1
|
Chitsaz M, Al Hello M, Burris DR, Francisco KL, Rodenburg LA. Sources of polychlorinated dibenzo-p-dioxins and -furans to sediment in the Newtown Creek Superfund Site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177771. [PMID: 39671924 DOI: 10.1016/j.scitotenv.2024.177771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/11/2024] [Accepted: 11/24/2024] [Indexed: 12/15/2024]
Abstract
Polychlorinated dibenzo-p-dioxins and -furans (PCDD/Fs) are contaminants of concern in the New York/New Jersey Harbor and in the organisms of the Newtown Creek Superfund site, which lies within the harbor. Because PCDD/Fs are never intentionally produced, identifying their sources can be challenging. In this work, sources of PCDD/Fs to the sediment of Newtown Creek were investigated using Positive Matrix Factorization (PMF) to analyze two data sets containing data on concentrations of (1) PCDD/Fs and (2) PCDD/Fs plus polychlorinated biphenyls (PCBs). The PCDD/F data set generated eight factors, but they were not particularly helpful in identifying PCDD/F sources. The combined PCDD/F plus PCB data set generated eleven factors, many of which represented Aroclors. Based on its spatial distribution, the primary source of PCDD/F-related Toxic Equivalency Quotient (TEQ) in the sediment (accounting for 53 % of total TEQ) may be related to a facility that performed smelting and refining of metals (primarily copper). Aroclors appear to be responsible for about 20 % of the total TEQ. This analysis revealed two additional secondary sources of PCDD/Fs to Newtown Creek sediment: the East River (3 % of TEQ) and Combined Sewer Outfalls (CSOs; 0.5 % of TEQ). The East River was responsible for most of the mass of 2,3,7,8-tetrachloro dibenzo-p-dioxin (TCDD) in the sediment, presumably because it transports TCDD-laden sediment from the Passaic River into Newtown Creek. CSOs were proportionately more important in surface sediments. Adding PCBs to the data matrix appears to increase ability of the PMF analysis to identify both primary (Aroclors) and secondary (CSOs, East River) PCDD/F sources, but it is unclear whether it may overstate the fraction of PCDD/Fs arising from Aroclors.
Collapse
Affiliation(s)
- Mahdi Chitsaz
- Department of Environmental Science, Rutgers, the State University of New Jersey, United States of America
| | - Mohson Al Hello
- Department of Environmental Science, Rutgers, the State University of New Jersey, United States of America; Marine Sciences Center, University of Basrah, Iraq
| | - David R Burris
- Crooked Creek Environmental, Panama City, FL, United States of America
| | - Kelly L Francisco
- Department of Environmental Science, Rutgers, the State University of New Jersey, United States of America
| | - Lisa A Rodenburg
- Department of Environmental Science, Rutgers, the State University of New Jersey, United States of America.
| |
Collapse
|
2
|
Chitsaz M, Al Hello M, Burris DR, Francisco KL, Rodenburg LA. Source apportionment of polychlorinated biphenyls in the sediment of the Newtown Creek superfund site. CHEMOSPHERE 2024; 357:141928. [PMID: 38615951 DOI: 10.1016/j.chemosphere.2024.141928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Abstract
Polychlorinated biphenyls (PCBs) are a primary contaminant of potential concern at the Newtown Creek superfund site. Measurements of PCBs in hundreds of samples of sediment (surface and cores) within Newtown Creek and at nearby reference locations were obtained from the Remedial Investigation (RI) databases. This data set was analyzed using Positive Matrix Factorization (PMF). A weight-of-evidence approach was used to attribute the PMF-generated fingerprints to sources. The PMF analysis generated eight factors (fingerprints or sources) that represent primary sources, such as Aroclors, as well as secondary sources, including the East River and Combined Sewer Outfalls (CSOs). In addition to the high-production volume Aroclors (1016/1242, 1248, 1254, and 1260), some less-widely used Aroclors (1232 and 1268) were found in Newtown Creek sediment. Aroclor 1268 is disproportionately abundant in the deepest sediments, while PCBs likely from CSOs are relatively more abundant in surface sediment.
Collapse
Affiliation(s)
- Mahdi Chitsaz
- Department of Environmental Science, Rutgers, The State University of New Jersey, USA.
| | - Mohson Al Hello
- Department of Environmental Science, Rutgers, The State University of New Jersey, USA; Marine Sciences Center, University of Basrah, Iraq.
| | | | - Kelly L Francisco
- Department of Environmental Science, Rutgers, The State University of New Jersey, USA.
| | - Lisa A Rodenburg
- Department of Environmental Science, Rutgers, The State University of New Jersey, USA.
| |
Collapse
|
3
|
Ossai CJ, Iwegbue CMA, Tesi GO, Olisah C, Egobueze FE, Nwajei GE, Martincigh BS. Spatial characteristics, sources and exposure risk of polychlorinated biphenyls in dusts and soils from an urban environment in the Niger Delta of Nigeria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163513. [PMID: 37061053 DOI: 10.1016/j.scitotenv.2023.163513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/21/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Chlorinated organic compounds, such as polychlorinated biphenyls (PCBs), are a threat to both humans and the environment because of their toxicity, persistence, and capacity for long-range atmospheric transport. The concentrations of 28 PCB congeners, including 12 dioxin-like and seven indicator PCBs, were investigated in soils, and indoor and outdoor dusts from Port Harcourt city, Nigeria, in order to evaluate the characteristic distribution patterns in these media, their sources, and possible risk. The PCB concentrations varied from 4.59 to 116 ng g-1 for soils, and from 1.80 to 23.0 ng g-1 and 2.73 to 57.4 ng g-1 for indoor and outdoor dusts respectively. The sequence of PCB concentrations in these matrices was soil > outdoor dust > indoor dust. The composition of PCBs in these matrices indicated the prevalence of lower chlorinated PCBs in indoor and outdoor dusts, while the higher chlorinated congeners were dominant in soils. Di-PCBs were the predominant homologues in indoor dusts, while deca-PCBs were the most prevalent homologues in outdoor dusts and soils. The TEQ values of dioxin-like PCBs in 60 % of the soils, 100 % of the indoor dust, and 30 % of the outdoor dust were above the indicative value of 4 pg TEQ g-1 established by the Canadian authority. The hazard index (HI) values for exposure of adults and children to PCBs in these media were mostly greater than one, while the total cancer risk (TCR) values exceeded the acceptable risk value of 10-6, which indicate probable non-carcinogenic and carcinogenic risks resulting from exposure to PCBs in these media. Source analysis for PCBs in these matrices shows that they originated from diverse sources.
Collapse
Affiliation(s)
- Chinedu J Ossai
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria
| | | | - Godswill O Tesi
- Department of Chemical Sciences, University of Africa, Toru-Orua, Bayelsa State, Nigeria
| | - Chijioke Olisah
- Institute for Coastal and Marine Research, Department of Botany, Nelson Mandela University, Port Elizabeth 6031, South Africa
| | | | - Godwin E Nwajei
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Bice S Martincigh
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
4
|
Li T, Hu J, Xu C, Jin J. PCBs, PCNs, and PCDD/Fs in Soil around an Industrial Park in Northwest China: Levels, Source Apportionment, and Human Health Risk. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3478. [PMID: 36834182 PMCID: PMC9962420 DOI: 10.3390/ijerph20043478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
The concentrations of polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs), and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were determined in soil samples collected around an industrial park in Northwest China, to investigate the potential impacts of park emissions on the surrounding environment. The total concentration ranges of PCBs, PCNs, and PCDD/Fs in the soil samples were in 13.2-1240, 141-832, and 3.60-156 pg/g, respectively. The spatial distribution and congener patterns of PCBs, PCNs, and PCCD/Fs indicated that there might be multiple contamination sources in the study area, so source apportionments of PCBs, PCNs, and PCCD/Fs were performed by a positive matrix factorization model based on the concentrations of all target congeners together. The results revealed that these highly chlorinated congeners (CB-209, CN-75, and OCDF) might be derived from phthalocyanine pigments, the legacy of Halowax 1051 and 2,4-D products, which together contributed nearly half of the total concentration of target compounds (44.5%). In addition to highly chlorinated congeners, the local industrial thermal processes were mainly responsible for the contamination of PCBs, PCNs, and PCDD/Fs in the surrounding soil. The total carcinogenic risk of PCBs, PCNs, and PCDD/Fs in a few soil samples (0.22 × 10-6, 0.32 × 10-6, and 0.40 × 10-6) approached the threshold of potential carcinogenic risk (1.0 × 10-6). Since these pollutants can continuously accumulate in the soil, the contamination of PCBs, PCNs, and PCDD/Fs in surrounding soil deserves continuous attention.
Collapse
Affiliation(s)
- Tianwei Li
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, China
| | - Jicheng Hu
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing 100081, China
| | - Chenyang Xu
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, China
| | - Jun Jin
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing 100081, China
| |
Collapse
|
5
|
Govindarajan A, Kiaghadi A, Rifai HS, Pedram AR. Source apportionment of polychlorinated dibenzo-p-dioxins and dibenzofurans in the sediments of an urban estuary. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:298. [PMID: 36637512 DOI: 10.1007/s10661-022-10878-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Polychlorinated dibenzo-p-dioxins and dibenzofurans in the sediments of aquatic systems are a persistent global problem that poses serious health risks. Identifying the sources of dioxins in natural water systems and the extent of their contributions to observed sediment concentrations is important from a health advisory and mitigation perspective. This paper proposes novel distribution-based qualitative and quantitative methods as source apportionment techniques and alternatives to conventional source attribution methods. Using sampled data, air, runoff, industrial effluent, and industrial paper and pulp wastes were identified as four distinct dioxin contributors to concentrations found in the sediments of the test bed region: the Houston Ship Channel-San Jacinto River-Galveston Bay (HSC-SJR-GB) estuarine system that also includes 2 Superfund sites with dioxin contamination. Two qualitative methods, the Kullback-Leibler divergence (K-L divergence) and the Bhattacharya measure (BM), and a quantitative method, the L2 norm, were used to investigate the spatial and temporal sourcing patterns of dioxins in the system sediments. The results indicated a global contribution from air and runoff sources across the estuarine system and over time with more localized impacts of the Superfund sites and the industrial sources. The results using the developed methodologies were compared with the output from the more conventional positive matrix factorization (PMF) method. Statistically significant correlations were observed among source contributions from the proposed methods and the PMF method, with Spearman's ρ ranging between - 0.596 to - 0.963 and 0.652 to 0.719, demonstrating the utility of the sourcing approaches used in the study. Additionally, the proposed methods were found to be rigorous in terms of elucidating spatial and temporal changes in the sourcing of dioxin to the estuary, indicating their suitability for use for other contaminants and other estuarine systems.
