1
|
Zhang K, Lin WH, Wang S, Hou D. Pyrogenic carbon modulating TCE dehalogenation through snorkeling electrons under sulfate-reducing conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135903. [PMID: 39307012 DOI: 10.1016/j.jhazmat.2024.135903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 12/01/2024]
Abstract
Microbial dehalogenation, using obligate and facultative organohalide-respiring bacteria (OHRB), has been widely used to remediate halohydrocarbon-polluted sites. Owing to the scarcity of OHRB, and poor efficiency in H2-mediating interspecies electron transfer, microbial dehalogenation relying on OHRB is easily disturbed by Fe(III), sulfate, and nitrate as electron competitors. In the present study, pyrogenic carbon, featuring electron snorkeling, was introduced into the process of microbial dehalogenation, which facilitated the electron transfer from electro-active microbes to halohydrocarbon, then invigorating dehalogenation. As a consequence, fine dehalogenation of trichloroethene (TCE, as representative halohydrocarbon) was obtained, expressed as the nearly complete diminishment of 150 µmol L-1 TCE and the sequestration of high contents of ethene (72.2-122.3 µmol L-1 within 80 d). Such fine dehalogenation was ascribed to the synergy between pyrogenic carbon and electro-active microbes. Multiple microbes in mixed cultures, including Clostridium sp., Sporanaerobacter, Sedimentibacter, Paraclostridium, and Tissierella, stimulated TCE dehalogenation by providing electrons to pyrogenic carbon. Redox moieties on pyrogenic carbon enabled it to snorkel electrons, which facilitated the electron transfer from electro-active microbes to TCE, consequently invigorating TCE dehalogenation. Such microbial dehalogenation free of OHRB demonstrates the effectiveness of a novel strategy for remediating halohydrocarbon-polluted environments.
Collapse
Affiliation(s)
- Kaikai Zhang
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei-Han Lin
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environ. Pollut. Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Li Y, Liu J, Wei B, Zhang X, Liu X, Han L. A comprehensive review of bone char: Fabrication procedures, physicochemical properties, and environmental application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176375. [PMID: 39306141 DOI: 10.1016/j.scitotenv.2024.176375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Bone waste from slaughtering is an abundant but underutilized resource. Promoting its exploitation can reduce the environmental burden and achieve energy recovery. Bone char, a solid material prepared by the thermochemical conversion of animal bone, has a unique and rich mesoporous structure and ionic polarity sites. It has shown great potential for application. This review aims to provide information about the thermochemical conversion method of recycling waste bone to fabricate bone char and, on its basis, to summarize comprehensive data on the physicochemical properties to provide direction and theoretical support for the tailored environmental remediation applications. Therefore, the authors first elucidated the various influencing effects (e.g., bone type, pyrolysis atmosphere and temperature, etc.) and modification treatments (physical and chemical methods) during the fabrication of bone char. Secondly, the physicochemical properties (including but not limited to pore structure, elemental composition, surface functional groups, pH and ash content, etc.) of bone char are comprehensively discussed for the first time. Further, the development process of bone char applied as adsorbents and catalytic supports for environmental remediation (decolorization of sugar liquor, drinking water defluoridation, removal of heavy metals and organic pollutants) is presented, revealing the behaviors and mechanisms of pollutant removal by bone char. Finally, the authors present the prospects and challenges of developing bone char into a green and sustainable environmentally friendly material.
