1
|
Karimian N, Pownceby MI, Burton ED, Wells M, Frierdich AJ. Fe(II)-Catalyzed Recrystallization Drives Phosphorus and Aluminum Release from Goethite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19016-19026. [PMID: 39390686 DOI: 10.1021/acs.est.4c03574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Goethite often harbors impurities, such as phosphorus (P) and aluminum (Al), which are incorporated into its structure through direct substitution or coprecipitation with nanocrystalline phases. Understanding the processes that drive the release of P and Al from goethite is of paramount importance for the iron ore industry and for managing nutrient and pollutant behavior in the environment. This study investigates the impact of Fe(II)-catalyzed recrystallization on the release of P and Al from goethite. We evaluated the solubility and extractability of P and Al in suspensions of Al- and P-coprecipitated goethite, treated with 57Fe-enriched Fe(II)aq under oxygen-free conditions for 30 days at neutral pH and room temperatures. The addition of Fe(II)aq induced the recrystallization of goethite dominant initial synthetic phases (i.e., low P- and Al-containing phases) and the transformation of higher P- and/or Al-bearing starting material that was actually a mixture of goethite and minor amounts of lepidocrocite and feroxyhyte. Our results reveal that Fe(II)-catalyzed mineral and structural evolution led to the repartitioning of P and, to a lesser extent, Al throughout the crystal structure, mineral surface, and aqueous solution. Following a 30 day reaction with Fe(II)aq, we extracted approximately 80, 68.8, 73.9, and 83.2% of P from P-only, low, medium, and high P + Al goethite, respectively. Additionally, we observed total Al removals of approximately 17, 27, and 25% from low, medium, and high P + Al goethite, respectively. The results demonstrate that treating both P-only and P + Al goethite with Fe(II) at room temperature, followed by a 24 h extraction using 1 M NaOH, significantly enhances the overall extractability of P and Al, including both aqueous and surface-adsorbed fractions, compared to Fe(II)-free controls. These findings advance our understanding of the recrystallization process and impurity substitution in goethite, offering promising avenues for developing new environmentally friendly methods to extract P and other impurities from goethitic iron ores at lower temperatures.
Collapse
Affiliation(s)
- Niloofar Karimian
- CSIRO, Mineral Resources, Clayton South, VIC 3169, Australia
- School of Earth, Atmosphere & Environment, Monash University, Clayton, VIC 3800, Australia
- Faculty of Science & Engineering, Southern Cross University, Lismore, NSW 2480, Australia
| | - Mark I Pownceby
- CSIRO, Mineral Resources, Clayton South, VIC 3169, Australia
| | - Edward D Burton
- Faculty of Science & Engineering, Southern Cross University, Lismore, NSW 2480, Australia
| | - Martin Wells
- John de Laeter Centre (JdLC), Curtin University, Perth, WA 6102, Australia
| | - Andrew J Frierdich
- School of Earth, Atmosphere & Environment, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
2
|
Jin X, Guo C, Huang Q, Tao X, Li X, Xie Y, Dang Z, Zhou J, Lu G. Arsenic redistribution associated with Fe(II)-induced jarosite transformation in the presence of polygalacturonic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173444. [PMID: 38788951 DOI: 10.1016/j.scitotenv.2024.173444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Jarosite exists widely in acid-sulfate soil and acid mine drainage polluted areas and acts as an important host mineral for As(V). As a metastable Fe(III)-oxyhydoxysulfate mineral, its dissolution and transformation have a significant impact on the biogeochemical cycle of As. Under reducing conditions, the trajectory and degree of abiotic Fe(II)-induced jarosite transformation may be greatly influenced by coexisting dissolved organic matter (DOM), and in turn influencing the fate of As. Here, we explored the impact of polygalacturonic acid (PGA) (0-200 mg·L-1) on As(V)-coprecipitated jarosite transformation in the presence of Fe(II) (1 mM) at pH 5.5, and investigated the repartitioning of As between aqueous and solid phase. The results demonstrated that in the system without both PGA and Fe(II), jarosite gradually dissolved, and lepidocrocite was the main transformation product by 30 d; in Fe(II)-only system, lepidocrocite appeared by 1 d and also was the mainly final product; in PGA-only systems, PGA retarded jarosite dissolution and transformation, jarosite might be directly converted into goethite; in Fe(II)-PGA systems, the presence of PGA retarded Fe(II)-induced jarosite dissolution and transformation but did not alter the pathway of mineral transformation, the final product mainly still was lepidocrocite. The retarding effect on jarosite dissolution enhanced with the increase of PGA content. The impact of PGA on Fe(II)-induced jarosite transformation mainly was related to the complexation of carboxyl groups of PGA with Fe(II). The dissolution and transformation of jarosite drove pre-incorporated As transferred into the phosphate-extractable phase, the presence of PGA retarded jarosite dissolution and maintained pre-incorporated As stable in jarosite. The released As promoted by PGA was retarded again and almost no As was released into the solution by the end of reactions in all systems. In systems with Fe(II), no As(III) was detected and As(V) was still the dominant redox species.
Collapse
Affiliation(s)
- Xiaohu Jin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| | - Qi Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaofei Li
- School of Environmental and Chemical Engineering, Foshan University, 528000 Foshan, China
| | - Yingying Xie
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Guangdong, Chaozhou 521041, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Jiangmin Zhou
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
3
|
Jin X, Guo C, Tao X, Li X, Xie Y, Dang Z, Lu G. Divergent redistribution behavior of divalent metal cations associated with Fe(II)-mediated jarosite phase transformation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:124004. [PMID: 38641039 DOI: 10.1016/j.envpol.2024.124004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
The Fe(II)/Fe(III) cycle is an important driving force for dissolution and transformation of jarosite. Divalent heavy metals usually coexist with jarosite; however, their effects on Fe(II)-induced jarosite transformation and different repartitioning behavior during mineral dissolution-recrystallization are still unclear. Here, we investigated Fe(II)-induced (1 mM Fe(II)) jarosite conversion in the presence of Cd(II), Mn(II), Co(II), Ni(II) and Pb(II) (denoted as Me(II), 1 mM), respectively, under anaerobic condition at neutral pH. The results showed that all co-existing Me(II) retarded Fe(II)-induced jarosite dissolution. In the Fe(II)-only system, jarosite first rapidly transformed to lepidocrocite (an intermediate product) and then slowly to goethite; lepidocrocite was the main product. In Fe(II)-Cd(II), -Mn(II), and -Pb(II) systems, coexisting Cd(II), Mn(II) and Pb(II) retarded the above process and lepidocrocite was still the dominant conversion product. In Fe(II)-Co(II) system, coexisting Co(II) promoted lepidocrocite transformation into goethite. In Fe(II)-Ni(II) system, jarosite appeared to be directly converted into goethite, although small amounts of lepidocrocite were detected in the final product. In all treatments, the appearance or accumulation of lepidocrocite may be also related to the re-adsorption of released sulfate. By the end of reaction, 6.0 %, 4.0 %, 76.0 % 11.3 % and 19.2 % of total Cd(II), Mn(II), Pb(II) Co(II) and Ni(II) were adsorbed on the surface of solid products. Up to 49.6 %, 44.3 %, and 21.6 % of Co(II), Ni(II), and Pb(II) incorporated into solid product, with the reaction indicating that the dynamic process of Fe(II) interaction with goethite may promote the continuous incorporation of Co(II), Ni(II), and Pb(II).
Collapse
Affiliation(s)
- Xiaohu Jin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xiaofei Li
- School of Environmental and Chemical Engineering, Foshan University, 528000, Foshan, China
| | - Yingying Xie
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Guangdong, Chaozhou, 521041, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Si T, Yuan R, Qi Y, Zhang Y, Wang Y, Bian R, Liu X, Zhang X, Joseph S, Li L, Pan G. Enhancing soil redox dynamics: Comparative effects of Fe-modified biochar (N-Fe and S-Fe) on Fe oxide transformation and Cd immobilization. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123636. [PMID: 38401634 DOI: 10.1016/j.envpol.2024.123636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Biochar and modified biochar have gained wide attention for Cd-contaminated soil remediation. This study investigates the effects of rape straw biochar (RSB), sulfur-iron modified biochar (S-FeBC), and nitrogen-iron modified biochar (N-FeBC) on soil Fe oxide transformation and Cd immobilization. The mediated electrochemical analysis results showed that Fe modification effectively enhanced the electron exchange capacity (EEC) of biochar. After 40 days of anaerobic incubation, compared to the treatment without biochar (CK), the concentrations of CaCl2-extractable Cd in N-FeBC, S-FeBC, and RSB treatments decreased by 79%, 53%, and 23%, respectively. Compared with S-FeBC, N-FeBC significantly decreased the soil Eh and increased soil pH within the first 15 days, which could be attributed to its higher EEC and alkalinity. There is a negative correlation between the concentration of CaCl2-extractable Cd and soil pH (p < 0.01). The sequential extraction results showed that both N-FeBC and S-FeBC promoted Cd transfer from acid-soluble to Fe/Mn oxides bound fraction (Fe/Mn-Cd). N-FeBC significantly increased the concentration of amorphous Fe oxides (amFeox) from 4.0 g kg-1 in day 1 to 4.6 g kg-1 in day 15 by promoting the NO3--reducing Fe(II) oxidation process, while S-FeBC significantly increased amFeox from 4.0 g kg-1 in day 15 to 4.8 g kg-1 in day 40 by promoting the Fe(II) recrystallization. There is a positive correlation between the concentration of amFeox and Fe/Mn-Cd (p < 0.01). The scanning electron microscopy analysis showed that Cd was bound to the amFeox coating on the surface of Fe-modified biochar. By acting as an electron shuttle, the active surface of Fe-modified biochar may serve as a hotspot for Fe transformation, which promotes amFeox formation and Cd immobilization. This study highlights the potential of Fe-modified biochar for the remediation of Cd-contaminated soils and provides valuable insights into the development of effective remediation approaches for Cd-contaminated soils.
Collapse
Affiliation(s)
- Tianren Si
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Rui Yuan
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Yanjie Qi
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Yuhao Zhang
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Yan Wang
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Rongjun Bian
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Xiaoyu Liu
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Xuhui Zhang
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Stephen Joseph
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China; School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lianqing Li
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China.
| | - Genxing Pan
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| |
Collapse
|
5
|
Krupnik L, Joshi P, Kappler A, Flühmann B, Alston AB, Digigow R, Wick P, Neels A. Critical nanomaterial attributes of iron-carbohydrate nanoparticles: Leveraging orthogonal methods to resolve the 3-dimensional structure. Eur J Pharm Sci 2023; 188:106521. [PMID: 37423578 DOI: 10.1016/j.ejps.2023.106521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Intravenous iron-carbohydrate nanomedicines are widely used to treat iron deficiency and iron deficiency anemia across a wide breadth of patient populations. These colloidal solutions of nanoparticles are complex drugs which inherently makes physicochemical characterization more challenging than small molecule drugs. There have been advancements in physicochemical characterization techniques such as dynamic light scattering and zeta potential measurement, that have provided a better understanding of the physical structure of these drug products in vitro. However, establishment and validation of complementary and orthogonal approaches are necessary to better understand the 3-dimensional physical structure of the iron-carbohydrate complexes, particularly with regard to their physical state in the context of the nanoparticle interaction with biological components such as whole blood (i.e. the nano-bio interface).
Collapse
Affiliation(s)
- Leonard Krupnik
- Laboratory for Particles-Biology Interactions, Materials meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland; Center for X-ray Analytics, Materials meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland; Department of Chemistry, University of Fribourg, Fribourg 1700, Switzerland
| | - Prachi Joshi
- Geomicrobiology, Department of Geosciences, University of Tuebingen, Tuebingen 72076, Germany
| | - Andreas Kappler
- Geomicrobiology, Department of Geosciences, University of Tuebingen, Tuebingen 72076, Germany; Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tuebingen 72076, Germany
| | - Beat Flühmann
- CSL Vifor, Flughofstrasse 61, Glattbrug 8152, Switzerland
| | | | | | - Peter Wick
- Laboratory for Particles-Biology Interactions, Materials meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland
| | - Antonia Neels
- Center for X-ray Analytics, Materials meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland; Department of Chemistry, University of Fribourg, Fribourg 1700, Switzerland
| |
Collapse
|
6
|
Chen C, Dong Y, Thompson A. Electron Transfer, Atom Exchange, and Transformation of Iron Minerals in Soils: The Influence of Soil Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37449758 DOI: 10.1021/acs.est.3c01876] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Despite substantial experimental evidence of electron transfer, atom exchange, and mineralogical transformation during the reaction of Fe(II)aq with synthetic Fe(III) minerals, these processes are rarely investigated in natural soils. Here, we used an enriched Fe isotope approach and Mössbauer spectroscopy to evaluate how soil organic matter (OM) influences Fe(II)/Fe(III) electron transfer and atom exchange in surface soils collected from Luquillo and Calhoun Experimental Forests and how this reaction might affect Fe mineral composition. Following the reaction of 57Fe-enriched Fe(II)aq with soils for 33 days, Mössbauer spectra demonstrated marked electron transfer between sorbed Fe(II) and the underlying Fe(III) oxides in soils. Comparing the untreated and OM-removed soils indicates that soil OM largely attenuated Fe(II)/Fe(III) electron transfer in goethite, whereas electron transfer to ferrihydrite was unaffected. Soil OM also reduced the extent of Fe atom exchange. Following reaction with Fe(II)aq for 33 days, no measurable mineralogical changes were found for the Calhoun soils enriched with high-crystallinity goethite, while Fe(II) did drive an increase in Fe oxide crystallinity in OM-removed LCZO soils having low-crystallinity ferrihydrite and goethite. However, the presence of soil OM largely inhibited Fe(II)-catalyzed increases in Fe mineral crystallinity in the LCZO soil. Fe atom exchange appears to be commonplace in soils exposed to anoxic conditions, but its resulting Fe(II)-induced recrystallization and mineral transformation depend strongly on soil OM content and the existing soil Fe phases.
