-Chapel Hill. Since the generation of SOA from ISOPOOH (through a non-IEPOX route) requires a hydroxyl radical (•OH)-initiated oxidation, ozonolysis of tetramethylethylene (TME) was used to form the needed •OH radicals in the indoor chamber. The resultant low-volatility multifunctional hydroperoxides condensed onto nonacidified sulfate aerosol, yielding the ISOPOOH-derived SOA needed for exposures. Similar to the outdoor chamber SOAs, IEPOX, MAE- and ISOPOOH-derived SOAs were collected onto Teflon membrane filters and were subsequently chemically characterized by GC/EI-MS and UPLC/ESI-HR-QTOFMS as well as for ROS-generation potential using the DTT assay. These filters were also used for resuspension in vitro exposures. By conducting gene expression profiling, we provided mechanistic insights into the potential health effects of isoprene-derived SOA. First, gene expression profiling of 84 oxidative stress- and 249 inflammation-associated human genes was performed for cells exposed to isoprene-derived SOA generated in our outdoor chamber experiments in EAVES or by resuspension. Two pathway-focused panels were utilized for this purpose: (1) nCounter GX Human Inflammation Kit comprised of 249 human genes (NanoString), and (2) Human Oxidative Stress Plus RT2 Profiler PCR Array (Qiagen) comprised of 84 oxidative stress-associated genes. We compared the gene expression levels in cells exposed to SOA generated in an outdoor chamber from photochemical oxidation of isoprene in the presence of NO and acidified sulfate seed aerosol to cells exposed to a dark control mixture of isoprene, NO, and acidified sulfate seed aerosol to isolate the effects of the isoprene-derived SOA on the cells using the EAVES and resuspension exposure methods. Pathway-based analysis was performed for significantly altered genes using the ConsensusPathDB database, which is a database system for the integration of human gene functional interactions to provide biological pathway information for a gene set of interest. Pathway annotation was performed to provide biological pathway information for each gene set. The gene-gene interaction networks were constructed and visualized using the GeneMANIA Cytoscape app (version 3.4.1) to predict the putative function of altered genes. Lastly, isoprene-derived SOA collected onto filters was used in resuspension exposures to measure select inflammatory biomarkers, including interleukin 8 (IL-8) and prostaglandin-endoperoxide synthase 2 (PTGS2) genes, in BEAS-2B cells to ensure that effects observed from EAVES exposures were attributable to particle-phase organic products. Since EAVES and resuspension exposures compared well, gene expression profiling for IEPOX-, MAE- and ISOPOOH-derived SOA were conducted using only resuspension exposures. RESULTS AND CONCLUSIONS Chemical characterization coupled with biological analyses show that atmospherically relevant compositions of isoprene-derived SOA alter the levels of 41 oxidative stress-related genes. Of the different composition types of isoprene-derived SOA, MAE- and ISOPOOH-derived SOA altered the greatest number of genes, suggesting that carbonyl and hydroperoxide functional groups are oxidative stress promoters. Taken together, the different composition types accounted for 34 of the genes altered by the total isoprene-derived SOA mixture, while 7 remained unique to the total mixture exposures, indicating that there is either a synergistic effect of the different isoprene-derived SOA components or an unaccounted component in the mixture. The high-oxides of nitrogen (NOx) regime, which yielded MAE- and methacrolein (MACR)-derived SOA, had a higher ROS-generation potential (as measured by the DTT assay) than the low- NOx regime, which included IEPOX- and isoprene-derived SOA. However, ISOPOOH-derived SOA, which also formed in the low- NOx regime, had the highest ROS-generation potential, similar to 1,4-naphthoquinone (1,4-NQ). This suggests that aerosol-phase organic peroxides contribute significantly to particulate matter (PM) oxidative potential. MAE- and MACR- derived SOA showed equal or greater ROS-generation potential than was reported in prior UNC-Chapel Hill studies on diesel exhaust PM, highlighting the importance of a comprehensive investigation of the toxicity of isoprene-derived SOA. Notably, ISOPOOH-derived SOA was one order of magnitude higher in ROS-generation potential than diesel exhaust particles previously examined at UNC-Chapel Hill. As an acellular assay, the DTT assay may not be predictive of oxidative stress; therefore, we also focused on the gene expression results from the cellular exposures. We have demonstrated that the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and the redox-sensitive activation protein-1 (AP-1) transcription factor networks have been significantly altered upon exposure to isoprene-derived SOA. The identification of Nrf2 pathway in cells exposed to isoprene-derived SOA is in accordance with our findings using the DTT assay, which measures the thiol reactivity of PM samples as a surrogate for their ROS-generation potential. Specifically, our results point to the cysteine-thiol modifications within cells that lead to activation of Nrf2-related gene expression. However, based on our gene expression results showing no clear relationship between DTT activity and the number of altered oxidative stress-related genes, the DTT activity of isoprene-derived SOA may not be directly indicative of toxicity relative to other SOA types. While activation of Nrf2-associated genes has been identified with responses to oxidative stress and linked to traffic related air pollution exposure in both toxicological and epidemiological studies, their implicit involvement in this study suggests that activation of Nrf2-related gene expression may occur with exposures to all sorts of PM types. By controlling the exposure time, method, and dose we demonstrated that among the SOA derived from previously identified individual precursors of isoprene-derived SOA, ISOPOOH-derived SOA alters more oxidative stress related genes than does IEPOX-derived SOA, but fewer than MAE-derived SOA. This suggests that the composition of MAE-derived SOA may be the greatest contributor to alterations of oxidative stress-related gene expression observed due to isoprene-derived SOA exposure. Further study on induced levels of protein expression and specific toxicological endpoints is necessary to determine if the observed gene expression changes lead to adverse health effects. In addition, such studies have implications for pollution-control strategies because NOx and SO2 are controllable pollutants that can alter the composition of SOA, and in turn alter its effects on gene expression. The mass fraction of different components of atmospheric isoprene derived SOA should be considered, but altering the fraction of high- NOx isoprene-derived SOA (e.g., MAE derived SOA) may yield greater changes in gene expression than altering the fraction of low- NOx isoprene derived SOA types (ISOPOOH- or IEPOX-derived SOA). Finally, this study confirms that total isoprene-derived SOA alters the expression of a greater number of genes than does SOA derived from the tested precursors. This warrants further work to determine the underlying explanation for this observation, which may be uncharacterized components of isoprene-derived SOA or the potential for synergism between the studied components.
