1
|
Zheng J, Li YY, Lu YS, Wang D, Liu C, Peng HL, Shi CH, Xie KZ, Zhang K, Sun LL, Zhou CM, Gu WJ. Impact of different continuous fertilizations on the antibiotic resistome associated with a subtropical triple-cropping system over one decade. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125564. [PMID: 39716502 DOI: 10.1016/j.envpol.2024.125564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
The prevalence of antibiotic resistance genes (ARGs) in agricultural soils has garnered significant attention. However, the long-term impacts of various nitroge (N)-substitution fertilization regimes on the distribution of soil ARGs and their dominant drivers in a subtropical triple-cropping system remain largely unexplored. This study employed a metagenomic approach to analyze soil ARGs, microbial communities, mobile genetic elements (MGEs), and viruses from a maize-maize-cabbage rotation field experiment with five different fertilization regimes. Soil samples were collected in 2012 and 2021. A total of 615 unique ARG subtypes were identified, with multidrug, bacitracin, and rifamycin resistance genes being the most abundant. Notably, ARG types. the continuous application of fresh chicken manure (CM) over 10 years significantly increased both the count of unique ARG subtypes and the total ARG abundance compared to other fertilization regimes, such as inorganic fertilizer and composted chicken manure. Specifically, the abundance of genes associated with antibiotic target replacement (e.g., sul1 and sul2) in the CM-treated soil rose by 8.83-fold from 2021 to 2012. Our random forest analysis revealed that the abundance of three MGEs (QacEdelta, plasmids, and IstB), two viral families (Myoviridae and Podoviridae), two bacterial phyla (Chloroflexi and Planctomycetes), and two environmental factors (pH and soil organic matter (SOM)) significantly influenced the distribution of ARGs. Furthermore, variance decomposition analysis underscored the critical roles of the three MGEs and the two viral families in the dissemination of ARGs, suggesting that horizontal gene transfer (HGT) may play a key role in ARG spread. These findings enhance our understanding of how different fertilization practices influence ARG dissemination in subtropical triple-cropping agroecosystems over the long term and provide valuable insights for optimizing fertilization management strategies.
Collapse
Affiliation(s)
- Jin Zheng
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Ya-Ying Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China; State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yu-Sheng Lu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Dan Wang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Chong Liu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Huan-Long Peng
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Chao-Hong Shi
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Kai-Zhi Xie
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Kun Zhang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Li-Li Sun
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Chang-Min Zhou
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China
| | - Wen-Jie Gu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China; State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Academy of Agricultural Sciences, Guangzhou, China.
| |
Collapse
|
2
|
Zeng JY, Meng M, Qi L, Li Y, Yao H. Environmental risks in swine biogas slurry-irrigated soils: A comprehensive analysis of antibiotic residues, resistome, and bacterial pathogens. ENVIRONMENT INTERNATIONAL 2024; 191:108954. [PMID: 39173236 DOI: 10.1016/j.envint.2024.108954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Simple anaerobic digestion is insufficient to completely remove residual parent antibiotics and antibiotic resistance genes (ARGs) from animal manure. ARG prevalence in swine biogas slurry-irrigated soils threatens human health. However, comprehensive analysis of antibiotic residues, high-resolution resistance gene profiles, and pathogenic microbiomes in biogas slurry-irrigated soils is very limited. Here, we comprehensively determined the antibiotics, resistome, and potential pathogens distribution in these soils, using high-performance liquid chromatography-tandem mass spectrometry, high-throughput quantitative PCR, and 16S rRNA gene sequencing. The results revealed a significant enrichment of tetracyclines and fluoroquinolones antibiotics and ARGs in soils with prolonged biogas slurry irrigation, with a total of 12 antibiotics, 175 unique ARGs, and 9 mobile genetic elements (MGEs) detected. Quantification of veterinary antibiotic residues (especially chlortetracycline) showed significant correlations with multiple ARGs. The abundance of ARGs and MGEs was highest in the biogas slurry-irrigated soils, denoting a tight link between the application of biogas slurry and the spread of antibiotic resistance. The presence of 50 potential pathogenic bacterial genera, including 13 with multidrug resistance, was identified. Variation partitioning, combined with hierarchical partitioning analysis, indicated that Firmicutes, MGEs, and tetracyclines were the key drivers shaping the ARG profiles in biogas slurry-irrigated soils. The findings offer insights into the mechanisms of antibiotic residue and ARGs spread from the agricultural practice of biogas slurry irrigation, underscoring the necessity of sustainable soil management to mitigate the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Jie-Yi Zeng
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China
| | - Miaoling Meng
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Lin Qi
- Ningbo Agricultural and Rural Green Development Center, Ningbo 315012, PR China
| | - Yaying Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China.
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China.
| |
Collapse
|
3
|
Wu X, Tang Y, Amanze C, Peng J, Yu R, Li J, Shen L, Liu Y, Zeng W. Fabrication and optimization of bioelectrochemical system using tetracycline-degrading bacterial strains for antibiotic wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 407:131096. [PMID: 38986881 DOI: 10.1016/j.biortech.2024.131096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/19/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
In this study, a microbial fuel cell was constructed using Raoultella sp. XY-1 to efficiently degrade tetracycline (TC) and assess the effectiveness of the electrochemical system. The degradation rate reached 83.2 ± 1.8 % during the 7-day period, in which the system contained 30 mg/L TC, and the degradation pathway and intermediates were identified. Low concentrations of TC enhanced anodic biofilm power production, while high concentrations of TC decreased the electrochemical activity of the biofilm, extracellular polymeric substances, and enzymatic activities associated with electron transfer. Introducing electrogenic bacteria improved power generation efficiency. A three-strain hybrid system was fabricated using Castellaniella sp. A3, Castellaniella sp. A5 and Raoultella sp. XY-1, leading to the enhanced TC degradation rate of 90.4 % and the increased maximum output voltage from 200 to 265 mV. This study presents a strategy utilizing tetracycline-degrading bacteria as bioanodes for TC removal, while incorporating electrogenic bacteria to enhance electricity generation.
Collapse
Affiliation(s)
- Xueling Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, Hunan, PR China
| | - Yunhui Tang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China
| | - Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China
| | - Jingxuan Peng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China
| | - Runlan Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, Hunan, PR China
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, Hunan, PR China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, Hunan, PR China
| | - Yuandong Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, Hunan, PR China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, Hunan, PR China.
| |
Collapse
|
4
|
Lu N, Du Z, Chu F, Xiao R, Wu Z, Wang M, Jia R, Chu W. Tracking the impact of perfluoroalkyl acid emissions on antibiotic resistance gene profiles in receiving water by metagenomic analysis. WATER RESEARCH 2024; 261:121931. [PMID: 38924952 DOI: 10.1016/j.watres.2024.121931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/17/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
The ecological risks posed by perfluoroalkyl acids (PFAAs) to the aquatic environment have recently been of great concern. However, little information was available on the impact of PFAAs on antibiotic resistance genes (ARGs) profiles. In this study, the receiving river of the largest fluoropolymer production facility in China was selected to investigate the effects of PFAAs on ARGs profiles. The highest PFAAs concentration for water samples near the industrial effluent discharge point was 310.9 μg/L, which was thousands times of higher than the average concentration collected at upstream sites. Perfluorooctanoic acid accounted for more than 67.2 % of ∑PFAAs concentration in water samples collected at the downstream sites, followed by perfluorohexanoic acid (3.6 %-15.9 %). 145 ARG subtypes including high-risk ARGs were detected by metagenomic technology. The results indicated that the discharge of PFAA-containing effluents had a significant impact on the abundance and diversity of ARGs in receiving waters, and PFAAs and water quality parameters (e.g., pH, NH3N, CODMn, TP) could largely affect ARG profiles. Specifically, short-chain PFAAs had similar impacts on ARG profiles compared to the restricted long-chain PFAAs. This study confirmed the potential effects of PFAAs on ARGs in aquatic environment and provided more insights into the ecological risk raised by PFAAs.
Collapse
Affiliation(s)
- Nannan Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shandong Provincial Water Supply and Drainage Monitoring Centre, Jinan, 250101, China
| | - Zhenqi Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shandong Provincial Water Supply and Drainage Monitoring Centre, Jinan, 250101, China
| | - Fumin Chu
- Shandong Provincial Water Supply and Drainage Monitoring Centre, Jinan, 250101, China
| | - Rong Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhengdi Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Mingquan Wang
- Shandong Provincial Water Supply and Drainage Monitoring Centre, Jinan, 250101, China
| | - Ruibao Jia
- Shandong Provincial Water Supply and Drainage Monitoring Centre, Jinan, 250101, China.
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
5
|
Dropa M, da Silva JSB, Andrade AFC, Nakasone DH, Cunha MPV, Ribeiro G, de Araújo RS, Brandão CJ, Ghiglione B, Lincopan N, Sato MIZ, Knöbl T. Spread and persistence of antimicrobial resistance genes in wastewater from human and animal sources in São Paulo, Brazil. Trop Med Int Health 2024; 29:424-433. [PMID: 38545908 DOI: 10.1111/tmi.13986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
The spread of antimicrobial resistance (AMR) through multiple reservoirs is a global concern. Wastewater is a critical AMR dissemination source, so this study aimed to assess the persistence of resistance genetic markers in wastewater using a culture-independent approach. Raw and treated wastewater samples (n = 121) from a wastewater treatment plant (WWTP), a human hospital, a veterinary hospital, and a pig farm were monthly collected and concentrated by filtration. DNA was extracted directly from filter membranes, and PCR was used in the qualitative search of 32 antimicrobial resistance genes (ARGs). Selected genes (blaCTX-M, blaKPC, qnrB, and mcr-1) were enumerated by quantitative real-time PCR (qPCR). Twenty-six ARGs were detected in the qualitative ARGs search, while quantitative data showed a low variation of the ARG's relative abundance (RA) throughout the months, especially at the human hospital and the WWTP. At the WWTP, despite significantly reducing the absolute number of gene copies/L after each treatment stage (p < 0.05), slight increases (p > 0.05) in the RAs of genes blaCTX-M, qnrB, and mcr-1 were observed in reused water (tertiary treatment) when compared with secondary effluent. Although the increase is not statistically significant, it is worth noting that there was some level of ARGs concentration after the disinfection process. No significant absolute or relative after-treatment quantification reductions were observed for any ARGs at the veterinary hospital or the pig farm. The spread of ARGs through sewage needs to be continuously addressed, because their release into natural environments may pose potential risks of exposure to resistant bacteria and impact local ecosystems.
Collapse
Affiliation(s)
- Milena Dropa
- School of Public Health, Department of Environmental Health, University of São Paulo, São Paulo, Brazil
| | | | - André Furugen César Andrade
- School of Veterinary Medicine and Animal Science, Department of Pathology, University of São Paulo, São Paulo, Brazil
| | - Denis Hideki Nakasone
- School of Veterinary Medicine and Animal Science, Department of Pathology, University of São Paulo, São Paulo, Brazil
| | - Marcos Paulo Vieira Cunha
- School of Veterinary Medicine and Animal Science, Department of Pathology, University of São Paulo, São Paulo, Brazil
| | - Gesiane Ribeiro
- Veterinary Hospital, Department of Veterinary Medicine, FMU University Center, São Paulo, Brazil
| | - Ronalda Silva de Araújo
- Department of Environmental Analysis, Environmental Company of the São Paulo State (CETESB), São Paulo, Brazil
| | - Carlos Jesus Brandão
- Department of Environmental Analysis, Environmental Company of the São Paulo State (CETESB), São Paulo, Brazil
| | - Barbara Ghiglione
- School of Pharmacy & Biochemistry (FFyB), Department of Microbiology, Immunology, Biotechnology and Genetics, University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Nilton Lincopan
- Institute of Biomedical Sciences, Department of Microbiology, University of São Paulo, São Paulo, Brazil
| | - Maria Inês Zanoli Sato
- Department of Environmental Analysis, Environmental Company of the São Paulo State (CETESB), São Paulo, Brazil
| | - Terezinha Knöbl
- School of Veterinary Medicine and Animal Science, Department of Pathology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Chen Y, Jia B, Li JY, Li D, He W. Characteristics and driving factors of antibiotic resistance genes in aquaculture products from freshwater ponds in China Yangtze River Delta. ENVIRONMENTAL TECHNOLOGY 2024; 45:2459-2470. [PMID: 36756971 DOI: 10.1080/09593330.2023.2176261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Antibiotic resistance genes (ARGs) are widespread in aquaculture and pose a huge threat to aquaculture organisms and human health. In this study, occurrences and relative abundances of ARGs were analysed in the guts of products cultured in freshwater ponds in the Yangtze River Delta region in China. A total of 29 ARGs were found in the gut samples, with detection frequencies ranging from 4.8% to 81%, and the relative abundances (ARGs/16S rRNA) ranging from 10-7 to 1. In addition, the human dietary intake of ARGs via aquaculture products was assessed, where the daily intake of most ARGs via aquaculture products was higher than those via PM2.5 and drinking water, but lower than that via vegetables. The relative abundances of MGE (IS613, Tp614, tnpA and int1) were significantly correlated with those of multiple ARGs, indicating the horizontal gene transfer (HGT) of ARGs among gut microorganisms. Proteobacteria, Firmicutes and Actinobacteria were the dominated microbial communities found in the guts of aquaculture products. In addition, significant correlations were found between Cyanobacteria and int1, between Nitrospira and tetE, and between sul2 and aadA2, indicating potential same hosts of these genes. In addition, results from co-correlation indicated both HGT (dominated by MGEs) of ARGs and the enrichment of ARGs in bacteria. MGEs, mostly int1, were more effective than bacteria in increasing the ARG abundance. This study could provide a better understanding of the transmission of ARGs in the aquaculture environment and improve the quality of aquaculture products and the ecology.