Collapse
Affiliation(s)
- Chunmei Chen
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yanjun Dong
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Aaron Thompson
- Department of Crop and Soil Sciences, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
7
|
Li A, Lu Y, Zhen D, Guo Z, Wang G, Shi K, Liao S. Enterobacter sp. E1 increased arsenic uptake in Pteris vittata by promoting plant growth and dissolving Fe-bound arsenic. CHEMOSPHERE 2023; 329:138663. [PMID: 37044144 DOI: 10.1016/j.chemosphere.2023.138663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Microbes affect arsenic accumulation in the arsenic-hyperaccumulator Pteris vittata, but the associated molecular mechanism remains uncertain. Here, we investigated the effect of Enterobacter sp. E1 on arsenic accumulation by P. vittata. Strain E1 presented capacities of arsenate [As(V)] and Fe(III) reduction during cultivation. In the pot experiment with P. vittata, the biomass, arsenic content, and chlorophyll content of P. vittata significantly increased by 30.03%, 74.9%, and 112.1%, respectively. Strikingly, the water-soluble plus exchangeable arsenic (WE-As) significantly increased by 52.05%, while Fe-bound arsenic (Fe-As) decreased by 29.64% in the potted soil treated with strain E1. The possible role of activation of arsenic by strain E1 was subsequently investigated by exposing As(V)-absorbed ferrihydrite to the bacterial culture. Speciation analyses of As showed that strain E1 significantly increased soluble levels of As and Fe and that more As(V) was reduced to arsenite. Additionally, increased microbial diversity and soil enzymatic activities in soils indicated that strain E1 posed few ecological risks. These results indicate that strain E1 effectively increased As accumulation in P. vittata mainly by promoting plant growth and dissolving soil arsenic. Our findings suggest that As(V) and Fe(III)-reducer E1 could be used to enhance the phytoremediation of P. vittata in arsenic-contaminated soils.
Collapse
Affiliation(s)
- Aiting Li
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yingying Lu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Da Zhen
- School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Ziheng Guo
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Kaixiang Shi
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Shuijiao Liao
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
8
|
Notini L, Schulz K, Kubeneck LJ, Grigg ARC, Rothwell KA, Fantappiè G, ThomasArrigo LK, Kretzschmar R. A New Approach for Investigating Iron Mineral Transformations in Soils and Sediments Using 57Fe-Labeled Minerals and 57Fe Mössbauer Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37364169 DOI: 10.1021/acs.est.3c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Iron minerals in soils and sediments play important roles in many biogeochemical processes and therefore influence the cycling of major and trace elements and the fate of pollutants in the environment. However, the kinetics and pathways of Fe mineral recrystallization and transformation processes under environmentally relevant conditions are still elusive. Here, we present a novel approach enabling us to follow the transformations of Fe minerals added to soils or sediments in close spatial association with complex solid matrices including other minerals, organic matter, and microorganisms. Minerals enriched with the stable isotope 57Fe are mixed with soil or sediment, and changes in Fe speciation are subsequently studied by 57Fe Mössbauer spectroscopy, which exclusively detects 57Fe. In this study, 57Fe-labeled ferrihydrite was synthesized, mixed with four soils differing in chemical and physical properties, and incubated for 12+ weeks under anoxic conditions. Our results reveal that the formation of crystalline Fe(III)(oxyhydr)oxides such as lepidocrocite and goethite was strongly suppressed, and instead formation of a green rust-like phase was observed in all soils. These results contrast those from Fe(II)-catalyzed ferrihydrite transformation experiments, where formation of lepidocrocite, goethite, and/or magnetite often occurs. The presented approach allows control over the composition and crystallinity of the initial Fe mineral, and it can be easily adapted to other experimental setups or Fe minerals. It thus offers great potential for future investigations of Fe mineral transformations in situ under environmentally relevant conditions, in both the laboratory and the field.
Collapse
Affiliation(s)
- Luiza Notini
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, CHN, Universitätstrasse 16, Zurich CH-8092, Switzerland
| | - Katrin Schulz
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, CHN, Universitätstrasse 16, Zurich CH-8092, Switzerland
| | - L Joëlle Kubeneck
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, CHN, Universitätstrasse 16, Zurich CH-8092, Switzerland
| | - Andrew R C Grigg
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, CHN, Universitätstrasse 16, Zurich CH-8092, Switzerland
| | - Katherine A Rothwell
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, CHN, Universitätstrasse 16, Zurich CH-8092, Switzerland
| | - Giulia Fantappiè
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, CHN, Universitätstrasse 16, Zurich CH-8092, Switzerland
| | - Laurel K ThomasArrigo
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, CHN, Universitätstrasse 16, Zurich CH-8092, Switzerland
| | - Ruben Kretzschmar
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, CHN, Universitätstrasse 16, Zurich CH-8092, Switzerland
| |
Collapse
|
9
|
Bañuelos JL, Borguet E, Brown GE, Cygan RT, DeYoreo JJ, Dove PM, Gaigeot MP, Geiger FM, Gibbs JM, Grassian VH, Ilgen AG, Jun YS, Kabengi N, Katz L, Kubicki JD, Lützenkirchen J, Putnis CV, Remsing RC, Rosso KM, Rother G, Sulpizi M, Villalobos M, Zhang H. Oxide- and Silicate-Water Interfaces and Their Roles in Technology and the Environment. Chem Rev 2023; 123:6413-6544. [PMID: 37186959 DOI: 10.1021/acs.chemrev.2c00130] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Interfacial reactions drive all elemental cycling on Earth and play pivotal roles in human activities such as agriculture, water purification, energy production and storage, environmental contaminant remediation, and nuclear waste repository management. The onset of the 21st century marked the beginning of a more detailed understanding of mineral aqueous interfaces enabled by advances in techniques that use tunable high-flux focused ultrafast laser and X-ray sources to provide near-atomic measurement resolution, as well as by nanofabrication approaches that enable transmission electron microscopy in a liquid cell. This leap into atomic- and nanometer-scale measurements has uncovered scale-dependent phenomena whose reaction thermodynamics, kinetics, and pathways deviate from previous observations made on larger systems. A second key advance is new experimental evidence for what scientists hypothesized but could not test previously, namely, interfacial chemical reactions are frequently driven by "anomalies" or "non-idealities" such as defects, nanoconfinement, and other nontypical chemical structures. Third, progress in computational chemistry has yielded new insights that allow a move beyond simple schematics, leading to a molecular model of these complex interfaces. In combination with surface-sensitive measurements, we have gained knowledge of the interfacial structure and dynamics, including the underlying solid surface and the immediately adjacent water and aqueous ions, enabling a better definition of what constitutes the oxide- and silicate-water interfaces. This critical review discusses how science progresses from understanding ideal solid-water interfaces to more realistic systems, focusing on accomplishments in the last 20 years and identifying challenges and future opportunities for the community to address. We anticipate that the next 20 years will focus on understanding and predicting dynamic transient and reactive structures over greater spatial and temporal ranges as well as systems of greater structural and chemical complexity. Closer collaborations of theoretical and experimental experts across disciplines will continue to be critical to achieving this great aspiration.
Collapse
Affiliation(s)
- José Leobardo Bañuelos
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Eric Borguet
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Gordon E Brown
- Department of Earth and Planetary Sciences, The Stanford Doerr School of Sustainability, Stanford University, Stanford, California 94305, United States
| | - Randall T Cygan
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - James J DeYoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Patricia M Dove
- Department of Geosciences, Department of Chemistry, Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Marie-Pierre Gaigeot
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE UMR8587, 91025 Evry-Courcouronnes, France
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Julianne M Gibbs
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2Canada
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Anastasia G Ilgen
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Young-Shin Jun
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Nadine Kabengi
- Department of Geosciences, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lynn Katz
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Kubicki
- Department of Earth, Environmental & Resource Sciences, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Johannes Lützenkirchen
- Karlsruher Institut für Technologie (KIT), Institut für Nukleare Entsorgung─INE, Eggenstein-Leopoldshafen 76344, Germany
| | - Christine V Putnis
- Institute for Mineralogy, University of Münster, Münster D-48149, Germany
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Kevin M Rosso
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Gernot Rother
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Marialore Sulpizi
- Department of Physics, Ruhr Universität Bochum, NB6, 65, 44780, Bochum, Germany
| | - Mario Villalobos
- Departamento de Ciencias Ambientales y del Suelo, LANGEM, Instituto De Geología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
10
|
Fan C, Guo C, Chen W, Lu G, Shen Y, Dang Z. Fe(II)-mediated transformation of schwertmannite associated with calcium from acid mine drainage treatment. J Environ Sci (China) 2023; 126:612-620. [PMID: 36503787 DOI: 10.1016/j.jes.2022.05.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 06/17/2023]
Abstract
Schwertmannite is an important Fe(III)-oxyhydroxysulfate in acid mine drainage (AMD) polluted areas and its stability depends on surrounding environmental factors and previously bound elements. The treatment and neutralization of AMD normally involve the use of lime, which leads to the discharge of abundant Ca in the mining area. Such an environmental disturbance brings up an important and less considered problem of how the reductive transformation of schwertmannite associated with coexisting Ca occurred. Here, the Fe(II)-mediated transformation of Ca-adsorbed schwertmannite and subsequent Ca repartitioning behaviors were investigated. Results showed that adsorbed Ca had a weak inhibitory effect on Fe(II)-mediated schwertmannite transformation. Release of SO42- and SEM images both indicated that transformation rates of schwertmannite decreased under the influence of adsorbed Ca. XRD patterns indicated that adsorbed Ca altered schwertmannite transformation pathways and product compositions upon treatment with 0.4 mmol/L Fe(II). The end products of Sch notably contained both goethite and lepidocrocite; however, transformation products of SchCa only contained goethite all along. Approximately 33.5% of the surface adsorbed-Ca was released into solution within 6 hr after Fe(II) injection. Aqueous Ca behaved in a "first release and then im-mobilization" manner, which indicated dissolution and secondary mineralization drove Ca migration during the Fe(II)-mediated transformation of SchCa. Adsorbed Ca blocked the surface sites for subsequent Fe(II) adsorption, limited the Fe(II)-Fe(III) ETAE, and decreased the transformation rates. This work sheds light on the complex geochemical behavior of schwertmannite under the influences of environmental perturbations in AMD environments.
Collapse
Affiliation(s)
- Cong Fan
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| | - Wei Chen
- Chongqing Key Laboratory of Environmental Materials and Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
11
|
He C, Yang Z, Ning Y, Yang S, Jiang F, Zhang J. Effects of montmorillonite on the adsorption of Fe(II) by ferrihydrite and its phase transformation at different pH. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28975-28989. [PMID: 36402883 DOI: 10.1007/s11356-022-24309-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Recently, there has been a clear understanding of the mechanism and influencing factors of ferrihydrite (Fh) phase transformation catalyzed by Fe(II); however, these factors mainly belong to environmental conditions and exogenous substances. And there is a lack of research on the effect of soil composition and structure on the phase transformation of Fh. Therefore, this study investigated the effects of montmorillonite (Mt) on the adsorption of Fe(II) and phase transformation of Fh under near-neutral pH. The initial rates ([Formula: see text]) of Elovich equation demonstrated the addition of Mt inhibited the adsorption of Fh but simultaneously accelerated the initial adsorption, thus increasing the adsorption of the system (e.g., 22.09-25.03 mg/g as increased Mt under pH 6.5) due to its high surface charge density. Increased pH enhances the surface charge density by promoting the deprotonation of the surface group (Fe-OH, Al-OH, and Si-OH) and consequently increases adsorption of Fe(II) (e.g., 17.97-22.09 mg/g as increased pH of pure Fh). Based on the previous method of extracting labile Fe(III), we found that pH promotes the initial formation of labile Fe(III) by increasing electron transfer and promoting recrystallization caused by bridging condensation, via increased -OH. Although Mt inhibits the adsorption of Fh, it promotes the formation of labile Fe(III) by increasing the system adsorption and bond with Fh. The results of the analysis of variance showed both pH and solid ratio influence significantly on the maximum adsorption (p = 6.81 × 10-9 and 2.54 × 10-3) and the conversion ratios of labile Fe(III) (p = 3.43 × 10-24 and 9.16 × 10-43).