Collapse
Affiliation(s)
- J D Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill
| | - Y-H Lin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill
| | - M Arashiro
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill
| | - W G Vizuete
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill
| | - Z Zhang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill
| | - A Gold
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill
| | - I Jaspers
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill
- Center for Environmental Medicine, Asthma, and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill
- Curriculum in Toxicology, University of North Carolina, Chapel Hill
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill
| | - R C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill
- Curriculum in Toxicology, University of North Carolina, Chapel Hill
| |
Collapse
|
17
|
Tilly TB, Ward RX, Luthra JK, Robinson S, Eiguren-Fernandez A, Lewis GS, Salisbury RL, Lednicky JA, Sabo-Attwood TL, Hussain SM, Wu CY. Condensational particle growth device for reliable cell exposure at the air-liquid interface to nanoparticles. AEROSOL SCIENCE AND TECHNOLOGY : THE JOURNAL OF THE AMERICAN ASSOCIATION FOR AEROSOL RESEARCH 2019; 53:1415-1428. [PMID: 33033421 PMCID: PMC7540808 DOI: 10.1080/02786826.2019.1659938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 05/22/2023]
Abstract
A first-of-its-kind aerosol exposure device for toxicity testing, referred to as the Dosimetric Aerosol in Vitro Inhalation Device (DAVID), was evaluated for its ability to deliver airborne nanoparticles to lung cells grown as air-liquid interface (ALI) cultures. For inhalation studies, ALI lung cell cultures exposed to airborne nanoparticles have more relevancy than the same cells exposed in submerged culture because ALI culture better represents the respiratory physiology and consequently more closely reflect cellular response to aerosol exposure. In DAVID, water condensation grows particles as small as 5 nm to droplets sized > 5 μm for inertial deposition at low flow rates. The application of DAVID for nanotoxicity analysis was evaluated by measuring the amount and variability in the deposition of uranine nanoparticles and then assessing the viability of ALI cell cultures exposed to clean-air under the same operational conditions. The results showed a low coefficient of variation, < 0.25, at most conditions, and low variability in deposition between the exposure wells, trials, and operational flow rates. At an operational flow rate of 4 LPM, no significant changes in cell viability were observed, and minimal effects observed at 6 LPM. The reliable and gentle deposition mechanism of DAVID makes it advantageous for nanoparticle exposure.
Collapse
Affiliation(s)
- Trevor B. Tilly
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, Florida, USA
- Molecular Mechanisms Branch, Bioeffects Division, Airman Systems Directorate, 711th Human Performance Wing/RHDJ, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, USA
| | - Ryan X. Ward
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, Florida, USA
| | - Jiva K. Luthra
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, Florida, USA
| | - Sarah Robinson
- Department of Environmental & Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | | | | | - Richard L. Salisbury
- Molecular Mechanisms Branch, Bioeffects Division, Airman Systems Directorate, 711th Human Performance Wing/RHDJ, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, USA
| | - John A. Lednicky
- Department of Environmental & Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Tara L. Sabo-Attwood
- Department of Environmental & Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Saber M. Hussain
- Molecular Mechanisms Branch, Bioeffects Division, Airman Systems Directorate, 711th Human Performance Wing/RHDJ, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, USA
| | - Chang-Yu Wu
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
18
|
Zavala J, Ledbetter AD, Morgan DS, Dailey LA, Puckett E, McCullough SD, Higuchi M. A new cell culture exposure system for studying the toxicity of volatile chemicals at the air-liquid interface. Inhal Toxicol 2018; 30:169-177. [PMID: 30086657 DOI: 10.1080/08958378.2018.1483983] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A cell culture exposure system (CCES) was developed to expose cells established at an air-liquid interface (ALI) to volatile chemicals. We characterized the CCES by exposing indigo dye-impregnated filter inserts inside culture wells to 125 ppb ozone (O3) for 1 h at flow rates of 5 and 25 mL/min/well; the reaction of O3 with an indigo dye produces a fluorescent product. A 5-fold increase in fluorescence at 25 mL/min/well versus 5 mL/min/well was observed, suggesting higher flows were more effective. We then exposed primary human bronchial epithelial cells (HBECs) to 0.3 ppm acrolein for 2 h at 3, 5, and 25 mL/min/well and compared our results against well-established in vitro exposure chambers at the U.S. EPA's Human Studies Facility (HSF Chambers). We measured transcript changes of heme oxygenase-1 (HMOX1) and interleukin-8 (IL-8), as well as lactate dehydrogenase (LDH) release, at 0, 1, and 24 h post-exposure. Comparing responses from HSF Chambers to the CCES, differences were only observed at 1 h post-exposure for HMOX1. Here, the HSF Chamber produced a ∼6-fold increase while the CCES at 3 and 5 mL/min/well produced a ∼1.7-fold increase. Operating the CCES at 25 mL/min/well produced a ∼4.5-fold increase; slightly lower than the HSF Chamber. Our biological results, supported by our comparison against the HSF Chambers, agree with our fluorescence results, suggesting that higher flows through the CCES are more effective at delivering volatile chemicals to cells. This new CCES will be deployed to screen the toxicity of volatile chemicals in EPA's chemical inventories.
Collapse
Affiliation(s)
- Jose Zavala
- a NHEERL , U.S. Environmental Protection Agency, Research Triangle Park , NC , USA
| | - Allen D Ledbetter
- a NHEERL , U.S. Environmental Protection Agency, Research Triangle Park , NC , USA
| | - David S Morgan
- b NHEERL, U.S. Environmental Protection Agency , Chapel Hill , NC , USA
| | - Lisa A Dailey
- b NHEERL, U.S. Environmental Protection Agency , Chapel Hill , NC , USA
| | - Earl Puckett
- a NHEERL , U.S. Environmental Protection Agency, Research Triangle Park , NC , USA
| | | | - Mark Higuchi
- a NHEERL , U.S. Environmental Protection Agency, Research Triangle Park , NC , USA
| |
Collapse
|
19
|
Ritter D, Bitsch A, Elend M, Schuchardt S, Hansen T, Brodbeck C, Knebel J, Fuchs A, Gronewold C, Fautz R. Development and Evaluation of an In Vitro Test System for Toxicity Screening of Aerosols Released from Consumer Products and First Application to Aerosols from a Hair Straightening Process. ACTA ACUST UNITED AC 2018. [DOI: 10.1089/aivt.2017.0036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Detlef Ritter
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Annette Bitsch
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Manfred Elend
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Sven Schuchardt
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Tanja Hansen
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Carsten Brodbeck
- Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Sankt Augustin, Germany
| | - Jan Knebel
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Anne Fuchs
- Safety and Toxicology, KAO Germany GmbH, Darmstadt, Germany
| | | | - Rolf Fautz
- Safety and Toxicology, KAO Germany GmbH, Darmstadt, Germany
| |
Collapse
|
20
|
Zavala J, Krug JD, Warren SH, Krantz QT, King C, McKee J, Gavett SH, Lewandowski M, Lonneman WA, Kleindienst TE, Meier MJ, Higuchi M, Gilmour MI, DeMarini DM. Evaluation of an Air Quality Health Index for Predicting the Mutagenicity of Simulated Atmospheres. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3045-3053. [PMID: 29406743 PMCID: PMC5858694 DOI: 10.1021/acs.est.8b00613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
No study has evaluated the mutagenicity of atmospheres with a calculated air quality health index (AQHI). Thus, we generated in a UV-light-containing reaction chamber two simulated atmospheres (SAs) with similar AQHIs but different proportions of criteria pollutants and evaluated them for mutagenicity in three Salmonella strains at the air-agar interface. We continuously injected into the chamber gasoline, nitric oxide, and ammonium sulfate, as well as either α-pinene to produce SA-PM, which had a high concentration of particulate matter (PM): 119 ppb ozone (O3), 321 ppb NO2, and 1007 μg/m3 PM2.5; or isoprene to produce SA-O3, which had a high ozone (O3) concentration: 415 ppb O3, 633 ppb NO2, and 55 μg/m3 PM2.5. Neither PM2.5 extracts, NO2, or O3 alone, nor nonphoto-oxidized mixtures were mutagenic or cytotoxic. Both photo-oxidized atmospheres were largely direct-acting base-substitution mutagens with similar mutagenic potencies in TA100 and TA104. The mutagenic potencies [(revertants/h)/(mgC/m3)] of SA-PM (4.3 ± 0.4) and SA-O3 (9.5 ± 1.3) in TA100 were significantly different ( P < 0.0001), but the mutation spectra were not ( P = 0.16), being ∼54% C → T and ∼46% C → A. Thus, the AQHI may have some predictive value for the mutagenicity of the gas phase of air.