Collapse
Affiliation(s)
- Yiqin Chen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Bin Jia
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Juan-Ying Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai, People's Republic of China
| | - Dan Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai, People's Republic of China
| | - Wenhui He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Sun Y, Staley ZR, Woodbury B, Riethoven JJ, Li X. Composting reduces the risks of resistome in beef cattle manure at the transcriptional level. Appl Environ Microbiol 2024; 90:e0175223. [PMID: 38445903 PMCID: PMC11022583 DOI: 10.1128/aem.01752-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
Transcriptomic evidence is needed to determine whether composting is more effective than conventional stockpiling in mitigating the risk of resistome in livestock manure. The objective of this study is to compare composting and stockpiling for their effectiveness in reducing the risk of antibiotic resistance in beef cattle manure. Samples collected from the center and the surface of full-size manure stockpiling and composting piles were subject to metagenomic and metatranscriptomic analyses. While the distinctions in resistome between stockpiled and composted manure were not evident at the DNA level, the advantages of composting over stockpiling were evident at the transcriptomic level in terms of the abundance of antibiotic resistance genes (ARGs), the number of ARG subtypes, and the prevalence of high-risk ARGs (i.e., mobile ARGs associated with zoonotic pathogens). DNA and transcript contigs show that the pathogen hosts of high-risk ARGs included Escherichia coli O157:H7 and O25b:H4, Klebsiella pneumoniae, and Salmonella enterica. Although the average daily temperatures for the entire composting pile exceeded 55°C throughout the field study, more ARG and ARG transcripts were removed at the center of the composting pile than at the surface. This work demonstrates the advantage of composting over stockpiling in reducing ARG risk in active populations in beef cattle manure.IMPORTANCEProper treatment of manure before land application is essential to mitigate the spread of antibiotic resistance in the environment. Stockpiling and composting are two commonly used methods for manure treatment. However, the effectiveness of composting in reducing antibiotic resistance in manure has been debated. This work compared the ability of these two methods to reduce the risk of antibiotic resistance in beef cattle manure. Our results demonstrate that composting reduced more high-risk resistance genes at the transcriptomic level in cattle manure than conventional stockpiling. This finding not only underscores the effectiveness of composting in reducing antibiotic resistance in manure but also highlights the importance of employing RNA analyses alongside DNA analyses.
Collapse
Affiliation(s)
- Yuepeng Sun
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Zachery R. Staley
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Bryan Woodbury
- USDA-ARS U.S. Meat Animal Research Center, Clay Center, Clay Center, Nebraska, USA
| | - Jean-Jack Riethoven
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Xu Li
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
8
|
Yang L, Zhao F, Feng Q, Li M, Wang X, Tang J, Bu Q, Chen L. A landscape source-sink model to understanding the seasonal dynamics of antibiotics in soils at watershed scale. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133224. [PMID: 38101022 DOI: 10.1016/j.jhazmat.2023.133224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/23/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Human and veterinary antibiotics occur widely in soil ecosystems and pose a serious threat to soil health. Landscape structure can be linked to Earth surface processes and anthropogenic footprints and may influence the variability of antibiotics in soil. In this study, an improved landscape source-sink model was used to characterize source-sink structures using the location-weighted landscape index (LWLI), which can be linked to antibiotic seasonality. The topographic wetness index was employed to identify source and sink landscapes, which represent antibiotic transport pathways via topography-driven hydrological processes. The results indicate that LWLI values and antibiotic seasonality are typically higher in farmland soils than in forest and orchard soils. LWLI values exhibit significant positive correlations with antibiotic seasonality in soils (R2: 0.33-0.58). Furthermore, landscape source-sink structures have a significant influence on antibiotic seasonality between winter and other seasons in farmland soils; however, these structures affect antibiotic seasonality between summer and other seasons in forest and orchard soils. The results of this study indicate that water movement regulated by landscape structure may play a crucial role in influencing antibiotic seasonality in soils at the watershed scale, and the landscape source-sink model can be used to quantitatively evaluate antibiotic seasonality in soil environment.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangkai Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China
| | - Qingyu Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinmiao Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianfeng Tang
- Key laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qingwei Bu
- School of Chemical& Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | - Liding Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Tang H, Liu Z, Hu B, Zhu L. D-Ring Modifications of Tetracyclines Determine Their Ability to Induce Resistance Genes in the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1338-1348. [PMID: 38157442 DOI: 10.1021/acs.est.3c07559] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The widespread utilization of tetracyclines (TCs) in agriculture and medicine has led to the borderless spread of tetracycline resistance in humans, animals, and the environment, posing huge risks to both the ecosystem and human society. Changes in the functional group modifications resulted in a higher bacteriostatic efficacy of the new generation of TCs, but their effect on the emergence and evolution of antibiotic resistance genes (ARGs) is not yet known. To this end, four TCs from three generations were chosen to compare their structural effects on influencing the evolution of ARGs in soil microbial communities. The findings revealed that low-generation TCs, such as tetracycline and oxytetracycline, exhibited a greater propensity to stimulate the production and proliferation of ARGs than did high-generation tigecycline. Molecular docking analysis demonstrated that modifications of the D-ring functional group determined the binding capacity of TCs to the substrate-binding pocket of transcriptional regulators and efflux pumps mainly involved in drug resistance. This can be further evidenced by reverse transcription-quantitative polymerase chain reaction quantification and intracellular antibiotic accumulation assessment. This study sheds light on the mechanism of the structural effect of antibiotic-induced ARG production from the perspective of compound-protein binding, therefore providing theoretical support for controlling the dissemination of antibiotic resistance.
Collapse
Affiliation(s)
- Huiming Tang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Zishu Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baolan Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Luo F, Zhao Y, Xu JY, Wang HT, Zhu D. Network complexity of bacterial community driving antibiotic resistome in the microbiome of earthworm guts under different land use patterns. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132732. [PMID: 37813029 DOI: 10.1016/j.jhazmat.2023.132732] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Recently, the study of antibiotic resistance in the soil animal microbiome has attracted extensive attention; however, the patterns of antibiotic resistance genes (ARGs) in soil and soil animals related to different land use types remain poorly studied. In the present study, soil and earthworms were collected from four different land-use types (farmland, hospital, park land, and mountain park), and 162 ARGs in the microbiomes of the soil and earthworms were quantified using high-throughput quantitative PCR. Our study showed that the abundance and number of ARGs were higher in soil samples than in earthworm guts, but earthworms as the living organisms created relatively isolated ambient surroundings, which allowed for a more heterogeneous ARGs profile. Meanwhile, land use significantly influenced the abundance, number and co-occurrence pattern of ARGs in the soil and earthworm samples. Furthermore, abiotic and biotic factors had significant effects on the ARGs profile, among which pH had a negative effect on the ARGs profiles of both soil and earthworm microbiomes, and bacterial network complexity had a positive effect on the earthworm ARGs profile. Our study provides new insights into the distribution and dispersal of ARGs in the soil animal gut microbiome under different land use patterns.
Collapse
Affiliation(s)
- Fang Luo
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yang Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jia-Yang Xu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Tao Wang
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| |
Collapse
|
11
|
Jampani M, Mateo-Sagasta J, Chandrasekar A, Fatta-Kassinos D, Graham DW, Gothwal R, Moodley A, Chadag VM, Wiberg D, Langan S. Fate and transport modelling for evaluating antibiotic resistance in aquatic environments: Current knowledge and research priorities. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132527. [PMID: 37788551 DOI: 10.1016/j.jhazmat.2023.132527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 08/03/2023] [Accepted: 09/09/2023] [Indexed: 10/05/2023]
Abstract
Antibiotics have revolutionised medicine in the last century and enabled the prevention of bacterial infections that were previously deemed untreatable. However, in parallel, bacteria have increasingly developed resistance to antibiotics through various mechanisms. When resistant bacteria find their way into terrestrial and aquatic environments, animal and human exposures increase, e.g., via polluted soil, food, and water, and health risks multiply. Understanding the fate and transport of antibiotic resistant bacteria (ARB) and the transfer mechanisms of antibiotic resistance genes (ARGs) in aquatic environments is critical for evaluating and mitigating the risks of resistant-induced infections. The conceptual understanding of sources and pathways of antibiotics, ARB, and ARGs from society to the water environments is essential for setting the scene and developing an appropriate framework for modelling. Various factors and processes associated with hydrology, ecology, and climate change can significantly affect the fate and transport of ARB and ARGs in natural environments. This article reviews current knowledge, research gaps, and priorities for developing water quality models to assess the fate and transport of ARB and ARGs. The paper also provides inputs on future research needs, especially the need for new predictive models to guide risk assessment on AR transmission and spread in aquatic environments.
Collapse
Affiliation(s)
- Mahesh Jampani
- International Water Management Institute (IWMI), Battaramulla, Colombo, Sri Lanka.
| | - Javier Mateo-Sagasta
- International Water Management Institute (IWMI), Battaramulla, Colombo, Sri Lanka
| | - Aparna Chandrasekar
- UFZ - Helmholtz Centre for Environmental Research, Department Computational Hydrosystems, Leipzig, Germany; Institute of Hydrobiology, Technische Universität Dresden, Dresden, Germany
| | - Despo Fatta-Kassinos
- Civil and Environmental Engineering Department and Nireas International Water Research Center, University of Cyprus, Nicosia, Cyprus
| | - David W Graham
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Ritu Gothwal
- International Water Management Institute (IWMI), Battaramulla, Colombo, Sri Lanka
| | - Arshnee Moodley
- International Livestock Research Institute (ILRI), Nairobi, Kenya; Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | | | - David Wiberg
- International Water Management Institute (IWMI), Battaramulla, Colombo, Sri Lanka
| | - Simon Langan
- International Water Management Institute (IWMI), Battaramulla, Colombo, Sri Lanka
| |
Collapse
|
12
|
Bodus B, O'Malley K, Dieter G, Gunawardana C, McDonald W. Review of emerging contaminants in green stormwater infrastructure: Antibiotic resistance genes, microplastics, tire wear particles, PFAS, and temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167195. [PMID: 37777137 DOI: 10.1016/j.scitotenv.2023.167195] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/08/2023] [Accepted: 09/16/2023] [Indexed: 10/02/2023]
Abstract
Green stormwater infrastructure is a growing management approach to capturing, infiltrating, and treating runoff at the source. However, there are several emerging contaminants for which green stormwater infrastructure has not been explicitly designed to mitigate and for which removal mechanisms are not yet well defined. This is an issue, as there is a growing understanding of the impact of emerging contaminants on human and environmental health. This paper presents a review of five emerging contaminants - antibiotic resistance genes, microplastics, tire wear particles, PFAS, and temperature - and seeks to improve our understanding of how green stormwater infrastructure is impacted by and can be designed to mitigate these emerging contaminants. To do so, we present a review of the source and transport of these contaminants to green stormwater infrastructure, specific treatment mechanisms within green infrastructure, and design considerations of green stormwater infrastructure that could lead to their removal. In addition, common removal mechanisms across these contaminants and limitations of green infrastructure for contaminant mitigation are discussed. Finally, we present future research directions that can help to advance the use of green infrastructure as a first line of defense for downstream water bodies against emerging contaminants of concern.