Collapse
Affiliation(s)
- Chang He
- School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Zhe Yang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Yu Ning
- School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China.
| | - Sen Yang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Fengcheng Jiang
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Jiayi Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| |
Collapse
|
12
|
Bu H, Lei Q, Tong H, Liu C, Hu S, Xu W, Wang Y, Chen M, Qiao J. Humic acid controls cadmium stabilization during Fe(II)-induced lepidocrocite transformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160624. [PMID: 36460100 DOI: 10.1016/j.scitotenv.2022.160624] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Abiotic reduction of iron (oxyhydr)oxides by aqueous Fe(II) is one of the key processes affecting the Fe cycle in soil. Lepidocrocite (Lep) occurs naturally in anaerobic, clayey, non-calcareous soils in cooler and temperate regions; however, little is known about the impacts of co-precipitated humic acid (HA) on Fe(II)-induced Lep transformation and its consequences for heavy metal immobilization. In this study, the Fe(II)-induced phase transformation of Lep-HA co-precipitates was analyzed as a function of the C/Fe ratio, and its implications for subsequent Cd(II) concentration dynamic in dissolved and solid form was further investigated. The results revealed that secondary Fe(II)-bearing magnetite commonly formed during the Fe(II)-induced transformation of Lep, which further changed the mobility and distribution of Cd(II). The co-precipitated HA resulted in a decrease in the Fe solid phase transformation as the C/Fe ratios increased. Magnetite was found to be a secondary mineral in the 0.3C/Fe ratio Lep-HA co-precipitate, while only Lep was observed at a C/Fe ratio of 1.2 using X-ray diffraction (XRD) and Mössbauer spectroscopy. Based on XRD, scanning electron microscopy (SEM), Mössbauer, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR) results, newly formed magnetite may immobilize Cd(II) through surface complexes, incorporation, or structural substitution. The presence of HA was beneficial for binding Cd(II) and affected the mineralogical transformation of Lep into magnetite, which further induced the distribution of Cd(II) into the newly formed secondary minerals. These results provide insights into the behavior of Cd(II) in response to reaction between humic matter and iron (oxyhydr)oxides in anaerobic environments.
Collapse
Affiliation(s)
- Hongling Bu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Qinkai Lei
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hui Tong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Shujie Hu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Wenpo Xu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yujie Wang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Manjia Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Jiangtao Qiao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
13
|
Chen M, Xie X, Yang Y, Gao B, Wang J, Xie Z. Role of Al substitution in the reduction of ferrihydrite by Shewanella oneidensis MR-1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:46657-46668. [PMID: 36725797 DOI: 10.1007/s11356-023-25326-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/11/2023] [Indexed: 02/03/2023]
Abstract
Substitution of aluminum under natural environmental conditions has been proven to inhibit the transformation of weakly crystalline iron (oxyhydr)-oxides towards well crystalline iron oxides, thereby enhancing their long-term stability. However, exploration on the role of aluminum substitution in bacteria-mediated iron oxides transformation is relatively lacking, especially in the anaerobic underground condition where iron (oxyhydr)-oxides are easy to reduced. In this study, we selected four different levels of substitution aluminum prevalent in iron oxides under natural conditions, which are 0 mol%, 10 mol%, 20 mol%, and 30 mol% (mol Al/mol (Al + Fe)) respectively. With the presence of Shewanella oneidensis MR-1, we conducted a 15-day anaerobic microcosm experiment in simulated groundwater conditions. The experiment data suggested that aluminum substitution result in a decrease in bio-reduction rate constants of ferrihydrite from 0.24 in 0 mol% Al to 0.17 in 30 mol% Al. Besides, when containing substituted aluminum, secondary minerals produced by biological reduction of ferrihydrite changed from magnetite to akaganeite. These results were attributed to the surface coverage of Al during the reduction process, which affects the contact between S. oneidensis MR-1 and the unexposed Fe(III), thus inhibiting the further reduction of ferrihydrite. Since iron (oxyhydr)-oxides exhibit a strong affinity on multiple kinds of pollutants, results in this study may contribute to predicting the migration and preservation of contaminants in groundwater systems.
Collapse
Affiliation(s)
- Mengna Chen
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, 430074, Wuhan, People's Republic of China
| | - Xi Xie
- School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, 832003, Shihezi, People's Republic of China
| | - Yang Yang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, 430074, Wuhan, People's Republic of China
| | - Ban Gao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Jia Wang
- Changjiang River Scientific Research Institute, Wuhan, 430014, People's Republic of China
| | - Zuoming Xie
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, 430074, Wuhan, People's Republic of China.
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
14
|
Robinson T, Latta DE, Leddy J, Scherer MM. Redox Potentials of Magnetite Suspensions under Reducing Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17454-17461. [PMID: 36394877 PMCID: PMC9730839 DOI: 10.1021/acs.est.2c05196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Predicting the redox behavior of magnetite in reducing soils and sediments is challenging because there is neither agreement among measured potentials nor consensus on which Fe(III) | Fe(II) equilibria are most relevant. Here, we measured open-circuit potentials of stoichiometric magnetite equilibrated over a range of solution conditions. Notably, electron transfer mediators were not necessary to reach equilibrium. For conditions where ferrous hydroxide precipitation was limited, Nernstian behavior was observed with an EH vs pH slope of -179 ± 4 mV and an EH vs Fe(II)aq slope of -54 ± 4 mV. Our estimated EHo of 857 ± 8 mV closely matches a maghemite|aqueous Fe(II) EHo of 855 mV, suggesting that it plays a dominant role in poising the solution potential and that it's theoretical Nernst equation of EH[mV] = 855 - 177 pH - 59 log [Fe2+] may be useful in predicting magnetite redox behavior under these conditions. At higher pH values and without added Fe(II), a distinct shift in potentials was observed, indicating that the dominant Fe(III)|Fe(II) couple(s) poising the potential changed. Our findings, coupled with previous Mössbauer spectroscopy and kinetic data, provide compelling evidence that the maghemite/Fe(II)aq couple accurately predicts the redox behavior of stoichiometric magnetite suspensions in the presence of aqueous Fe(II) between pH values of 6.5 and 8.5.
Collapse
Affiliation(s)
- Thomas
C. Robinson
- Department
of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa52242, United States
| | - Drew E. Latta
- Department
of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa52242, United States
| | - Johna Leddy
- Department
of Chemistry, University of Iowa, Iowa City, Iowa52242, United States
| | - Michelle M. Scherer
- Department
of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa52242, United States
| |
Collapse
|
15
|
Hou J, Tan X, Xiang Y, Zheng Q, Chen C, Sha Z, Ren L, Wang M, Tan W. Insights into the underlying effect of Fe vacancy defects on the adsorption affinity of goethite for arsenic immobilization. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120268. [PMID: 36167163 DOI: 10.1016/j.envpol.2022.120268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Goethite is a commonly found iron (hydr)oxide in soils and sediments that has been proven to possess abundant defects in structures. However, the underlying impact of these defects in goethite on arsenic immobilization remains unclear. In this study, goethite samples with abundant, moderate, and sparse defects were synthesized to evaluate their arsenic adsorption capacities. The characteristics of the defects in goethite were investigated by extended X-ray absorption fine structure (EXAFS), high angle annular dark field-scanning transmission electron microscopy-energy dispersion spectrum (HAADF-STEM-EDS) mapping, vibrating-sample magnetometry (VSM), and electron spin resonance (ESR). The characterization analysis revealed that the defects in as-synthesized goethite primarily existed in the form of Fe vacancies. Batch experiments demonstrated that the adsorption capacities of defect-rich goethite for As(V) and As(III) removal were 10.2 and 22.1 times larger than those of defect-poor goethite, respectively. The origin of the impact of Fe defects on arsenic immobilization was theoretically elucidated using density functional theory (DFT) calculations. The enhanced adsorption of goethite was attributed to the improvement of the arsenic affinity due to the Fe vacancy defect, thus considerably promoting arsenic immobilization. The findings of this study provide important insight into the migration and fate of arsenic in naturally occurring iron (hydr)oxides.
Collapse
Affiliation(s)
- Jingtao Hou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xiaoke Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongjin Xiang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qian Zheng
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chang Chen
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhenjie Sha
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lu Ren
- School of Civil Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Mingxia Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
16
|
Ren J, Liu Y, Cao W, Zhang L, Xu F, Liu J, Wen Y, Xiao J, Wang L, Zhuo X, Ji J, Liu Y. A process-based model for describing redox kinetics of Cr(VI) in natural sediments containing variable reactive Fe(II) species. WATER RESEARCH 2022; 225:119126. [PMID: 36179427 DOI: 10.1016/j.watres.2022.119126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Sediment-associated Fe(II) is a critical reductant for immobilizing groundwater contaminants, such as Cr(VI). The reduction reactivity of sediment-associated Fe(II) is dependent on its binding environment and influenced by the biogeochemical transformation of other elements (i.e., C, N and Mn), challenging the description and prediction of the reactivity of Fe(II) in natural sediments. Here, anaerobic batch experiments were conducted to study the variation in sediment-associated Fe(II) reactivity toward Cr(VI) in natural sediments collected from an intensive agricultural area located in Guangxi, China, where nitrate is a common surface water and groundwater contaminant. Then, a process-based model was developed to describe the coupled biogeochemical processes of C, N, Mn, Fe, and Cr. In the process-based model, Cr(VI) reduction by sediment-associated Fe(II) was described using a previously developed multirate model, which categorized the reactive Fe(II) into three fractions based on their extractabilities in sodium acetate and HCl solutions. The experimental results showed that Fe(II) generation was inhibited by NO3- and/or NO2-. After NO3- and NO2- were exhausted, the Fe(II) content and its reduction rate toward Cr(VI) increased rapidly. As the Fe(II) content increased, the three reactive Fe(II) fractions exhibited approximately linear correlations with aqueous Fe(II) concentrations ( [Formula: see text] ), which was probably driven by sorptive equilibrium and redox equilibrium between aqueous and solid phases. The model results indicated that the reaction rate constants of the three Fe(II) fractions (kn) significantly increased with incubation time, and log(kn) correlated well with [Formula: see text] [ [Formula: see text] , [Formula: see text] and [Formula: see text] ]. The numerical model developed in this study provides an applicable method to describe and predict Cr(VI) removal from groundwater under dynamic redox conditions.
Collapse
Affiliation(s)
- Jingli Ren
- Key Laboratory of Surficial Geochemistry (Ministry of Education), School of Earth Sciences and Engineering, Nanjing University, Xianlin Ave. 163, Nanjing, Jiangsu 210023, China
| | - Yutong Liu
- Key Laboratory of Surficial Geochemistry (Ministry of Education), School of Earth Sciences and Engineering, Nanjing University, Xianlin Ave. 163, Nanjing, Jiangsu 210023, China
| | - Weimin Cao
- Key Laboratory of Surficial Geochemistry (Ministry of Education), School of Earth Sciences and Engineering, Nanjing University, Xianlin Ave. 163, Nanjing, Jiangsu 210023, China
| | - Liyang Zhang
- Key Laboratory of Surficial Geochemistry (Ministry of Education), School of Earth Sciences and Engineering, Nanjing University, Xianlin Ave. 163, Nanjing, Jiangsu 210023, China
| | - Fen Xu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Juan Liu
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yubo Wen
- School of Geographical Science, Nantong University, Nantong, Jiangsu 226007, China
| | - Jian Xiao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lei Wang
- Office of Land Quality Geochemical Assessment of Guangxi, Nanning, Guangxi 530023, China; Geology Team No. 4 of Guangxi Zhuang Autonomic Region, Nanning, Guangxi 530031, China
| | - Xiaoxiong Zhuo
- Office of Land Quality Geochemical Assessment of Guangxi, Nanning, Guangxi 530023, China
| | - Junfeng Ji
- Key Laboratory of Surficial Geochemistry (Ministry of Education), School of Earth Sciences and Engineering, Nanjing University, Xianlin Ave. 163, Nanjing, Jiangsu 210023, China
| | - Yuanyuan Liu
- Key Laboratory of Surficial Geochemistry (Ministry of Education), School of Earth Sciences and Engineering, Nanjing University, Xianlin Ave. 163, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
17
|
Notini L, ThomasArrigo LK, Kaegi R, Kretzschmar R. Coexisting Goethite Promotes Fe(II)-Catalyzed Transformation of Ferrihydrite to Goethite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12723-12733. [PMID: 35998342 PMCID: PMC9454240 DOI: 10.1021/acs.est.2c03925] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 05/13/2023]
Abstract
In redox-affected soil environments, electron transfer between aqueous Fe(II) and solid-phase Fe(III) catalyzes mineral transformation and recrystallization processes. While these processes have been studied extensively as independent systems, the coexistence of iron minerals is common in nature. Yet it remains unclear how coexisting goethite influences ferrihydrite transformation. Here, we reacted ferrihydrite and goethite mixtures with Fe(II) for 24 h. Our results demonstrate that with more goethite initially present in the mixture more ferrihydrite turned into goethite. We further used stable Fe isotopes to label different Fe pools and probed ferrihydrite transformation in the presence of goethite using 57Fe Mössbauer spectroscopy and changes in the isotopic composition of solid and aqueous phases. When ferrihydrite alone underwent Fe(II)-catalyzed transformation, Fe atoms initially in the aqueous phase mostly formed lepidocrocite, while those from ferrihydrite mostly formed goethite. When goethite was initially present, more goethite was formed from atoms initially in the aqueous phase, and nanogoethite formed from atoms initially in ferrihydrite. Our results suggest that coexisting goethite promotes formation of more goethite via Fe(II)-goethite electron transfer and template-directed nucleation and growth. We further hypothesize that electron transfer onto goethite followed by electron hopping onto ferrihydrite is another possible pathway to goethite formation. Our findings demonstrate that mineral transformation is strongly influenced by the composition of soil solid phases.