Collapse
Affiliation(s)
- Adithya Govindarajan
- Civil and Environmental Engineering, University of Houston, Houston, TX, USA
- Gradient Corp., Boston, MA, USA
| | - Amin Kiaghadi
- Civil and Environmental Engineering, University of Houston, Houston, TX, USA
- Texas Water Development Board, Austin, TX, USA
| | - Hanadi S Rifai
- Civil and Environmental Engineering, University of Houston, Engineering Building 1 Rm N138, Calhoun, Houston, TX, 77204-4003, USA.
| | - Ali Reza Pedram
- Walker Department of Mechanical Engineering, University of Texas at Austin, TX, Austin, USA
| |
Collapse
|
6
|
Capozzi SL, Francisco KL, Stahl BL, Al Hello M, Meixler MS, Rodenburg LA. Sources of polychlorinated biphenyls to Upper Hudson River fish post-dredging. CHEMOSPHERE 2023; 310:136742. [PMID: 36209856 DOI: 10.1016/j.chemosphere.2022.136742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent, bioaccumulative, and toxic chemicals that are the dominant contaminant in the Upper Hudson River (UHR) in New York State where two General Electric (GE) plants historically discharged PCBs to the river. Portions of the UHR were dredged from 2009 to 2015 to address PCB contamination. In 2017, the first post-dredging survey of yearling feeder fish and sediment PCB contamination was conducted to establish a baseline for the recovery of the river. Prior analysis of the sediment data from the 2017 survey indicated that ∼2% of the PCBs in the surface sediment were higher in molecular weight than the formulation used by GE and therefore arose from non-GE sources. In this work, the fish PCB data from the 2017 survey were analyzed using Positive Matrix Factorization (PMF). Empirical Bayesian Kriging (EBK) was used to estimate PCB concentrations in the sediment at the locations where fish were collected. The results suggest that PCBs that are the products of microbial dechlorination bioaccumulate in the fish and represent 7% of the PCB mass in the fish data set. Further, the results suggest that about 13% of the PCBs in the fish may have come from non-GE sources. This is higher than the percentage of non-GE PCBs in the sediment, but can be explained by the higher molecular weight of the non-GE mixture which causes it to bioaccumulate more effectively than GE PCBs. Concentrations of the non-GE PCBs averaged about 240 ppb wet weight (whole body) in yearling feeder fish. The remedial goals range from 50 to 400 ppb ww in fillet for fish including piscivorous species that are likely to have higher PCB concentrations than feeder fish.
Collapse
Affiliation(s)
- Staci L Capozzi
- Paul H. O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, 40705, USA; Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20740, USA
| | - Kelly L Francisco
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Briana L Stahl
- Department of Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mohson Al Hello
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, 08901, USA; Marine Science Center, University of Basrah, Basrah, Iraq
| | - Marcia S Meixler
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Lisa A Rodenburg
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
7
|
Hannah TJ, Megson D, Sandau CD. A review of the mechanisms of by-product PCB formation in pigments, dyes and paints. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158529. [PMID: 36063921 DOI: 10.1016/j.scitotenv.2022.158529] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/17/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
There has been an increased awareness of paints and pigments as a source of by-product PCBs in the environment. The majority of existing work has focused only on reporting the presence of the main PCBs in different products with a specific focus on the most PCB congeners, PCB11 and PCB209. This gives the impression that only a handful of PCBs are found in paints. However, this is not the case. PCB profiles in paints and pigments can be just as complex as commercial technical mixtures. This review identified the presence of 149 different PCBs in paint samples. For reference, only 141 different PCBs have been reported in all of the 5 main commercial Aroclor formulations (A1016, A1242, A1248, A1254 (early & late) and A1260). The total PCB concentrations in some paint samples can be substantial, with concentrations as high as 919 mg kg-1 reported in azo pigments. When trying to identify sources of PCBs in the environment, pigments, dyes and paints are often overlooked. In this manuscript, we have compiled congener profiles from 140 different samples from the available scientific literature and presented this in the supplementary information as valuable resource for others to use in source identification applications. We have also proposed detailed mechanisms for the formation of PCBs in pigments, dyes and paints. In many cases, the PCB congeners predicted by these mechanisms provide an excellent match for what has been observed in the scientific literature. We have also identified several additional classes of pigments that are expected to contain PCBs but have yet to be verified by experimental data.
Collapse
Affiliation(s)
| | - David Megson
- Chemistry Matters, Calgary, AB, Canada; Manchester Metropolitan University, Ecology & Environment Research Centre, Department of Natural Science, Manchester, UK.
| | | |
Collapse
|
8
|
Rodenburg LA. Letter to the Editor regarding "Distinguishing Aroclor and non-Aroclor sources to Chicago Air" by Jahnke et al. (2022). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:157387. [PMID: 35901878 DOI: 10.1016/j.scitotenv.2022.157387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Lisa A Rodenburg
- Department of Environmental Sciences, Rutgers, the State University of New Jersey, 14 College Farm Road, New Brunswick, NJ 08901, United States of America.
| |
Collapse
|
9
|
Jahnke JC, Martinez A, Hornbuckle KC. Distinguishing Aroclor and non-Aroclor sources to Chicago Air. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153263. [PMID: 35066038 PMCID: PMC9116205 DOI: 10.1016/j.scitotenv.2022.153263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 06/03/2023]
Abstract
Many polychlorinated biphenyl (PCB) congeners are found in both legacy Aroclor mixtures and modern materials, and both contribute to PCBs levels in ambient air. The various sources of PCBs make it difficult to quantify the relative importance of emissions from remaining legacy materials and emissions of PCBs released from production and use of modern products. To address this challenge, we utilized active and passive sampling, analytical methods optimized for PCBs, and Positive Matrix Factorization (PMF) and cos theta to examine the chemical signature of PCBs in Chicago air. Here we report our findings for over 640 samples collected over 7 years and analyzed for all 209 congeners. We conclude that Aroclor sources (1254, 1016/1242, and 1260) are consistent and dominant contributors to Chicago air. However, non-Aroclors sources accounted for 13%-16% of the total PCBs measured. Our analysis indicates non-Aroclor sources explain 99% of PCB11, 90% of PCB 68, and 58-69% of congeners with 8 to 10 chlorines in Chicago air. All of these are known to be emitted from paints or silicone polymers. Additionally, we identified over 20 congeners that have non-Aroclor contributions of more than 50% including PCB 3 (4-monochlorobiphenyl, 83% non-Aroclor) as well as 7 congeners of unknown sources: PCBs 43, 46, 55, 89, 96, 137, and 139 + 140. Non-Aroclor emission sources contribute to the entire range of congeners from mono- to deca-chlorobiphenyls. We found evidence of highly localized non-Aroclor sources including a signature similar to that of green paint. We also found source signals similar to the PCB congeners volatilizing from and absorbing to neighboring Lake Michigan. The measured profiles vary from season to season: lower chlorinated congeners dominate in winter months while higher chlorinated congeners contribute more in summer.
Collapse
Affiliation(s)
- Jacob C Jahnke
- Department of Civil and Environmental Engineering, IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | - Andres Martinez
- Department of Civil and Environmental Engineering, IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | - Keri C Hornbuckle
- Department of Civil and Environmental Engineering, IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, Iowa 52242, USA.
| |
Collapse
|
10
|
Rodenburg LA, Hermanson MR, Sumner AL. Effect of membrane filtration on the fate of polychlorinated biphenyls in wastewater treatment. CHEMOSPHERE 2022; 287:132335. [PMID: 34563767 DOI: 10.1016/j.chemosphere.2021.132335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
The Spokane River is impacted by levels of polychlorinated biphenyls (PCBs) that have triggered fish consumption advisories and exceed water quality standards. Select wastewater treatment plants (WWTPs) on the river have been upgraded from secondary (biological) treatment to tertiary treatment in the form of membrane filtration to address phosphorus contamination. Because membrane filtration is effective at removing particles, it is likely to reduce PCB concentrations in the effluent as well. In this work, PCBs measured in the influents and effluent of several WWTPs discharging to the river were examined. Implementation of membrane filtration reduced PCB concentrations in the effluent (and therefore PCB loads to the river) by 33% at a facility that produces recycled and virgin paper and by ∼55% at municipal WWTPs, compared to secondary (activated sludge) treatment. Largest reductions in concentrations in effluent and loads were achieved for higher molecular weight (MW) PCB congeners (i.e. those with six or more chlorines), homologs, and formulations. The more modest reductions in effluent concentrations achieved at the paper WWTP may be due to the mix of PCBs in the wastewater there: it contained primarily the low MW Aroclor 1242 (presumably from carbonless copy paper) and PCB 11 (3,3'-dichlorobiphenyl) possibly from pigments. PCBs that appear to be associated with silicone products such as caulk, tubing, and o-rings are relatively more abundant in the effluent of some plants compared to the influent, suggesting that these congeners arise from contamination during sampling or from within the plant itself. At some WWTPs, this contamination accounts for nearly a third of PCBs measured in the effluent.
Collapse
Affiliation(s)
- Lisa A Rodenburg
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ, 08901, USA.
| | - Michael R Hermanson
- Spokane County Environmental Services, 1116 W. Broadway Avenue, Spokane, WA, 99260, USA
| | - Amy L Sumner
- Spokane County Environmental Services, 1116 W. Broadway Avenue, Spokane, WA, 99260, USA
| |
Collapse
|
11
|
Lin Y, Capozzi SL, Lin L, Rodenburg LA. Source apportionment of perfluoroalkyl substances in Great Lakes fish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118047. [PMID: 34467881 DOI: 10.1016/j.envpol.2021.118047] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Due to the complex sources and fate of perfluoroalkyl substance (PFAS), their source apportionment in the environment remains a challenge. A data set of 11 straight-chain PFAS in 139 samples of fish in the Great Lakes was analyzed using positive matrix factorization (PMF) to investigate their primary sources, whose spatial variations were examined against the surrounding environmental factors. PMF analysis produced five fingerprints. Factor 1 (72% of Σ11PFAS, dominated by PFOS) probably represented emissions from primary sources (such as consumer products) and secondary sources (precursors), and increased in average abundance from west to east across the Great Lakes. Factor 2 (13% of Σ11PFAS) and factor 3 (7% of Σ11PFAS), highly loaded with long-chain PFAS and PFNA, respectively, were thought to represent PVDF manufacture or processing in metal plating. They showed higher contributions in sparsely populated Lakes Superior and Huron. Factor 4 (5% of Σ11PFAS, highly loaded with PFOS and PFHxS) presented hot spots near current and former air force bases, suggesting it was related to aqueous film-forming foams (AFFFs). Factor 5 (4% of Σ11PFAS) contained primarily PFOS and PFOSA, which may imply metabolism of precursors (PFOSA) to PFOS in vivo. Unexpectedly, the spatial trends of the five sources all showed abnormally low values near the more urbanized Chicago and Milwaukee in Lake Michigan, which may be due to their unique wastewater and stormwater infrastructure or may arise from atmospheric transport of precursors. Our study indicated that PMF was an effective tool to identify sources of PFAS in fish despite absorption, distribution, metabolism, and excretion (ADME) processes which might alter fingerprints in fish relative to their surrounding environment.