Collapse
Affiliation(s)
- Jose Zavala
- ORISE Research Fellow, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Jonathan D. Krug
- National Environmental Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Sarah H. Warren
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Q. Todd Krantz
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Charly King
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - John McKee
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Stephen H. Gavett
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Michael Lewandowski
- National Environmental Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - William A. Lonneman
- National Environmental Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Tadeusz E. Kleindienst
- National Environmental Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Matthew J. Meier
- Biology Department, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Mark Higuchi
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - M. Ian Gilmour
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - David M. DeMarini
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| |
Collapse
|
21
|
Vejerano EP, Rao G, Khachatryan L, Cormier SA, Lomnicki S. Environmentally Persistent Free Radicals: Insights on a New Class of Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2468-2481. [PMID: 29443514 PMCID: PMC6497067 DOI: 10.1021/acs.est.7b04439] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Environmentally persistent free radicals, EPFRs, exist in significant concentration in atmospheric particulate matter (PM). EPFRs are primarily emitted from combustion and thermal processing of organic materials, in which the organic combustion byproducts interact with transition metal-containing particles to form a free radical-particle pollutant. While the existence of persistent free radicals in combustion has been known for over half-a-century, only recently that their presence in environmental matrices and health effects have started significant research, but still in its infancy. Most of the experimental studies conducted to understand the origin and nature of EPFRs have focused primarily on nanoparticles that are supported on a larger micrometer-sized particle that mimics incidental nanoparticles formed during combustion. Less is known on the extent by which EPFRs may form on engineered nanomaterials (ENMs) during combustion or thermal treatment. In this critical and timely review, we summarize important findings on EPFRs and discuss their potential to form on pristine ENMs as a new research direction. ENMs may form EPFRs that may differ in type and concentration compared to nanoparticles that are supported on larger particles. The lack of basic data and fundamental knowledge about the interaction of combustion byproducts with ENMs under high-temperature and oxidative conditions present an unknown environmental and health burden. Studying the extent of ENMs on catalyzing EPFRs is important to address the hazards of atmospheric PM fully from these emerging environmental contaminants.
Collapse
Affiliation(s)
- Eric P. Vejerano
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia South Carolina 29208, United States
- Corresponding Author: Phone: (803) 777 6360;
| | - Guiying Rao
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia South Carolina 29208, United States
| | - Lavrent Khachatryan
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Stephania A. Cormier
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
- Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, United States
| | - Slawo Lomnicki
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
22
|
Lin YH, Arashiro M, Clapp PW, Cui T, Sexton KG, Vizuete W, Gold A, Jaspers I, Fry RC, Surratt JD. Gene Expression Profiling in Human Lung Cells Exposed to Isoprene-Derived Secondary Organic Aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8166-8175. [PMID: 28636383 PMCID: PMC5610912 DOI: 10.1021/acs.est.7b01967] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Secondary organic aerosol (SOA) derived from the photochemical oxidation of isoprene contributes a substantial mass fraction to atmospheric fine particulate matter (PM2.5). The formation of isoprene SOA is influenced largely by anthropogenic emissions through multiphase chemistry of its multigenerational oxidation products. Considering the abundance of isoprene SOA in the troposphere, understanding mechanisms of adverse health effects through inhalation exposure is critical to mitigating its potential impact on public health. In this study, we assessed the effects of isoprene SOA on gene expression in human airway epithelial cells (BEAS-2B) through an air-liquid interface exposure. Gene expression profiling of 84 oxidative stress and 249 inflammation-associated human genes was performed. Our results show that the expression levels of 29 genes were significantly altered upon isoprene SOA exposure under noncytotoxic conditions (p < 0.05), with the majority (22/29) of genes passing a false discovery rate threshold of 0.3. The most significantly affected genes belong to the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) transcription factor network. The Nrf2 function is confirmed through a reporter cell line. Together with detailed characterization of SOA constituents, this study reveals the impact of isoprene SOA exposure on lung responses and highlights the importance of further understanding its potential health outcomes.
Collapse
Affiliation(s)
- Ying-Hsuan Lin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Maiko Arashiro
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Phillip W. Clapp
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Tianqu Cui
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kenneth G. Sexton
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - William Vizuete
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Avram Gold
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ilona Jaspers
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Pediatrics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jason D. Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
23
|
Zavala J, Greenan R, Krantz QT, DeMarini DM, Higuchi M, Gilmour MI, White PA. Regulating temperature and relative humidity in air-liquid interface in vitro systems eliminates cytotoxicity resulting from control air exposures. Toxicol Res (Camb) 2017; 6:448-459. [PMID: 30090513 DOI: 10.1039/c7tx00109f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/22/2017] [Indexed: 12/17/2022] Open
Abstract
VITROCELL® systems permit cell exposures at the air-liquid interface (ALI); however, there are inconsistent methodologies in the literature for their operation. Some studies find that exposure to air (vehicle control) induced cytotoxicity relative to incubator controls; others do not mention if any cytotoxicity was encountered. We sought to test whether temperature and relative humidity (temp/RH) influence cytotoxicity with an unmodified (conditions A & B) and modified (condition C) VITROCELL® 6 CF with temp/RH controls to permit conditioning of the sampled air-flow. We exposed BEAS-2B cells for 1 h to air and measured viability (WST-1 cell proliferation assay) and lactate dehydrogenase (LDH) release 6 h post-exposure. Relative to controls, cells exposed to air at (A) 22 °C and 18% RH had a 47.9% ± 3.2% (p < 0.0001) reduction in cell viability and 10.7% ± 2.0% (p < 0.0001) increase in LDH release (B) 22 °C and 55% RH had a 40.3% ± 5.8% (p < 0.0001) reduction in cell viability and 2.6% ± 2.0% (p = 0.2056) increase in LDH release, or (C) 37 °C and >75% RH showed no changes in cell viability and no increase in LDH release. Furthermore, cells exposed to air at 37 °C and >75% RH 24 h post-exposure showed no changes in viability or LDH release relative to incubator controls. Thus, reductions in cell viability were induced under conditions used typically in the literature (conditions A & B). However, our modifications (condition C) overcome this shortcoming by preventing cell desiccation; regulating temp/RH is essential for conducting adequate ALI exposures.