Collapse
Affiliation(s)
- Yuyu Li
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jiale Liu
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Baoping Wei
- China IPPR International Engineering Co., Ltd., Beijing 100089, PR China
| | - Xuesong Zhang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xian Liu
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, PR China
| |
Collapse
|
3
|
Niu Y, Wang S, Gao P, Ren X, Li F, Liu Z, Wang L, Peng H, Ju S. Photo-transformation of biochar-derived dissolved organic matter and its binding with phenanthrene/9-phenanthrol: The role of functional group and pyrolysis temperature. BIORESOURCE TECHNOLOGY 2024; 413:131547. [PMID: 39343176 DOI: 10.1016/j.biortech.2024.131547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
This study explores the physicochemical attributes of dissolved organic matter from rice straw biochar (BDOM) at varying pyrolysis temperatures and photo-irradiation conditions, focusing on the binding mechanisms of phenanthrene (PHE) and 9-phenanthrol (PTR) using multiple spectroscopic techniques and fluorescence quenching. Following 20 h of photo-irradiation, only 11.3 % of BDOM underwent mineralization, forming new CH3/CH2/CH aliphatics structures. BDOM from biochar produced by pyrolysis at 400°C exhibited a stronger binding affinity with PHE and PTR, achieving 44 % and 52 % maximum binding, respectively. Static and dynamic quenching governed PHE and PTR binding, which was influenced by temperature. Photo-irradiated BDOM showed enhanced binding with PHE, attributed to increased aliphatic content. Hydrogen bond and π-π electron-donor-acceptor (EDA) interactions dominated PTR binding, while π-π interactions and hydrophobic interactions controlled PHE. This study provides valuable insights into BDOM photochemical behaviors and their impact on the environmental fate of polycyclic aromatic hydrocarbons (PAHs) after BDOM photo-irradiation.
Collapse
Affiliation(s)
- Yifan Niu
- Faculty of Modern Agricultural Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
| | - Siyao Wang
- Faculty of Modern Agricultural Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| | - Peng Gao
- City College, Kunming University of Science & Technology, Kunming, Yunnan 650051, China
| | - Xin Ren
- Faculty of Modern Agricultural Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| | - Fangfang Li
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| | - Zhanpeng Liu
- Faculty of Modern Agricultural Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| | - Lin Wang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| | - Hongbo Peng
- Faculty of Modern Agricultural Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China; Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China.
| | - Shaohua Ju
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
| |
Collapse
|
4
|
Shang Q, Chi J. Mechanistic insight into the effects of interaction between biochar and soil with different properties on phenanthrene sorption. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121961. [PMID: 39067347 DOI: 10.1016/j.jenvman.2024.121961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Soil composition varies considerably in nature, so it is vital to investigate the mechanism of the effect of various soil parameters on biochar sorption capacity. In this study, two biochars (W4 and W7) were derived from wheat straw at temperatures of 400 and 700 °C and were incubated with three different soils. Changes in biochar surface features by aging in the soils and the consequent impact on phenanthrene sorption were examined. The results showed that the effect of adding biochar on phenanthrene sorption capacity (Koc) varied by soil. When biochar was freshly mixed with soil, the Koc value in soil with higher clay content was more dramatically altered by biochar, which is due to clay particles adhering to the biochar surface. Moreover, the Koc value was significantly decreased by the addition of W4 but increased by the addition of W7 in general. After aging, most of the Koc value decreased. The greatest decrease in Koc value was observed in biochar and soil composed with the highest clay content for W4 (24-63%), as well as soil composed with the highest organic matter content for W7 (46-64%). This is because the surface polarity and micropores of biochar dropped the most rapidly in these mixes, resulting in a significant decrease in hydrophobic and pore-filling properties. The results revealed that the impact of biochar-soil interactions on phenanthrene sorption is related to not only biochar properties but also soil clay particles, soil organic matter content and pH. The findings of the study can be utilized to assess the efficacy of biochar application in soil remediation for various features.
Collapse
Affiliation(s)
- Qiongqiong Shang
- Nanchang Hangkong University, Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang 330063, PR China.
| | - Jie Chi
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| |
Collapse
|
5
|
Murtaza G, Ahmed Z, Usman M, Iqbal R, Zulfiqar F, Tariq A, Ditta A. Physicochemical properties and performance of non-woody derived biochars for the sustainable removal of aquatic pollutants: A systematic review. CHEMOSPHERE 2024; 359:142368. [PMID: 38763397 DOI: 10.1016/j.chemosphere.2024.142368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/14/2023] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Biochar is a carbon-rich material produced from the partial combustion of different biomass residues. It can be used as a promising material for adsorbing pollutants from soil and water and promoting environmental sustainability. Extensive research has been conducted on biochars prepared from different feedstocks used for pollutant removal. However, a comprehensive review of biochar derived from non-woody feedstocks (NWF) and its physiochemical attributes, adsorption capacities, and performance in removing heavy metals, antibiotics, and organic pollutants from water systems needs to be included. This review revealed that the biochars derived from NWF and their adsorption efficiency varied greatly according to pyrolysis temperatures. However, biochars (NWF) pyrolyzed at higher temperatures (400-800 °C) manifested excellent physiochemical and structural attributes as well as significant removal effectiveness against antibiotics, heavy metals, and organic compounds from contaminated water. This review further highlighted why biochars prepared from NWF are most valuable/beneficial for water treatment. What preparatory conditions (pyrolysis temperature, residence time, heating rate, and gas flow rate) are necessary to design a desirable biochar containing superior physiochemical and structural properties, and adsorption efficiency for aquatic pollutants? The findings of this review will provide new research directions in the field of water decontamination through the application of NWF-derived adsorbents.