Collapse
Affiliation(s)
- Benjamin Bodus
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave, Milwaukee, WI 53233, USA.
| | - Kassidy O'Malley
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave, Milwaukee, WI 53233, USA.
| | - Greg Dieter
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave, Milwaukee, WI 53233, USA.
| | - Charitha Gunawardana
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave, Milwaukee, WI 53233, USA.
| | - Walter McDonald
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave, Milwaukee, WI 53233, USA.
| |
Collapse
|
13
|
Kenneth MJ, Koner S, Hsu GJ, Chen JS, Hsu BM. A review on the effects of discharging conventionally treated livestock waste to the environmental resistome. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122643. [PMID: 37775024 DOI: 10.1016/j.envpol.2023.122643] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Globally, animal production has developed rapidly as a consequence of the ongoing population growth, to support food security. This has consequently led to an extensive use of antibiotics to promote growth and prevent diseases in animals. However, most antibiotics are not fully metabolized by these animals, leading to their excretion within urine and faeces, thus making these wastes a major reservoir of antibiotics residues, antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) in the environment. Farmers normally depend on conventional treatment methods to mitigate the environmental impact of animal waste; however, these methods are not fully efficient to remove the environmental resistome. The present study reviewed the variability of residual antibiotics, ARB, as well as ARGs in the conventionally treated waste and assessed how discharging it could increase resistome in the receiving environments. Wherein, considering the efficiency and environmental safety, an addition of pre-treatments steps with these conventional treatment methods could enhance the removal of antibiotic resistance agents from livestock waste.
Collapse
Affiliation(s)
- Mutebi John Kenneth
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Doctoral Program in Science, Technology, Environment and Mathematics, National Chung Cheng University, Chiayi County, Taiwan
| | - Suprokash Koner
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Department of Biomedical Sciences, National Chung Cheng University, Chiayi County, Taiwan
| | - Gwo-Jong Hsu
- Division of Infectious Diseases, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chiayi City, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan.
| |
Collapse
|
14
|
Trejo B, Russell M, Bartelt-Hunt S, Beni NN, Snow DD, Messer TL. Occurrence and persistence of antibiotics administered to cattle in a newly established feedlot. JOURNAL OF ENVIRONMENTAL QUALITY 2023; 52:1193-1205. [PMID: 37739441 DOI: 10.1002/jeq2.20516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
The practice of using therapeutic and prophylactic veterinary antibiotics in livestock farming is a worldwide phenomenon. Over the last decade, there has been a growing concern of antibiotic residues entering the environment via animal manure. Similar studies have focused on the occurrence and biological effects of antibiotics in land-applied animal feedlots; however, limited research has been conducted on the occurrence and persistence of antibiotics in animal feedlots. Therefore, the objective of this study was to evaluate antibiotic persistence, fate, and transport in surface water runoff and feedlot sediment in feedlot pens with livestock either receiving or not receiving antibiotic treatments through injection and feed. The two antibiotics (tylosin and monensin) added to animal feed were observed to persist in the soil environment for more than 30 days along with injected florfenicol. Monensin (5.6× higher) and tylosin (20× higher) were significantly higher in livestock pens receiving antibiotics compared to livestock pens not receiving the antibiotics. Further, rainfall was observed to significantly impact soil surface concentrations of florfenicol. Other antibiotics administrated by injection were not observed to statistically increase in concentrations in runoff or feedlot sediment. Our findings emphasize antibiotics administered in feedlots have the potential to persist and remain in feedlot sediment and runoff, particularly in instances of regular administration in feed.
Collapse
Affiliation(s)
- Brittany Trejo
- School of Natural Resources, East Campus, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Matthew Russell
- Biosystems and Agricultural Engineering Department, University of Kentucky, Lexington, KY, USA
| | - Shannon Bartelt-Hunt
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Nasrin Naderi Beni
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Daniel D Snow
- Water Sciences Laboratory & Nebraska Water Center, part of the Daugherty Water for Food Global Institute, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Tiffany L Messer
- Biosystems and Agricultural Engineering Department, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
15
|
Wiesner-Friedman C, Beattie RE, Stewart JR, Hristova KR, Serre ML. Identifying sources of antibiotic resistance genes in the environment using the microbial Find, Inform, and Test framework. Front Microbiol 2023; 14:1223876. [PMID: 37731922 PMCID: PMC10508347 DOI: 10.3389/fmicb.2023.1223876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/07/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Antimicrobial resistance (AMR) is an increasing public health concern for humans, animals, and the environment. However, the contributions of spatially distributed sources of AMR in the environment are not well defined. Methods To identify the sources of environmental AMR, the novel microbial Find, Inform, and Test (FIT) model was applied to a panel of five antibiotic resistance-associated genes (ARGs), namely, erm(B), tet(W), qnrA, sul1, and intI1, quantified from riverbed sediment and surface water from a mixed-use region. Results A one standard deviation increase in the modeled contributions of elevated AMR from bovine sources or land-applied waste sources [land application of biosolids, sludge, and industrial wastewater (i.e., food processing) and domestic (i.e., municipal and septage)] was associated with 34-80% and 33-77% increases in the relative abundances of the ARGs in riverbed sediment and surface water, respectively. Sources influenced environmental AMR at overland distances of up to 13 km. Discussion Our study corroborates previous evidence of offsite migration of microbial pollution from bovine sources and newly suggests offsite migration from land-applied waste. With FIT, we estimated the distance-based influence range overland and downstream around sources to model the impact these sources may have on AMR at unsampled sites. This modeling supports targeted monitoring of AMR from sources for future exposure and risk mitigation efforts.
Collapse
Affiliation(s)
- Corinne Wiesner-Friedman
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Rachelle E. Beattie
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, United States
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - Jill R. Stewart
- Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | | - Marc L. Serre
- Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
16
|
Nightingale J, Carter L, Sinclair CJ, Rooney P, Kay P. Influence of manure application method on veterinary medicine losses to water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117361. [PMID: 36842366 DOI: 10.1016/j.jenvman.2023.117361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/14/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Veterinary medicines are routinely used within modern animal husbandry, which results in frequent detections within animal manures and slurries. The application of manures to land as a form of organic fertiliser presents a pathway by which these bioactive chemicals can enter the environment. However, to date, there is limited understanding regarding the influence of commonly used manure application methods on veterinary medicine fate in soil systems. To bridge this knowledge gap, a semi-field study was conducted to assess the influence of commonly used application methods such as, broadcast, chisel sweep, and incorporation on veterinary medicine losses to waters. A range of veterinary medicines were selected and applied as a mixture; these were enrofloxacin, florfenicol, lincomycin, meloxicam, oxytetracycline, sulfadiazine, trimethoprim and tylosin. All the assessed veterinary medicines were detected within surface runoff and leachates, and the concentrations generally decreased throughout the irrigation period. The surface runoff concentrations ranged from 0.49 to 183.47 μg/L and 2.26-236.83 μg/L for the bare soil and grass assessments respectively. The leachate concentrations ranged from 0.04 to 309.66 μg/L and 0.33-37.79 μg/L for the bare soil and grass assessments respectively. More advanced application methods (chisel sweep) were found to significantly reduce the mass loads of veterinary medicines transported to surface runoff and leachate by 13-56% and 49-88% over that of broadcast. Incorporating pig slurries reduced the losses further with surface runoff and leachate losses being 13-56% and 49-88% lower than broadcast. Our results show that manure application techniques have a significant effect on veterinary medicine fate in the environment and as such these effects should be considered in the decision-making processes for the management of manures as well as from a risk mitigation perspective for aquatic compartments.
Collapse
Affiliation(s)
- John Nightingale
- Fera Science Ltd (CCSS, York), YO41 1LZ, UK; University of Leeds (Geography, Leeds), LS2 9JT, UK.
| | - Laura Carter
- University of Leeds (Geography, Leeds), LS2 9JT, UK.
| | | | - Phil Rooney
- Fera Science Ltd (CCSS, York), YO41 1LZ, UK.
| | - Paul Kay
- University of Leeds (Geography, Leeds), LS2 9JT, UK.
| |
Collapse
|
17
|
Neher TP, Soupir ML, Andersen DS, O'Neill ML, Howe A. Comparison of antibiotic resistance genes in swine manure storage pits of Iowa, USA. FRONTIERS IN ANTIBIOTICS 2023; 2:1116785. [PMID: 39816658 PMCID: PMC11732143 DOI: 10.3389/frabi.2023.1116785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/13/2023] [Indexed: 01/18/2025]
Abstract
Antimicrobial resistance (AMR) can develop in deep-pit swine manure storage when bacteria are selectively pressured by unmetabolized antibiotics. Subsequent manure application on row crops is then a source of AMR into soil and downstream runoff water. Therefore, understanding the patterns of diverse antibiotic resistance genes (ARGs) in manure among different farms is important for both interpreting the results of the detection of these genes from previous studies and for the use of these genes as bioindicators of manure borne antibiotic resistance in the environment. Previous studies of manure-associated ARGs are based on limited samples of manures. To better understand the distribution of ARGs between manures, we characterized manures from 48 geographically independent swine farms across Iowa. The objectives of this study were to characterize the distribution of ARGs among these manures and to evaluate what factors in manure management may influence the presence of ARGs in manures. Our analysis included quantification of two commonly found ARGs in swine manure, ermB and tetM. Additionally, we characterized a broader suite of 31 ARGs which allowed for simultaneous assays of the presence or absence of multiple genes. We found the company integrator had a significant effect on both ermB (P=0.0007) and tetM gene concentrations (P=0.0425). Our broad analysis on ARG profiles found that the tet(36) gene was broadly present in swine manures, followed by the detection of tetT, tetM, erm(35), ermF, ermB, str, aadD, and intl3 in samples from 14 farms. Finally, we provide a comparison of methods to detect ARGs in manures, specifically comparing conventional and high-throughput qPCR and discuss their role in ARG environmental monitoring efforts. Results of this study provide insight into commonalities of ARG presence in manure holding pits and provide supporting evidence that company integrator decisions may impact ARG concentrations.
Collapse
Affiliation(s)
- Timothy P Neher
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States
| | - Michelle L Soupir
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States
| | - Daniel S Andersen
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States
| | - Maggie L O'Neill
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States
| | - Adina Howe
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States
| |
Collapse
|
18
|
Identification and Quantification of 29 Active Substances by HPLC-ESI-MS/MS in Lyophilized Swine Manure Samples. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010216. [PMID: 36615410 PMCID: PMC9822080 DOI: 10.3390/molecules28010216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022]
Abstract
Veterinary drugs are frequently employed to treat and prevent diseases in food-producing animals to improve animal health and to avoid the introduction of microorganisms into the food chain. The analysis of the presence of pharmaceutical residues in animal manure could help to evaluate the legal and illegal practices during food production without harming the animals and to correctly manage manure when it is going to be applied as a fertilizer. This article describes a method for the simultaneous analysis of 29 active substances, mostly antibiotics and antiparasitic agents. Substances were extracted from lyophilized manure with a methanol:McIlvaine solution and analyzed with HPLC-ESI-MS/MS and a C18 HPLC column. The method was validated following European guidelines, the achieved trueness was between 63 and 128% (depending on the analytes), and the linearity was between 100 and 1500 µg/kg. The applicability of the method was demonstrated in 40 manure samples collected from pig farms where tetracycline was quantified in 7.5% of the samples. These results show the viability of this non-invasive method for the control of the legal and illegal administration of pharmaceuticals in food-producing animals.