Collapse
Affiliation(s)
- Luiza Notini
- Soil
Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics,
Department of Environmental Systems Science, ETH Zurich, CHN, Universitätstrasse 16, CH-8092 Zurich, Switzerland
| | - Laurel K. ThomasArrigo
- Soil
Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics,
Department of Environmental Systems Science, ETH Zurich, CHN, Universitätstrasse 16, CH-8092 Zurich, Switzerland
| | - Ralf Kaegi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstraße 133, CH-8600 Dübendorf, Switzerland
| | - Ruben Kretzschmar
- Soil
Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics,
Department of Environmental Systems Science, ETH Zurich, CHN, Universitätstrasse 16, CH-8092 Zurich, Switzerland
| |
Collapse
|
18
|
Xie S, Li C, Liao P, Wang J, Chen J, Qian A, Zhang Y, Wei T, Cheng D, Jia M. Experimental and modeling evidence of hydroxyl radical production in iron electrocoagulation as a new mechanism for contaminant transformation in bicarbonate electrolyte. WATER RESEARCH 2022; 220:118662. [PMID: 35640510 DOI: 10.1016/j.watres.2022.118662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/24/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Iron electrocoagulation is designed for sustainable high-efficiency and high-flexibility water purification applications. Recent advances reported that hydroxyl radicals (•OH)-based oxidative transformation of organic contaminants can occur in iron electrocoagulation. However, there is still a lack of mechanistic understanding the production of •OH in bicarbonate electrolyte, which presents a critical knowledge gap in the optimization of iron electrocoagulation technology towards practical application. Combined with contaminant degradation, radical quenching experiments, and spectroscopic techniques, we found that •OH was produced at rate of 16.1 μM∙h - 1 during 30-mA iron electrocoagulation in bicarbonate electrolyte through activation of O2 by Fe(II) under pH-neutral conditions. High yield of •OH occurred at pH 8.5, likely due to high adsorbed Fe(II) that can activate O2 to enhance •OH production. Mössbauer and X-ray photoelectron spectroscopy measurements substantiated that Fe(II)-adsorbed lepidocrocite was the dominant solid Fe(II) species at pH 8.5. A process-based kinetic modeling was developed to describe the dynamic of •OH production, Fe(II) oxidation, and contaminant degradation processes in iron electrocoagulation. Findings of this study extend the functionality of electrocoagulation from phase separation to •OH-based advanced oxidation process, which provides a new perspective for the development of electrocoagulation-based next generation sustainable water purification technology.
Collapse
Affiliation(s)
- Shiwei Xie
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Chang Li
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Peng Liao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Jingfu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jingan Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ao Qian
- State Key Lab of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei 430078, China
| | - Yan Zhang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Taoyuan Wei
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Dong Cheng
- State Key Lab of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei 430078, China
| | - Mengqi Jia
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, 2207 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
19
|
Chen N, Geng M, Huang D, Tan M, Li Z, Liu G, Zhu C, Fang G, Zhou D. Hydroxyl radical formation during oxygen-mediated oxidation of ferrous iron on mineral surface: Dependence on mineral identity. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128861. [PMID: 35405609 DOI: 10.1016/j.jhazmat.2022.128861] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/08/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Many studies have examined the redox behavior of ferrous ions (Fe(II)) sorbed to mineral surfaces. However, the associated hydroxyl radical (•OH) formation during Fe(II) oxidation by O2 was rarely investigated at circumneutral pH. Therefore, we examined •OH formation during oxygenation of adsorbed Fe(II) (Fe(II)sorbed) on common minerals. Results showed that 16.7 ± 0.4-25.6 ± 0.3 μM of •OH was produced in Fe(II) and α/γ-Al2O3 systems after oxidation of 24 h, much more than in systems with dissolved Fe(II) (Fe2+aq) alone (10.3 ± 0.1 μM). However, •OH production in Fe(II) and α-FeOOH/α-Fe2O3 systems (6.9 ± 0.1-8.3 ± 0.1 μM) slightly decreased compared to Fe2+aq only. Further analyses showed that enhanced oxidation of Fe(II)sorbed was responsible for the increased •OH production in the Fe(II)/Al2O3 systems. In comparison, less Fe(II) was oxidized in the α-FeOOH/α-Fe2O3 systems, which was probably ascribed to the quick electron-transfer between Fe(II)sorbed and Fe(III) lattice due to their semiconductor properties and induced formation of high-crystalline Fe(II) phases that hindered Fe(II) oxidation and •OH formation. The types of minerals and solution pH strongly affected Fe(II) oxidation and •OH production, which consequently impacted phenol degradation. This study highlights that the properties of minerals exert great impacts on surface-Fe(II) oxidation and •OH production during water/soil redox fluctuations.
Collapse
Affiliation(s)
- Ning Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Mengyuan Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Danyu Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Mengxi Tan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Zipeng Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Guangxia Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Changyin Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
20
|
Deng Y, Zhang B, Liu C, Li F, Fang L, Dang Z, Yang C, Xiong Y, He C. Tetracycline-Induced Release and Oxidation of As(III) Coupled with Concomitant Ferrihydrite Transformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9453-9462. [PMID: 35700062 DOI: 10.1021/acs.est.2c02227] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cocontamination with tetracycline (TC) and arsenic (As) is very common in paddy fields. However, the process and underlying mechanism of arsenite (As(III)) transformation on iron mineral surfaces in the presence of antibiotic contaminants remain unclear. In this study, the release and oxidation of As(III) on ferrihydrite (Fh) surfaces and Fh transformation in the presence of TC under both aerobic and anaerobic conditions were investigated. Our results indicated that the TC-induced reductive dissolution of Fh (Fe(II) release) and TC competitive adsorption significantly promote the release of As, especially under anaerobic conditions. The release of As was increased with increasing TC concentration, whereas it decreased with increasing pH. Interestingly, under both aerobic and anaerobic conditions, the addition of TC enhanced the oxidation of As(III) by Fh and induced the partial transformation of Fh to lepidocrocite. Under aerobic conditions, the adsorbed Fe(II) activated the production of reactive oxygen species (·OH and 1O2) from dissolved O2, with Fe(IV) being responsible for As(III) oxidation. Under anaerobic conditions, the abundant oxygen vacancies of Fh affected the oxidation of As(III) during Fh recrystallization. Thus, this study provided new insights into the role of TC on the migration and transformation of As coupled with Fe in soils.
Collapse
Affiliation(s)
- Yurong Deng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Bijie Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chengshuai Liu
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Liping Fang
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chen Yang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yu Xiong
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chunfeng He
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
21
|
Efficient Nitrate Adsorption from Groundwater by Biochar-Supported Al-Substituted Goethite. SUSTAINABILITY 2022. [DOI: 10.3390/su14137824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Groundwater nitrate contamination is challenging and requires efficient solutions for nitrate removal. This study aims to investigate nitrate removal using a novel adsorbent, biochar-supported aluminum-substituted goethite (BAG). The results showed that an increase in the initial Al/(Al + Fe) atomic ratio for BAGs from 0 to 20% decreased the specific surface area from 115.2 to 75.7 m2/g, but enhanced the surface charge density from 0.0180 to 0.0843 C/m2. By comparison, 10% of Al/(Al + Fe) led to the optimal adsorbent for nitrate removal. The adsorbent’s adsorption capacity was effective with a wide pH range (4–8), and decreased with increasing ionic strength. The descending order of nitrate adsorption inhibition by co-existing anions was SO42−, HCO3−, PO43−, and Cl−. The adsorption kinetics and isotherms agreed well with the pseudo-first-order equation and Langmuir model, respectively. The theoretical maximum adsorption capacity was 96.1469 mg/g. Thermodynamic analysis showed that the nitrate adsorption was spontaneous and endothermic. After 10-cycle regeneration, the BAG still kept 92.6% of its original adsorption capacity for synthetic nitrate-contaminated groundwater. Moreover, the main adsorption mechanism was attributed to electrostatic attraction due to the enhancement of surface charge density by Al substitution. Accordingly, the BAG adsorbent is a potential solution to remove nitrate from groundwater.
Collapse
|
22
|
Stagg O, Morris K, Lam A, Navrotsky A, Velázquez JM, Schacherl B, Vitova T, Rothe J, Galanzew J, Neumann A, Lythgoe P, Abrahamsen-Mills L, Shaw S. Fe(II) Induced Reduction of Incorporated U(VI) to U(V) in Goethite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16445-16454. [PMID: 34882383 DOI: 10.1021/acs.est.1c06197] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Over 60 years of nuclear activities have resulted in a global legacy of radioactive wastes, with uranium considered a key radionuclide in both disposal and contaminated land scenarios. With the understanding that U has been incorporated into a range of iron (oxyhydr)oxides, these minerals may be considered a secondary barrier to the migration of radionuclides in the environment. However, the long-term stability of U-incorporated iron (oxyhydr)oxides is largely unknown, with the end-fate of incorporated species potentially impacted by biogeochemical processes. In particular, studies show that significant electron transfer may occur between stable iron (oxyhydr)oxides such as goethite and adsorbed Fe(II). These interactions can also induce varying degrees of iron (oxyhydr)oxide recrystallization (<4% to >90%). Here, the fate of U(VI)-incorporated goethite during exposure to Fe(II) was investigated using geochemical analysis and X-ray absorption spectroscopy (XAS). Analysis of XAS spectra revealed that incorporated U(VI) was reduced to U(V) as the reaction with Fe(II) progressed, with minimal recrystallization (approximately 2%) of the goethite phase. These results therefore indicate that U may remain incorporated within goethite as U(V) even under iron-reducing conditions. This develops the concept of iron (oxyhydr)oxides acting as a secondary barrier to radionuclide migration in the environment.
Collapse
Affiliation(s)
- Olwen Stagg
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Katherine Morris
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Andy Lam
- Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California Davis, Davis, California 95616, United States
| | - Alexandra Navrotsky
- School of Molecular Sciences and Navrotsky Eyring Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, United States
| | - Jesús M Velázquez
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Bianca Schacherl
- Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Tonya Vitova
- Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Jörg Rothe
- Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Jurij Galanzew
- Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Anke Neumann
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Paul Lythgoe
- Manchester Analytical Geochemistry Unit, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | | | - Samuel Shaw
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
23
|
Huang J, Jones A, Waite TD, Chen Y, Huang X, Rosso KM, Kappler A, Mansor M, Tratnyek PG, Zhang H. Fe(II) Redox Chemistry in the Environment. Chem Rev 2021; 121:8161-8233. [PMID: 34143612 DOI: 10.1021/acs.chemrev.0c01286] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Iron (Fe) is the fourth most abundant element in the earth's crust and plays important roles in both biological and chemical processes. The redox reactivity of various Fe(II) forms has gained increasing attention over recent decades in the areas of (bio) geochemistry, environmental chemistry and engineering, and material sciences. The goal of this paper is to review these recent advances and the current state of knowledge of Fe(II) redox chemistry in the environment. Specifically, this comprehensive review focuses on the redox reactivity of four types of Fe(II) species including aqueous Fe(II), Fe(II) complexed with ligands, minerals bearing structural Fe(II), and sorbed Fe(II) on mineral oxide surfaces. The formation pathways, factors governing the reactivity, insights into potential mechanisms, reactivity comparison, and characterization techniques are discussed with reference to the most recent breakthroughs in this field where possible. We also cover the roles of these Fe(II) species in environmental applications of zerovalent iron, microbial processes, biogeochemical cycling of carbon and nutrients, and their abiotic oxidation related processes in natural and engineered systems.
Collapse
Affiliation(s)
- Jianzhi Huang
- Department of Civil and Environmental Engineering, Case Western Reserve University, 2104 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Adele Jones
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yiling Chen
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaopeng Huang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kevin M Rosso
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, 72076 Tuebingen, Germany
| | - Muammar Mansor
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, 72076 Tuebingen, Germany
| | - Paul G Tratnyek
- School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, 2104 Adelbert Road, Cleveland, Ohio 44106, United States
| |
Collapse
|
24
|
Goberna-Ferrón S, Asta MP, Zareeipolgardani B, Bureau S, Findling N, Simonelli L, Greneche JM, Charlet L, Fernández-Martínez A. Influence of Silica Coatings on Magnetite-Catalyzed Selenium Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3021-3031. [PMID: 33606515 DOI: 10.1021/acs.est.0c08146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The reactivity of iron(II/III) oxide surfaces may be influenced by their interaction with silica, which is ubiquitous in aquatic systems. Understanding the structure-reactivity relationships of Si-coated mineral surfaces is necessary to describe the complex surface behavior of nanoscale iron oxides. Here, we use Si-adsorption isotherms and Fourier transform infrared spectroscopy to analyze the sorption and polymerization of silica on slightly oxidized magnetite nanoparticles (15% maghemite and 85% magnetite, i.e., ∼2 maghemite surface layers), showing that Si adsorption follows a Langmuir isotherm up to 2 mM dissolved Si, where surface polymerization occurs. Furthermore, the effects of silica surface coatings on the redox-catalytic ability of magnetite are analyzed using selenium as a molecular probe. The results show that for partially oxidized nanoparticles and even under different Si surface coverages, electron transfer is still occurring. The results indicate anion exchange between silicate and the sorbed SeIV and SeVI. X-ray absorption near-edge structure analyses of the reacted Se indicate the formation of a mixed selenite/Se0 surface phase. We conclude that neither partial oxidation nor silica surface coatings block the sorption and redox-catalytic properties of magnetite nanoparticles, a result with important implications to assess the reactivity of mixed-valence phases in environmental settings.