Collapse
Affiliation(s)
- Jose Zavala
- NHEERL , U.S. Environmental Protection Agency , Research Triangle Park , NC 27711 , USA . ; Tel: +1-919-541-2316
| | - Rebecca Greenan
- Mechanistic Studies Division , Environmental Health Science and Research Bureau , Health Canada , Ottawa , Ontario K1A 0K9 , Canada . ; ; Tel: +1-613-941-7373
| | - Q Todd Krantz
- NHEERL , U.S. Environmental Protection Agency , Research Triangle Park , NC 27711 , USA . ; Tel: +1-919-541-2316
| | - David M DeMarini
- NHEERL , U.S. Environmental Protection Agency , Research Triangle Park , NC 27711 , USA . ; Tel: +1-919-541-2316
| | - Mark Higuchi
- NHEERL , U.S. Environmental Protection Agency , Research Triangle Park , NC 27711 , USA . ; Tel: +1-919-541-2316
| | - M Ian Gilmour
- NHEERL , U.S. Environmental Protection Agency , Research Triangle Park , NC 27711 , USA . ; Tel: +1-919-541-2316
| | - Paul A White
- Mechanistic Studies Division , Environmental Health Science and Research Bureau , Health Canada , Ottawa , Ontario K1A 0K9 , Canada . ; ; Tel: +1-613-941-7373
| |
Collapse
|
24
|
Zavala J, O'Brien B, Lichtveld K, Sexton KG, Rusyn I, Jaspers I, Vizuete W. Assessment of biological responses of EpiAirway 3-D cell constructs versus A549 cells for determining toxicity of ambient air pollution. Inhal Toxicol 2017; 28:251-9. [PMID: 27100558 DOI: 10.3109/08958378.2016.1157227] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT EpiAirway™ 3-D constructs are human-derived cell cultures of differentiated airway epithelial cells that may represent a more biologically relevant model of the human lung. However, limited information is available on their utility for exposures to air pollutants at the air-liquid interface (ALI). OBJECTIVE To assess the biological responses of EpiAirway™ cells in comparison to the responses of A549 human alveolar epithelial cells after exposure to air pollutants at ALI. METHODS Cells were exposed to filtered air, 400 ppb of ozone (O3) or a photochemically aged Synthetic Urban Mixture (SynUrb54) consisting of hydrocarbons, nitrogen oxides, O3 and other secondary oxidation products for 4 h. Basolateral supernatants and apical washes were collected at 9 and 24 h post-exposure. We assessed cytotoxicity by measuring lactate dehydrogenase (LDH) release into the culture medium and apical surface. Interleukin 6 (IL-6) and interleukin 8 (IL-8) proteins were measured in the culture medium and in the apical washes to determine the inflammatory response after exposure. RESULTS Both O3 and SynUrb54 significantly increased basolateral levels of LDH and IL-8 in A549 cells. No significant changes in LDH and IL-8 levels were observed in the EpiAirway™ cells, however, IL-6 in the apical surface was significantly elevated at 24 h after O3 exposure. CONCLUSION LDH and IL-8 are robust endpoints for assessing toxicity in A549 cells. The EpiAirway™ cells show minimal adverse effects after exposure suggesting that they are more toxicologically resistant compared to A549 cells. Higher concentrations or longer exposure times are needed to induce effects on EpiAirway™ cells.
Collapse
Affiliation(s)
- Jose Zavala
- a Department of Environmental Sciences & Engineering , University of North Carolina at Chapel Hill , Chapel Hill , NC, USA
| | - Bridget O'Brien
- a Department of Environmental Sciences & Engineering , University of North Carolina at Chapel Hill , Chapel Hill , NC, USA
| | - Kim Lichtveld
- a Department of Environmental Sciences & Engineering , University of North Carolina at Chapel Hill , Chapel Hill , NC, USA
| | - Kenneth G Sexton
- a Department of Environmental Sciences & Engineering , University of North Carolina at Chapel Hill , Chapel Hill , NC, USA
| | - Ivan Rusyn
- a Department of Environmental Sciences & Engineering , University of North Carolina at Chapel Hill , Chapel Hill , NC, USA
| | - Ilona Jaspers
- a Department of Environmental Sciences & Engineering , University of North Carolina at Chapel Hill , Chapel Hill , NC, USA .,b Department of Pediatrics , University of North Carolina at Chapel Hill , Chapel Hill , NC, USA , and.,c Center for Environmental Medicine and Lung Biology, University of North Carolina at Chapel Hill , Chapel Hill , NC, USA
| | - William Vizuete
- a Department of Environmental Sciences & Engineering , University of North Carolina at Chapel Hill , Chapel Hill , NC, USA
| |
Collapse
|
25
|
Jin L, Luo X, Fu P, Li X. Airborne particulate matter pollution in urban China: a chemical mixture perspective from sources to impacts. Natl Sci Rev 2016. [DOI: 10.1093/nsr/nww079] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AbstractRapid urban and industrial development has resulted in severe air-pollution problems in developing countries such as China, especially in highly industrialized and populous urban clusters. Dissecting the complex mixtures of airborne particulate matter (PM) has been a key scientific focus in the last two decades, leading to significant advances in understanding physicochemical compositions for comprehensive source apportionment. However, identifying causative components with an attributable link to population-based health outcomes remains a huge challenge. The microbiome, an integral dimension of the PM mixture, is an unexplored frontier in terms of identities and functions in atmospheric processes and human health. In this review, we identify the major gaps in addressing these issues, and recommend a holistic framework for evaluating the sources, processes and impacts of atmospheric PM pollution. Such an approach and the knowledge generated will facilitate the formulation of regulatory measures to control PM pollution in China and elsewhere.