Collapse
|
19
|
Hilaire SS, Chen C, Pan Z, Radolinski J, Stewart RD, Maguire RO, Xia K. Subsurface Manure Injection Reduces Surface Transport of Antibiotic Resistance Genes but May Create Antibiotic Resistance Hotspots in Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14972-14981. [PMID: 35839145 DOI: 10.1021/acs.est.2c00981] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Compared to surface application, manure subsurface injection reduces surface runoff of nutrients, antibiotic resistant microorganisms, and emerging contaminants. Less is known regarding the impact of both manure application methods on surface transport of antibiotic resistance genes (ARGs) in manure-amended fields. We applied liquid dairy manure to field plots by surface application and subsurface injection and simulated rainfall on the first or seventh day following application. The ARG richness, relative abundance (normalized to 16s rRNA), and ARG profiles in soil and surface runoff were monitored using shotgun metagenomic sequencing. Within 1 day of manure application, compared to unamended soils, soils treated with manure had 32.5-70.5% greater ARG richness and higher relative abundances of sulfonamide (6.5-129%) and tetracycline (752-3766%) resistance genes (p ≤ 0.05). On day 7, soil ARG profiles in the surface-applied plots were similar to, whereas subsurface injection profiles were different from, that of the unamended soils. Forty-six days after manure application, the soil ARG profiles in manure injection slits were 37% more diverse than that of the unamended plots. The abundance of manure-associated ARGs were lower in surface runoff from manure subsurface injected plots and carried a lower resistome risk score in comparison to surface-applied plots. This study demonstrated, for the first time, that although manure subsurface injection reduces ARGs in the runoff, it can create potential long-term hotspots for elevated ARGs within injection slits.
Collapse
Affiliation(s)
- Sheldon S Hilaire
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Chaoqi Chen
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
- School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Zhizhen Pan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jesse Radolinski
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Ecology, University of Innsbruck, Innsbruck 6020, Austria
| | - Ryan D Stewart
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Rory O Maguire
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Kang Xia
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
20
|
Baker M, Williams AD, Hooton SPT, Helliwell R, King E, Dodsworth T, María Baena-Nogueras R, Warry A, Ortori CA, Todman H, Gray-Hammerton CJ, Pritchard ACW, Iles E, Cook R, Emes RD, Jones MA, Kypraios T, West H, Barrett DA, Ramsden SJ, Gomes RL, Hudson C, Millard AD, Raman S, Morris C, Dodd CER, Kreft JU, Hobman JL, Stekel DJ. Antimicrobial resistance in dairy slurry tanks: A critical point for measurement and control. ENVIRONMENT INTERNATIONAL 2022; 169:107516. [PMID: 36122459 DOI: 10.1016/j.envint.2022.107516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Waste from dairy production is one of the largest sources of contamination from antimicrobial resistant bacteria (ARB) and genes (ARGs) in many parts of the world. However, studies to date do not provide necessary evidence to inform antimicrobial resistance (AMR) countermeasures. We undertook a detailed, interdisciplinary, longitudinal analysis of dairy slurry waste. The slurry contained a population of ARB and ARGs, with resistances to current, historical and never-used on-farm antibiotics; resistances were associated with Gram-negative and Gram-positive bacteria and mobile elements (ISEcp1, Tn916, Tn21-family transposons). Modelling and experimental work suggested that these populations are in dynamic equilibrium, with microbial death balanced by fresh input. Consequently, storing slurry without further waste input for at least 60 days was predicted to reduce ARB spread onto land, with > 99 % reduction in cephalosporin resistant Escherichia coli. The model also indicated that for farms with low antibiotic use, further reductions are unlikely to reduce AMR further. We conclude that the slurry tank is a critical point for measurement and control of AMR, and that actions to limit the spread of AMR from dairy waste should combine responsible antibiotic use, including low total quantity, avoidance of human critical antibiotics, and choosing antibiotics with shorter half-lives, coupled with appropriate slurry storage.
Collapse
Affiliation(s)
- Michelle Baker
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK; School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Alexander D Williams
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Steven P T Hooton
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK; (a)Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Richard Helliwell
- School of Sociology and Social Policy, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK; School of Geography, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK; Ruralis, University Centre Dragvoll, N-7491 Trondheim, Norway
| | - Elizabeth King
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Thomas Dodsworth
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK; ResChem Analytical Ltd, 8 Jubilee Parkway, Jubilee Business Park, Stores Road, Derby DE21 4BJ, UK
| | - Rosa María Baena-Nogueras
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| | - Andrew Warry
- Advanced Data Analysis Centre, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Catherine A Ortori
- School of Pharmacy, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| | - Henry Todman
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK; School of Mathematical Sciences, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| | - Charlotte J Gray-Hammerton
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK; Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Alexander C W Pritchard
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Ethan Iles
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Ryan Cook
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Richard D Emes
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Michael A Jones
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Theodore Kypraios
- School of Mathematical Sciences, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| | - Helen West
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - David A Barrett
- School of Pharmacy, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| | - Stephen J Ramsden
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Rachel L Gomes
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| | - Chris Hudson
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Andrew D Millard
- (a)Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Sujatha Raman
- School of Sociology and Social Policy, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK; Centre for Public Awareness of Science, Australian National University, Linnaeus Way, Acton ACT 2601, Canberra, Australia
| | - Carol Morris
- School of Geography, University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK
| | - Christine E R Dodd
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Jan-Ulrich Kreft
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT
| | - Jon L Hobman
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Dov J Stekel
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK; Department of Mathematics and Applied Mathematics, University of Johannesburg, Auckland Park Kingsway Campus, Rossmore, Johannesburg, South Africa.
| |
Collapse
|
21
|
Zhang Y, Cheng D, Xie J, Zhang Y, Wan Y, Zhang Y, Shi X. Impacts of farmland application of antibiotic-contaminated manures on the occurrence of antibiotic residues and antibiotic resistance genes in soil: A meta-analysis study. CHEMOSPHERE 2022; 300:134529. [PMID: 35395269 DOI: 10.1016/j.chemosphere.2022.134529] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/23/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
A meta-analysis of 94 published studies was conducted to explore the impacts of farmland application of antibiotic-contaminated manures on antibiotic concentrations and ARG abundances in manure-amended soil. Forty-nine antibiotics were reported, in which chlortetracycline, oxytetracycline, doxycycline, tetracycline, enrofloxacin, ciprofloxacin and norfloxacin were the most prevalent and had relatively high concentrations. The responses of ARG and mobile genetic element (MGE) abundances to farmland application of antibiotic-contaminated manures varied considerably under different management strategies and environmental settings. On average, compared to unamended treatments, farmland application of antibiotic-contaminated manures significantly increased the total ARG and MGE abundances by 591% and 351%, respectively (P < 0.05). Of all the included ARG classes, the largest increase was found for sulfonamide resistance genes (1121%), followed by aminoglycoside (852%) and tetracycline (763%) resistance genes. Correlation analysis suggested that soil organic carbon (SOC) was significantly negatively correlated with antibiotic concentrations in manured soil (P < 0.05) due to the formation of covalent bonds and nonextractable residues. Soil silt content was significantly positively correlated with antibiotic concentration (P < 0.05), which was attributed to greater sorption capacities. The ARG abundances were significantly positively correlated with soil silt content, antibiotic concentrations, mean annual temperature, SOC, MGEs and soil pH (P < 0.05), suggesting that changes in these factors may shape the ARG profiles. Collectively, these findings advanced our understanding of the occurrence of antibiotics and ARGs in manure-amended soil and potential factors affecting them and will contribute to better management of these contaminants in future agricultural production.
Collapse
Affiliation(s)
- Yu Zhang
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Dengmiao Cheng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Jun Xie
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Yuting Zhang
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Yu Wan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yueqiang Zhang
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Xiaojun Shi
- College of Resources and Environment, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
22
|
Huang X, Chen C, Zeng Q, Ding D, Gu J, Mo J. Field study on loss of tetracycline antibiotics from manure-applied soil and their risk assessment in regional water environment of Guangzhou, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154273. [PMID: 35257772 DOI: 10.1016/j.scitotenv.2022.154273] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/05/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Tetracycline antibiotics (TCs) introduced into agricultural fields via manure application tend to accumulate in soils and further reach water environments via surface runoff and leachate, posing potential risks to regional water environment. This study investigated the loss of tetracycline (TC), oxytetracycline (OTC), and chlortetracycline (CTC) in surface runoff and leachate samples collected from a vegetable farmland with manure application in Guangzhou, South China. A risk assessment method was constructed for evaluating the ecological and health risks of manure-associated antibiotics released from soil into water environment. The results showed that the concentrations of three TCs in surface runoff, 30-cm leachate, and 60-cm leachate after the first rainfall event were 2.79-35.97, 1.71-18.44, and 0.4-2.66 μg/L, respectively, which all decreased with sampling depth and the time after rainfall events. Up to 0.13% of TCs were transported into the surface water through surface runoff, while less than 0.01% of TCs were transported into the groundwater through leachate at 60 cm. OTC had a higher total mass percentage (0.13%) into surface water via runoff than CTC (0.11%) and TC (0.07%) likely due to its smallest Kd value and largest input mass. Based on loss percentages, their predicted environmental concentrations (PEC) ranged from 4.87 (TC) to 16.91 (OTC) ng/L in regional surface water and 1.42 (TC) to 5.20 (CTC) ng/L in regional groundwater. The risk assessment based on PEC results suggested non-negligible health risk (HQ > 1.0 × 10-6) and low ecological risk (RQ < 0.1) in both regional surface water and groundwater, drawing concerns on the potential hazards of TCs released from manure-amended soil into water environments.
Collapse
Affiliation(s)
- Xiaoyi Huang
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Chengyu Chen
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China.
| | - Qiaoyun Zeng
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China.
| | - Dan Ding
- Shenzhen Yuanqing Environment Technology Service Co., Ltd, 31 Maman South Road, Shenzhen, Guangdong 518000, China
| | - Jingyi Gu
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Juncheng Mo
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| |
Collapse
|
23
|
Yan XT, Zhai YQ, Cai YY, Guo Z, Zhang QQ, Ying GG. Hypothetical scenarios estimating and simulating the fate of antibiotics: Implications for antibiotic environmental pollution caused by manure application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153177. [PMID: 35090918 DOI: 10.1016/j.scitotenv.2022.153177] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/14/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
The application of animal manure containing antibiotic residues as an organic fertilizer to farmlands, poses a major threat to the health of river basin ecosystems. Waste treatment processes can help reduce antibiotic pollution levels in river basins following manure application, but the overall influence of these processes remains unclear. This study evaluates the impact of manure treatment methods on the emission and subsequent river pollution caused by 14 frequently detected antibiotics in a typical pig breeding area in China, by using hypothetical scenarios method. Three scenarios were constructed based on possible fate pathways of antibiotics, representing in 47.0, 55.3, and 81.6 ton·yr-1 antibiotic emissions into the river basin. The soil and water assessment tool (SWAT) model successfully simulated the transport of antibiotics from farmland to surface water, with calibration and verification performed using hydrological station monthly data over 8 consecutive years. Field measured concentrations also verified the reliability of the model and were used to determine the most realistic scenario. In basins applied with manure, environmental antibiotic pollution is most affected by the wastewater treatment process and manure applied patterns, followed by changes in streamflow. The antibiotic pollution in manure applied areas showed significant spatial and temporal differences, resulting from the different manure application patterns. The simulated total outflow of antibiotics in the river basin accounted for 18.1% of the inflow, with the loss of target antibiotics by degradation, volatilization and sedimentation deposition in the river basin being 0.23, 0.01 and 33.2 ton·yr-1, respectively. This study can help to clarify the environmental fate of antibiotics in the basin following manure application, provide guidance for policy makers and help to design the effective corrective interventions for reducing the environmental pollution.
Collapse
Affiliation(s)
- Xiao-Ting Yan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yun-Qiu Zhai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Ya-Ya Cai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhao Guo
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Qian-Qian Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
24
|
Mware NA, Hall MC, Rajendran S, Gilley JE, Schmidt AM, Bartelt-Hunt SL, Zhang Y, Li X. Resistome and mobilome in surface runoff from manured soil as affected by setback distance. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128278. [PMID: 35065306 DOI: 10.1016/j.jhazmat.2022.128278] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Land application of livestock manure introduces antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) into the soil environment. The objectives of this study were to examine the changes of resistome and mobilome in runoff and soil as a function of setback distance, i.e., the distance between manured soil and surface water, and to quantify the contributions of manure and background soil to the ARGs and MGEs in surface runoff. The resistome and mobilome in runoff and soil from a field-scale plot study were characterized using a high throughput quantitative polymerase chain reaction (HT-qPCR) array. It was estimated that a setback distance of ~40 m is required to reduce the total abundance of ARGs and MGEs in runoff from amended plots to that in control runoff. The resistome and mobilome of the soil in the setback region was not affected by manure-borne ARGs and MGEs. SourceTracker analyses revealed that background soil gradually became the predominant source of the ARGs and MGEs in runoff as setback distance increased. The results demonstrate how manure-borne ARGs and MGEs dissipated in agricultural runoff with increasing setback distance and had limited impacts on the resistome and mobilome of soil within the setback region.