Collapse
Affiliation(s)
- Sara Goberna-Ferrón
- University of Grenoble Alpes, University of Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France
| | - Maria P Asta
- Institute of Earth Surface Dynamics, Faculty of Geosciences and Environment, University of Lausanne, 1015 Lausanne, Switzerland
| | - Bahareh Zareeipolgardani
- University of Grenoble Alpes, University of Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France
| | - Sarah Bureau
- University of Grenoble Alpes, University of Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France
| | - Nathaniel Findling
- University of Grenoble Alpes, University of Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France
| | - Laura Simonelli
- BL22-CLÆSS: Core Level Absorption and Emission Spectroscopies Beamline-Experiments Division, ALBA Synchrotron Light Source, Ctra. BP 1413 km. 3,3, Cerdanyola del Vallès, Barcelona 08290, Spain
| | - Jean-Marc Greneche
- Institut des Molécules et Matériaux du Mans (IMMM) CNRS UMR-6283, Le Mans Université, Le Mans F-72085, France
| | - Laurent Charlet
- University of Grenoble Alpes, University of Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France
| | - Alejandro Fernández-Martínez
- University of Grenoble Alpes, University of Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France
| |
Collapse
|
25
|
Zhou Z, Latta DE, Scherer MM. Natural organic matter inhibits Ni stabilization during Fe(II)-catalyzed ferrihydrite transformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142612. [PMID: 33045610 DOI: 10.1016/j.scitotenv.2020.142612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 05/26/2023]
Abstract
Trace metals, such as nickel (Ni), are often found associated with ferrihydrite (Fh) in soil and sediment and have been shown to redistribute during Fe(II)-catalyzed transformation of Fh. Fe(II)-catalyzed transformation of Fh, however, is often inhibited when natural organic matter (NOM) is associated with Fh. To explore whether NOM affects the behavior of Ni during Fe(II)-catalyzed transformation of Fh, we tracked Ni distribution, Fe atom exchange, and mineral transformation of Fh and Fh coprecipitated with Suwannee River natural organic matter (SRNOM-Fh). As expected, in the absence of Fe(II), Fh and SRNOM-Fh did not transform to secondary Fe minerals after two weeks. We further observed little difference in Ni adsorption on SRNOM-Fh compared to Fh. In the presence of Fe(II), however, we found that Ni associated with SRNOM-Fh was more susceptible to acid extraction than Fh. Specifically, we found almost double the amount of Ni remaining in the Fh after mild extraction compared to SRNOM-Fh. XRD showed that Fh transformed to goethite and magnetite whereas SRNOM-Fh did not transform despite 57Fe isotope tracer experiments confirmed that SRNOM-Fh underwent extensive atom exchange with aqueous Fe(II). Our findings suggest that Fe atom exchange may not be sufficient for obvious Ni stabilization and that transformation to secondary minerals may be necessary for Ni stabilization to occur.
Collapse
Affiliation(s)
- Zhe Zhou
- Department of Civil & Environmental Engineering, The University of Iowa, Iowa City, United States; Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.
| | - Drew E Latta
- Department of Civil & Environmental Engineering, The University of Iowa, Iowa City, United States
| | - Michelle M Scherer
- Department of Civil & Environmental Engineering, The University of Iowa, Iowa City, United States
| |
Collapse
|
26
|
Dong Y, Sanford RA, Boyanov MI, Flynn TM, O'Loughlin EJ, Kemner KM, George S, Fouke KE, Li S, Huang D, Li S, Fouke BW. Controls on Iron Reduction and Biomineralization over Broad Environmental Conditions as Suggested by the Firmicutes Orenia metallireducens Strain Z6. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10128-10140. [PMID: 32693580 DOI: 10.1021/acs.est.0c03853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microbial iron reduction is a ubiquitous biogeochemical process driven by diverse microorganisms in a variety of environments. However, it is often difficult to separate the biological from the geochemical controls on bioreduction of Fe(III) oxides. Here, we investigated the primary driving factor(s) that mediate secondary iron mineral formation over a broad range of environmental conditions using a single dissimilatory iron reducer, Orenia metallireducens strain Z6. A total of 17 distinct geochemical conditions were tested with differing pH (6.5-8.5), temperature (22-50 °C), salinity (2-20% NaCl), anions (phosphate and sulfate), electron shuttle (anthraquinone-2,6-disulfonate), and Fe(III) oxide mineralogy (ferrihydrite, lepidocrocite, goethite, hematite, and magnetite). The observed rates and extent of iron reduction differed significantly with kint between 0.186 and 1.702 mmol L-1 day-1 and Fe(II) production ranging from 6.3% to 83.7% of the initial Fe(III). Using X-ray absorption and scattering techniques (EXAFS and XRD), we identified and assessed the relationship between secondary minerals and the specific environmental conditions. It was inferred that the observed bifurcation of the mineralization pathways may be mediated by differing extents of Fe(II) sorption on the remaining Fe(III) minerals. These results expand our understanding of the controls on biomineralization during microbial iron reduction and aid the development of practical applications.
Collapse
Affiliation(s)
- Yiran Dong
- School of Environmental Studies, China University of Geosciences (Wuhan), Hubei, 430074, China
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Robert A Sanford
- Department of Geology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Maxim I Boyanov
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria
| | - Theodore M Flynn
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Edward J O'Loughlin
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Kenneth M Kemner
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Samantha George
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kaitlyn E Fouke
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543, United States
| | - Shuyi Li
- School of Environmental Studies, China University of Geosciences (Wuhan), Hubei, 430074, China
| | - Dongmei Huang
- School of Environmental Studies, China University of Geosciences (Wuhan), Hubei, 430074, China
| | - Shuzhen Li
- School of Environmental Studies, China University of Geosciences (Wuhan), Hubei, 430074, China
| | - Bruce W Fouke
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Geology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
27
|
Li J, Pham AN, Dai R, Wang Z, Waite TD. Recent advances in Cu-Fenton systems for the treatment of industrial wastewaters: Role of Cu complexes and Cu composites. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122261. [PMID: 32066018 DOI: 10.1016/j.jhazmat.2020.122261] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/02/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Cu-based Fenton systems have been recognized as a promising suite of technologies for the treatment of industrial wastewaters due to their high catalytic oxidation capacity. Rapid progress regarding Cu Fenton systems has been made not only in fundamental mechanistic aspects of these systems but also with regard to applications over the past decade. Based on available literature, this review synthesizes the recent advances regarding both the understanding and applications of Cu-based Fenton processes for industrial wastewater treatment. Cu-based catalysts that are essential to the effectiveness of use of Cu Fenton reactions for oxidation of target species are mainly classified into two types: (i) Cu complexes with organic or inorganic ligands, and (ii) Cu composites with inorganic materials. Performance of the Cu-based catalysts for the removal of organic pollutants in industrial wastewaters are reviewed, with the key operating parameters illustrated. Furthermore, the roles of Cu complexes and composites in both homogeneous and heterogeneous Cu-Fenton systems are critically examined with particular focus on the mechanisms involved. Perspectives and future efforts needed for Cu-based Fenton systems using Cu complexes and composites for industrial wastewater treatment are presented.
Collapse
Affiliation(s)
- Jiayi Li
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - A Ninh Pham
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - T David Waite
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
28
|
Cheng D, Neumann A, Yuan S, Liao W, Qian A. Oxidative Degradation of Organic Contaminants by FeS in the Presence of O 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4091-4101. [PMID: 32142604 DOI: 10.1021/acs.est.9b07012] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Reductive transformation of organic contaminants by FeS in anoxic environments has been documented previously, whereas the transformation in oxic environments remains poorly understood. Here we show that phenol can be efficiently oxidized in oxic FeS suspension at circumneutral pH value. We found that hydroxyl radicals (•OH) were the predominant reactive oxidant and that a higher O2 content accelerated phenol degradation. Phenol oxidation depended on •OH production and utilization efficiency, i.e., phenol degraded per •OH produced. Low FeS contents (≤1 g/L) produced less •OH but higher utilization efficiency, while high contents produced more •OH but lower utilization efficiency. Consequently, the most favorable conditions for phenol oxidation occurred during the long-term interaction between dissolved O2 and low levels of FeS (i.e., ≤1 g/L). Mössbauer spectroscopy suggests that FeS oxidation to lepidocrocite initially produced an intermediate Fe(II) phase that could be explained by the apparent preferential oxidation of structural S(-II) relative to Fe(II), rendering a higher initial •OH yield upon unit of Fe(II) oxidation. Trichloroethylene can be also oxidized under similar conditions. Our results demonstrate that oxidative degradation of organic contaminants during the oxygenation of FeS can be a significant but currently underestimated pathway in both natural and engineered systems.
Collapse
Affiliation(s)
- Dong Cheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei 430078, PR China
| | - Anke Neumann
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Songhu Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei 430078, PR China
| | - Wenjuan Liao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei 430078, PR China
| | - Ao Qian
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei 430078, PR China
| |
Collapse
|
29
|
Thomas AN, Eiche E, Göttlicher J, Steininger R, Benning LG, Freeman HM, Tobler DJ, Mangayayam M, Dideriksen K, Neumann T. Effects of metal cation substitution on hexavalent chromium reduction by green rust. GEOCHEMICAL TRANSACTIONS 2020; 21:2. [PMID: 32060743 PMCID: PMC7020553 DOI: 10.1186/s12932-020-00066-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/04/2020] [Indexed: 06/06/2023]
Abstract
Chromium contamination is a serious environmental issue in areas affected by leather tanning and metal plating, and green rust sulfate has been tested extensively as a potential material for in situ chemical reduction of hexavalent chromium in groundwater. Reported products and mechanisms for the reaction have varied, most likely because of green rust's layered structure, as reduction at outer and interlayer surfaces might produce different reaction products with variable stabilities. Based on studies of Cr(III) oxidation by biogenic Mn (IV) oxides, Cr mobility in oxic soils is controlled by the solubility of the Cr(III)-bearing phase. Therefore, careful engineering of green rust properties, i.e., crystal/particle size, morphology, structure, and electron availability, is essential for its optimization as a remediation reagent. In the present study, pure green rust sulfate and green rust sulfate with Al, Mg and Zn substitutions were synthesized and reacted with identical chromate (CrO42-) solutions. The reaction products were characterized by X-ray diffraction, pair distribution function analysis, X-ray absorption spectroscopy and transmission electron microscopy and treated with synthetic δ-MnO2 to assess how easily Cr(III) in the products could be oxidized. It was found that Mg substitution had the most beneficial effect on Cr lability in the product. Less than 2.5% of the Cr(III) present in the reacted Mg-GR was reoxidized by δ-MnO2 within 14 days, and the particle structure and Cr speciation observed during X-ray scattering and absorption analyses of this product suggested that Cr(VI) was reduced in its interlayer. Reduction in the interlayer lead to the linkage of newly-formed Cr(III) to hydroxyl groups in the adjacent octahedral layers, which resulted in increased structural coherency between these layers, distinctive rim domains, sequestration of Cr(III) in insoluble Fe oxide bonding environments resistant to reoxidation and partial transformation to Cr(III)-substituted feroxyhyte. Based on the results of this study of hexavalent chromium reduction by green rust sulfate and other studies, further improvements can also be made to this remediation technique by reacting chromate with a large excess of green rust sulfate, which provides excess Fe(II) that can catalyze transformation to more crystalline iron oxides, and synthesis of the reactant under alkaline conditions, which has been shown to favor chromium reduction in the interlayer of Fe(II)-bearing phyllosilicates.
Collapse
Affiliation(s)
- Andrew N Thomas
- Institute of Applied Geosciences, Karlsruhe Institute of Technology, 76137, Karlsruhe, Germany.
| | - Elisabeth Eiche
- Institute of Applied Geosciences, Karlsruhe Institute of Technology, 76137, Karlsruhe, Germany
| | - Jörg Göttlicher
- Institute of Synchrotron Radiation, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ralph Steininger
- Institute of Synchrotron Radiation, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Liane G Benning
- GFZ German Research Center for Geosciences, Telegrafenberg, 14473, Potsdam, Germany
- Department of Earth Sciences, Free University of Berlin, 12249, Berlin, Germany
| | - Helen M Freeman
- GFZ German Research Center for Geosciences, Telegrafenberg, 14473, Potsdam, Germany
- School of Chemical and Processing Engineering, University of Leeds, Leeds, LS29JT, UK
| | - Dominique J Tobler
- Nano-Science Center, Department of Chemistry, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Marco Mangayayam
- Nano-Science Center, Department of Chemistry, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Knud Dideriksen
- Nano-Science Center, Department of Chemistry, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Thomas Neumann
- Department of Applied Geosciences, Technical University of Berlin, 10587, Berlin, Germany
| |
Collapse
|
30
|
Bylaska EJ, Catalano JG, Mergelsberg ST, Saslow SA, Qafoku O, Prange MP, Ilton ES. Association of Defects and Zinc in Hematite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13687-13694. [PMID: 31689102 DOI: 10.1021/acs.est.9b04323] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Zn is an essential micronutrient that is often limited in tropical, lateritic soils in part because it is sequestered in nominally refractory iron oxide phases. Stable phases such as goethite and hematite, however, can undergo reductive recrystallization without a phase change under circumneutral pH conditions and release metal impurities such as Zn into aqueous solutions. Further, the process appears to be driven by Fe vacancies. In this contribution, we used ab initio molecular dynamics informed extended X-ray absorption fine structure spectra to show that Zn incorporated in the structure of hematite is associated with coupled O-Fe and protonated Fe vacancies, providing a potential link between crystal chemistry and the bioavailability of Zn.