Collapse
Affiliation(s)
- Yan Lin
- School of Environmental Science and Engineering, Xiamen University of Technology, 600, Ligong Road, Xiamen, 361000, China
| | - Staci L Capozzi
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA
| | - Li Lin
- Fujian Jingwei Surveying and Mapping Information Co., Ltd, 68 Shanyuan Hong Road, Fuzhou, 350000, China
| | - Lisa A Rodenburg
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
12
|
Mao S, Liu S, Zhou Y, An Q, Zhou X, Mao Z, Wu Y, Liu W. The occurrence and sources of polychlorinated biphenyls (PCBs) in agricultural soils across China with an emphasis on unintentionally produced PCBs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116171. [PMID: 33387783 DOI: 10.1016/j.envpol.2020.116171] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
In addition to being historically intentionally manufactured as commercial products, polychlorinated biphenyls (PCBs) can be unintentionally released as by-products from industrial processes. Recent studies have emphasized the importance of unintentionally produced PCBs (UP-PCBs) and have even identified them as major contributors to atmospheric PCBs. However, little is known about contributions of UP-PCBs in current soils. In this study, all 209 PCB congeners were analyzed in agricultural soils on a national scale to investigate the influence of unintentional sources on Chinese soil. The concentration of Σ209PCBs in soils across China was in the range of 64.3-4358 pg/g. Four non-Aroclor congeners, i.e., PCB11, PCB44 + 47+65, PCB68, and PCB209, were dominant among all PCBs, averagely accounting for 26.3%, 8.83%, 3.03%, and 2.80% of total PCBs, respectively. PCB11 and PCB209 were found to be higher in East China, while PCB44 + 47+65 and PCB68 were higher in South China. Their spatial distributions were largely dependent on local sources. The results of source apportionment indicated that the legacy of historically produced and used commercial PCB mixtures was the dominant contributor to seven indicator PCBs in Chinese agricultural soils, especially high-chlorinated congeners. However, unintentional sources (i.e., pigment/paint, combustion-related sources, and polymer sealant), which contributed 57.4% of the total PCBs, are controlling PCB burdens in agricultural soils across China.
Collapse
Affiliation(s)
- Shuduan Mao
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shuren Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuting Zhou
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qi An
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xuji Zhou
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhouying Mao
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yiting Wu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weiping Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
13
|
Anh HQ, Watanabe I, Minh TB, Takahashi S. Unintentionally produced polychlorinated biphenyls in pigments: An updated review on their formation, emission sources, contamination status, and toxic effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142504. [PMID: 33035974 DOI: 10.1016/j.scitotenv.2020.142504] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/31/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The formation, emission, environmental occurrence, and potential adverse effects of unintentionally produced polychlorinated biphenyls (PCBs) in pigments are reviewed, providing a comprehensive and up-to-date picture on these pollutants. PCBs are typically formed during manufacturing of organic pigments that involve chlorinated intermediates and reaction solvents, rather than those of inorganic pigments. Concentrations and profiles of PCBs vary greatly among pigment types and producers, with total PCB levels ranging from lower than detection limits to several hundred ppm; major components can be low-chlorinated (e.g., CB-11) or high-chlorinated congeners (e.g., CB-209). Pigment-derived PCBs can be released into the environment through different steps including pigment production, application, and disposal. They can contaminate atmospheric, terrestrial, and aquatic ecosystems, and then affect organisms living there. This situation garners scientific and public attention to nonlegacy emissions of PCBs and suggests the need for appropriate monitoring, management, and abatement strategies regarding these pollutants.
Collapse
Affiliation(s)
- Hoang Quoc Anh
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 100000, Viet Nam.
| | - Isao Watanabe
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Tu Binh Minh
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 100000, Viet Nam
| | - Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan.
| |
Collapse
|
14
|
Takahashi S, Anh HQ, Watanabe I, Aono D, Kuwae M, Kunisue T. Characterization of mono- to deca-chlorinated biphenyls in a well-preserved sediment core from Beppu Bay, Southwestern Japan: Historical profiles, emission sources, and inventory. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140767. [PMID: 32758843 DOI: 10.1016/j.scitotenv.2020.140767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/27/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Contamination levels and profiles of mono- to deca-chlorinated biphenyls (PCBs) were characterized in a sediment core dated in 1954-2011 from Beppu Bay, southwestern Japan, providing a comprehensive and detailed picture on the environmental occurrence, temporal trends, and emission sources of these pollutants in the study area. Concentrations of total PCBs in the core ranged from 3.5 to 150 (median 15) ng g-1 dry weight and exhibited depth profile matching with Japanese PCB production and emission patterns (i.e., drastically increasing from the early 1960s, peaking in 1970, and then rapidly decreasing). Origin of PCBs in the studied samples largely associated with Kanechlor mixtures (e.g., KC-300 and KC-400), especially for sediment layers dated between the mid-1960s and early 1970s (i.e., the intensive PCB production period in Japan). In addition, dechlorination and weathering signals and emerging inputs of PCBs were also observed in deeper and shallower sediment segments with notable proportions of some unique congeners such as CB-47/48/51 and CB-11, respectively. Historical fluxes of PCBs in our samples showed quite similar vertical shape as concentrations. In the context of national implementation for complete treatment of PCB-containing waste until 2024, further investigations on spatiotemporal trends and environmental loads of PCBs in Japan are necessary.
Collapse
Affiliation(s)
- Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan.
| | - Hoang Quoc Anh
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan; Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 10000, Viet Nam
| | - Isao Watanabe
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Daichi Aono
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Michinobu Kuwae
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| |
Collapse
|
15
|
Zhang CY, Flor S, Ruiz P, Dhakal R, Hu X, Teesch LM, Ludewig G, Lehmler HJ. 3,3'-Dichlorobiphenyl Is Metabolized to a Complex Mixture of Oxidative Metabolites, Including Novel Methoxylated Metabolites, by HepG2 Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12345-12357. [PMID: 32910851 PMCID: PMC7544623 DOI: 10.1021/acs.est.0c03476] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
3,3'-Dichlorobiphenyl (PCB 11) is a byproduct of industrial processes and detected in environmental samples. PCB 11 and its metabolites are present in human serum, and emerging evidence demonstrates that PCB 11 is a developmental neurotoxicant. However, little is known about the metabolism of PCB 11 in humans. Here, we investigated the metabolism of PCB 11 and the associated metabolomics changes in HepG2 cells using untargeted high-resolution mass spectrometry. HepG2 cells were exposed for 24 h to PCB 11 in DMSO or DMSO alone. Cell culture media were analyzed with ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry. Thirty different metabolites were formed by HepG2 cells exposed to 10 μM PCB 11, including monohydroxylated, dihydroxylated, methoxylated-hydroxylated, and methoxylated-dihydroxylated metabolites and the corresponding sulfo and glucuronide conjugates. The methoxylated PCB metabolites were observed for the first time in a human-relevant model. 4-OH-PCB 11 (3,3'-dichlorobiphenyl-4-ol) and the corresponding catechol metabolite, 4,5-di-OH-PCB 11 (3',5-dichloro-3,4-dihydroxybiphenyl), were unambiguously identified based on liquid and gas chromatographic analyses. PCB 11 also altered several metabolic pathways, in particular vitamin B6 metabolism. These results demonstrate that complex PCB 11 metabolite profiles are formed in HepG2 cells that warrant further toxicological investigation, particularly since catechol metabolites are likely reactive and toxic.
Collapse
Affiliation(s)
- Chun-Yun Zhang
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Susanne Flor
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Patricia Ruiz
- Divison of Toxicology and Human Health Sciences, Computational Toxicology and Methods Development Lab, Agency for Toxic Substances and Disease Registry, Atlanta, Georgia 30333, United States
| | - Ram Dhakal
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Xin Hu
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30303, United States
| | - Lynn M. Teesch
- High Resolution Mass Spectrometry Facility, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Gabriele Ludewig
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
16
|
Iwegbue CMA, Bebenimibo E, Tesi GO, Egobueze FE, Martincigh BS. Spatial characteristics and risk assessment of polychlorinated biphenyls in surficial sediments around crude oil production facilities in the Escravos River Basin, Niger Delta, Nigeria. MARINE POLLUTION BULLETIN 2020; 159:111462. [PMID: 32777544 DOI: 10.1016/j.marpolbul.2020.111462] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
In this study, the concentrations of 28 polychlorinated biphenyl (PCB) congeners, including 12 dioxin-like PCBs and 7 indicator PCBs, were determined in sediments around oil production facilities in the Escravos River Basin of the Niger Delta in Nigeria. The aim was to describe the spatial patterns, sources, and ecosystem risks associated with exposure to PCBs in sediments of this river basin. Gas chromatography-mass spectrometry (GC-MS) was used to determine the concentrations of PCBs in the sediments. The Ʃ28 PCB concentrations in sediments from the Escravos River Basin ranged between 226 and 31,900 ng g-1 with a median concentration of 2300 ng g-1. The results indicated that sediments around crude oil production facilities, such as, wellheads, flow stations, and truck lines, had significantly higher levels of Ʃ28 PCBs (p < 0.05) than those collected near residential communities within the river basin. The median concentrations of PCB homologues in sediments from this river basin followed the sequence: hexaPCBs > penta-PCBs > tetra-PCBs > hepta-PCBs > tri-PCBs > di-PCBs > deca-PCBs > octa-PCBs > nona-PCBs. The risk assessment of PCBs in sediments from this river basin suggest very high potential risks for both organisms and humans.
Collapse
Affiliation(s)
| | - Ernest Bebenimibo
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Godswill O Tesi
- Department of Chemical Sciences, University of Africa, Toru-Orua, Bayelsa State, Nigeria
| | - Francis E Egobueze
- Environment Department, Nigerian Agip Oil Company, Rumueme, Port Harcourt, Nigeria
| | - Bice S Martincigh
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
17
|
Mao S, Zhang G, Li J, Geng X, Wang J, Zhao S, Cheng Z, Xu Y, Li Q, Wang Y. Occurrence and sources of PCBs, PCNs, and HCB in the atmosphere at a regional background site in east China: Implications for combustion sources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114267. [PMID: 32179224 DOI: 10.1016/j.envpol.2020.114267] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/11/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Multiple types of persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs), and hexachlorobenzene (HCB), can be unintentionally released from combustion or thermal industrial processes, which are speculated to be the main sources of these contaminants, as they were banned on production and use since several decades ago. In this study, concentrations and sources of 40 PCBs, 39 PCNs, and HCB were analyzed in air samples collected during the period 2012-2015 at a background site in east China. ΣPCBs, ΣPCNs, and HCB were in the range of 9-341 pg/m3, 6-143 pg/m3, and 14-522 pg/m3, respectively. Seasonal characteristics with high levels in winter and low levels in summer were observed for PCNs and HCB. PCBs also exhibited slightly higher levels in winter. Source apportionment was conducted, using polycyclic aromatic hydrocarbons (PAHs) as combustion sources indicator, combined with principal component analysis (PCA) and positive matrix factorization (PMF) model. The results indicated that the legacy of past produced and used commercial PCBs was the dominant contributor (∼56%) to the selected PCBs in the atmosphere in east China. PCNs were mainly emitted from combustion sources (∼64%), whereas HCB almost entirely originated from combustion process (>90%).