Collapse
Affiliation(s)
- Noelle A Mware
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, USA
| | - Maria C Hall
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, USA
| | - Selvakumar Rajendran
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, USA; Department of Nanobiotechnology, PSG Institute of Advanced Studies, Tamil Nadu, India
| | - John E Gilley
- Agricultural Research Service, United States Department of Agriculture, USA
| | - Amy M Schmidt
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, USA
| | | | - Yifan Zhang
- Department of Nutrition and Food Science, Wayne State University, USA
| | - Xu Li
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, USA.
| |
Collapse
|
25
|
He X, Xiong J, Yang Z, Han L, Huang G. Exploring the impact of biochar on antibiotics and antibiotics resistance genes in pig manure aerobic composting through untargeted metabolomics and metagenomics. BIORESOURCE TECHNOLOGY 2022; 352:127118. [PMID: 35398213 DOI: 10.1016/j.biortech.2022.127118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the effect of biochar on antibiotics and antibiotic resistance genes (ARGs) during aerobic composting of pig manure. First, the composition and content of antibiotics in the manure were determined qualitatively and quantitatively. Biochar promoted the degradation of these antibiotics (oxytetracycline, chlortetracycline, and tetracycline). The relative abundance (RA) of antibiotic-resistant bacteria carrying ARGs accounted for about 29.32% of the total bacteria. Firmicutes and Actinomycetes were dominant phylum-level bacteria at the early and late stages of composting, respectively. Biochar decreased the total RA of ARGs by 16.83%±4.10%. tetW and tetL, closely related to tetracycline resistance, were significantly diminished during aerobic composting, and biochar was able to promote this removal. Biochar enhanced RAs of Mycobacterium tuberculosis kasA mutant. RAs of ARGs related to antibiotic efflux pumps, such as baeS and arlS, remained at a high level. Conclusively, biochar promotes degradation of antibiotics and removal of ARGs.
Collapse
Affiliation(s)
- Xueqin He
- Engineering Laboratory for Agrobiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China
| | - Jinpeng Xiong
- Engineering Laboratory for Agrobiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China
| | - Zengling Yang
- Engineering Laboratory for Agrobiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China
| | - Lujia Han
- Engineering Laboratory for Agrobiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China
| | - Guangqun Huang
- Engineering Laboratory for Agrobiomass Recycling & Valorizing, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
26
|
Guo ZB, Sun WL, Zuo XJ, Song HL, Ling H, Zhang S. Increase of antibiotic resistance genes via horizontal transfer in single- and two-chamber microbial electrolysis cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:36216-36224. [PMID: 35061176 DOI: 10.1007/s11356-022-18676-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Microbial electrolysis cells (MECs) have been applied for antibiotic degradation but simultaneously induced antibiotic resistance genes (ARGs), thus representing a risk to disseminate antibiotic resistance. However, few studies were on the potential and risk of ARGs transmission in the MECs. This work assessed conjugative transfer of ARGs under three tested conditions (voltages, cell concentration, and donor/recipient ratio) in both single- and two-chamber MECs. The results indicated that voltages (> 0.9 V) facilitated the horizontal frequency of ARGs in the single-chamber MECs and anode chamber of two-chamber MECs. The donor cell number (donor/recipient ratio was 2:1) increased the transfer frequency of ARGs. Furthermore, voltages ranged from 0.9 to 2.5 V increased reactive oxygen species (ROS) production and cell membrane permeability in MECs. These findings offer new insights into the roles of ARG transfer under different applied voltages in the MECs, which should not be ignored for horizontal transfer of antibiotic resistance.
Collapse
Affiliation(s)
- Zhao-Bing Guo
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Wen-Long Sun
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xiao-Jun Zuo
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Hai-Liang Song
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, China
| | - Hao Ling
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Shuai Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
27
|
Donner L, Staley ZR, Petali J, Sangster J, Li X, Mathews W, Snow D, Howe A, Soupir M, Bartelt-Hunt S. The Human Health Implications of Antibiotic Resistance in Environmental Isolates from Two Nebraska Watersheds. Microbiol Spectr 2022; 10:e0208221. [PMID: 35311538 PMCID: PMC9045274 DOI: 10.1128/spectrum.02082-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/31/2022] [Indexed: 11/25/2022] Open
Abstract
One Health field-based approaches are needed to connect the occurrence of antibiotics present in the environment with the presence of antibiotic resistance genes (ARGs) in Gram-negative bacteria that confer resistance to antibiotics important in for both veterinary and human health. Water samples from two Nebraska watersheds influenced by wastewater effluent and agricultural runoff were tested for the presence of antibiotics used in veterinary and human medicine. The water samples were also cultured to identify the bacteria present. Of those bacteria isolated, the Gram-negative rods capable of causing human infections had antimicrobial susceptibility testing and whole-genome sequencing (WGS) performed to identify ARGs present. Of the 211 bacterial isolates identified, 37 belonged to pathogenic genera known to cause human infections. Genes conferring resistance to beta-lactams, aminoglycosides, fosfomycins, and quinolones were the most frequently detected ARGs associated with horizontal gene transfer (HGT) in the watersheds. WGS also suggest recent HGT events involving ARGs transferred between watershed isolates and bacteria of human and animal origins. The results of this study demonstrate the linkage of antibiotics and bacterial ARGs present in the environment with potential human and/or veterinary health impacts. IMPORTANCE One health is a transdisciplinary approach to achieve optimal health for humans, animals, plants and their shared environment, recognizing the interconnected nature of health in these domains. Field based research is needed to connect the occurrence of antibiotics used in veterinary medicine and human health with the presence of antibiotic resistance genes (ARGs). In this study, the presence of antibiotics, bacteria and ARGs was determined in two watersheds in Nebraska, one with agricultural inputs and the other with both agricultural and wastewater inputs. The results presented in this study provide evidence of transfer of highly mobile ARG between environment, clinical, and animal-associated bacteria.
Collapse
Affiliation(s)
- Linsey Donner
- College of Allied Health Professions, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Zachery R. Staley
- Department of Civil and Environmental Engineering, University of Nebraska – Lincoln, Lincoln, Nebraska, USA
| | - Jonathan Petali
- Environmental Health Program, New Hampshire Department of Environmental Services, Concord, New Hampshire, USA
| | - Jodi Sangster
- Department of Civil and Environmental Engineering, University of Nebraska – Lincoln, Lincoln, Nebraska, USA
| | - Xu Li
- Department of Civil and Environmental Engineering, University of Nebraska – Lincoln, Lincoln, Nebraska, USA
| | - Wayne Mathews
- College of Allied Health Professions, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Daniel Snow
- Nebraska Water Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Adina Howe
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa, USA
| | - Michelle Soupir
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa, USA
| | - Shannon Bartelt-Hunt
- College of Allied Health Professions, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Civil and Environmental Engineering, University of Nebraska – Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
28
|
Wiesner-Friedman C, Beattie RE, Stewart JR, Hristova KR, Serre ML. Characterizing Differences in Sources of and Contributions to Fecal Contamination of Sediment and Surface Water with the Microbial FIT Framework. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4231-4240. [PMID: 35298143 DOI: 10.1021/acs.est.2c00224] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Surface water monitoring and microbial source tracking (MST) are used to identify host sources of fecal pollution and protect public health. However, knowledge of the locations of spatial sources and their relative impacts on the environment is needed to effectively mitigate health risks. Additionally, sediment samples may offer time-integrated information compared to transient surface water. Thus, we implemented the newly developed microbial find, inform, and test framework to identify spatial sources and their impacts on human (HuBac) and bovine (BoBac) MST markers, quantified from both riverbed sediment and surface water in a bovine-dense region. Dairy feeding operations and low-intensity developed land-cover were associated with 99% (p-value < 0.05) and 108% (p-value < 0.05) increases, respectively, in the relative abundance of BoBac in sediment, and with 79% (p-value < 0.05) and 39% increases in surface water. Septic systems were associated with a 48% increase in the relative abundance of HuBac in sediment and a 56% increase in surface water. Stronger source signals were observed for sediment responses compared to water. By defining source locations, predicting river impacts, and estimating source influence ranges in a Great Lakes region, this work informs pollution mitigation strategies of local and global significance.
Collapse
Affiliation(s)
- Corinne Wiesner-Friedman
- Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7400, United States
| | - Rachelle E Beattie
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Jill R Stewart
- Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7400, United States
| | - Krassimira R Hristova
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Marc L Serre
- Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7400, United States
| |
Collapse
|
29
|
Haenni M, Dagot C, Chesneau O, Bibbal D, Labanowski J, Vialette M, Bouchard D, Martin-Laurent F, Calsat L, Nazaret S, Petit F, Pourcher AM, Togola A, Bachelot M, Topp E, Hocquet D. Environmental contamination in a high-income country (France) by antibiotics, antibiotic-resistant bacteria, and antibiotic resistance genes: Status and possible causes. ENVIRONMENT INTERNATIONAL 2022; 159:107047. [PMID: 34923370 DOI: 10.1016/j.envint.2021.107047] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Antimicrobial resistance (AMR) is a major global public health concern, shared by a large number of human and animal health actors. Within the framework of a One Health approach, actions should be implemented in the environmental realm, as well as the human and animal realms. The Government of France commissioned a report to provide policy and decision makers with an evidential basis for recommending or taking future actions to mitigate AMR in the environment. We first examined the mechanisms that underlie the emergence and persistence of antimicrobial resistance in the environment. This report drew up an inventory of the contamination of aquatic and terrestrial environments by AMR and antibiotics, anticipating that the findings will be representative of some other high-income countries. Effluents of wastewater treatment plants were identified as the major source of contamination on French territory, with spreading of organic waste products as a more diffuse and incidental contamination of aquatic environments. A limitation of this review is the heterogeneity of available data in space and time, as well as the lack of data for certain sources. Comparing the French Measured Environmental Concentrations (MECs) with predicted no effect concentrations (PNECs), fluoroquinolones and trimethoprim were identified as representing high and medium risk of favoring the selection of resistant bacteria in treated wastewater and in the most contaminated rivers. All other antibiotic molecules analyzed (erythromycin, clarithromycin, azithromycin, tetracycline) were at low risk of resistance selection in those environments. However, the heterogeneity of the data available impairs their full exploitation. Consequently, we listed indicators to survey AMR and antibiotics in the environment and recommended the harmonization of sampling strategies and endpoints for analyses. Finally, the objectives and methods used for the present work could comprise a useful example for how national authorities of countries sharing common socio-geographic characteristics with France could seek to better understand and define the environmental dimension of AMR in their particular settings.
Collapse
Affiliation(s)
- Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, ANSES (French Agency for Food, Environmental and Occupational Health & Safety) - Université de Lyon, Lyon, France
| | - Christophe Dagot
- Université of Limoges, RESINFIT, UMR INSERM 1092, CHU, F-87000 Limoges, France
| | - Olivier Chesneau
- Collection de l'Institut Pasteur (CIP), Microbiology Department, Institut Pasteur, Paris, France
| | - Delphine Bibbal
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Jérôme Labanowski
- Université de Poitiers, UMR CNRS 7285 IC2MP, ENSI Poitiers, Poitiers, France
| | | | - Damien Bouchard
- National Agency for Veterinary Medicinal Products, ANSES, Fougères, France
| | | | - Louisiane Calsat
- Risk Assessment Department (DER), ANSES (French Agency for Food, Environmental and Occupational Health & Safety), Maisons-Alfort, France
| | - Sylvie Nazaret
- Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Fabienne Petit
- UNIROUEN, UNICAEN, CNRS, M2C, Normandie Université Rouen, France; Sorbonne Université, CNRS, EPHE, PSL, UMR METIS, Paris F-75005, France
| | | | | | - Morgane Bachelot
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), Maisons-Alfort, France
| | - Edward Topp
- Agriculture and Agri-Food Canada, and University of Western Ontario, London, ON, Canada
| | - Didier Hocquet
- UMR Chronoenvironnement CNRS 6249, Université de Bourgogne Franche-Comté, Besançon, France; Hygiène Hospitalière, Centre Hospitalier Universitaire, 25030 Besançon, France.
| |
Collapse
|
30
|
O'Malley K, McNamara P, McDonald W. Antibiotic resistance genes in an urban stream before and after a state fair. JOURNAL OF WATER AND HEALTH 2021; 19:885-894. [PMID: 34874897 DOI: 10.2166/wh.2021.151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The global spread of antibiotic resistance genes (ARGs) concomitant with a decrease in antibiotic effectiveness is a major public health issue. While research has demonstrated the impact of various urban sources, such as wastewater treatment plant (WWTP) effluent, stormwater runoff, and industrial discharge on ARG abundance in receiving waters, the impact of short-term gatherings such as state fairs is not comprehensively understood. The objective of this research was to explore the impact of a 2-week Wisconsin State Fair gathering - over 1.1 million visitors and 7,100 farm animals - on the abundance of the ARG blaTEM, the integrase of the class 1 integron (intI1), a marker for horizontal gene transfer, and the 16S rRNA gene, a marker for total biomass, in an urban stream receiving runoff from the state fair. Stream samples downstream of the state fair were taken before and after the event and quantified via a droplet digital polymerase chain reaction. The absolute abundance of all genes was significantly higher (p<0.05) following the event. This research showcases the prevalence and persistence of ARG contamination in an urban stream before and after a state fair gathering, suggesting that short-term events can be a significant source of ARGs into the environment.