Collapse
Affiliation(s)
- Eric J Bylaska
- Pacific Northwest National Laboratory , Richland Washington 99352 , United States
| | - Jeffrey G Catalano
- Department of Earth and Planetary Sciences , Washington University , St. Louis , Missouri 63130 , United States
| | | | - Sarah A Saslow
- Pacific Northwest National Laboratory , Richland Washington 99352 , United States
| | - Odeta Qafoku
- Pacific Northwest National Laboratory , Richland Washington 99352 , United States
| | - Micah P Prange
- Pacific Northwest National Laboratory , Richland Washington 99352 , United States
| | - Eugene S Ilton
- Pacific Northwest National Laboratory , Richland Washington 99352 , United States
| |
Collapse
|
31
|
Notini L, Byrne JM, Tomaszewski EJ, Latta DE, Zhou Z, Scherer MM, Kappler A. Mineral Defects Enhance Bioavailability of Goethite toward Microbial Fe(III) Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8883-8891. [PMID: 31284712 DOI: 10.1021/acs.est.9b03208] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Surface defects have been shown to facilitate electron transfer between Fe(II) and goethite (α-FeOOH) in abiotic systems. It is unclear, however, whether defects also facilitate microbial goethite reduction in anoxic environments where electron transfer between cells and Fe(III) minerals is the limiting factor. Here, we used stable Fe isotopes to differentiate microbial reduction of goethite synthesized by hydrolysis from reduction of goethite that was further hydrothermally treated to remove surface defects. The goethites were reduced by Geobacter sulfurreducens in the presence of an external electron shuttle, and we used ICP-MS to distinguish Fe(II) produced from the reduction of the two types of goethite. When reduced separately, goethite with more defects has an initial rate of Fe(III) reduction about 2-fold higher than goethite containing fewer defects. However, when reduced together, the initial rate of reduction is 6-fold higher for goethite with more defects. Our results suggest that there is a suppression of the reduction of goethite with fewer defects in favor of the reduction of minerals with more defects. In the environment, minerals are likely to contain defects and our data demonstrates that even small changes at the surface of iron minerals may change their bioavailability and determine which minerals will be reduced.
Collapse
Affiliation(s)
- Luiza Notini
- Department of Civil and Environmental Engineering , University of Iowa , Iowa City , Iowa 52242 , United States
| | - James M Byrne
- Geomicrobiology Group, Centre for Applied Geosciences (ZAG) , University of Tübingen , Sigwartstrasse 10 , D-72076 , Tübingen , Germany
| | - Elizabeth J Tomaszewski
- Geomicrobiology Group, Centre for Applied Geosciences (ZAG) , University of Tübingen , Sigwartstrasse 10 , D-72076 , Tübingen , Germany
| | - Drew E Latta
- Department of Civil and Environmental Engineering , University of Iowa , Iowa City , Iowa 52242 , United States
| | - Zhe Zhou
- Department of Civil and Environmental Engineering , University of Iowa , Iowa City , Iowa 52242 , United States
| | - Michelle M Scherer
- Department of Civil and Environmental Engineering , University of Iowa , Iowa City , Iowa 52242 , United States
| | - Andreas Kappler
- Geomicrobiology Group, Centre for Applied Geosciences (ZAG) , University of Tübingen , Sigwartstrasse 10 , D-72076 , Tübingen , Germany
| |
Collapse
|
32
|
Huang J, Wang Q, Wang Z, Zhang H. Interactions and Reductive Reactivity in Ternary Mixtures of Fe(II), Goethite, and Phthalic Acid Based on a Combined Experimental and Modeling Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8220-8227. [PMID: 31140818 DOI: 10.1021/acs.langmuir.9b00538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The interactions between organic ligands, Fe(II), and iron oxides are important in biogeochemical redox processes. The effect of phthalic acid (PHA) on the reductive reactivity of Fe(II) associated with goethite was examined using batch adsorption and kinetic studies, attenuated total reflectance?Fourier transform infrared spectroscopy (ATR?FTIR), and surface complexation modeling (SCM). PHA significantly inhibited the reductive reactivity of Fe(II)/goethite, as quantified by the pseudo-first-order reduction rate constants ( k) of p-cyanonitrobenzene. The k value decreased from 1.68 ? 0.03 to 0.338 ? 0.14 h?1 at pH 6.0 as the PHA concentration increased from 0 to 1000 ?M. The effects of the co-adsorption of Fe(II) and PHA onto goethite were then investigated to study the inhibition mechanism. The adsorption experiments showed that Fe(II) slightly enhanced PHA adsorption, whereas PHA did not affect Fe(II) adsorption, suggesting that the inhibition was not due to different amounts of Fe(II) adsorbed. The ATR?FTIR spectra of the adsorbed PHA in the ternary mixtures demonstrated that the major surface species was outer-sphere species, with minor inner-sphere complexes formed. SCM results showed that the presence of PHA (L) led to the formation of a type A ternary species ((?FeOFe+)2???L2?) on the goethite surface, decreasing the abundance of the reactive species (?FeOFeOH). Moreover, the adsorption of PHA on the surface of goethite might block the reactive sites and inhibit the electron transfer between Fe(II) and goethite, thus decreasing the reactivity. Overall, these findings provided new insights into the reaction mechanisms of surface-adsorbed Fe(II), which will facilitate the development of new technologies for site remediation and more accurate risk assessment.
Collapse
Affiliation(s)
- Jianzhi Huang
- Department of Civil Engineering , Case Western Reserve University , Cleveland , Ohio 44106-7220 , United States
| | - Qihuang Wang
- Department of Environmental Science and Engineering , Fudan University , Shanghai 200086 , China
| | - Zimeng Wang
- Department of Environmental Science and Engineering , Fudan University , Shanghai 200086 , China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , China
| | - Huichun Zhang
- Department of Civil Engineering , Case Western Reserve University , Cleveland , Ohio 44106-7220 , United States
| |
Collapse
|
33
|
Li Y, Wei G, Zhang C, Liang X, Chu W, He H, Stucki JW, Ma L, Lin X, Zhu J. Remarkable effect of Co substitution in magnetite on the reduction removal of Cr(VI) coupled with aqueous Fe(II): Improvement mechanism and Cr fate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:400-408. [PMID: 30513430 DOI: 10.1016/j.scitotenv.2018.11.344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
The interaction between magnetite and aqueous Fe(II) profoundly impacts the mineral recrystallization, trace-metal sequestration, and contaminant reduction. The iron ions in natural magnetite are extensively substituted by other cations. It is still unclear whether the substitution with thermodynamically favorable redox repairs (e.g., Co2+/Co3+) plays a vital role in the reducing capability of the coupled system. Herein, a series of Co-substituted magnetite samples (Fe3-xCoxO4, 0.00 ≤ x ≤ 1.00) were synthesized and tested for the reductive removal of Cr(VI) in the presence of Fe(II). Fe3-xCoxO4 had a spinel structure with the preferential occupancy of Co2+ on octahedral sites. No visible variation in the BET surface area was observed, whereas the surface site density increased gradually with Co substitution. Cr(VI) was found first adsorbed on the Fe3-xCoxO4 surface and then reduced to Cr(III) by the structural Fe2+ and the absorbed Fe(II), accompanied by the oxidation of bulk Fe2+ and surface Fe(II) in Fe3-xCoxO4 without phase transformation. The Cr(III) was precipitated on the Fe3-xCoxO4 surface with Fe(III), or substituted octahedral Fe in Fe3-xCoxO4. Both the reaction kinetics and the electron transfer efficiency revealed that Co substitution significantly improved the reactivity of Fe3-xCoxO4/Fe(II) towards Cr(VI) reduction. This was ascribed to the presence of the redox pairs Co2+/Co3+ and Fe2+/Fe3+ accelerating electron transfer from the Fe3-xCoxO4 interface to Cr(VI).
Collapse
Affiliation(s)
- Ying Li
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, IL 61801, United States; University of Chinese Academy of Sciences, Beijing 100049, PR China; Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, PR China
| | - Gaoling Wei
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, PR China
| | - Caihua Zhang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Xiaoliang Liang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; University of Chinese Academy of Sciences, Beijing 100049, PR China; Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, PR China.
| | - Wei Chu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - Hongping He
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, PR China
| | - Joseph W Stucki
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, IL 61801, United States
| | - Lingya Ma
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, PR China
| | - Xiaoju Lin
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, PR China
| | - Jianxi Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, PR China
| |
Collapse
|
34
|
Namayandeh A, Kabengi N. Calorimetric study of the influence of aluminum substitution in ferrihydrite on sulfate adsorption and reversibility. J Colloid Interface Sci 2019; 540:20-29. [DOI: 10.1016/j.jcis.2019.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/01/2019] [Indexed: 11/29/2022]
|
35
|
Fan C, Guo C, Chen M, Huang W, Wan J, Reinfelder JR, Li X, Zeng Y, Lu G, Dang Z. Transformation of cadmium-associated schwertmannite and subsequent element repartitioning behaviors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:617-627. [PMID: 30411291 DOI: 10.1007/s11356-018-3441-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
Schwertmannite is an important sink for cadmium (Cd) in acid mine drainage (AMD) environments and is unstable when environmental conditions change. However, the release and redistribution of Cd during schwertmannite transformation with respect to pre-bound Cd are poorly understood. In this work, the transformation of cadmium-associated schwertmannite and subsequent Cd repartitioning behaviors were investigated. The way of schwertmannite associated with Cd was predominant by absorption, and the diffuse layer model (DLM) showed that Cd2+ existed as monodentate complexes ≡Fe(1)OCd+ and ≡Fe(2)OCd+ on schwertmannite surfaces. Kinetics of SO42- release and mineralogical characterization both showed that the mineral transformation rates decreased and more lepidocrocite aggregated with increasing adsorbed Cd levels. The shrinking core model revealed that Fe(II)-induced process would affect mineral dissolution by changing surface reaction-controlled step to internal diffusion-controlled step, and significantly promote the dissolution rate of Cd-adsorbed schwertmannite. Adsorbed Cd blocked the surface sites for later Fe(II) adsorption and the Fe(II)-Fe(III) electron transfer, then resulted in the decelerated transformation and the accumulation of intermediate phase lepidocrocite. The maximum release of aqueous Cd occurred after 1 mM Fe2+ addition, then over 69% of initial added Cd(aq) re-bound to solid-phase accompanying with mineral transformation, and finally, Cd was mainly associated with the secondary minerals by complexation with surficial OH groups. These findings are useful for developing the strategies for treating Cd contamination in AMD affected areas.
Collapse
Affiliation(s)
- Cong Fan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Meiqin Chen
- School of Environmental and Biological Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, People's Republic of China
| | - Weilin Huang
- Department of Environmental Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Jingjing Wan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - John R Reinfelder
- Department of Environmental Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Xiaofei Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Yufei Zeng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, People's Republic of China
- Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
36
|
Hixon AE, Powell BA. Plutonium environmental chemistry: mechanisms for the surface-mediated reduction of Pu(v/vi). ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:1306-1322. [PMID: 30251720 DOI: 10.1039/c7em00369b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In recent decades, interest in plutonium mobility has increased significantly due to the need of the United States, as well as other nations, to deal with commercial spent nuclear fuel, nuclear weapons disarmament, and the remediation of locations contaminated by nuclear weapons testing and production. Although there is a global consensus that geologic disposal is the safest existing approach to dealing with spent nuclear fuel and high-level nuclear waste, only a few nations are moving towards implementing a geologic repository due to technical and political barriers. Understanding the factors that affect the mobility of plutonium in the subsurface environment is critical to support the development of such repositories. The importance of redox chemistry in determining plutonium mobility cannot be understated. While Pu(iv) is generally assumed to be immobile in the subsurface environment due to sorption or precipitation, Pu(v) tends to be mobile due to its relatively low effective charge and weak complex formation. This review highlights one particularly important aspect of plutonium behaviour at the mineral-water interface-the concept of surface-mediated reduction, which describes the reduction of plutonium on a mineral surface. It provides a conceptual model for and evidence supporting or refuting each proposed mechanism for surface-mediated reduction including (i) radiolysis at the mineral surface, (ii) electron transfer via ferrous iron or manganese in the mineral structure, (iii) electron shuttling due to the semiconducting properties of the mineral, (iv) disproportionation of Pu(v), (v) facilitation by proton exchange sites, (vi) stabilisation of Pu(iv) due to the increased concentration gradient within the electrical double layer, and (vii) a Nernstian favourability of Pu(iv) surface complexes and colloids. It also provides new perspectives on future research directions.