Collapse
Affiliation(s)
- Shuduan Mao
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Jun Li
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Xiaofei Geng
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqi Wang
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shizhen Zhao
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Zhineng Cheng
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yue Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qilu Li
- School of Environment, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yan Wang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
18
|
Christensen ER, Zhang R, Codling G, Giesy JP, Li A. Poly- and per-fluoroalkyl compounds in sediments of the Laurentian Great Lakes: Loadings, temporal trends, and sources determined by positive matrix factorization. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113166. [PMID: 31561035 DOI: 10.1016/j.envpol.2019.113166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/22/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
A recent data set for 22 poly- and per-fluorinated compounds (PFASs) in Ponar grab samples of surface sediments and cores from the Great Lakes of North America was examined for concentrations, loads, correlations with geographical coordinates and depth (time), and for sources. Correlations were determined by multivariate regression analyses. Source apportionment of PFASs was carried out by positive matrix factorization (PMF) for two cores from Lake Ontario. For the five lakes together, the total load of PFASs in sediments was estimated to be 245 ± 24 tonnes, which is about half the load for total PCBs. The recent annual loading was 1812 ± 320 kg/yr. Concentrations and inventories of PFASs were greatest in Lakes Erie and Ontario. Since 1947, concentrations of perfluorooctane sulfonic acid (PFOS) in ten cores have increased exponentially as a function of time with doubling times between 10 and 54 yr and have leveled off in three cores since 2000. PMF demonstrated an effective grouping of two particle-associated factors, characterized mainly by longer-chain PFASs (C ≥ 8) and two other factors of mainly shorter-chain compounds (C ≤ 6). Two factors feature only one dominant compound: factor 1, PFOS, and factor 3, perfluorobutane sulfonic acid (PFBS). Of all factors, factor 3 with PFBS has the largest contribution (47.8%). Significant scores for perfluorohexane sulfonic acid (PFHxS) and PFBS, along with flat or decreasing PFOS contributions since 2003, indicate that the replacement of PFOS with these compounds is beginning to take effect in the environment.
Collapse
Affiliation(s)
- Erik R Christensen
- Department of Civil and Environmental Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA.
| | - Ruijie Zhang
- School of Public Health, University of Illinois at Chicago, Chicago, IL 60612, USA; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Garry Codling
- Research Centre for Contaminants in the Environment, Pavilion 29, Masaryk University, Brno, Czech Republic
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; Department of Environmental Science, Baylor University, Waco, TX, United States
| | - An Li
- School of Public Health, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
19
|
Rodenburg LA, Delistraty DA. Alterations in fingerprints of polychlorinated biphenyls in benthic biota at the Portland Harbor Superfund Site (Oregon, USA) suggest metabolism. CHEMOSPHERE 2019; 223:74-82. [PMID: 30771650 DOI: 10.1016/j.chemosphere.2019.02.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/05/2019] [Accepted: 02/09/2019] [Indexed: 06/09/2023]
Abstract
In order to understand the sources and fate of polychlorinated biphenyls (PCBs) in several species of benthic biota, including clams (Corbicula fluminea), oligochaetes (Lumbriculus variegatus), and mussels (Margaritifera falcata and Anodonta nuttalliana) at the Portland Harbor Superfund Site (PHSS), their congener fingerprints were examined. First, diagnostic ratios of congeners known to be metabolizable vs. recalcitrant in the cytochrome P450 (CYP) pathway were significantly lower in biota than in its co-located sediment, indicating metabolism may have occurred. Next, the congener patterns were analyzed using Positive Matrix Factorization (PMF). The dominant fingerprint (by mass) in benthic biota is related to Aroclor 1260 but displays differences in the fingerprint that are consistent with weathering via absorption, distribution, metabolism, and excretion (ADME). This fingerprint is similar to one isolated from PCBs in fish from Washington State, indicative of common metabolic pathways and consistent with CYP metabolism. When metabolism is taken into account, the spatial distribution of the PMF-isolated PCB fingerprints in biota matches well with those from co-located sediment samples, suggesting that the same mix of sources at one location partitions into biota and sediment. In accordance to their higher hydrophobicity, higher molecular weight (MW) PCB formulations were proportionately more abundant in biota than in sediment, although low MW PCBs (e.g., PCBs 4 and 11) do bioaccumulate in benthic organisms and should not be ignored in risk assessment efforts. Finally, fingerprinting suggests potential reasons why lab-based and field-based biota-sediment accumulation factors (BSAFs) differ substantially for bivalves.
Collapse
Affiliation(s)
- Lisa A Rodenburg
- Department of Environmental Sciences, Rutgers University, 14 College Farm, Road, New Brunswick, NJ 08901, USA.
| | - Damon A Delistraty
- Washington State Department of Ecology, North 4601 Monroe Street, Spokane, WA 99205, USA
| |
Collapse
|
20
|
Capozzi SL, Rodenburg LA, Krumins V, Fennell DE, Mack EE. Using positive matrix factorization to investigate microbial dehalogenation of chlorinated benzenes in groundwater at a historically contaminated site. CHEMOSPHERE 2018; 211:515-523. [PMID: 30086528 DOI: 10.1016/j.chemosphere.2018.07.180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/26/2018] [Accepted: 07/29/2018] [Indexed: 06/08/2023]
Abstract
Chlorinated benzenes are common groundwater contaminants in the United States, so demonstrating whether they undergo degradation in the subsurface is important in determining the best remedy for this contamination. The purpose of this work was to use a new data mining approach to investigate chlorinated benzene degradation pathways in the subsurface. Positive Matrix Factorization (PMF) was used to analyze long-term measurements of chlorinated benzene concentrations in groundwater at a contaminated site in New Jersey. A dataset containing 597 groundwater samples and 5 chlorinated benzenes and benzene collected from 144 wells over 20 years was investigated using PMF2 software. Despite the heterogeneity of this dataset, PMF analysis revealed patterns indicative of microbial dechlorination in the groundwater and provided insight about where dechlorination is occurring, to what extent, and under which geochemical conditions. PMF resolved a factor indicative of a source of 1,2,4-trichlorobenzene and 1,2-dichlorobenzene and two factors representing stages of dechlorination, one more advanced than the other. The PMF results indicated that virtually all of the 1,2-dichlorobenzene at the site arises from its use onsite, not from the dechlorination of trichlorobenzenes. Factors were further interpreted using ancillary data such as geochemical indicators and field parameters also measured in the samples. Analysis suggested that the partial and advanced dechlorination signals occur under different subsurface physical conditions. The results provided field validation of the current understanding of anaerobic dechlorination of chlorinated benzenes in the subsurface developed from laboratory studies. PMF is thereby shown to be a useful tool for investigating chlorinated benzene dechlorination.
Collapse
Affiliation(s)
- Staci L Capozzi
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, United States.
| | - Lisa A Rodenburg
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, United States
| | - Valdis Krumins
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, United States
| | - Donna E Fennell
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, United States
| | - E Erin Mack
- Corporate Remediation Group, E. I. DuPont de Nemours and Company, Wilmington, DE, 19805, United States
| |
Collapse
|
21
|
Kim AW, Vane CH, Moss-Hayes V, Engelhart SE, Kemp AC. PAH, PCB, TPH and mercury in surface sediments of the Delaware River Estuary and Delmarva Peninsula, USA. MARINE POLLUTION BULLETIN 2018; 129:835-845. [PMID: 29033171 DOI: 10.1016/j.marpolbul.2017.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 09/29/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
Surface sediment concentrations of polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB), total petroleum hydrocarbons (TPH) and mercury, were compared from two areas with contrasting land use history, the industrial Delaware Estuary and the rural Delmarva Peninsula (USA). TPH in the Delaware (38-616mg/kg) and saturate/aromatic fractions suggested petroleum/industrial sources compared to biogenic sources in the Delmarva coastal control (<34-159mg/kg). Within the Delaware the ∑PAH18 ranged from 3749 to 22,324μg/kg with isomeric ratios indicative of petroleum combustion source/s, conversely, those in the Delmarva (5-2139μg/kg) also yielded relatively higher perylene that were consistent with natural background levels derived from vegetation/coal combustion source/s. ∑PCB(tri-hepta) concentrations in the Delmarva (0.6-6.5μg/kg) were less than the threshold effect concentration (TEC), whereas the Delaware had received much higher PCB loading (18.1-136.8μg/kg) as evidenced by a significantly higher amounts in some samples (>TEC).
Collapse
Affiliation(s)
- A W Kim
- British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG, UK.
| | - C H Vane
- British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG, UK
| | - V Moss-Hayes
- British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG, UK
| | - S E Engelhart
- Department of Geosciences, University of Rhode Island, 9 East Alumni Avenue, Kingston, RI 02881, USA
| | - A C Kemp
- Department of Earth and Ocean Sciences, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
22
|
Weber R, Herold C, Hollert H, Kamphues J, Blepp M, Ballschmiter K. Reviewing the relevance of dioxin and PCB sources for food from animal origin and the need for their inventory, control and management. ENVIRONMENTAL SCIENCES EUROPE 2018; 30:42. [PMID: 30464877 PMCID: PMC6224007 DOI: 10.1186/s12302-018-0166-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/06/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND In the past, cases of PCDD/F and PCB contamination exceeding limits in food from animal origin (eggs, meat or milk) were mainly caused by industrially produced feed. But in the last decade, exceedances of EU limit values were discovered more frequently for PCDD/Fs or dioxin-like(dl)-PCBs from free range chicken, sheep, and beef, often in the absence of any known contamination source. RESULTS The German Environment Agency initiated a project to elucidate the entry of PCBs and PCDD/Fs in food related to environmental contamination. This paper summarizes the most important findings. Food products from farm animals sensitive to dioxin/PCB exposure-suckling calves and laying hens housed outdoor-can exceed EU maximum levels at soil concentrations that have previously been considered as safe. Maximum permitted levels can already be exceeded in beef/veal when soil is contaminated around 5 ng PCB-TEQ/kg dry matter (dm). For eggs/broiler, this can occur at a concentration of PCDD/Fs in soil below 5 ng PCDD/F-PCB-TEQ/kg dm. Egg consumers-especially young children-can easily exceed health-based guidance values (TDI). The soil-chicken egg exposure pathway is probably the most sensitive route for human exposure to both dl-PCBs and PCDD/Fs from soil and needs to be considered for soil guidelines. The study also found that calves from suckler cow herds are most prone to the impacts of dl-PCB contamination due to the excretion/accumulation via milk. PCB (and PCDD/F) intake for free-range cattle stems from feed and soil. Daily dl-PCB intake for suckler cow herds must in average be less than 2 ng PCB-TEQ/day. This translates to a maximum concentration in grass of 0.2 ng PCB-TEQ/kg dm which is less than 1/6 of the current EU maximum permitted level. This review compiles sources for PCDD/Fs and PCBs relevant to environmental contamination in respect to food safety. It also includes considerations on assessment of emerging POPs. CONCLUSIONS The major sources of PCDD/F and dl-PCB contamination of food of animal origin in Germany are (1) soils contaminated from past PCB and PCDD/F releases; (2) PCBs emitted from buildings and constructions; (3) PCBs present at farms. Impacted areas need to be assessed with respect to potential contamination of food-producing animals. Livestock management techniques can reduce exposure to PCDD/Fs and PCBs. Further research and regulatory action are needed to overcome gaps. Control and reduction measures are recommended for emission sources and new listed and emerging POPs to ensure food safety.