Collapse
Affiliation(s)
- Kassidy O'Malley
- Department of Civil, Construction, and Environmental Engineering, Marquette University, Milwaukee, WI 53233, USA E-mail:
| | - Patrick McNamara
- Department of Civil, Construction, and Environmental Engineering, Marquette University, Milwaukee, WI 53233, USA E-mail:
| | - Walter McDonald
- Department of Civil, Construction, and Environmental Engineering, Marquette University, Milwaukee, WI 53233, USA E-mail:
| |
Collapse
|
31
|
Wang L, Zheng J, Huang X. Co-composting materials can further affect the attenuation of antibiotic resistome in soil application. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 135:329-337. [PMID: 34597969 DOI: 10.1016/j.wasman.2021.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/25/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the effects of representative co-substrate (corncob particles) and additive (brick granules) alone on antibiotic resistome of swine manure during composting and subsequent compost application. For relative abundances, four antibiotic resistance gene (ARG) types encoding resistance to aminoglycoside, multidrug, florfenicol-chloramphenicol-amphenicol-fluoroquinolone-quinolone, and sulfonamide increased remarkably during composting, whereas all the ARG types decreased after compost application. Interestingly, much more ARG subtypes (50.1% in total) were reduced in corncob addition treatment. Meanwhile, the addition of corncob particles lowered the relative abundance and diversity of ARGs more significantly. Microbial community exhibited conspicuous changes across the manure, compost, and soil samples where the dominant genera were completely different. Procrustes test proved the co-occurrence and driving effect of microbial community on resistome variation, especially in corncob addition treatment during composting. Network analysis demonstrated that the dissipation of the dominant genera such as Ruminofilibacter, Luteimonas, and Pseudidiomarina in the composts after application contributed greatly to the reduction in ARG relative abundance. Besides, the low abundance of mobile genetic elements (MGEs) in soil also accounted for the attenuation of ARGs to some extent. Our findings clearly proved that co-composting materials can further affect the attenuation of antibiotic resistome in soil application, which can help in understanding the spread and control of ARGs during agricultural process.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Environmental Monitoring in Universities of Fujian Province, Xiamen Huaxia University, Xiamen 361024, China
| | - Jialun Zheng
- Key Lab of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xu Huang
- Key Lab of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
32
|
Yang Q, Gao Y, Ke J, Show PL, Ge Y, Liu Y, Guo R, Chen J. Antibiotics: An overview on the environmental occurrence, toxicity, degradation, and removal methods. Bioengineered 2021; 12:7376-7416. [PMID: 34612807 PMCID: PMC8806427 DOI: 10.1080/21655979.2021.1974657] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Antibiotics, as antimicrobial drugs, have been widely applied as human and veterinary medicines. Recently, many antibiotics have been detected in the environments due to their mass production, widespread use, but a lack of adequate treatment processes. The environmental occurrence of antibiotics has received worldwide attention due to their potential harm to the ecosystem and human health. Research status of antibiotics in the environment field is presented by bibliometrics. Herein, we provided a comprehensive overview on the following important issues: (1) occurrence of antibiotics in different environmental compartments, such as wastewater, surface water, and soil; (2) toxicity of antibiotics toward non-target organisms, including aquatic and terrestrial organisms; (3) current treatment technologies for the degradation and removal of antibiotics, including adsorption, hydrolysis, photodegradation and oxidation, and biodegradation. It was found that macrolides, fluoroquinolones, tetracyclines, and sulfonamides were most frequently detected in the environment. Compared to surface and groundwaters, wastewater contained a high concentration of antibiotic residues. Both antibiotics and their metabolites exhibited toxicity to non-target organisms, especially aquatic organisms (e.g., algae and fish). Fluoroquinolones, tetracyclines, and sulfonamides can be removed through abiotic process, such as adsorption, photodegradation, and oxidation. Fluoroquinolones and sulfonamides can directly undergo biodegradation. Further studies on the chronic effects of antibiotics at environmentally relevant concentrations on the ecosystem were urgently needed to fully understand the hazards of antibiotics and help the government to establish the permissible limits. Biodegradation is a promising technology; it has numerous advantages such as cost-effectiveness and environmental friendliness.
Collapse
Affiliation(s)
- Qiulian Yang
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuan Gao
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Jian Ke
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, Selangor Darul Ehsan, 43500, Malaysia
| | - Yuhui Ge
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Yanhua Liu
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Ruixin Guo
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Jianqiu Chen
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
33
|
Barrios RE, Bartelt-Hunt SL, Li Y, Li X. Modeling the vertical transport of antibiotic resistance genes in agricultural soils following manure application. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117480. [PMID: 34087637 DOI: 10.1016/j.envpol.2021.117480] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 05/21/2023]
Abstract
Antibiotic resistance genes (ARGs) may be introduced to agricultural soil through the land application of cattle manure. During a rainfall event, manure-borne ARGs may infiltrate into subsurface soil and leach into groundwater. The objective of this study was to characterize and model the vertical transport of manure-borne ARGs through soil following the land application of beef cattle manure on soil surface. In this study, soil column experiments were conducted to evaluate the influence of manure application on subsurface transport of four ARGs: erm(C), erm(F), tet(O) and tet(Q). An attachment-detachment model with the decay of ARGs in the soil was used to simulate the breakthrough of ARGs in leachates from the control column (without manure) and treatment (with manure) soil columns. Results showed that the first-order attachment coefficient (ka) was five to six orders of magnitude higher in the treatment column than in the control column. Conversely, the first-order detachment and decay coefficients (kd and μs) were not significantly changed due to manure application. These findings suggest that in areas where manure is land-applied, some manure-borne bacteria-associated ARGs will be attached to the soil, instead of leaching to groundwater in near terms.
Collapse
Affiliation(s)
- Renys E Barrios
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, United States
| | - Shannon L Bartelt-Hunt
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, United States
| | - Yusong Li
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, United States
| | - Xu Li
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, United States.
| |
Collapse
|
34
|
Zhang MS, Li W, Zhang WG, Li YT, Li JY, Gao Y. Agricultural land-use change exacerbates the dissemination of antibiotic resistance genes via surface runoffs in Lake Tai Basin, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112328. [PMID: 34015636 DOI: 10.1016/j.ecoenv.2021.112328] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
Agricultural runoff is an important antibiotic resistance genes (ARGs) dissemination pathway from farmlands to water environment, however few studies have focused on the influence of agricultural land-use change on the pattern of ARGs in runoff and assess the health risk to public. Lake Tai Basin which experiences agricultural land-use change was selected to elucidate this concern. Our findings revealed that the pattern of ARGs was more diverse and the gene abundance was higher in orchard runoffs by comparison with conventional cropland runoffs. Co-occurrence network analysis between mobile genetic elements and ARGs demonstrated that after agricultural land-use change, ARG dissemination via runoffs became more threatened. In addition, this study illustrated the correlations between the antibiotic resistome and microbiome in runoffs, finding that non-dominant microbial taxa were the limiting factor which determined the pattern of ARGs in surface runoffs. In summary, the pattern and dissemination risk of ARGs in the surface runoff after agricultural land-use change in Lake Tai Basin were clarified via this study.
Collapse
Affiliation(s)
- Ming-Sha Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen Li
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Wei-Guo Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Yun-Tao Li
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jiang-Ye Li
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yan Gao
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
35
|
Gu H, Xie W, Du A, Pan D, Guo Z. Overview of electrocatalytic treatment of antibiotic pollutants in wastewater. CATALYSIS REVIEWS 2021. [DOI: 10.1080/01614940.2021.1960009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hongbo Gu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Wenhao Xie
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Ai Du
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, China
| | - Duo Pan
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China
- Integrated Composites Lab (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Zhanhu Guo
- Integrated Composites Lab (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
36
|
Stockpiling versus Composting: Effectiveness in Reducing Antibiotic-Resistant Bacteria and Resistance Genes in Beef Cattle Manure. Appl Environ Microbiol 2021; 87:e0075021. [PMID: 34085860 DOI: 10.1128/aem.00750-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Manure storage methods can affect the concentration and prevalence of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in cattle manure prior to land application. The objective of this study was to compare stockpiling and composting with respect to their effectiveness in reducing ARB and ARGs in beef cattle manure in a field-scale study. Field experiments were conducted in different seasons with different bulking agents for composting. For both the winter-spring cycle and the summer-fall cycle, ARB concentrations declined below the limit of quantification rapidly in both composting piles and stockpiles; however, ARB prevalence was significantly greater in the composting piles than in the stockpiles. This was likely due to the introduction of ARB from bulking agents. There was no significant change in ARG concentrations between initial and final concentrations for either manure storage treatment during the winter-spring cycle, but a significant reduction of the ARGs erm(B), tet(O), and tet(Q) over time was observed for both the composting pile and stockpile during the summer-fall cycle. Results from this study suggest that (i) bulking agent may be an important source of ARB and ARGs for composting; (ii) during cold months, the heterogeneity of the temperature profile in composting piles could result in poor ARG reduction; and (iii) during warm months, both stockpiling and composting can be effective in reducing ARG abundance. IMPORTANCE Proper treatment of manure is essential to reduce the spread of antibiotic resistance and protect human health. Stockpiling and composting are two manure storage methods which can reduce antibiotic-resistant bacteria and resistance genes, although few field-scale studies have examined the relative efficiency of each method. This study examined the ability of both methods in both winter-spring and summer-fall cycles, while also accounting for heterogeneity within field-scale manure piles. This study determined that bulking agents used in composting could contribute antibiotic-resistant bacteria and resistance genes. Additionally, seasonal variation could hinder the efficacy of composting in colder months due to heterogeneity in temperature within the pile; however, in warmer months, either method of manure storage could be effective in reducing the spread of antibiotic resistance.
Collapse
|
37
|
Alt LM, Iverson AN, Soupir ML, Moorman TB, Howe A. Antibiotic resistance gene dissipation in soil microcosms amended with antibiotics and swine manure. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:911-922. [PMID: 33982299 DOI: 10.1002/jeq2.20240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
The use of antibiotics in animal agriculture has exacerbated the presence of both antibiotic resistance genes (ARGs) and residual antibiotics excreted in animal manure. Field application of this manure is a common practice because its nutrient rich material can benefit crop growth. However, this practice can also introduce antibiotics and ARGs into nonagricultural settings. The integration of prairie buffer strips within and at the edge of crop fields is a potential management solution to reduce concentrations of ARGs commonly transported via water runoff and infiltration. An incubation experiment was conducted to investigate the fate of ARGs in directly manured crop field soils and the surrounding affected prairie strip soils. Row crop and prairie strip soils sampled from three sites received either an antibiotic spike and swine manure addition or a control water addition. The concentrations of select ARGs were then monitored over a 72-d period. Although soil vegetation and site location were not observed to influence ARG dissipation, the select genes did display different half-lives from one another. For example, tetM demonstrated the fastest dissipation of the genes quantified (average half-life, 5.18 d). Conversely, sul1 did not conform to the first-order linear regression kinetics used to describe the other investigated genes and was highly abundant in control prairie strip soils. The quantified half-lives of these select ARGs are comparable to previous studies and can inform monitoring and mitigative efforts aimed at reducing the spread of ARGs in the environment.