Collapse
Affiliation(s)
- Amy E Hixon
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | |
Collapse
|
37
|
Zhou Z, Latta DE, Noor N, Thompson A, Borch T, Scherer MM. Fe(II)-Catalyzed Transformation of Organic Matter-Ferrihydrite Coprecipitates: A Closer Look Using Fe Isotopes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11142-11150. [PMID: 30189730 DOI: 10.1021/acs.est.8b03407] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ferrihydrite is a common Fe mineral in soils and sediments that rapidly transforms to secondary minerals in the presence of Fe(II). Both the rate and products of Fe(II)-catalyzed ferrihydrite transformation have been shown to be significantly influenced by natural organic matter (NOM). Here, we used enriched Fe isotope experiments and 57Fe Mössbauer spectroscopy to track the formation of secondary minerals, as well as electron transfer and Fe mixing between aqueous Fe(II) and ferrihydrite coprecipitated with several types of NOM. Ferrihydrite coprecipitated with humic acids transformed primarily to goethite after reaction with Fe(II). In contrast, ferrihydrite coprecipitated with fulvic acids and Suwannee River NOM (SRNOM) resulted in no measurable formation of secondary minerals. Despite no secondary mineral transformation, Mössbauer spectra indicated electron transfer still occurred between Fe(II) and ferrihydrite coprecipitated with fulvic acid and SRNOM. In addition, isotope tracer experiments revealed that a significant fraction of structural Fe in the ferrihydrite mixed with the aqueous phase Fe(II) (∼85%). After reaction with Fe(II), Mössbauer spectroscopy indicated some subtle changes in the crystallinity, particle size, or particle interactions in the coprecipitate. Our observations suggest that ferrihydrite coprecipitated with fulvic acid and SRNOM remains a highly dynamic phase even without ferrihydrite transformation.
Collapse
Affiliation(s)
- Zhe Zhou
- Department of Civil & Environmental Engineering , The University of Iowa , Iowa City , Iowa 52242 , United States
| | - Drew E Latta
- Department of Civil & Environmental Engineering , The University of Iowa , Iowa City , Iowa 52242 , United States
| | - Nadia Noor
- Department of Crop & Soil Sciences , The University of Georgia , Athens , Georgia 30602 , United States
| | - Aaron Thompson
- Department of Crop & Soil Sciences , The University of Georgia , Athens , Georgia 30602 , United States
| | - Thomas Borch
- Department of Soil & Crop Sciences , Colorado State University , Fort Collins , Colorado 80523 , United States
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Michelle M Scherer
- Department of Civil & Environmental Engineering , The University of Iowa , Iowa City , Iowa 52242 , United States
| |
Collapse
|
38
|
Cr Release from Cr-Substituted Goethite during Aqueous Fe(II)-Induced Recrystallization. MINERALS 2018. [DOI: 10.3390/min8090367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The interaction between aqueous Fe(II) (Fe(II)aq) and iron minerals is an important reaction of the iron cycle, and it plays a critical role in impacting the environmental behavior of heavy metals in soils. Metal substitution into iron (hydr)oxides has been reported to reduce Fe atom exchange rates between Fe(II)aq and metal-substituted iron (hydr)oxides and inhibit the recrystallization of iron (hydr)oxides. However, the environmental behaviors of the substituted metal during these processes remain unclear. In this study, Fe(II)aq-induced recrystallization of Cr-substituted goethite (Cr-goethite) was investigated, along with the sequential release behavior of substituted Cr(III). Results from a stable Fe isotopic tracer and Mössbauer characterization studies show that Fe atom exchange occurred between Fe(II)aq and structural Fe(III) (Fe(III)oxide) in Cr-goethites, during which the Cr-goethites were recrystallized. The Cr substitution inhibited the rates of Fe atom exchange and Cr-goethite recrystallization. During the recrystallization of Cr-goethites induced by Fe(II)aq, Cr(III) was released from Cr-goethite. In addition, Cr-goethites with a higher level of Cr-substituted content released more Cr(III). The highest Fe atom exchange rate and the highest amount of released Cr(III) were observed at a pH of 7.5. Under reaction conditions involving a lower pH of 5.5 or a higher pH of 8.5, there were substantially lower rates of Fe atom exchange and Cr(III) release. This trend of Cr(III) release was similar with changes in Fe atom exchange, suggesting that Cr(III) release is driven by Fe atom exchange. The release and reincorporation of Cr(III) occurred simultaneously during the Fe(II)aq-induced recrystallization of Cr-goethites, especially during the late stage of the observed reactions. Our findings emphasize an important role for Fe(II)aq-induced recrystallization of iron minerals in changing soil metal characteristics, which is critical for the evaluation of soil metal activities, especially those in Fe-rich soils.
Collapse
|
39
|
Aqueous Fe(II)-Induced Phase Transformation of Ferrihydrite Coupled Adsorption/Immobilization of Rare Earth Elements. MINERALS 2018. [DOI: 10.3390/min8080357] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The phase transformation of iron minerals induced by aqueous Fe(II) (Fe(II)aq) is a critical geochemical reaction which greatly affects the geochemical behavior of soil elements. How the geochemical behavior of rare earth elements (REEs) is affected by the Fe(II)aq-induced phase transformation of iron minerals, however, is still unknown. The present study investigated the adsorption and immobilization of REEs during the Fe(II)aq-induced phase transformation of ferrihydrite. The results show that the heavy REEs of Ho(III) were more efficiently adsorbed and stabilized compared with the light REEs of La(III) by ferrihydrite and its transformation products, which was due to the higher adsorptive affinity and smaller atomic radius of Ho(III). Both La(III) and Ho(III) inhibited the Fe atom exchange between Fe(II)aq and ferrihydrite, and sequentially, the Fe(II)aq-induced phase transformation rates of ferrihydrite, because of the competitive adsorption with Fe(II)aq on the surface of iron (hydr)oxides. Owing to the larger amounts of adsorbed and stabilized Ho(III), the inhibition of the Fe(II)aq-induced phase transformation of ferrihydrite affected by Ho(III) was higher than that by La(III). Our findings suggest an important role for the Fe(II)aq-induced phase transformation of iron (hydr)oxides in assessing the mobility and transfer behavior of REEs, as well as for their occurrence in earth surface environments.
Collapse
|
40
|
Chen C, Meile C, Wilmoth J, Barcellos D, Thompson A. Influence of pO 2 on Iron Redox Cycling and Anaerobic Organic Carbon Mineralization in a Humid Tropical Forest Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7709-7719. [PMID: 29890827 DOI: 10.1021/acs.est.8b01368] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ferrous iron (FeII) oxidation is an important pathway for generating reactive FeIII phases in soils, which can affect organic carbon (OC) persistence/decomposition. We explored how pO2 concentration influences FeII oxidation rates and FeIII mineral composition, and how this impacts the subsequent FeIII reduction and anaerobic OC mineralization following a transition from oxic to anoxic conditions. We conducted batch soil slurry experiments within a humid tropical forest soil amended with isotopically labeled 57FeII. The slurries were oxidized with either 21% or 1% pO2 for 9 days and then incubated for 20 days under anoxic conditions. Exposure to 21% pO2 led to faster FeII oxidation rates and greater partitioning of the amended 57Fe into low-crystallinity FeIII-(oxyhydr)oxides (based on Mössbauer analysis) than exposure to 1% pO2. During the subsequent anoxic period, low-crystallinity FeIII-(oxyhydr)oxides were preferentially reduced relative to more crystalline forms with higher net rates of anoxic FeII and CO2 production-which were well correlated-following exposure to 21% pO2 than to 1% pO2. This study illustrates that in redox-dynamic systems, the magnitude of O2 fluctuations can influence the coupled iron and organic carbon cycling in soils and more broadly, that reaction rates during periods of anoxia depend on the characteristics of prior oxidation events.
Collapse
Affiliation(s)
- Chunmei Chen
- University of Georgia, Crop and Soil Sciences , Athens , Georgia 30602 , United States
| | - Christof Meile
- University of Georgia, Marine Sciences , Athens , Georgia 30602 , United States
| | - Jared Wilmoth
- University of Georgia, Crop and Soil Sciences , Athens , Georgia 30602 , United States
| | - Diego Barcellos
- University of Georgia, Crop and Soil Sciences , Athens , Georgia 30602 , United States
| | - Aaron Thompson
- University of Georgia, Crop and Soil Sciences , Athens , Georgia 30602 , United States
| |
Collapse
|
41
|
Flynn ED, Catalano JG. Influence of Oxalate on Ni Fate during Fe(II)-Catalyzed Recrystallization of Hematite and Goethite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6920-6927. [PMID: 29806459 DOI: 10.1021/acs.est.8b00641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
During biogeochemical iron cycling at redox interfaces, dissolved Fe(II) induces the recrystallization of Fe(III) oxides. Oxalate and other organic acids promote dissolution of these minerals and may also induce recrystallization. These processes may redistribute trace metals among the mineral bulk, mineral surface, and aqueous solution. However, the impact of interactions among organic acids, dissolved Fe(II), and iron oxide minerals on trace metal fate in such systems is unclear. The present study thus explores the effect of oxalate on Ni release from and incorporation into hematite and goethite in the absence and presence of Fe(II). When Ni is initially structurally incorporated into the iron oxides, both oxalate and dissolved Fe(II) promote the release of Ni to aqueous solution. When both species are present, their effects on Ni release are synergistic at pH 7 but inhibitory at pH 4, indicating that cooperative and competitive interactions vary with pH. In contrast, oxalate suppresses Ni incorporation into goethite and hematite during Fe(II)-induced recrystallization, decreasing the proportion of Ni substituting in a mineral structure by up to 36%. These observations suggest that at redox interfaces oxalate largely enhances trace metal mobility. In such settings, oxalate, and likely other organic acids, may thus enhance micronutrient availability and inhibit contaminant sequestration.
Collapse
Affiliation(s)
- Elaine D Flynn
- Department of Earth and Planetary Sciences , Washington University , St. Louis , Missouri 63130 , United States
| | - Jeffrey G Catalano
- Department of Earth and Planetary Sciences , Washington University , St. Louis , Missouri 63130 , United States
| |
Collapse
|
42
|
Dai C, Tian X, Nie Y, Lin HM, Yang C, Han B, Wang Y. Surface Facet of CuFeO 2 Nanocatalyst: A Key Parameter for H 2O 2 Activation in Fenton-Like Reaction and Organic Pollutant Degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6518-6525. [PMID: 29727187 DOI: 10.1021/acs.est.8b01448] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of efficient heterogeneous Fenton catalysts is mainly by "trial-and-error" concept and the factor determining H2O2 activation remains elusive. In this work, we demonstrate that suitable facet exposure to elongate O-O bond in H2O2 is the key parameter determining the Fenton catalyst's activity. CuFeO2 nanocubes and nanoplates with different surface facets of {110} and {012} are used to compare the effect of exposed facets on Fenton activity. The results indicate that ofloxacin (OFX) degradation rate by CuFeO2 {012} is four times faster than that of CuFeO2 {110} (0.0408 vs 0.0101 min-1). In CuFeO2 {012}-H2O2 system, OFX is completely removed at a pH range 3.2-10.1. The experimental results and theoretical simulations show that •OH is preferentially formed from the reduction of absorbed H2O2 by electron from CuFeO2 {012} due to suitable elongation of O-O (1.472 Å) bond length in H2O2. By contrast, the O-O bond length is elongated from 1.468 to 3.290 Å by CuFeO2 {110} facet, H2O2 tends to be dissociated into -OH group and passivates {110} facet. Besides, the new formed ≡Fe2+* on CuFeO2 {012} facet can accelerate the redox cycle of Cu and Fe species, leading to excellent long-term stability of CuFeO2 nanoplates.
Collapse
Affiliation(s)
- Chu Dai
- Faculty of Material Science and Chemistry , China University of Geosciences , Wuhan , 430074 , P.R. China
| | - Xike Tian
- Faculty of Material Science and Chemistry , China University of Geosciences , Wuhan , 430074 , P.R. China
| | - Yulun Nie
- Faculty of Material Science and Chemistry , China University of Geosciences , Wuhan , 430074 , P.R. China
| | - Hong-Ming Lin
- Department Materials Engineering , Tatung University , 104 Taipei , Taiwan
| | - Chao Yang
- Faculty of Material Science and Chemistry , China University of Geosciences , Wuhan , 430074 , P.R. China
| | - Bo Han
- Faculty of Material Science and Chemistry , China University of Geosciences , Wuhan , 430074 , P.R. China
| | - Yanxin Wang
- School of Environmental Studies , China University of Geosciences , Wuhan , 430074 , P. R. China
| |
Collapse
|
43
|
Notini L, Latta DE, Neumann A, Pearce CI, Sassi M, N'Diaye AT, Rosso KM, Scherer MM. The Role of Defects in Fe(II)-Goethite Electron Transfer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2751-2759. [PMID: 29405066 DOI: 10.1021/acs.est.7b05772] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Despite substantial experimental evidence for Fe(II)-Fe(III) oxide electron transfer, computational chemistry calculations suggest that oxidation of sorbed Fe(II) by goethite is kinetically inhibited on structurally perfect surfaces. We used a combination of 57Fe Mössbauer spectroscopy, synchrotron X-ray absorption and magnetic circular dichroism (XAS/XMCD) spectroscopies to investigate whether Fe(II)-goethite electron transfer is influenced by defects. Specifically, Fe L-edge and O K-edge XAS indicates that the outermost few Angstroms of goethite synthesized by low temperature Fe(III) hydrolysis is iron deficient relative to oxygen, suggesting the presence of defects from Fe vacancies. This nonstoichiometric goethite undergoes facile Fe(II)-Fe(III) oxide electron transfer, depositing additional goethite consistent with experimental precedent. Hydrothermal treatment of this goethite, however, appears to remove defects, decrease the amount of Fe(II) oxidation, and change the composition of the oxidation product. When hydrothermally treated goethite was ground, surface defect characteristics as well as the extent of electron transfer were largely restored. Our findings suggest that surface defects play a commanding role in Fe(II)-goethite redox interaction, as predicted by computational chemistry. Moreover, it suggests that, in the environment, the extent of this interaction will vary depending on diagenetic history, local redox conditions, as well as being subject to regeneration via seasonal fluctuations.