Collapse
Affiliation(s)
- Roland Weber
- POPs Environmental Consulting, Lindenfirststraße 23, 73527 Schwäbisch Gmünd, Germany
| | - Christine Herold
- POPs Environmental Consulting, Lindenfirststraße 23, 73527 Schwäbisch Gmünd, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Josef Kamphues
- Institute of Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | | | | |
Collapse
|
23
|
Rimayi C, Chimuka L, Odusanya D, de Boer J, Weiss JM. Source characterisation and distribution of selected PCBs, PAHs and alkyl PAHs in sediments from the Klip and Jukskei Rivers, South Africa. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:327. [PMID: 28600683 DOI: 10.1007/s10661-017-6043-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
A study of the distribution of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) utilising 16 priority PAHs, benzo(e)pyrene, perylene, 19 alkylated PAHs and 31 ortho substituted PCBs in South Africa is presented. It was aimed to (a) deduce characteristic contamination patterns for both PCBs and PAHs and (b) provide the first comprehensive dataset for establishment of source characterisation of PCBs and PAHs. This is in line with new South African legislation on mandatory monitoring of PCB and PAH emissions. Bar charts, principal component analysis (PCA) and biplots were utilised to identify signature contamination patterns and distribution of PCBs and PAHs within the Jukskei and Klip Rivers. Sediments from the Jukskei and Klip River catchments both showed distinct contamination signatures for hexa to nonachlorinated PCBs, characteristic of contamination by Aroclor 1254 and 1260 technical mixtures. PCB signature patterns in order of abundance were 138 > 180 > 206 > 153 > 187 > 149 and 138 > 153 > 180 > 149 > 187 > 110 > 170 for the Jukskei and Klip River sediments, respectively. The upstream Alberton point had the highest Σ31 PCB and Σ (parent+alkyl) PAH concentrations in the Klip River of 61 and 6000 μg kg-1 dry weight (dw), respectively. In the Jukskei River, the upstream Marlboro point had the highest Σ31 PCB concentration of 19 μg kg-1 dw and the N14 site recorded the highest Σ (parent+alkyl) PAH concentration of 2750 μg kg-1 dw. PAH concentrations in both the Jukskei and Klip Rivers were significantly higher than the PCB concentrations. Fluoranthene, phenanthrene and pyrene were found in the highest concentrations in both the Jukskei and Klip River sediments. Both the Jukskei and Klip River sediments showed trends of a mixed pyrogenic-petrogenic PAH source contamination.
Collapse
Affiliation(s)
- Cornelius Rimayi
- Department of Water and Sanitation, Resource Quality Information Services (RQIS), Roodeplaat, P. Bag X313, Pretoria, 0001, South Africa.
- School of Chemistry, University of the Witwatersrand, P. Bag 3, Wits, Johannesburg, 2050, South Africa.
- Department of Environment and Health, Vrije Universiteit, De Boelelaan, 1087, 1081HV, Amsterdam, The Netherlands.
| | - Luke Chimuka
- School of Chemistry, University of the Witwatersrand, P. Bag 3, Wits, Johannesburg, 2050, South Africa
| | - David Odusanya
- Department of Water and Sanitation, Resource Quality Information Services (RQIS), Roodeplaat, P. Bag X313, Pretoria, 0001, South Africa
| | - Jacob de Boer
- Department of Environment and Health, Vrije Universiteit, De Boelelaan, 1087, 1081HV, Amsterdam, The Netherlands
| | - Jana M Weiss
- Department of Environmental Science and Analytical Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| |
Collapse
|
24
|
Gibson PP, Mills MA, Kraus JM, Walters DM. A modeling approach to compare ΣPCB concentrations between congener-specific analyses. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2017; 13:227-232. [PMID: 27427154 DOI: 10.1002/ieam.1821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/21/2016] [Accepted: 07/12/2016] [Indexed: 06/06/2023]
Abstract
Changes in analytical methods over time pose problems for assessing long-term trends in environmental contamination by PCBs. Congener-specific analyses vary widely in the number and identity of the 209 distinct PCB chemical configurations (congeners) that are quantified, leading to inconsistencies among summed PCB concentrations (ΣPCB) reported by different studies. Here, we present a modeling approach using linear regression to compare ΣPCB concentrations derived from different congener-specific analyses measuring different co-eluting groups. The approach can be used to develop a specific conversion model between any 2 sets of congener-specific analytical data from similar samples (similar matrix and geographic origin). We demonstrate the method by developing a conversion model for an example data set that includes data from 2 different analytical methods, a low resolution method quantifying 119 congeners and a high resolution method quantifying all 209 congeners. We used the model to show that the 119-congener set captured most (93%) of the total PCB concentration (i.e., Σ209 PCB) in sediment and biological samples. ΣPCB concentrations estimated using the model closely matched measured values (mean relative percent difference = 9.6). General applications of the modeling approach include 1) generating comparable ΣPCB concentrations for samples that were analyzed for different congener sets; and 2) estimating the proportional contribution of different congener sets to ΣPCB. This approach may be especially valuable for enabling comparison of long-term remediation monitoring results even as analytical methods change over time. Integr Environ Assess Manag 2017;13:227-232. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Polly P Gibson
- Contractor, US Geological Survey, Fort Collins Science Center, Fort Collins, Colorado
| | - Marc A Mills
- US Environmental Protection Agency, National Risk Management Research Laboratory, Cincinnati, Ohio
| | - Johanna M Kraus
- US Geological Survey, Fort Collins Science Center, Fort Collins, Colorado
| | - David M Walters
- US Geological Survey, Fort Collins Science Center, Fort Collins, Colorado
| |
Collapse
|
25
|
Praipipat P, Meng Q, Miskewitz RJ, Rodenburg LA. Source Apportionment of Atmospheric Polychlorinated Biphenyls in New Jersey 1997-2011. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:1195-1202. [PMID: 28051297 DOI: 10.1021/acs.est.6b04572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Concentrations of polychlorinated biphenyls (PCBs) in the Delaware River currently exceed the Water Quality Criteria of 16 pg/L for the sum of PCBs due in part to atmospheric deposition. The purpose of this work was to use a source apportionment tool called Positive Matrix Factorization (PMF) to identify the sources of PCBs to the atmosphere in this area and determine whether their concentrations are declining over time. The data set was compiled by the Delaware Atmospheric Deposition Network (DADN) from samples taken in Camden, NJ from 1999 to 2011 and New Brunswick, NJ from 1997 to 2011. The PMF analysis revealed four resolved factors at each site. The factors that dominate the PCB burden in the atmosphere at both Camden and New Brunswick resemble Aroclor 1242. These factors declined in concentration during some portions of the monitoring period, but this decline slowed or stopped during 2003-2011. None of the factors displayed consistent declines in concentration throughout the monitoring periods, and some factors actually increased in concentration during some periods. This suggests natural attenuation alone will not control atmospheric PCB concentrations, and additional efforts are needed to control PCB atmospheric emissions as well as the numerous other sources of PCBs to the estuary.
Collapse
Affiliation(s)
- Pornsawai Praipipat
- Department of Environmental Sciences, Rutgers University , 14 College Farm Road, New Brunswick, New Jersey 08901, United States
| | - Qingyu Meng
- School of Public Health, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Robert J Miskewitz
- Department of Environmental Sciences, Rutgers University , 14 College Farm Road, New Brunswick, New Jersey 08901, United States
| | - Lisa A Rodenburg
- Department of Environmental Sciences, Rutgers University , 14 College Farm Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
26
|
Rodenburg LA, Ralston DK. Historical sources of polychlorinated biphenyls to the sediment of the New York/New Jersey Harbor. CHEMOSPHERE 2017; 169:450-459. [PMID: 27889511 DOI: 10.1016/j.chemosphere.2016.11.096] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/28/2016] [Accepted: 11/18/2016] [Indexed: 06/06/2023]
Abstract
Using dated sediment cores, polychlorinated biphenyl (PCB) congener concentrations in the New York/New Jersey Harbor and Lower Hudson River were investigated using Positive Matrix Factorization. Of the seven factors resolved, six represent Aroclors in various stages of weathering. Factor 1 resembles Aroclor 1242 and is consistent with the Upper Hudson River PCB signal associated with the General Electric capacitor plants near Hudson Falls, NY. This factor is the dominant source of PCBs in the upper layers of the sediment core collected in the Lower Hudson River. Factor 2 (Aroclor 1248) was the dominant PCB component in the core depths corresponding with around 1970, but it has decreased more rapidly since its peak (estimated half-life of about 5 years) than factor 1 (half-life of about 14 years), suggesting that PCBs from the Upper Hudson have delayed the recovery of the Harbor from PCB contamination. The seventh factor, comprised of PCBs 206, 208, and 209, was greatest in concentration in the deepest core slices and is thought be associated with inadvertent production of PCBs during the manufacture of titanium dioxide and/or with foundry waxes containing PCBs. PCB 11, which is thought to be associated with the use of color organic pigments, was examined separately and was detected in sediment throughout the Harbor. Its maximum concentrations generally occurred at the same depth as the maximum total PCB concentrations, suggesting that PCB 11 concentrations decreased after the mid-1970s.
Collapse
Affiliation(s)
- Lisa A Rodenburg
- Department of Environmental Science, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - David K Ralston
- Applied Ocean Physics and Engineering Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|
27
|
Zhu X, Shan B, Tang W. Heavy metal in sediments of Ziya River in northern China: distribution, potential risks, and source apportionment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:23511-23521. [PMID: 27614639 DOI: 10.1007/s11356-016-7561-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/29/2016] [Indexed: 06/06/2023]
Abstract
The concentration partitioning between the sediment particle and the interstitial water phase plays an important role in controlling the toxicity of heavy metals in aquatic systems. The aim of this study was to assess the sediment quality in a polluted area of the Ziya River, Northern China. The contamination potential and bioavailability of six metals were determined from the concentrations of total metals and the bioavailable fractions. The results showed that the concentrations of Cr, Cu, Ni, Zn, and Pb exceeded the probable effect concentration at several sites. The high geoaccumulation indices showed that the sediments were seriously contaminated by Cd. The ratio of acid-volatile sulfide (AVS) to simultaneously extracted metal (SEM) was higher than 1, which indicated that the availability of metals in sediments was low. The risk assessment of interstitial waters confirmed that there was little chance of release of metals associated with acid-volatile sulfide into the water column. Values of the interstitial water criteria toxicity unit indicated that none of the concentrations of the studied metals exceeded the corresponding water quality thresholds of the US Environmental Protection Agency. Positive matrix factorization showed that the major sources of metals were related to anthropogenic activities. Further, if assessments are based on total heavy metal concentrations, the toxicity of heavy metals in sediment may be overestimated.