Collapse
Affiliation(s)
- Laura M Alt
- Dep. of Agricultural and Biosystems Engineering, IA State Univ., Elings Hall, 605 Bissell Rd., Ames, IA, 50011, USA
| | - Alyssa N Iverson
- Dep. of Agricultural and Biosystems Engineering, IA State Univ., Elings Hall, 605 Bissell Rd., Ames, IA, 50011, USA
| | - Michelle L Soupir
- Dep. of Agricultural and Biosystems Engineering, IA State Univ., Elings Hall, 605 Bissell Rd., Ames, IA, 50011, USA
| | - Thomas B Moorman
- National Lab. for Agriculture and the Environment, USDA-ARS, 1015 N University Blvd., Ames, IA, 50011, USA
| | - Adina Howe
- Dep. of Agricultural and Biosystems Engineering, IA State Univ., Elings Hall, 605 Bissell Rd., Ames, IA, 50011, USA
| |
Collapse
|
38
|
Pereira AR, Paranhos AGDO, de Aquino SF, Silva SDQ. Distribution of genetic elements associated with antibiotic resistance in treated and untreated animal husbandry waste and wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26380-26403. [PMID: 33835340 DOI: 10.1007/s11356-021-13784-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Animal breeding for meat production based on swine, cattle, poultry, and aquaculture is an activity that generates several impacts on the environment, among them the spread of antibiotic resistance. There is a worldwide concern related to the massive use of antibiotics, which causes selective pressure on the microbial community, triggering bacteria that contain "antibiotic resistance genes." According to the survey here presented, antibiotic resistance-related genes such as tetracyclines (tet), erythromycin (erm), and sulfonamides (sul), as well as the genetic mobile element interferon (int), are the most reported genetic elements in qualitative and quantitative studies of swine, cattle, poultry, and aquaculture manure/wastewater. It has been observed that biological treatments based on waste composting and anaerobic digestion are effective in ARG removal, particularly for tet, bla, erm, and qnr (quinolone) genes. On the other hand, sul and intI genes were more persistent in such treatments. Tertiary treatments, such advanced oxidative processes, are suitable strategies to improve ARG reduction. In general temperature, hydraulic retention time, and penetration of sunlight are the main operational parameters for ARG reduction in treatments applied to animal waste, and therefore attention should be addressed to optimize their efficacy regarding ARG removal. Despite being reduced, the presence of ARG in treated effluents and in biosolids indicates that there is a potential risk of antibiotic resistance spread in nature, especially through the release of treated livestock waste into the environment.
Collapse
Affiliation(s)
- Andressa Rezende Pereira
- Graduate Program in Environmental Engineering, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, State of Minas Gerais, CEP: 35.400-000, Brazil
| | - Aline Gomes de Oliveira Paranhos
- Graduate Program in Environmental Engineering, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, State of Minas Gerais, CEP: 35.400-000, Brazil
| | - Sérgio Francisco de Aquino
- Department of Chemistry, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, State of Minas Gerais, CEP: 35.400-000, Brazil
| | - Silvana de Queiroz Silva
- Department of Biological Sciences, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, State of Minas Gerais, CEP: 35.400-000, Brazil.
| |
Collapse
|
39
|
Jang J, Abbas A, Kim M, Shin J, Kim YM, Cho KH. Prediction of antibiotic-resistance genes occurrence at a recreational beach with deep learning models. WATER RESEARCH 2021; 196:117001. [PMID: 33744657 DOI: 10.1016/j.watres.2021.117001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Antibiotic resistance genes (ARGs) have been reported to threaten the public health of beachgoers worldwide. Although ARG monitoring and beach guidelines are necessary, substantial efforts are required for ARG sampling and analysis. Accordingly, in this study, we predicted ARGs occurrence that are primarily found on the coast after rainfall using a conventional long short-term memory (LSTM), LSTM-convolutional neural network (CNN) hybrid model, and input attention (IA)-LSTM. To develop the models, 10 categories of environmental data collected at 30-min intervals and concentration data of 4 types of major ARGs (i.e., aac(6'-Ib-cr), blaTEM, sul1, and tetX) obtained at the Gwangalli Beach in South Korea, between 2018 and 2019 were used. When individually predicting ARGs occurrence, the conventional LSTM and IA-LSTM exhibited poor R2 values during training and testing. In contrast, the LSTM-CNN exhibited a 2-6-times improvement in accuracy over those of the conventional LSTM and IA-LSTM. However, when predicting all ARGs occurrence simultaneously, the IA-LSTM model exhibited a superior performance overall compared to that of LSTM-CNN. Additionally, the influence of environmental variables on prediction was investigated using the IA-LSTM model, and the ranges of input variables that affect each ARG were identified. Consequently, this study demonstrated the possibility of predicting the occurrence and distribution of major ARGs at the beach based on various environmental variables, and the results are expected to contribute to management of ARG occurrence at a recreational beach.
Collapse
Affiliation(s)
- Jiyi Jang
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919 South Korea
| | - Ather Abbas
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919 South Korea
| | - Minjeong Kim
- Division of Radioactive Waste Disposal Research, Korea Atomic Energy Research Institute (KAERI), 989-111, Daedeok-daero, Yuseong-gu, Daejeon, 34057, South Korea
| | - Jingyeong Shin
- Department of Civil and Environmental Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| | - Kyung Hwa Cho
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919 South Korea.
| |
Collapse
|
40
|
Kim M, Ligaray M, Kwon YS, Kim S, Baek S, Pyo J, Baek G, Shin J, Kim J, Lee C, Kim YM, Cho KH. Designing a marine outfall to reduce microbial risk on a recreational beach: Field experiment and modeling. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124587. [PMID: 33303212 DOI: 10.1016/j.jhazmat.2020.124587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 10/10/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
A marine outfall can be a wastewater management system that discharges sewage and stormwater into the sea; hence, it is a source of microbial pollution on recreational beaches, including antibiotic resistant genes (ARGs), which lead to an increase in untreatable diseases. In this regard, a marine outfall must be efficiently located to mitigate these risks. This study aimed to 1) investigate the spatiotemporal variability of Escherichia coli (E. coli) and ARGs on a recreational beach and 2) design marine outfalls to reduce microbial risks. For this purpose, E. coli and ARGs with influential environmental variables were intensively monitored on Gwangalli beach, South Korea in this study. Environmental fluid dynamic code (EFDC) was used and calibrated using the monitoring data, and 12 outfall extension scenarios were explored (6 locations at 2 depths). The results revealed that repositioning the marine outfall can significantly reduce the concentrations of E. coli and ARGs on the beach by 46-99%. Offshore extended outfalls at the bottom of the sea reduced concentrations of E. coli and ARGs on the beach more effectively than onshore outfalls at the sea surface. These findings could be helpful in establishing microbial pollution management plans at recreational beaches in the future.
Collapse
Affiliation(s)
- Minjeong Kim
- Division of Radioactive Waste Disposal Research, Korea Atomic Energy Research Institute (KAERI), 989-111, Daedeok-daero, Yuseong-gu, Daejeon 34057, Republic of Korea
| | - Mayzonee Ligaray
- Institute of Environmental Science and Meteorology, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Yong Sung Kwon
- Ecosystem Service Team, Division of Ecological Assessment, National Institute of Ecology, Seocheon 33657, Republic of Korea
| | - Soobin Kim
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Sangsoo Baek
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - JongCheol Pyo
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Gahyun Baek
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jingyeong Shin
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jaai Kim
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Changsoo Lee
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea.
| | - Kyung Hwa Cho
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Republic of Korea.
| |
Collapse
|
41
|
Hall MC, Duerschner J, Gilley JE, Schmidt AM, Bartelt-Hunt SL, Snow DD, Eskridge KM, Li X. Antibiotic resistance genes in swine manure slurry as affected by pit additives and facility disinfectants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143287. [PMID: 33168251 DOI: 10.1016/j.scitotenv.2020.143287] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Manure storage facilities are critical control points to reduce antibiotic resistance genes (ARGs) in swine manure slurry before the slurry is land applied. However, little is known about how exogenous chemicals entering the manure storage facilities may affect the fate of ARGs. The objective of this study was to analyze the impact of six commonly used pit additives and four facility disinfectants on the concentration of ARGs in swine manure slurry. Bench scale reactors, each containing approximately 50 L of liquid swine manure, were dosed with additives or disinfectants and were sampled for 40 days. Seven antibiotic resistance genes along with the intI1 gene and the 16S rRNA gene were monitored. Out of the six additives tested, Sludge Away significantly reduced the time-averaged absolute abundance of erm(C), erm(F), tet(Q), and the 16S rRNA gene as compared to the no additive control. Out of the four disinfectants tested, Tek-Trol significantly reduced the time-averaged absolute abundance of erm(B), erm(C), erm(F), intI1, tet(Q), and tet(X) than did the no-disinfectant control. According to Spearman's rank correlation, three genes erm(F), tet(Q), and tet(X) showed a strong to perfectly positive correlation and the two genes erm(B) and tet(O) showed a moderate to strong correlation in both the additive and disinfectant tests. Overall, the disinfectants were more effective in controlling the absolute abundance of ARGs than were the pit additives.
Collapse
Affiliation(s)
- Maria C Hall
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Jon Duerschner
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | | | - Amy M Schmidt
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Shannon L Bartelt-Hunt
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Daniel D Snow
- School of Natural Resources, Water Sciences Laboratory, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Kent M Eskridge
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Xu Li
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States.
| |
Collapse
|
42
|
Mazhar SH, Li X, Rashid A, Su J, Xu J, Brejnrod AD, Su JQ, Wu Y, Zhu YG, Zhou SG, Feng R, Rensing C. Co-selection of antibiotic resistance genes, and mobile genetic elements in the presence of heavy metals in poultry farm environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142702. [PMID: 33049532 DOI: 10.1016/j.scitotenv.2020.142702] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
Environmental selection of antibiotic resistance genes (ARGs) is considered to be caused by antibiotic or metal residues, frequently used in livestock. In this study we examined three commercial poultry farms to correlate the co-occurrence patterns of antibiotic and metal residues to the presence of ARGs. We quantified 283 ARGs, 12 mobile genetic elements (MGEs), 49 targeted antibiotics, 7 heavy metals and sequenced 16S rRNA genes. The abundance and type of ARG were significantly enriched in manure while soil harbored the most diverse bacterial community. Procrustes analysis displayed significant correlations between ARGs/MGEs and the microbiome. Cadmium (Cd), arsenic (As), zinc (Zn), copper (Cu) and lead (Pb) were responsible for a majority of positive correlations to ARGs when compared to antibiotics. Integrons and transposons co-occurred with ARGs corresponding to 9 classes of antibiotics, especially Class1 integrase intI-1LC. Redundancy analysis (RDA) and Variance partitioning analysis (VPA) showed that antibiotics, metals, MGEs and bacteria explain solely 0.7%, 5.7%, 12.4%, and 21.9% of variances of ARGs in the microbial community, respectively. These results suggested that bacterial composition and horizontal gene transfer were the major factors shaping the composition of ARGs; Metals had a bigger effect on ARG profile than detected antibiotics in this study.
Collapse
Affiliation(s)
- Sohaib H Mazhar
- Institute of Environmental Microbiology, College of Agricultural Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China; Fujian Provincial Key Laboratory of Soil and Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuanji Li
- Section of Microbiology, University of Copenhagen, Denmark
| | - Azhar Rashid
- Nuclear Institute for Food and Agriculture (PAEC), Tarnab, Peshawar 25000, Pakistan
| | - JunMing Su
- Institute of Environmental Microbiology, College of Agricultural Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junqiang Xu
- Institute of Environmental Microbiology, College of Agricultural Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Asker Daniel Brejnrod
- Skaggs School of Pharmacy, University of California San Diego, La Jolla, United States
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, 361021 Xiamen, China
| | - Yijian Wu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, 361021 Xiamen, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shun Gui Zhou
- Fujian Provincial Key Laboratory of Soil and Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Renwei Feng
- Institute of Environmental Microbiology, College of Agricultural Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Agricultural Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, 361021 Xiamen, China; Fujian Provincial Key Laboratory of Soil and Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
43
|
Wang Y, Chen Z, Wen Q, Ji Y. Variation of heavy metal speciation, antibiotic degradation, and potential horizontal gene transfer during pig manure composting under different chlortetracycline concentration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:1224-1234. [PMID: 32839909 DOI: 10.1007/s11356-020-10557-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Overuse of heavy metal and antibiotics in livestock husbandry has led to the accumulation of heavy metal resistance genes (HMRGs) and antibiotic resistance genes (ARGs) in environment. This research aims to reveal the variation of heavy metal speciation and potential horizontal gene transfer (HGT) of HMRGs and ARGs in manure composting under different initial chlortetracycline (CTC) concentrations. Treatments spiked with 20 mg/kg CTC (treatment P1), 100 mg/kg CTC (treatment P2), and the control (treatment CK) were operated. Results showed that CTC could be completely removed in the thermophilic phase of all the treatments despite of the initial concentrations. Bioavailable Cu in treatments CK, P1, and P2 declined by 14.5%, 27.1%, and 26.7% and bioavailable Zn declined by 15.3%, 29.5%, and 12.1%, respectively, after the composting, respectively. Relative abundance of HMRGs decreased by 6.49 log, 8.88 log, and 5.77 log, respectively, in treatments CK, P1, and P2. Relative abundance of ARGs decreased by 3.37 log, 4.86 log, and 3.32 log, respectively, in treatments CK, P1, and P2. Composting could effectively reduce genes pcoD, pcoA, zntA, tetQ, and tetA, which might locate on the same plasmid. CTC of 100 mg/kg promoted the co-selection of ARGs and HMRGs and increased the potential HGT of gene cusA.