Collapse
Affiliation(s)
- Ghulam Murtaza
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Zeeshan Ahmed
- Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, China; Xinjiang Institute of Ecology & Geography, Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Xinjiang, 848300, China; College of Life Science, Shenyang Normal University, Shenyang, 110034, China.
| | - Muhammad Usman
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang District, Shanghai, 200240, China
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Pakistan
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Pakistan
| | - Akash Tariq
- Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, China; Xinjiang Institute of Ecology & Geography, Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Xinjiang, 848300, China
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University, Sheringal, Dir (Upper), 18000, Khyber Pakhtunkhwa, Pakistan; School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
6
|
Hou C, Zhou C, Li N, Song Y, You X, Zhao J, Zhou X, Shen Z, Zhang Y. Interaction Effects between the Main Components of Protein-Rich Biomass during Microwave-Assisted Pyrolysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7826-7837. [PMID: 38653213 DOI: 10.1021/acs.est.3c10594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The interaction effects between the main components (proteins (P), carbohydrates (C), and lipids (L)) of protein-rich biomass during microwave-assisted pyrolysis were investigated in depth with an exploration of individual pyrolysis and copyrolysis (PC, PL, and CL) of model compounds. The average heating rate of P was higher than those of C and L, and the interactions in all copyrolysis groups reduced the max instant heating rate. The synergistic extent (S) of PC and PL for bio-oil yield was 16.78 and 18.24%, respectively, indicating that the interactions promoted the production of bio-oil. Besides, all of the copyrolysis groups exhibited a synergistic effect on biochar production (S = 19.43-28.24%), while inhibiting the gas generation, with S ranging from -20.17 to -6.09%. Regarding the gaseous products, apart from H2, P, C, and L primarily generated CO2, CO, and CH4, respectively. Regarding bio-oil composition, the interactions occurring within PC, PL, and CL exhibited a significantly synergistic effect (S = 47.81-412.96%) on the formation of N-heterocyclics/amides, amides/nitriles, and acids/esters, respectively. Finally, the favorable applicability of the proposed interaction effects was verified with microalgae. This study offers valuable insights for understanding the microwave-assisted pyrolysis of protein-rich biomass, laying the groundwork for further research and process optimization.
Collapse
Affiliation(s)
- Cheng Hou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Chenxi Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Nan Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Yuanbo Song
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Xiaogang You
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Jiang Zhao
- Shanghai Rural Revitalization Research Center, Shanghai 200002, P. R. China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Zheng Shen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai 201804, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 20092, P. R. China
| |
Collapse
|
7
|
Porto MAF, Mendes KF, Tornisielo VL, Guiotoku M, de Freitas Souza M, Lins HA, Silva DV. Biochar obtained from eucalyptus, rice hull, and native bamboo as an alternative to decrease mobility of hexazinone, metribuzin, and quinclorac in a tropical soil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:423. [PMID: 38570374 DOI: 10.1007/s10661-024-12589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Mobile herbicides have a high potential for groundwater contamination. An alternative to decrease the mobility of herbicides is to apply materials with high sorbent capacity to the soil, such as biochars. The objective of this research was to evaluate the effect of eucalyptus, rice hull, and native bamboo biochar amendments on sorption and desorption of hexazinone, metribuzin, and quinclorac in a tropical soil. The sorption-desorption was evaluated using the batch equilibrium method at five concentrations of hexazinone, metribuzin, and quinclorac. Soil was amended with eucalyptus, rice hull, and native bamboo biochar at a rate of 0 (control-unamended) and 1% (w w-1), corresponding to 0 and 12 t ha-1, respectively. The amount of sorbed herbicides in the unamended soil followed the decreasing order: quinclorac (65.9%) > metribuzin (21.4%) > hexazinone (16.0%). Native bamboo biochar provided the highest sorption compared to rice hull and eucalyptus biochar-amended soils for the three herbicides. The amount of desorbed herbicides in the unamended soil followed the decreasing order: metribuzin (18.35%) > hexazinone (15.9%) > quinclorac (15.1%). Addition of native bamboo biochar provided the lowest desorption among the biochar amendments for the three herbicides. In conclusion, the biochars differently affect the sorption and desorption of hexazinone, metribuzin, and quinclorac mobile herbicides in a tropical soil. The addition of eucalyptus, rice hull, and native bamboo biochars is a good alternative to increase the sorption of hexazinone, metribuzin, and quinclorac, thus, reducing mobility and availability of these herbicides to nontarget organisms in soil.