Collapse
Affiliation(s)
- Xiaolei Zhu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Baoqing Shan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Wenzhong Tang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
28
|
Diao CP, Yu X, Li C, Yang X, Sun A, Liu R. Evaluation of magnetic matrix solid-phase dispersion for the determination of polychlorinated biphenyls in water samples by gas chromatography with electron capture detection. J Sep Sci 2016; 39:1926-34. [DOI: 10.1002/jssc.201501140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 03/05/2016] [Accepted: 03/08/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Chun-peng Diao
- School of Environment and Planning; Liaocheng University; Liaocheng China
| | - Xiaoting Yu
- School of Environment and Planning; Liaocheng University; Liaocheng China
| | - Cong Li
- School of Environment and Planning; Liaocheng University; Liaocheng China
| | - Xiao Yang
- School of Chemistry and Chemical Engineering; Liaocheng University; Liaocheng China
| | - Aling Sun
- School of Chemistry and Chemical Engineering; Liaocheng University; Liaocheng China
| | - Renmin Liu
- School of Chemistry and Chemical Engineering; Liaocheng University; Liaocheng China
| |
Collapse
|
29
|
Li F, Jin J, Gao Y, Geng N, Tan D, Zhang H, Ni Y, Chen J. Occurrence, distribution and source apportionment of polychlorinated naphthalenes (PCNs) in sediments and soils from the Liaohe River Basin, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 211:226-232. [PMID: 26774769 DOI: 10.1016/j.envpol.2015.09.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 06/05/2023]
Abstract
The occurrence and spatial distribution of polychlorinated naphthalenes (PCNs) were investigated in sediments, upland and paddy soils from the Liaohe River Basin. Concentrations of ΣPCNs were in the range of 0.33-12.49 ng g(-1) dry weight (dw) in sediments and 0.61-6.60 ng g(-1) dw in soils, respectively. Tri-CNs and tetra-CNs were the dominating homologues. An increasing trend of PCNs contamination was found in sediments with the rivers flowing through industrial areas and cities. Soils collected near cities exhibited higher abundance of PCNs than that of rural areas. The distribution of PCNs was related to the local industrial activities, rather than total organic carbon. Positive matrix factorization (PMF) was used for the source apportionment of PCNs in sediments and paddy soils. The result of PMF indicated that PCNs in sediments and paddy soils were mainly from the industrial processes, with additional contributions from the historical use of Halowax 1014 and atmospheric deposition.
Collapse
Affiliation(s)
- Fang Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Jin
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023, China
| | - Yuan Gao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023, China
| | - Ningbo Geng
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongqin Tan
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haijun Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023, China
| | - Yuwen Ni
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023, China
| | - Jiping Chen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023, China.
| |
Collapse
|
30
|
|
31
|
Zou Y, Aziz-Schwanbeck AC, Wei H, Christensen ER, Rockne KJ, Li A. Debromination of PBDEs in Arkansas Water Bodies Analyzed by Positive Matrix Factorization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1359-1367. [PMID: 26741167 DOI: 10.1021/acs.est.5b05736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A previously generated data set for polybrominated diphenyl ethers (PBDEs) in dated sediment cores of West Lake of El Dorado (AED), Calion Lake (ACL), and the lagoon of Magnolia Wastewater Treatment Facility (AMW) from Southern Arkansas is examined by a weighted chemical mass balance (CMB) model and positive matrix factorization (PMF) in order to quantify PBDE sources and debromination. DNA extraction and pyrosequencing were done on several core sections in order to investigate microbial debromination. CMB and PMF analyses indicate that deca technical mixtures are the dominant PBDE input (>99% in mole fraction in AED and ACL, and 94.7% in AMW). Minor contributions of penta and octa technical mixtures were found in all three water bodies (<1% in AED and ACL; and 1.1% and 4.1% in AMW, respectively). Results suggest that debromination takes place in all three lakes, but is more intense in AMW. In-situ microbial debromination was supported by the microorganism analysis. The PMF results are validated by PBDE manufacturing records, and the operating history of AMW. Despite the high PBDE concentrations in these sediments near former manufacturing facilities, the extent of debromination is limited, possibly due to sorption to natural organic matter of the sediment.
Collapse
Affiliation(s)
- Yonghong Zou
- Department of Civil and Environmental Engineering, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - Azivy Che Aziz-Schwanbeck
- Department of Civil and Materials Engineering, University of Illinois-Chicago , Chicago, Illinois 60607, United States
| | - Hua Wei
- School of Public Health, University of Illinois-Chicago , Chicago, Illinois 60607, United States
| | - Erik R Christensen
- Department of Civil and Environmental Engineering, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53201, United States
| | - Karl J Rockne
- Department of Civil and Materials Engineering, University of Illinois-Chicago , Chicago, Illinois 60607, United States
| | - An Li
- School of Public Health, University of Illinois-Chicago , Chicago, Illinois 60607, United States
| |
Collapse
|
32
|
Davies H, Delistraty D. Evaluation of PCB sources and releases for identifying priorities to reduce PCBs in Washington State (USA). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:2033-2041. [PMID: 26071980 DOI: 10.1007/s11356-015-4828-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 06/02/2015] [Indexed: 06/04/2023]
Abstract
Polychlorinated biphenyls (PCBs) are ubiquitously distributed in the environment and produce multiple adverse effects in humans and wildlife. As a result, the purpose of our study was to characterize PCB sources in anthropogenic materials and releases to the environment in Washington State (USA) in order to formulate recommendations to reduce PCB exposures. Methods included review of relevant publications (e.g., open literature, industry studies and reports, federal and state government databases), scaling of PCB sources from national or county estimates to state estimates, and communication with industry associations and private and public utilities. Recognizing high associated uncertainty due to incomplete data, we strived to provide central tendency estimates for PCB sources. In terms of mass (high to low), PCB sources include lamp ballasts, caulk, small capacitors, large capacitors, and transformers. For perspective, these sources (200,000-500,000 kg) overwhelm PCBs estimated to reside in the Puget Sound ecosystem (1500 kg). Annual releases of PCBs to the environment (high to low) are attributed to lamp ballasts (400-1500 kg), inadvertent generation by industrial processes (900 kg), caulk (160 kg), small capacitors (3-150 kg), large capacitors (10-80 kg), pigments and dyes (0.02-31 kg), and transformers (<2 kg). Recommendations to characterize the extent of PCB distribution and decrease exposures include assessment of PCBs in buildings (e.g., schools) and replacement of these materials, development of Best Management Practices (BMPs) to contain PCBs, reduction of inadvertent generation of PCBs in consumer products, expansion of environmental monitoring and public education, and research to identify specific PCB congener profiles in human tissues.
Collapse
Affiliation(s)
- Holly Davies
- Washington Department of Ecology, P.O. Box 47600, Olympia, WA, 98504-7600, USA.
| | | |
Collapse
|
33
|
Anezaki K, Nakano T, Kashiwagi N. Estimation of Polychlorinated Biphenyl Sources in Industrial Port Sediments Using a Bayesian Semifactor Model Considering Unidentified Sources. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:765-771. [PMID: 26716388 DOI: 10.1021/acs.est.5b03501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Using the chemical balance method, and considering the presence of unidentified sources, we estimated the origins of PCB contamination in surface sediments of Muroran Port, Japan. It was assumed that these PCBs originated from four types of Kanechlor products (KC300, KC400, KC500, and KC600), combustion and two kinds of pigments (azo and phthalocyanine). The characteristics of these congener patterns were summarized on the basis of principal component analysis and explanatory variables determined. A Bayesian semifactor model (CMBK2) was applied to the explanatory variables to analyze the sources of PCBs in the sediments. The resulting estimates of the contribution ratio of each kind of sediment indicate that the existence of unidentified sources can be ignored and that the assumed seven sources are adequate to account for the contamination. Within the port, the contribution ratio of KC500 and KC600 (used as paints for ship hulls) was extremely high, but outside the port, the influence of azo pigments was observable to a limited degree. This indicates that environmental PCBs not derived from technical PCBs are present at levels that cannot be ignored.
Collapse
Affiliation(s)
- Katsunori Anezaki
- Environmental and Geological Research Department, Institute of Environmental Sciences, Hokkaido Research Organization , N19W12, Kita-ku, Sapporo, Hokkaido, 060-0819 Japan
| | - Takeshi Nakano
- Research Center for Environmental Preservation, Osaka University , 2-4 Suita, Osaka, 565-0871 Japan
| | - Nobuhisa Kashiwagi
- The Institute of Statistical Mathematics , 10-3 Midori-cho, Tachikawa, Tokyo 190-8562, Japan
- SOKENDAI , Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| |
Collapse
|
34
|
Vorkamp K. An overlooked environmental issue? A review of the inadvertent formation of PCB-11 and other PCB congeners and their occurrence in consumer products and in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:1463-1476. [PMID: 26490526 DOI: 10.1016/j.scitotenv.2015.10.019] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/05/2015] [Accepted: 10/05/2015] [Indexed: 05/25/2023]
Abstract
Polychlorinated biphenyls (PCBs) are banned from production and use in most countries as they are persistent organic pollutants (POPs) of concern for environment and health. Recent research has pointed at a new environment issue resulting from the inadvertent formation of PCBs in certain processes, in particular the pigment production. PCB-11 is a major by-product in these processes, but PCB-28, PCB-52, PCB-77 as well as the nonachlorinated PCBs and PCB-209 have been found in pigments and consumer products as well. In addition to environmental emissions via point sources, in particular related to industrial and municipal wastewater, atmospheric transport seems to be important for the global distribution of PCB-11. Thus, PCB-11 has also been detected in the polar regions. Worldwide air concentrations appear relatively uniform, but maxima have been found in urban and industrialised areas. Data on the uptake and accumulation of PCB-11 in the food chain are still inconclusive: Although food web studies do not show biomagnification, PCB-11 has been detected in humans. The human exposure might originate from the direct contact to consumer products as well as from the omnipresence of PCB-11 in the environment.
Collapse
Affiliation(s)
- Katrin Vorkamp
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| |
Collapse
|
35
|
Martinez A, Spak SN, Petrich NT, Hu D, Carmichael GR, Hornbuckle KC. Atmospheric dispersion of PCB from a contaminated Lake Michigan harbor. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2015; 122:791-798. [PMID: 26594127 PMCID: PMC4649934 DOI: 10.1016/j.atmosenv.2015.10.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Indiana Harbor and Ship Canal (IHSC) in East Chicago is an industrial waterway on Lake Michigan and a source of PCBs to Lake Michigan and the overlying air. We hypothesized that IHSC is an important source of airborne PCBs to surrounding communities. We used AERMOD to model hourly PCB concentrations, utilizing emission fluxes from a prior study and hourly meteorology provided by the State of Indiana. We also assessed dispersion using hourly observed meteorology from a local airport and high resolution profiles simulated by the Weather Research and Forecasting model. We found that emissions from IHSC waters contributed about 15% of the observed ΣPCB concentrations close to IHSC when compared on an hourly basis and about 10% of observed annual concentrations at a nearby school. Concentrations at the school due to emissions from IHSC ranged from 0 to 18,000 pg m-3, up to 20 times higher than observed background levels, with an annual geometric mean (GSD) of 19 (31) pg m-3. Our findings indicate that IHSC is an important source of PCBs to East Chicago, but not the only source. Four observed enriched PCB3 samples suggest a nearby non-Aroclor source.