Collapse
Affiliation(s)
- Luiza Notini
- Department of Civil and Environmental Engineering , University of Iowa , Iowa City , Iowa 52242 , United States
| | - Drew E Latta
- Department of Civil and Environmental Engineering , University of Iowa , Iowa City , Iowa 52242 , United States
| | - Anke Neumann
- School of Engineering , Newcastle University , Newcastle upon Tyne , NE1 7RU , United Kingdom
| | - Carolyn I Pearce
- Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Michel Sassi
- Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Alpha T N'Diaye
- Advanced Light Source , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Kevin M Rosso
- Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Michelle M Scherer
- Department of Civil and Environmental Engineering , University of Iowa , Iowa City , Iowa 52242 , United States
| |
Collapse
|
44
|
Li Y, Wei G, He H, Liang X, Chu W, Huang D, Zhu J, Tan W, Huang Q. Improvement of zinc substitution in the reactivity of magnetite coupled with aqueous Fe(II) towards nitrobenzene reduction. J Colloid Interface Sci 2018; 517:104-112. [PMID: 29421670 DOI: 10.1016/j.jcis.2018.01.103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/14/2017] [Accepted: 01/29/2018] [Indexed: 11/26/2022]
Abstract
The reduction of nitrobenzene (NB) by Zn-substituted magnetite coupled with aqueous Fe(II) was studied. A series of Zn-substituted magnetites (Fe3-xZnxO4, x = 0, 0.25, 0.49, 0.74, and 0.99) were synthesized by a coprecipitation method followed by systematic analysis of the variation in structure and physicochemical properties of magnetite using XRD, TEM, TG, BET and XAFS. All of the samples had a spinel structure by Zn substitution. Zn2+ primarily occupied the tetrahedral sites, but a portion of them moved to the octahedral sites at higher Zn level. Zn substitution increased the BET specific surface area and surface hydroxyl amount. The electron balance indicated that the NB reduction was primarily through the heterogeneous reaction by Fe3-xZnxO4 and adsorbed Fe(II), where NB in aqueous solution was reduced by structural Fe2+ in magnetite recharged by adsorbed Fe(II). Various factors, such as aqueous Fe(II) concentration, magnetite stoichiometry and Zn level, were investigated to illustrate their effects on the reduction processes. Both the rate constant kobs and electron transfer amount illustrated that Zn substitution generally improved the reduction activity of the Fe3-xZnxO4/Fe(II) system, while overdose of Zn retarded the process. This issue was attributed to the variation in electron conductivity of Fe3-xZnxO4 and Zn2+ occupancy.
Collapse
Affiliation(s)
- Ying Li
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Gaoling Wei
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, PR China
| | - Hongping He
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaoliang Liang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Wei Chu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - Deyin Huang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, PR China
| | - Jianxi Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wei Tan
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qiuxin Huang
- CEPREI Environmental Assessment and Monitoring Center, The 5th Electronics Research Institute of the Ministry of Industry and Information Technology, Guangzhou 510610, PR China
| |
Collapse
|
45
|
Chen C, Thompson A. Ferrous Iron Oxidation under Varying pO 2 Levels: The Effect of Fe(III)/Al(III) Oxide Minerals and Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:597-606. [PMID: 29192502 DOI: 10.1021/acs.est.7b05102] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Abiotic Fe(II) oxidation by O2 commonly occurs in the presence of mineral sorbents and organic matter (OM) in soils and sediments; however, this tertiary system has rarely been studied. Therefore, we examined the impacts of mineral surfaces (goethite and γ-Al2O3) and organic matter [Suwannee River fulvic acid (SRFA)] on Fe(II) oxidation rates and the resulting Fe(III) (oxyhydr)oxides under 21 and 1% pO2 at pH 6. We tracked Fe dynamics by adding 57Fe(II) to 56Fe-labeled goethite and γ-Al2O3 and characterized the resulting solids using 57Fe Mössbauer spectroscopy. We found Fe(II) oxidation was slower at low pO2 and resulted in higher-crystallinity Fe(III) phases. Relative to oxidation of Fe(II)(aq) alone, both goethite and γ-Al2O3 surfaces increased Fe(II) oxidation rates regardless of pO2 levels, with goethite being the stronger catalyst. Goethite surfaces promoted the formation of crystalline goethite, while γ-Al2O3 favored nano/small particle or disordered goethite and some lepidocrocite; oxidation of Fe(II)aq alone favored lepidocrocite. SRFA reduced oxidation rates in all treatments except the mineral-free systems at 21% pO2, and SRFA decreased Fe(III) phase crystallinity, facilitating low-crystalline ferrihydrite in the absence of mineral sorbents, low-crystalline lepidocrocite in the presence of γ-Al2O3, but either crystalline goethite or ferrihydrite when goethite was present. This work highlights that the oxidation rate, the types of mineral surfaces, and OM control Fe(III) precipitate composition.
Collapse
Affiliation(s)
- Chunmei Chen
- Department of Crop and Soil Sciences, The University of Georgia , Athens, Georgia 30602, United States
| | - Aaron Thompson
- Department of Crop and Soil Sciences, The University of Georgia , Athens, Georgia 30602, United States
| |
Collapse
|
46
|
Huhmann BL, Neumann A, Boyanov MI, Kemner KM, Scherer MM. Emerging investigator series: As(v) in magnetite: incorporation and redistribution. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:1208-1219. [PMID: 28871292 DOI: 10.1039/c7em00237h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Exposure to As in groundwater negatively impacts millions of people around the globe, and As mobility in groundwater is often controlled by Fe mineral dissolution and precipitation. Additionally, trace elements can be released from and incorporated into the structure of Fe oxides in the presence of dissolved Fe(ii). The potential for As to redistribute between sorbed on the magnetite surface and incorporated in the magnetite structure, however, remains unclear. In this study, we use selective chemical extraction and X-ray absorption spectroscopy (XAS) to distinguish magnetite-sorbed and incorporated As(v) and to provide evidence for As(v) incorporation during magnetite precipitation. While As in the As-magnetite coprecipitates did not redistribute between sorbed and incorporated over a 4 month period, a small, but measurable increase in incorporated As(v) of up to 13% was observed for sorbed As(v). We suggest that Fe(ii)-catalyzed recrystallization of magnetite did not significantly influence the redistribution of sorbed As(v) because the extent of Fe atom exchange was small (∼10%). In addition, the extent of As redistribution was the same in the absence and presence of added aqueous Fe(ii), suggesting that aqueous Fe(ii) had, overall, a minor effect on As redistribution for both coprecipitated and sorbed As(v). Our results suggest that coprecipitation of As(v) with magnetite and redistribution of As(v) sorbed on magnetite are potential pathways for irreversible As(v) uptake and sequestration. These pathways are likely to play a significant role in controlling As mobility in natural systems, during human-induced redox cycling of groundwater such as aquifer storage and recovery, as well as in iron oxide-based As removal systems.
Collapse
Affiliation(s)
- Brittany L Huhmann
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
47
|
Joshi P, Fantle MS, Larese-Casanova P, Gorski CA. Susceptibility of Goethite to Fe 2+-Catalyzed Recrystallization over Time. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11681-11691. [PMID: 28895726 DOI: 10.1021/acs.est.7b02603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Recent work has shown that iron oxides, such as goethite and hematite, may recrystallize in the presence of aqueous Fe2+ under anoxic conditions. This process, referred to as Fe2+-catalyzed recrystallization, can influence water quality by causing the incorporation/release of environmental contaminants and biological nutrients. Accounting for the effects of Fe2+-catalyzed recrystallization on water quality requires knowing the time scale over which recrystallization occurs. Here, we tested the hypothesis that nanoparticulate goethite becomes less susceptible to Fe2+-catalyzed recrystallization over time. We set up two batches of reactors in which 55Fe2+ tracer was added at two different time points and tracked the 55Fe partitioning in the aqueous and goethite phases over 60 days. Less 55Fe uptake occurred between 30 and 60 days than between 0 and 30 days, suggesting goethite recrystallization slowed with time. Fitting the data with a box model indicated that 17% of the goethite recrystallized after 30 days of reaction, and an additional 2% recrystallized between 30 and 60 days. The decreasing susceptibility of goethite to recrystallize as it reacted with aqueous Fe2+ suggested that recrystallization is likely only an important process over short time scales.
Collapse
Affiliation(s)
- Prachi Joshi
- Department of Civil & Environmental Engineering, Pennsylvania State University , 212 Sackett Building, University Park, Pennsylvania 16802, United States
| | - Matthew S Fantle
- Department of Geosciences, Pennsylvania State University , 212 Deike Building, University Park, Pennsylvania 16802, United States
| | - Philip Larese-Casanova
- Department of Civil & Environmental Engineering, Snell Engineering Center, Northeastern University , 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Christopher A Gorski
- Department of Civil & Environmental Engineering, Pennsylvania State University , 212 Sackett Building, University Park, Pennsylvania 16802, United States
| |
Collapse
|
48
|
Schoepfer VA, Burton ED, Johnston SG, Kraal P. Phosphate-Imposed Constraints on Schwertmannite Stability under Reducing Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9739-9746. [PMID: 28766328 DOI: 10.1021/acs.est.7b02103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Schwertmannite is a ferric oxyhydroxysulfate mineral, which is common in acid sulfate systems. Such systems contain varying concentrations of phosphate (PO43-)-an essential nutrient whose availability may be coupled to schwertmannite formation and fate. This study examines the effect of phosphate on schwertmannite stability under reducing conditions. Phosphate was added at 0, 80, 400, and 800 μmoles g-1 (i.e., zero, low, medium, and high loading) to schwertmannite suspensions which were inoculated with wetland sediment and suspended in N2-purged artificial groundwater. pH remained between 2.7 and 4.3 over the 41 day experiment duration. Fe(II) accumulated in solution due to dissimilatory Fe(III)-reduction, which was most pronounced at intermediate PO43- loadings (i.e., in the low PO43- treatment). Partial transformation of schwertmannite to goethite occurred in the zero and low PO43- treatments, with negligible transformation in higher PO43- treatments. Overall, the results suggest that intermediate PO43- loadings provide conditions which facilitate optimal reductive dissolution of schwertmannite. At zero PO43- loading, reductive dissolution appears to be constrained by the rapid transformation of schwertmannite to goethite, which thereby decreases the bioavailability of solid-phase Fe(III). Conversely, at high loadings, PO43- appears to stabilize the schwertmannite surface against dissolution; probably via the formation of strong surface complexes.
Collapse
Affiliation(s)
- Valerie A Schoepfer
- Southern Cross GeoScience, Southern Cross University , PO Box 157, Lismore, New South Wales 2480, Australia
| | - Edward D Burton
- Southern Cross GeoScience, Southern Cross University , PO Box 157, Lismore, New South Wales 2480, Australia
| | - Scott G Johnston
- Southern Cross GeoScience, Southern Cross University , PO Box 157, Lismore, New South Wales 2480, Australia
| | - Peter Kraal
- Department of Earth Sciences-Geochemistry, Faculty of GeoSciences, Utrecht University , PO Box 80021, 3508 TA Utrecht, The Netherlands
| |
Collapse
|
49
|
Reduction removal of hexavalent chromium by zinc-substituted magnetite coupled with aqueous Fe(II) at neutral pH value. J Colloid Interface Sci 2017; 500:20-29. [DOI: 10.1016/j.jcis.2017.03.103] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/22/2017] [Accepted: 03/26/2017] [Indexed: 11/22/2022]
|
50
|
Gao WG, Liu XC, Chen MF. In situ ATR-FTIR investigation and theoretical calculation of the interactions of chromate and citrate on the surface of haematite (α-Fe2O3). RSC Adv 2017. [DOI: 10.1039/c7ra04587e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy was used to study the molecular kinetics of Cr(vi) reduction by citric acid at the α-Fe2O3–water interface.
Collapse
Affiliation(s)
- W. G. Gao
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing 210008
- China
| | - X. C. Liu
- State Key Laboratory for Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 130100
- China
| | - M. F. Chen
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing 210008
- China
| |
Collapse
|