Collapse
Affiliation(s)
- Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiaosan Luo
- International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Pingqing Fu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
26
|
Steiner S, Bisig C, Petri-Fink A, Rothen-Rutishauser B. Diesel exhaust: current knowledge of adverse effects and underlying cellular mechanisms. Arch Toxicol 2016; 90:1541-53. [PMID: 27165416 PMCID: PMC4894930 DOI: 10.1007/s00204-016-1736-5] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 04/28/2016] [Indexed: 12/03/2022]
Abstract
Diesel engine emissions are among the most prevalent anthropogenic pollutants worldwide, and with the growing popularity of diesel-fueled engines in the private transportation sector, they are becoming increasingly widespread in densely populated urban regions. However, a large number of toxicological studies clearly show that diesel engine emissions profoundly affect human health. Thus the interest in the molecular and cellular mechanisms underlying these effects is large, especially concerning the nature of the components of diesel exhaust responsible for the effects and how they could be eliminated from the exhaust. This review describes the fundamental properties of diesel exhaust as well as the human respiratory tract and concludes that adverse health effects of diesel exhaust not only emerge from its chemical composition, but also from the interplay between its physical properties, the physiological and cellular properties, and function of the human respiratory tract. Furthermore, the primary molecular and cellular mechanisms triggered by diesel exhaust exposure, as well as the fundamentals of the methods for toxicological testing of diesel exhaust toxicity, are described. The key aspects of adverse effects induced by diesel exhaust exposure described herein will be important for regulators to support or ban certain technologies or to legitimate incentives for the development of promising new technologies such as catalytic diesel particle filters.
Collapse
Affiliation(s)
- Sandro Steiner
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Christoph Bisig
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | | |
Collapse
|
27
|
Fox JR, Cox DP, Drury BE, Gould TR, Kavanagh TJ, Paulsen MH, Sheppard L, Simpson CD, Stewart JA, Larson TV, Kaufman JD. Chemical characterization and in vitro toxicity of diesel exhaust particulate matter generated under varying conditions. AIR QUALITY, ATMOSPHERE, & HEALTH 2015; 8:507-519. [PMID: 26539254 PMCID: PMC4628827 DOI: 10.1007/s11869-014-0301-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Epidemiologic studies have linked diesel exhaust (DE) to cardiovascular and respiratory morbidity and mortality, as well as lung cancer. DE composition is known to vary with many factors, although it is unclear how this influences toxicity. We generated eight DE atmospheres by applying a 2×2×2 factorial design and altering three parameters in a controlled exposure facility: (1) engine load (27 vs 82 %), (2) particle aging (residence time ~5 s vs ~5 min prior to particle collection), and (3) oxidation (with or without ozonation during dilution). Selected exposure concentrations of both diesel exhaust particles (DEPs) and DE gases, DEP oxidative reactivity via DTT activity, and in vitro DEP toxicity in murine endothelial cells were measured for each DE atmosphere. Cell toxicity was assessed via measurement of cell proliferation (colony formation assay), cell viability (MTT assay), and wound healing (scratch assay). Differences in DE composition were observed as a function of engine load. The mean 1-nitropyrene concentration was 15 times higher and oxidative reactivity was two times higher for low engine load versus high load. There were no substantial differences in measured toxicity among the three DE exposure parameters. These results indicate that alteration of applied engine load shifts the composition and can modify the biological reactivity of DE. While engine conditions did not affect the selected in vitro toxicity measures, the change in oxidative reactivity suggests that toxicological studies with DE need to take into account engine conditions in characterizing biological effects.
Collapse
Affiliation(s)
- Julie Richman Fox
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - David P. Cox
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | | | - Timothy R. Gould
- Department of Civil & Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Terrance J. Kavanagh
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Michael H. Paulsen
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Lianne Sheppard
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA. Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Christopher D. Simpson
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - James A. Stewart
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Timothy V. Larson
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA. Department of Civil & Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Joel D. Kaufman
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
28
|
Golokhvast KS, Chernyshev VV, Chaika VV, Ugay SM, Zelinskaya EV, Tsatsakis AM, Karakitsios SP, Sarigiannis DA. Size-segregated emissions and metal content of vehicle-emitted particles as a function of mileage: Implications to population exposure. ENVIRONMENTAL RESEARCH 2015; 142:479-485. [PMID: 26264860 DOI: 10.1016/j.envres.2015.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/13/2015] [Accepted: 07/28/2015] [Indexed: 06/04/2023]
Abstract
The study aims at investigating the characteristics (size distribution, active surface and metal content) of particles emitted by cars as a function of mileage using a novel methodology for characterizing particulate emissions captured by Exhaust Gas Suspension (EGS). EGS was obtained by passing the exhaust gases through a container of deionized water. EGS analysis was performed using laser granulometry, electron scanning microscopy, and high resolution mass spectrometry. Implications of the differences in key features of the emitted particles on population exposure were investigated using numerical simulation for estimating size-segregated PM deposition across human respiratory tract (HRT). It was found that vehicle mileage, age and the respective emissions class have almost no effect on the size distribution of the exhaust gas particulate released into the environment; about half of the examined vehicles with low mileage were found to release particles of aerodynamic diameter above 10 μm. The exhaust gas particulate detected in the EGS of all cars can be classified into three major size classes: (1) 0.1-5 µm - soot and ash particles, metals (Au, Pt, Pd, Ir); (2) 10-30 µm - metal (Cr, Fe, Cu, Zr, Ni) and ash particles; (3) 400-1,000 µm - metal (Fe, Cr, Pb) and ash particles. Newer vehicles with low mileage are substantial sources of soot and metal particles with median diameter of 200 nm with a higher surface area (up to 89,871.16 cm(2)/cm(3)). These tend to deposit in the lower part of the human respiratory tract.
Collapse
Affiliation(s)
| | | | | | - Sergey M Ugay
- Far Eastern Federal University, Vladivostok, Russian Federation
| | - Elena V Zelinskaya
- National Research Irkutsk State Technical University, Irkutsk, Russian Federation
| | - Aristidis M Tsatsakis
- University of Crete, Medical School, Department of Toxicology and Forensic Science, Heraklion, Crete, Greece
| | - Spyros P Karakitsios
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Thessaloniki, Greece
| | - Denis A Sarigiannis
- Aristotle University of Thessaloniki, Department of Chemical Engineering, Thessaloniki, Greece.