Collapse
Affiliation(s)
- Andres Martinez
- Department of Civil & Environmental Engineering, IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA, USA
| | - Scott N. Spak
- Department of Civil & Environmental Engineering, IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA, USA
- School of Urban and Regional Planning, Public Policy Center, The University of Iowa, IA, USA
| | - Nicholas T. Petrich
- Department of Civil & Environmental Engineering, IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA, USA
| | - Dingfei Hu
- Department of Civil & Environmental Engineering, IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA, USA
| | - Gregory R. Carmichael
- Department of Chemical and Biochemical Engineering, The University of Iowa, Iowa City, IA, USA
| | - Keri C. Hornbuckle
- Department of Civil & Environmental Engineering, IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
36
|
Anezaki K, Kannan N, Nakano T. Polychlorinated biphenyl contamination of paints containing polycyclic- and Naphthol AS-type pigments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:14478-88. [PMID: 24809497 DOI: 10.1007/s11356-014-2985-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 04/28/2014] [Indexed: 05/07/2023]
Abstract
This study reports the concentrations and congener partners of polychlorinated biphenyls (PCBs) in commercially available paints. Polycyclic-type pigments containing dioxazine violet (pigment violet (PV) 23, PV37) and diketopyrrolopyrrole (PR254, PR255) were found to contain PCB-56, PCB-77, PCB-40, PCB-5, and PCB-12, and PCB-6, PCB-13, and PCB-15, respectively, as major congeners. Dioxazine violet is contaminated with by-products during synthesis from o-dichlorobenzene, which is used as a solvent during synthesis, and diketopyrrolopyrrole is contaminated with by-products during synthesis from p-chlorobenzonitrile. The concentration of PCBs in paint containing PV23 or PV37 was 0.050-29 mg/kg, and toxic equivalency (TEQ) values ranged 1.1-160 pg-TEQ/g. The concentration of PCBs in paint containing PR254 or PR255 was 0.0019-2.4 mg/kg. Naphthol AS is an azo-type pigment, and PCB-52 was detected in paint containing pigment red (PR) 9 with 2,5-dichloroaniline as its source. PCB-146, PCB-149, and PCB-153 were identified from paint containing PR112 produced from 2,4,5-trichloroaniline, as major congeners. These congeners have chlorine positions similar to aniline, indicating that these congeners are by-products obtained during the synthesis of pigments. The concentrations of PCBs in paints containing PR9 and PR112 were 0.0042-0.43 and 0.0044-3.8 mg/kg, respectively. The corresponding TEQ for PR112 was 0.0039-8.6 pg-TEQ/g.
Collapse
Affiliation(s)
- Katsunori Anezaki
- Hokkaido Research Organization, Environmental and Geological Research Department, Institute of Environmental Sciences, N19W12, Kita, Sapporo, Hokkaido, 060-0819, Japan.
| | - Narayanan Kannan
- Faculty of Environmental Studies, University of Putra Malaysia, Serdang, Malaysia
| | - Takeshi Nakano
- Center for Advanced Science and Innovation, Osaka University, Osaka, Japan
| |
Collapse
|
37
|
Jiang X, Liu G, Wang M, Zheng M. Formation of Polychlorinated Biphenyls on Secondary Copper Production Fly Ash: Mechanistic Aspects and Correlation to Other Persistent Organic Pollutants. Sci Rep 2015; 5:13903. [PMID: 26374495 PMCID: PMC4570990 DOI: 10.1038/srep13903] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/11/2015] [Indexed: 11/09/2022] Open
Abstract
Emission of unintentionally formed polychlorinated biphenyls (PCBs) from industrial thermal processes is a global issue. Because the production and use of technical PCB mixtures has been banned, industrial thermal processes have become increasingly important sources of PCBs. Among these processes, secondary copper smelting is an important PCB source in China. In the present study, the potential for fly ash-mediated formation of PCBs in the secondary copper industry, and the mechanisms involved, were studied in laboratory thermochemical experiments. The total PCB concentrations were 37-70 times higher than the initial concentrations. Thermochemical reactions on the fly ash amplified the potential toxic equivalents of PCBs. The formation of PCBs over time and the effect of temperature were investigated. Based on analyses of PCB homologue profiles with different reaction conditions, a chlorination mechanism was proposed for forming PCBs in addition to a de novo synthesis mechanism. The chlorination pathway was supported by close correlations between each pair of adjacent homologue groups. Formation of PCBs and multiple persistent organic pollutants, including polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and polychlorinated naphthalenes, occurred during the tests, indicating that these compounds may share similar formation mechanisms.
Collapse
Affiliation(s)
- Xiaoxu Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Mei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| |
Collapse
|
38
|
Zhang L, Yang W, Zhang L, Li X. Highly chlorinated unintentionally produced persistent organic pollutants generated during the methanol-based production of chlorinated methanes: A case study in China. CHEMOSPHERE 2015; 133:1-5. [PMID: 25777670 DOI: 10.1016/j.chemosphere.2015.02.044] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/11/2015] [Accepted: 02/19/2015] [Indexed: 06/04/2023]
Abstract
The formation of unintentionally produced persistent organic pollutants (POPs) may occur during various chlorination processes. In this study, emissions of unintentionally produced POPs during the methanol-based production of chlorinated methanes were investigated. High concentrations of highly chlorinated compounds such as decachlorobiphenyl, octachloronaphthalene, octachlorostyrene, hexachlorobutadiene, hexachlorocyclopentadiene, hexachlorobenzene, and pentachlorobenzene were found in the carbon tetrachloride byproduct of the methanol-based production of chlorinated methanes. The total emission amounts of hexachlorocyclopentadiene, hexachlorobutadiene, polychlorinated benzenes, polychlorinated naphthalenes, octachlorostyrene, and polychlorinated biphenyls released during the production of chlorinated methanes in China in 2010 were estimated to be 10080, 7350, 5210, 427, 212, and 167 kg, respectively. Moreover, polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) were formed unintentionally during chlorinated methanes production, the emission factor for PCDDs/DFs was 364 μg toxic equivalency quotient (TEQ) t(-1) product for residues, which should be added into the UNEP toolkit for updating. It was worth noting that a high overall toxic equivalency quotient from polychlorinated naphthalenes and PCDDs/DFs was generated from the chlorinated methanes production in China in 2010. The values reached 563 and 32.8 g TEQ, respectively. The results of the study indicate that more research and improved management systems are needed to ensure that the methanol-based production of chlorinated methanes can be achieved safely.
Collapse
Affiliation(s)
- Lifei Zhang
- State Environmental Protection Key Laboratory of Dioxin Pollution Control, National Research Center for Environmental Analysis and Measurement, 100029 Beijing, China.
| | - Wenlong Yang
- State Environmental Protection Key Laboratory of Dioxin Pollution Control, National Research Center for Environmental Analysis and Measurement, 100029 Beijing, China
| | - Linli Zhang
- State Environmental Protection Key Laboratory of Dioxin Pollution Control, National Research Center for Environmental Analysis and Measurement, 100029 Beijing, China; College of Resource Environment and Tourism, Capital Normal University, 100048 Beijing, China
| | - Xiaoxiu Li
- College of Resource Environment and Tourism, Capital Normal University, 100048 Beijing, China
| |
Collapse
|
39
|
Rodenburg LA, Krumins V, Curran JC. Microbial dechlorination of polychlorinated biphenyls, dibenzo-p-dioxins, and -furans at the Portland Harbor Superfund site, Oregon, USA. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:7227-7235. [PMID: 26010118 DOI: 10.1021/acs.est.5b01092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The Portland Harbor (Oregon, USA) has been declared a "Superfund" site because it is impacted by a variety of contaminants, including polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins and -furans (PCDD/Fs). Using data collected in the remedial investigation, concentrations of PCBs and PCDD/Fs in sediment and water were examined using positive matrix factorization to look for evidence that PCBs and PCDD/Fs are dechlorinated by anaerobic bacteria. This process has long been known to occur in sediments. Recently, it has been recognized that PCB and PCDD/F dechlorination may also occur in other anaerobic environments, such as in landfills, sewers, and groundwater. The results indicate that a factor related to the dechlorination of PCBs and PCDD/Fs was present in the water but not in the sediment. Spatial patterns in dechlorination products suggest that they come primarily from groundwater. Dechlorination products comprise 22% of the PCBs in the water. The Portland Harbor therefore represents the third major US watershed in which PCBs appear to undergo dechlorination in an environment other than sediment, suggesting that the microbial dechlorination of PCBs and PCDD/Fs is more common than previously assumed. In addition, the Portland Harbor is impacted by PCBs generated inadvertently during the production of pigments, such as PCB 11, which alone exceeded the 64 pg/L federal water quality standard for the sum of PCBs in two of 120 whole water samples.
Collapse
Affiliation(s)
- Lisa A Rodenburg
- †Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, New Jersey 08901, United States
| | - Valdis Krumins
- †Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, New Jersey 08901, United States
| | - Joanna Crowe Curran
- ‡Northwest Hydraulic Consultants, 16300 Christensen Road, Suite 350, Seattle, Washington 98188-3422, United States
| |
Collapse
|
40
|
Parette R, McCrindle R, McMahon KS, Pena-Abaurrea M, Reiner E, Chittim B, Riddell N, Voss G, Dorman FL, Pearson WN. Halogenated indigo dyes: a likely source of 1,3,6,8-tetrabromocarbazole and some other halogenated carbazoles in the environment. CHEMOSPHERE 2015; 127:18-26. [PMID: 25638463 DOI: 10.1016/j.chemosphere.2015.01.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/31/2014] [Accepted: 01/02/2015] [Indexed: 05/28/2023]
Abstract
In recent years, a number of halogenated carbazoles have been detected in environmental samples. These emerging contaminants have been shown to be persistent and possess dioxin-like toxicological potential. The goal of this research was to examine the literature to determine likely anthropogenic origin(s) of halogenated carbazoles in the environment. The scientific literature indicated a number of pathways by which 1,3,6,8-tetrabromocarbazole could form in the manufacture of 5,5',7,7'-tetrabromoindigo. The U.S. production history of 5,5',7,7'-tetrabromoindigo correlates well with the concentration rise, decline, and disappearance of 1,3,6,8-tetrabromocarbazole in dated Lake Michigan sediments. Additionally, other halogenated carbazoles that have been found in environmental sediments can be explained by the production of other halogenated indigo dyes. 1,8-dibromo-3,6-dichlorocarbazole can be accounted for by the manufacture of 7,7'-dibromo-5,5'-dichloroindigo, while 1,3,6,8-tetrachlorocarbazole was found at relatively high concentration near the outfall of a U.S. manufacturer of 5,5',7,7'-tetrachloroindigo. Carbazoles containing an iodo-substituent can be explained by the use of iodine as a catalyst in the manufacture of halogenated indigo dyes. 3,6-Dichlorocarbazole measured in soils and dibromocarbazoles measured in more recently deposited sediments are not easily rationalized on the basis of an indigo related source and may be related to other anthropogenic sources or natural origins.