Collapse
Affiliation(s)
- Yao Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China.
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, People's Republic of China.
| | - Ye Ji
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China
| |
Collapse
|
44
|
Gwenzi W. The 'thanato-resistome' - The funeral industry as a potential reservoir of antibiotic resistance: Early insights and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141120. [PMID: 32836113 PMCID: PMC7381411 DOI: 10.1016/j.scitotenv.2020.141120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/18/2020] [Accepted: 07/18/2020] [Indexed: 05/03/2023]
Abstract
The funeral industry is a potential reservoir of antibiotic resistance. The occurrence, human exposure and health risks of antibiotic resistance in the funeral industry were examined. The funeral industry harbours antibiotic resistance to multiple common and last-resort antibiotics, hence constitutes the 'thanato-resistome'. Hydrological processes, air-borne particulates and vectors disseminate antibiotic resistance, while horizontal gene transfer circulates antibiotic resistance among resistomes, forming a complex network. Ingestion, inhalation of air-borne particulates, dermal intake and clothes of workers contribute to human exposure. Human health risks include; development of drug resistance in previously susceptible pathogens, and increased morbidity and mortality caused by increased pathogenicity and outbreaks of multi-drug resistant infections. Ecological risks include the proliferation of resistant organisms at the expense of susceptible ones, thereby disrupting ecosystem structure and function, including biogeochemical cycles. Barring inferential data, quantitative evidence linking antibiotic resistance to human infections is weak. This reflects the lack of systematic quantitative studies, rather than the absence of such health risks. Quantitative risk assessment is constrained by lack of quantitative data on antibiotic resistance in various reservoirs and exposure routes. A framework for risk assessment and mitigation is proposed. Finally, ten hypotheses and emerging tools such as genomics, in silico techniques and big data analytics are highlighted.
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Soil Science and Agricultural Engineering, Faculty of Agriculture, University of Zimbabwe, P.O. Box MP167, Mount Pleasant, Harare, Zimbabwe.
| |
Collapse
|
45
|
Stange C, Tiehm A. Occurrence of antibiotic resistance genes and microbial source tracking markers in the water of a karst spring in Germany. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140529. [PMID: 32629259 DOI: 10.1016/j.scitotenv.2020.140529] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
The emergence of antimicrobial resistances causes serious public health concerns worldwide. In recent years, the aquatic ecosystem has been recognized as a reservoir for antibiotic-resistant bacteria and antibiotic resistance genes (ARGs). The prevalence of 11 ARGs, active against six antibiotic classes (β-lactams, aminoglycosides, tetracycline, macrolides, trimethoprim, and sulfonamides), was evaluated at a karst spring (Gallusquelle) in Germany, using molecular biological methods. In addition, fecal indicator bacteria (FIB), turbidity, electrical conductivity, spring discharge, and microbial source tracking markers specific for human, horse, chicken, and cow were determined. The ARGs most frequently detected were ermB (42.1%), tet(C) (40.8%), sul2 (39.5%), and sul1 (36.8%), which code for resistance to macrolides, tetracycline and sulfonamides, respectively. After a heavy rain event, the increase in FIB in the spring water was associated with the increase in ARGs and human-specific microbial source tracking (MST) markers. The determined correlations of the microbiological parameters, the observed overflow of a combined sewer overflow basin a few days before the increase of these parameters, and the findings of previous studies indicate that the overflow of this undersized basin located 9 km away from the spring could be a factor affecting the water quality of the karst spring. Our results provide a scientific basis for minimization of the input of fecal pollution and thus ARGs into the karst spring.
Collapse
Affiliation(s)
- C Stange
- DVGW-Technologiezentrum Wasser (TZW), Karlsruher Straße 84, D-76139 Karlsruhe, Germany
| | - A Tiehm
- DVGW-Technologiezentrum Wasser (TZW), Karlsruher Straße 84, D-76139 Karlsruhe, Germany.
| |
Collapse
|
46
|
Qin K, Wei L, Li J, Lai B, Zhu F, Yu H, Zhao Q, Wang K. A review of ARGs in WWTPs: Sources, stressors and elimination. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.04.057] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
Macedo G, Hernandez-Leal L, van der Maas P, Heederik D, Mevius D, Schmitt H. The impact of manure and soil texture on antimicrobial resistance gene levels in farmlands and adjacent ditches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139563. [PMID: 32512295 DOI: 10.1016/j.scitotenv.2020.139563] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 05/26/2023]
Abstract
Manure application can spread antimicrobial resistance (AMR) from manure to soil and surface water. This study evaluated the role of the soil texture on the dynamics of antimicrobial resistance genes (ARGs) in soils and surrounding surface waters. Six dairy farms with distinct soil textures (clay, sand, and peat) were sampled at different time points after the application of manure, and three representative ARGs sul1, erm(B), and tet(W) were quantified with qPCR. Manuring initially increased levels of erm(B) by 1.5 ± 0.5 log copies/kg of soil and tet(W) by 0.8 ± 0.4 log copies/kg across soil textures, after which levels gradually declined. In surface waters from clay environments, regardless of the ARG, the gene levels initially increased by 2.6 ± 1.6 log copies/L, after which levels gradually declined. The gene decay in soils was strongly dependent on the type of ARG (erm(B) < tet(W) < sul1; half-lives of 7, 11, and 75 days, respectively), while in water, the decay was primarily dependent on the soil texture adjacent to the sampled surface water (clay < peat < sand; half-lives of 2, 6, and 10 days, respectively). Finally, recovery of ARG levels was predicted after 29-42 days. The results thus showed that there was not a complete restoration of ARGs in soils between rounds of manure application. In conclusion, this study demonstrates that rather than showing similar dynamics of decay, factors such as the type of ARG and soil texture drive the ARG persistence in the environment.
Collapse
Affiliation(s)
- Gonçalo Macedo
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands; Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands.
| | - Lucia Hernandez-Leal
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands
| | - Peter van der Maas
- Van Hall Larenstein, University of Applied Sciences, Agora 1, 8901 BV Leeuwarden, the Netherlands
| | - Dick Heederik
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands
| | - Dik Mevius
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands; Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, the Netherlands
| | - Heike Schmitt
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands; Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands; Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands
| |
Collapse
|
48
|
Zhao F, Chen L, Yen H, Sun L, Li S, Li M, Feng Q, Yang L. Multimedia mass balance approach to characterizing the transport potential of antibiotics in soil-plant systems following manure application. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122363. [PMID: 32120210 DOI: 10.1016/j.jhazmat.2020.122363] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/16/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Antibiotics are ubiquitous in agro-ecosystems worldwide, which can pose remarkable risks to ecological security and human health. However, comprehensive evaluation on the multimedia fate and transport potential of antibiotics in soil-plant systems is still lacking. A mass balance approach was performed to gain insights into the transport and fate of antibiotics in soil-plant systems following manure application. Our results showed that more than 99 % of antibiotics were released from applied manure fertilizer into the soil-plant system. Antibiotic concentrations in soil and plant compartments increased over 120 days. Most of the antibiotics persisted in soil (about 65 %), while less than 0.1 % accumulated in the plants. Rainfall-induced runoff, subsurface interflow and soil water infiltration were alternative transport pathways for antibiotics in soil-plant systems although their contributions were limited. Dissipation was the main removal pathway for antibiotics accounting for about 33 % of total input mass. Tetracyclines had higher mass proportion in soil following by quinolones, whereas most of sulfonamides and macrolides were dissipated. Mass balance approach based on tracking environmental fates of antibiotics can facilitate the understandings in the source comparisons and mitigation strategies, and therefore provide insights to inform modeling and limiting the transport of manure-borne antibiotics to neighboring environmental compartments.
Collapse
Affiliation(s)
- Fangkai Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liding Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haw Yen
- Blackland Research and Extension Center, Texas A&M University, Temple, TX, 76502, USA
| | - Long Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shoujuan Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingyu Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
49
|
Pu Q, Zhao LX, Li YT, Su JQ. Manure fertilization increase antibiotic resistance in soils from typical greenhouse vegetable production bases, China. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122267. [PMID: 32062545 DOI: 10.1016/j.jhazmat.2020.122267] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 05/21/2023]
Abstract
A large quantity of manure is applied in greenhouse vegetable production (GVP) soils, while manure fertilization often leads to the proliferation of antibiotic resistance genes (ARGs) in soils. However, comprehensive study on the effects of different types of manure on ARGs in GVP soils remains unknown, and the baseline level of ARGs in GVP soil is poorly quantified. This study conducted a comprehensive survey of ARGs in GVP soils using high-throughput quantitative PCR. We found elevated ARG diversity and absolute abundance in fertilized soil, whereas no significant difference in soil ARGs amended with different types of manure. Redundancy analysis indicated that the change of bacterial community compositions and environmental factors contributed partially to the shift in ARG profiles. Bipartite network analysis indicated that one ARG was detected in non-manured soils, while 50 ARGs and 4 mobile gene elements were exclusively detected in fertilized soils, suggesting introduction of ARGs from manure into soils largely explained the increased ARG diversity in fertilized soil. By comparison of ARG absolute abundance between manured and non-manured soil, we estimated the typical level of ARG absolute abundance in non-manured soil, which provided the first rough baseline level of ARGs to assess ARG contamination in GVP soils.
Collapse
Affiliation(s)
- Qiang Pu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Li-Xia Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yong-Tao Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.
| |
Collapse
|
50
|
Zhao F, Chen L, Yang L, Sun L, Li S, Li M, Feng Q. Effects of land use and rainfall on sequestration of veterinary antibiotics in soils at the hillslope scale. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114112. [PMID: 32041016 DOI: 10.1016/j.envpol.2020.114112] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/26/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Veterinary antibiotics have been detected as contaminants of emerging concern in soil environment worldwide. Animal manure is frequently applied to agricultural fields to improve soil fertility, which can result in introducing large amount of antibiotics into soil environment. However, few attempts have been made to identify the spatial and temporal dynamics of veterinary antibiotics in soil at the hillslope scale with different land uses. This study was performed to explore the pattern and variability of veterinary antibiotics in the soil in response to rainfall events. Results showed that higher concentrations of veterinary antibiotics were generally found in cropland (292.6 ± 280.1 ng/g) and orchard (228.1 ± 230.5 ng/g) than in forestland (13.5 ± 9.9 ng/g). After rainfall events, antibiotics accumulated in the soil at the positions where manure was applied, especially under high-intensity rainfall conditions. However, the antibiotic concentration in soil slightly increased from the top to the bottom of hills, thus indicating the restricted contribution of runoff to antibiotic transport, especially under low-intensity rainfall conditions. In addition, most antibiotics were sequestered in the surface soil (0-10 cm), and higher antibiotic concentrations were observed in deep soil (20-40 cm) in cropland than orchard. The soil aggregate, organic matter, and clay content played important roles in antibiotic sequestration along the hillslope subject to low-, medium-, and large-amount rainfall events, respectively. This study identified that land use, rainfall conditions, and soil structures jointly affect the spatial and temporal variability of antibiotics in soils on hillslopes.
Collapse
Affiliation(s)
- Fangkai Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liding Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Long Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shoujuan Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingyu Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|