| |
Collapse
|
29
|
Künzi L, Krapf M, Daher N, Dommen J, Jeannet N, Schneider S, Platt S, Slowik JG, Baumlin N, Salathe M, Prévôt ASH, Kalberer M, Strähl C, Dümbgen L, Sioutas C, Baltensperger U, Geiser M. Toxicity of aged gasoline exhaust particles to normal and diseased airway epithelia. Sci Rep 2015; 5:11801. [PMID: 26119831 PMCID: PMC4484354 DOI: 10.1038/srep11801] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/04/2015] [Indexed: 11/09/2022] Open
Abstract
Particulate matter (PM) pollution is a leading cause of premature death, particularly in those with pre-existing lung disease. A causative link between particle properties and adverse health effects remains unestablished mainly due to complex and variable physico-chemical PM parameters. Controlled laboratory experiments are required. Generating atmospherically realistic aerosols and performing cell-exposure studies at relevant particle-doses are challenging. Here we examine gasoline-exhaust particle toxicity from a Euro-5 passenger car in a uniquely realistic exposure scenario, combining a smog chamber simulating atmospheric ageing, an aerosol enrichment system varying particle number concentration independent of particle chemistry, and an aerosol deposition chamber physiologically delivering particles on air-liquid interface (ALI) cultures reproducing normal and susceptible health status. Gasoline-exhaust is an important PM source with largely unknown health effects. We investigated acute responses of fully-differentiated normal, distressed (antibiotics-treated) normal, and cystic fibrosis human bronchial epithelia (HBE), and a proliferating, single-cell type bronchial epithelial cell-line (BEAS-2B). We show that a single, short-term exposure to realistic doses of atmospherically-aged gasoline-exhaust particles impairs epithelial key-defence mechanisms, rendering it more vulnerable to subsequent hazards. We establish dose-response curves at realistic particle-concentration levels. Significant differences between cell models suggest the use of fully-differentiated HBE is most appropriate in future toxicity studies.
Collapse
Affiliation(s)
- Lisa Künzi
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Manuel Krapf
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
| | - Nancy Daher
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, United States of America
| | - Josef Dommen
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
| | - Natalie Jeannet
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Sarah Schneider
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Stephen Platt
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
| | - Jay G Slowik
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
| | - Nathalie Baumlin
- Division of Pulmonary, Critical Care &Sleep Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Matthias Salathe
- Division of Pulmonary, Critical Care &Sleep Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - André S H Prévôt
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
| | - Markus Kalberer
- Centre for Atmospheric Sciences, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Christof Strähl
- Department of Mathematics and Statistics, Institute of Mathematical Statistics and Actuarial Science, University of Bern, 3012 Bern, Switzerland
| | - Lutz Dümbgen
- Department of Mathematics and Statistics, Institute of Mathematical Statistics and Actuarial Science, University of Bern, 3012 Bern, Switzerland
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, United States of America
| | - Urs Baltensperger
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
| | - Marianne Geiser
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
30
|
Antiñolo M, Willis MD, Zhou S, Abbatt JPD. Connecting the oxidation of soot to its redox cycling abilities. Nat Commun 2015; 6:6812. [PMID: 25873384 PMCID: PMC4410628 DOI: 10.1038/ncomms7812] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 02/27/2015] [Indexed: 02/08/2023] Open
Abstract
Although it is known that soot particles are emitted in large quantities to the atmosphere, our understanding of their environmental effects is limited by our knowledge of how their composition is subsequently altered through atmospheric processing. Here we present an on-line mass spectrometric study of the changing chemical composition of hydrocarbon soot particles as they are oxidized by gas-phase ozone, and we show that the surface-mediated loss rates of adsorbed polycyclic aromatic hydrocarbons in soot are directly connected to a significant increase in the particle redox cycling abilities. With redox cycling implicated as an oxidative stress mechanism that arises after inhalation of atmospheric particles, this work draws a quantitative connection between the detailed heterogeneous chemistry occurring on atmospheric particles and a potential toxic mechanism attributable to that aerosol.
Collapse
Affiliation(s)
- María Antiñolo
- 1] Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario, M5S 3H6 Canada [2] Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. Camilo José Cela s/n, Ciudad Real 13071, Spain
| | - Megan D Willis
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario, M5S 3H6 Canada
| | - Shouming Zhou
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario, M5S 3H6 Canada
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario, M5S 3H6 Canada
| |
Collapse
|
31
|
Nozière B, Kalberer M, Claeys M, Allan J, D'Anna B, Decesari S, Finessi E, Glasius M, Grgić I, Hamilton JF, Hoffmann T, Iinuma Y, Jaoui M, Kahnt A, Kampf CJ, Kourtchev I, Maenhaut W, Marsden N, Saarikoski S, Schnelle-Kreis J, Surratt JD, Szidat S, Szmigielski R, Wisthaler A. The molecular identification of organic compounds in the atmosphere: state of the art and challenges. Chem Rev 2015; 115:3919-83. [PMID: 25647604 DOI: 10.1021/cr5003485] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Barbara Nozière
- †Ircelyon/CNRS and Université Lyon 1, 69626 Villeurbanne Cedex, France
| | | | | | | | - Barbara D'Anna
- †Ircelyon/CNRS and Université Lyon 1, 69626 Villeurbanne Cedex, France
| | | | | | | | - Irena Grgić
- ○National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | | | | | - Yoshiteru Iinuma
- ¶Leibniz-Institut für Troposphärenforschung, 04318 Leipzig, Germany
| | | | | | | | - Ivan Kourtchev
- ‡University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Willy Maenhaut
- §University of Antwerp, 2000 Antwerp, Belgium.,□Ghent University, 9000 Gent, Belgium
| | | | | | | | - Jason D Surratt
- ▼University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | | | | | | |
Collapse
|
32
|
Baldridge KC, Zavala J, Surratt J, Sexton KG, Contreras LM. Cellular RNA is chemically modified by exposure to air pollution mixtures. Inhal Toxicol 2015; 27:74-82. [DOI: 10.3109/08958378.2014.987361] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
33
|
Turner J, Hernandez M, Snawder JE, Handorean A, McCabe KM. A toxicology suite adapted for comparing parallel toxicity responses of model human lung cells to diesel exhaust particles and their extracts. AEROSOL SCIENCE AND TECHNOLOGY : THE JOURNAL OF THE AMERICAN ASSOCIATION FOR AEROSOL RESEARCH 2015; 49:599-610. [PMID: 26412929 PMCID: PMC4583370 DOI: 10.1080/02786826.2015.1053559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Epidemiological studies have shown that exposure to airborne particulate matter can be an important risk factor for some common respiratory diseases. While many studies have shown that particulate matter exposures are associated with inflammatory reactions, the role of specific cellular responses in the manifestation of primary hypersensitivities, and the progression of respiratory diseases remains unclear. In order to better understand mechanisms by which particulate matter can exert adverse health effects, more robust approaches to support in vitro studies are warranted. In response to this need, a group of accepted toxicology assays were adapted to create an analytical suite for screening and evaluating the effects of important, ubiquitous atmospheric pollutants on two model human lung cell lines (epithelial and immature macrophage). To demonstrate the utility of this suite, responses to intact diesel exhaust particles, and mass-based equivalent doses of their organic extracts were examined. Results suggest that extracts have the potential to induce greater biological responses than those associated with their colloidal counterpart. Additionally, macrophage cells appear to be more susceptible to the cytotoxic effects of both intact diesel exhaust particles and their organic extract, than epithelial cells tested in parallel. As designed, the suite provided a more robust basis for characterizing toxicity mechanisms than the analysis of any individual assay. Findings suggest that cellular responses to particulate matter are cell line dependent, and show that the collection and preparation of PM and/or their extracts have the potential to impact cellular responses relevant to screening fundamental elements of respiratory toxicity.