Collapse
Affiliation(s)
- Robert Parette
- Matson & Associates, Inc., 331 E. Foster Ave, State College, PA 16801, USA.
| | - Robert McCrindle
- Dept. of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada; Wellington Laboratories Inc., 345 Southgate Dr, Guelph, ON N1G 3M5, Canada
| | | | - Miren Pena-Abaurrea
- Ontario Ministry of the Environment, 125 Resources Rd, Toronto, ON M9P 3V6, Canada; Dept. of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Eric Reiner
- Ontario Ministry of the Environment, 125 Resources Rd, Toronto, ON M9P 3V6, Canada; Dept. of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Brock Chittim
- Wellington Laboratories Inc., 345 Southgate Dr, Guelph, ON N1G 3M5, Canada
| | - Nicole Riddell
- Wellington Laboratories Inc., 345 Southgate Dr, Guelph, ON N1G 3M5, Canada
| | - Gundula Voss
- Johannes Kepler University, Institute for Organic Solar Cells, Altenberger Str 69, 4040 Linz, Austria
| | - Frank L Dorman
- Dept.of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802, USA
| | - Wendy N Pearson
- Matson & Associates, Inc., 331 E. Foster Ave, State College, PA 16801, USA
| |
Collapse
|
41
|
Anezaki K, Nakano T. Unintentional PCB in chlorophenylsilanes as a source of contamination in environmental samples. JOURNAL OF HAZARDOUS MATERIALS 2015; 287:111-117. [PMID: 25634145 DOI: 10.1016/j.jhazmat.2015.01.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/08/2014] [Accepted: 01/08/2015] [Indexed: 06/04/2023]
Abstract
This paper discusses the concentrations and congener patterns of PCBs unintentionally present in chlorophenylsilanes. Chlorophenylsilanes are used in the production of silicone-based adhesives and phenyl silicones. The concentration of PCBs in adhesives was found to range from not-detectable concentrations to 40mg/kg. The concentrations of PCBs in trichlorophenylsilane, dichlorodiphenylsilane, chlorotriphenylsilane, and diphenylsilanediol were 0.00072-2.7, 6.5-1,500, 0.019-1.1, and 0.12-120mg/kg, respectively. Dichlorodiphenylsilane and diphenylsilanediol, in particular, had high PCB concentrations. The PCB concentration of some specimens exceeded the 50mg/kg limit set by the transportation regulations of the Stockholm Convention. In the adhesives and chlorophenylsilanes, mono- and di-chlorinated biphenyls were detected in high proportions. The congeners detected in dichlorinated biphenyls had a structure in which one chlorine atom was substituted at each of the two aryls of the biphenyl backbone. This indicated that the chlorobenzene used for synthesizing chlorophenylsilanes undergoes dimerization. The congener and homologue patterns of the adhesives containing PCBs were similar to dichlorodiphenylsilane and diphenylsilanediol. It was concluded that the production of the adhesives is based on these substances. In addition, these results indicate that silicone-based products may become a source of PCBs in the environment, leading to irregular PCB values in environmental analysis.
Collapse
Affiliation(s)
- Katsunori Anezaki
- Hokkaido Research Organization, Environmental and Geological Research Department, Institute of Environmental Sciences, N19W12, Kita, Sapporo, Hokkaido, Japan.
| | - Takeshi Nakano
- Center for Advanced Science and Innovation, Osaka University, Osaka, Japan
| |
Collapse
|
42
|
Rodenburg LA, Delistraty D, Meng Q. Polychlorinated biphenyl congener patterns in fish near the Hanford Site (Washington State, USA). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:2767-2775. [PMID: 25621866 DOI: 10.1021/es504961a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
It is well-known that absorption, distribution, metabolism, and excretion (ADME) processes in fish can alter polychlorinated biphenyl (PCB) congener patterns in fish, but these patterns have never been investigated using an advanced source-apportionment tool. In this work, PCB congener patterns in freshwater fish were examined with positive matrix factorization (PMF). PCB congeners were quantified via EPA Method 1668 in fillet and carcass of six species in four study areas in the Columbia River near the Hanford Site. Six factors were resolved with PMF2 software. Depletion and enhancement of PCB congeners in factors, relative to Aroclor 1254, suggested biotransformation (via cytochrome P450) and bioaccumulation in fish, respectively. Notable differences were observed among species and across study locations. For example, sturgeon and whitefish exhibited congener patterns consistent with Aroclor weathering, suggesting potential PCB metabolism in these species. In terms of location, average concentration of total PCBs for all species combined was significantly higher (P < 0.05) at Hanford 100 and 300 areas, relative to upriver and downriver study sites. Furthermore, a distinct PCB signature in sturgeon and whitefish, collected at Hanford study areas, suggests that Hanford is a unique PCB source.
Collapse
Affiliation(s)
- Lisa A Rodenburg
- Department of Environmental Science, Rutgers University , 14 College Farm Road, New Brunswick, New Jersey 08901, United States
| | | | | |
Collapse
|
43
|
Lv J, Zhang Y, Zhao X, Zhou C, Guo C, Luo Y, Meng W, Zou G, Xu J. Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in sediments of Liaohe River: levels, spatial and temporal distribution, possible sources, and inventory. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:4256-4264. [PMID: 25292305 DOI: 10.1007/s11356-014-3666-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 09/25/2014] [Indexed: 06/03/2023]
Abstract
Spatial and seasonal variations of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in the sediment of Liaohe River were investigated in this study. A total of 29 surface sediment samples were collected in May and September in 2013. Results showed that levels of the two classes of compounds were higher in September than in May. The total concentration of PBDEs (∑8PBDEs) ranged from 0.30 to 5.09 ng g(-1) in May and from 0.17 to 13.73 ng g(-1) in September, respectively, and BDE 209 was the dominant compound. The total concentration of PCBs (∑33PCBs) was in the range of 4.92-76.86 and 11.69-179.61 ng g(-1) in May and September, respectively, with tri- and tetra-CBs dominated in the total PCBs in the sediments. According to the congener profiles and the principal component analysis, the major sources of PCBs and PBDEs in sediments of Liaohe River were from the usage of commercial products and industrial activities, and the degradation of high brominated BDEs also contributed to the current PBDEs in the sediments. The mass inventories of PBDEs and PCBs in the sediments of Liaohe River were 1.74 and 21.96 t, respectively, indicating that Liaohe River sediments may act as the potential sources of PBDEs and PCBs to the downstream coastal areas.
Collapse
Affiliation(s)
- Jiapei Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Li M, Lou Z, Wang Y, Liu Q, Zhang Y, Zhou J, Qian G. Alkali and alkaline earth metallic (AAEM) species leaching and Cu(II) sorption by biochar. CHEMOSPHERE 2015; 119:778-785. [PMID: 25194478 DOI: 10.1016/j.chemosphere.2014.08.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/11/2014] [Accepted: 08/01/2014] [Indexed: 05/12/2023]
Abstract
Alkali and alkaline earth metallic (AAEM) species water leaching and Cu(II) sorption by biochar prepared from two invasive plants, Spartina alterniflora (SA) and water hyacinth (WH), were explored in this work. Significant amounts of Na and K can be released (maximum leaching for Na 59.0 mg g(-1) and K 79.9 mg g(-1)) from SA and WH biochar when they are exposed to contact with water. Cu(II) removal by biochar is highly related with pyrolysis temperature and environmental pH with 600-700 °C and pH of 6 showing best performance (29.4 and 28.2 mg g(-1) for SA and WH biochar). Cu(II) sorption exerts negligible influence on Na/K/Mg leaching but clearly promotes the release of Ca. Biochars from these two plant species provide multiple benefits, including nutrient release (K), heavy metal immobilization as well as promoting the aggregation of soil particles (Ca) for soil amelioration. AAEM and Cu(II) equilibrium concentrations in sorption were analyzed by positive matrix factorization (PMF) to examine the factors underlying the leaching and sorption behavior of biochar. The identified factors can provide insightful understanding on experimental phenomena.
Collapse
Affiliation(s)
- Mi Li
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China
| | - Zhenjun Lou
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China
| | - Yang Wang
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China
| | - Qiang Liu
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China.
| | - Yaping Zhang
- Engineering Research Center of Biomass Materials (SWUST), Ministry of Education, No. 59 Qinglong Road, Mianyang, Sichuan 621010, China
| | - Jizhi Zhou
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China
| | - Guangren Qian
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
45
|
Rodenburg LA, Meng Q, Yee D, Greenfield BK. Evidence for photochemical and microbial debromination of polybrominated diphenyl ether flame retardants in San Francisco Bay sediment. CHEMOSPHERE 2014; 106:36-43. [PMID: 24485321 DOI: 10.1016/j.chemosphere.2013.12.083] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 12/03/2013] [Accepted: 12/30/2013] [Indexed: 06/03/2023]
Abstract
Brominated diphenyl ethers (BDEs) are flame retardant compounds that have been classified as persistent organic pollutants under the Stockholm Convention and targeted for phase-out. Despite their classification as persistent, PBDEs undergo debromination in the environment, via both microbial and photochemical pathways. We examined concentrations of 24 PBDE congeners in 233 sediment samples from San Francisco Bay using Positive Matrix Factorization (PMF). PMF analysis revealed five factors, two of which contained high proportions of congeners with two or three bromines, indicating that they are related to debromination processes. One of the factors included PBDE 15 (4,4'-dibromo diphenyl ether, comprising 20% of the factor); the other included PBDE 7 (2,4-dibromo diphenyl ether; 12%) and PBDE 17 (2,2',4-tribromo diphenyl ether; 16%). The debromination processes that produce these congeners are probably photochemical debromination and anaerobic microbial debromination, although other processes could also be responsible. Together, these two debromination factors represent about 8% of the mass and 13% of the moles of PBDEs in the data matrix, suggesting that PBDEs undergo measurable degradation in the environment.
Collapse
Affiliation(s)
- Lisa A Rodenburg
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, United States.
| | - Qingyu Meng
- School of Public Health, Rutgers University, Piscataway, NJ 08854, United States
| | - Don Yee
- San Francisco Estuary Institute, 4911 Central Avenue, Richmond, CA 94804, United States
| | - Ben K Greenfield
- San Francisco Estuary Institute, 4911 Central Avenue, Richmond, CA 94804, United States
| |
Collapse
|
46
|
Anezaki K, Nakano T. Concentration levels and congener profiles of polychlorinated biphenyls, pentachlorobenzene, and hexachlorobenzene in commercial pigments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:998-1009. [PMID: 23852585 DOI: 10.1007/s11356-013-1977-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 07/02/2013] [Indexed: 05/11/2023]
Abstract
The concentration levels and congener profiles of polychlorinated biphenyls (PCBs), pentachlorobenzene (PeCBz), and hexachlorobenzene (HxCBz) were assessed in commercially available organic pigments. Among the azo-type pigments tested, PCB-11, which is synthesized from 3,3'-dichlorobendizine, and PCB-52, which is synthesized from 2,2',5,5'-tetrachlorobendizine, were the major congeners detected. It is speculated that these were byproducts of chlorobendizine, which has a very similar structure. The total PCB concentrations in this type of pigment ranged from 0.0070 to 740 mg/kg. Among the phthalocyanine-type pigments, highly chlorinated PCBs, mainly composed of PCB-209, PeCBz, and HxCBz were detected. Their concentration levels ranged from 0.011 to 2.5 mg/kg, 0.0035 to 8.4 mg/kg, and 0.027 to 75 mg/kg, respectively. It is suggested that PeCBz and HxCBz were formed as byproducts and converted into PCBs at the time of synthesizing the phthalocyanine green. For the polycyclic-type pigments that were assessed, a distinctive PCB congener profile was detected that suggested an impact of their raw materials and the organic solvent used in the pigment synthesis. PCB pollution from PCB-11, PCB-52, and PCB-209 pigments is of particular concern; therefore, the monthly variations in atmospheric concentrations of these pollutants were measured in an urban area (Sapporo city) and an industrial area (Muroran city). The study detected a certain level of PCB-11, which is not included in PCB technical mixtures, and revealed continuing PCB pollution originating from pigments in the ambient air.
Collapse
Affiliation(s)
- Katsunori Anezaki
- Hokkaido Research Organization, Environmental and Geological Research Department, Institute of Environmental Sciences, N19W12, Kita, Sapporo, Hokkaido, 060-0819, Japan,
| | | |
Collapse
|