Collapse
Affiliation(s)
- Jane Turner
- Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, Colorado, USA
| | - Mark Hernandez
- Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, Colorado, USA
| | - John E. Snawder
- Biomonitoring Research, National Institute for Occupational Safety and Health, Cincinnati, Ohio, USA
| | - Alina Handorean
- Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, Colorado, USA
| | - Kevin M. McCabe
- Biology Department, Columbia Gorge Community College, The Dalles, Oregon, USA
| |
Collapse
|
34
|
Time course of bronchial cell inflammation following exposure to diesel particulate matter using a modified EAVES. Toxicol In Vitro 2014; 28:829-37. [DOI: 10.1016/j.tiv.2014.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/26/2014] [Accepted: 03/01/2014] [Indexed: 11/22/2022]
|
35
|
Zavala J, Lichtveld K, Ebersviller S, Carson JL, Walters GW, Jaspers I, Jeffries HE, Sexton KG, Vizuete W. The Gillings Sampler--an electrostatic air sampler as an alternative method for aerosol in vitro exposure studies. Chem Biol Interact 2014; 220:158-68. [PMID: 25010910 DOI: 10.1016/j.cbi.2014.06.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/23/2014] [Accepted: 06/29/2014] [Indexed: 11/17/2022]
Abstract
There is growing interest in studying the toxicity and health risk of exposure to multi-pollutant mixtures found in ambient air, and the U.S. Environmental Protection Agency (EPA) is moving towards setting standards for these types of mixtures. Additionally, the Health Effects Institute's strategic plan aims to develop and apply next-generation multi-pollutant approaches to understanding the health effects of air pollutants. There's increasing concern that conventional in vitro exposure methods are not adequate to meet EPA's strategic plan to demonstrate a direct link between air pollution and health effects. To meet the demand for new in vitro technology that better represents direct air-to-cell inhalation exposures, a new system that exposes cells at the air-liquid interface was developed. This new system, named the Gillings Sampler, is a modified two-stage electrostatic precipitator that provides a viable environment for cultured cells. Polystyrene latex spheres were used to determine deposition efficiencies (38-45%), while microscopy and imaging techniques were used to confirm uniform particle deposition. Negative control A549 cell exposures indicated the sampler can be operated for up to 4h without inducing any significant toxic effects on cells, as measured by lactate dehydrogenase (LDH) and interleukin-8 (IL-8). A novel positive aerosol control exposure method, consisting of a p-tolualdehyde (TOLALD) impregnated mineral oil aerosol (MOA), was developed to test this system. Exposures to the toxic MOA at a 1 ng/cm(2) dose of TOLALD yielded a reproducible 1.4 and 2-fold increase in LDH and IL-8 mRNA levels over controls. This new system is intended to be used as an alternative research tool for aerosol in vitro exposure studies. While further testing and optimization is still required to produce a "commercially ready" system, it serves as a stepping-stone in the development of cost-effective in vitro technology that can be made accessible to researchers in the near future.
Collapse
Affiliation(s)
- Jose Zavala
- Department of Environmental Sciences & Engineering, University of North Carolina at Chapel Hill, United States
| | - Kim Lichtveld
- Department of Environmental Sciences & Engineering, University of North Carolina at Chapel Hill, United States
| | - Seth Ebersviller
- Department of Environmental Sciences & Engineering, University of North Carolina at Chapel Hill, United States
| | - Johnny L Carson
- Department of Pediatrics, University of North Carolina at Chapel Hill, United States; Center for Environmental Medicine and Lung Biology, University of North Carolina at Chapel Hill, United States
| | - Glenn W Walters
- Department of Environmental Sciences & Engineering, University of North Carolina at Chapel Hill, United States
| | - Ilona Jaspers
- Department of Environmental Sciences & Engineering, University of North Carolina at Chapel Hill, United States; Department of Pediatrics, University of North Carolina at Chapel Hill, United States; Center for Environmental Medicine and Lung Biology, University of North Carolina at Chapel Hill, United States
| | - Harvey E Jeffries
- Department of Environmental Sciences & Engineering, University of North Carolina at Chapel Hill, United States
| | - Kenneth G Sexton
- Department of Environmental Sciences & Engineering, University of North Carolina at Chapel Hill, United States
| | - William Vizuete
- Department of Environmental Sciences & Engineering, University of North Carolina at Chapel Hill, United States.
| |
Collapse
|
36
|
Steiner S, Heeb NV, Czerwinski J, Comte P, Mayer A, Petri-Fink A, Rothen-Rutishauser B. Test-methods on the test-bench: a comparison of complete exhaust and exhaust particle extracts for genotoxicity/mutagenicity assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:5237-5244. [PMID: 24697289 DOI: 10.1021/es4056033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
With the growing number of new exhaust after-treatment systems, fuels and fuel additives for internal combustion engines, efficient and reliable methods for detecting exhaust genotoxicity and mutagenicity are needed to avoid the widespread application of technologies with undesirable effects toward public health. In a commonly used approach, organic extracts of particulates rather than complete exhaust is used for genotoxicity/mutagenicity assessment, which may reduce the reliability of the results. In the present study, we assessed the mutagenicity and the genotoxicity of complete diesel exhaust compared to an organic exhaust particle extract from the same diesel exhaust in a bacterial and a eukaryotic system, that is, a complex human lung cell model. Both, complete exhaust and organic extract were found to act mutagenic/genotoxic, but the amplitudes of the effects differed considerably. Furthermore, our data indicate that the nature of the mutagenicity may not be identical for complete exhaust and particle extracts. Because in addition, differences between the responses of the different biological systems were found, we suggest that a comprehensive assessment of exhaust toxicity is preferably performed with complete exhaust and with biological systems representative for the organisms and organs of interest (i.e., human lungs) and not only with the Ames test.
Collapse
Affiliation(s)
- Sandro Steiner
- Adolphe Merkle Institute, University of Fribourg , 1700 Fribourg, Switzerland
| | | | | | | | | | | | | |
Collapse
|
37
|
Kim JS, Klösener J, Flor S, Peters TM, Ludewig G, Thorne PS, Robertson LW, Luthe G. Toxicity assessment of air-delivered particle-bound polybrominated diphenyl ethers. Toxicology 2014; 317:31-9. [PMID: 24451063 DOI: 10.1016/j.tox.2014.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/17/2013] [Accepted: 01/09/2014] [Indexed: 11/29/2022]
Abstract
Human exposure to polybrominated diphenyl ethers (PBDEs) can occur via ingestion of indoor dust, inhalation of PBDE-contaminated air and dust-bound PBDEs. However, few studies have examined the pulmonary toxicity of particle-bound PBDEs, mainly due to the lack of an appropriate particle-cell exposure system. In this study we developed an in vitro exposure system capable of generating particle-bound PBDEs mimicking dusts containing PBDE congeners (BDEs 35, 47 and 99) and delivering them directly onto lung cells grown at an air-liquid interface (ALI). The silica particles and particles-coated with PBDEs ranged in diameter from 4.3 to 4.5 μm and were delivered to cells with no apparent aggregation. This experimental set up demonstrated high reproducibility and sensitivity for dosing control and distribution of particles. ALI exposure of cells to PBDE-bound particles significantly decreased cell viability and induced reactive oxygen species generation in A549 and NCI-H358 cells. In male Sprague-Dawley rats exposed via intratracheal insufflation (0.6 mg/rat), particle-bound PBDE exposures induced inflammatory responses with increased recruitment of neutrophils to the lungs compared to sham-exposed rats. The present study clearly indicates the potential of our exposure system for studying the toxicity of particle-bound compounds.
Collapse
Affiliation(s)
- Jong Sung Kim
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, UI Research Park, Iowa City, IA 52242-5000, USA.
| | - Johannes Klösener
- Department of Occupational and Environmental Health, University of Iowa, UI Research Park, Iowa City, IA 52242-5000, USA
| | - Susanne Flor
- Department of Occupational and Environmental Health, University of Iowa, UI Research Park, Iowa City, IA 52242-5000, USA
| | - Thomas M Peters
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, UI Research Park, Iowa City, IA 52242-5000, USA; Department of Occupational and Environmental Health, University of Iowa, UI Research Park, Iowa City, IA 52242-5000, USA
| | - Gabriele Ludewig
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, UI Research Park, Iowa City, IA 52242-5000, USA; Department of Occupational and Environmental Health, University of Iowa, UI Research Park, Iowa City, IA 52242-5000, USA
| | - Peter S Thorne
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, UI Research Park, Iowa City, IA 52242-5000, USA; Department of Occupational and Environmental Health, University of Iowa, UI Research Park, Iowa City, IA 52242-5000, USA
| | - Larry W Robertson
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, UI Research Park, Iowa City, IA 52242-5000, USA; Department of Occupational and Environmental Health, University of Iowa, UI Research Park, Iowa City, IA 52242-5000, USA.
| | - Gregor Luthe
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, UI Research Park, Iowa City, IA 52242-5000, USA; Department of Occupational and Environmental Health, University of Iowa, UI Research Park, Iowa City, IA 52242-5000, USA.
| |
Collapse
|
38
|
Rider CV, Boekelheide K, Catlin N, Gordon CJ, Morata T, Selgrade MK, Sexton K, Simmons JE. Cumulative risk: toxicity and interactions of physical and chemical stressors. Toxicol Sci 2013; 137:3-11. [PMID: 24154487 DOI: 10.1093/toxsci/kft228] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent efforts to update cumulative risk assessment procedures to incorporate nonchemical stressors ranging from physical to psychosocial reflect increased interest in consideration of the totality of variables affecting human health and the growing desire to develop community-based risk assessment methods. A key roadblock is the uncertainty as to how nonchemical stressors behave in relationship to chemical stressors. Physical stressors offer a reasonable starting place for measuring the effects of nonchemical stressors and their modulation of chemical effects (and vice versa), as they clearly differ from chemical stressors; and "doses" of many physical stressors are more easily quantifiable than those of psychosocial stressors. There is a commonly held belief that virtually nothing is known about the impact of nonchemical stressors on chemically mediated toxicity or the joint impact of coexposure to chemical and nonchemical stressors. Although this is generally true, there are several instances where a substantial body of evidence exists. A workshop titled "Cumulative Risk: Toxicity and Interactions of Physical and Chemical Stressors" held at the 2013 Society of Toxicology Annual Meeting provided a forum for discussion of research addressing the toxicity of physical stressors and what is known about their interactions with chemical stressors, both in terms of exposure and effects. Physical stressors including sunlight, heat, radiation, infectious disease, and noise were discussed in reference to identifying pathways of interaction with chemical stressors, data gaps, and suggestions for future incorporation into cumulative risk assessments.
Collapse
Affiliation(s)
- Cynthia V Rider
- * Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Ebersviller S, Lichtveld K, Sexton KG, Zavala J, Lin YH, Jaspers I, Jeffries HE. Gaseous VOCs rapidly modify particulate matter and its biological effects - Part 1: Simple VOCs and model PM. ATMOSPHERIC CHEMISTRY AND PHYSICS DISCUSSIONS : ACPD 2012; 12:5065-5105. [PMID: 23457430 PMCID: PMC3583354 DOI: 10.5194/acpd-12-5065-2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This is the first of a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOC), particulate matter (PM), and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model indicators. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects) from cells exposed to chamber air relative to cells exposed to clean air. The exposure systems permit gas-only- or PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure.Our simple experiments in this part of the study were designed to eliminate many competing atmospheric processes to reduce ambiguity in our results. Simple volatile and semi-volatile organic gases that have inherent cellular toxic properties were tested individually for biological effect in the dark (at constant humidity). Airborne mixtures were then created with each compound and PM that has no inherent cellular toxic properties for another cellular exposure. Acrolein and p-tolualdehyde were used as model VOCs and mineral oil aerosol (MOA) was selected as a surrogate for organic-containing PM. MOA is appropriately complex in composition to represent ambient PM, and it exhibits no inherent cellular toxic effects and thus did not contribute any biological detrimental effects on its own.Chemical measurements, combined with the responses of our biological exposures, clearly demonstrate that gas-phase pollutants can modify the composition of PM (and its resulting detrimental effects on lung cells) - even if the gas-phase pollutants are not considered likely to partition to the condensed phase: the VOC-modified-PM showed significantly more damage and inflammation to lung cells than did the original PM. Because gases and PM are transported and deposited differently within the atmosphere and the lungs, these results have significant consequences. For example, current US policies for research and regulation of PM do not recognize this "effect modification" phenomena (NAS, 2004).These results present an unambiguous demonstration that - even in these simple mixtures - physical and thermal interactions alone can cause a modification of the distribution of species among the phases of airborne pollution mixtures and can result in a non-toxic phase becoming toxic due to atmospheric thermal processes only. Subsequent work extends the simple results reported here to systems with photochemical transformations of complex urban mixtures and to systems with diesel exhaust produced by different fuels.
Collapse
Affiliation(s)
- S. Ebersviller
- Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA
| | - K. Lichtveld
- Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA
| | - K. G. Sexton
- Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA
| | - J. Zavala
- Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA
| | - Y-H. Lin
- Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA
| | - I. Jaspers
- Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA
- Center for Environmental Medicine and Lung Biology, Human Studies Facility, The University of North Carolina at Chapel Hill, USA
| | - H. E. Jeffries
- Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA
| |
Collapse
|