Collapse
Affiliation(s)
- Maria Alice Formiga Porto
- Department of Agronomic and Forestry Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte, Brazil
| | | | | | - Marcela Guiotoku
- Empresa Brasileira de Pesquisa Agropecuária, Brasília, Distrito Federal, Brazil
| | | | - Hamurábi Anizio Lins
- Department of Agronomic and Forestry Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte, Brazil.
| | - Daniel Valadão Silva
- Department of Agronomic and Forestry Sciences, Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte, Brazil
| |
Collapse
|
8
|
Tao J, Wu W, Lin D, Yang K. Role of biochar pyrolysis temperature on intracellular and extracellular biodegradation of biochar-adsorbed organic compounds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123583. [PMID: 38365081 DOI: 10.1016/j.envpol.2024.123583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/18/2024]
Abstract
Immobilizing organic pollutants by adsorption of biochar in farmland soil is a cost-effective remediation method for contaminated soil. As the adsorption capacity of biochar is limited, biodegradation of biochar-adsorbed organic pollutants was a potential way to regenerate biochars and maintain the adsorption performance of biochars to lower the cost. It could be affected by the biochar pyrolysis temperature, but was not evaluated yet. In this study, biodegradation of adsorbed phenanthrene on a series of biochars with pyrolysis temperatures from 150 to 700 °C by Sphingobium yanoikuyae B1 was investigated using batch experiments of biodegradation kinetics at 30 °C, to explore the role of biochar pyrolysis temperature on biodegradation of biochar-adsorbed organic compounds. It was observed that 37.5-47.9% of adsorbed phenanthrene on moderate temperature-pyrolyzed biochars produced at 400 and 500 °C were biodegraded, less than that on high temperature-pyrolyzed biochars produced at ≥600 °C (48.8-60.8%) and low temperature-pyrolyzed biochars produced at ≤300 °C (63.4-92.5%). Phenanthrene adsorbed largely on the low temperature-pyrolyzed biochars by partition mechanism and thus is easily desorbed to water for a dominated intracellular biodegradation. On the high temperature-pyrolyzed biochars, phenanthrene is adsorbed largely by pore-filling mechanism and thus less desorbed to water for intracellular biodegradation. However, high temperature-pyrolyzed biochars can promote microbes to produce siderophore, H2O2 and thus release extracellular •OH for a dominated degradation of adsorbed phenanthrene by Fenton-like reaction. With the increase of biochar pyrolysis temperature, desorption and consequently the intracellular biodegradation of adsorbed phenanthrene on biochars decreased, while the secretion of siderophore and H2O2 by microbes on biochars increased to produce more extracellular •OH for degradation by Fenton-like reaction. The results could provide deep insights into the role of biochar pyrolysis temperature on biodegradation of biochar-adsorbed organic compounds, and optimize the selection of biochar with higher adsorption performance and easier regeneration for soil remediation.
Collapse
Affiliation(s)
- Jiaqi Tao
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China
| | - Wenhao Wu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China.
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China
| |
Collapse
|
9
|
Danish S, Hasnain Z, Dawar K, Fahad S, Shah AN, Salmen SH, Ansari MJ. Enhancing maize resilience to drought stress: the synergistic impact of deashed biochar and carboxymethyl cellulose amendment. BMC PLANT BIOLOGY 2024; 24:139. [PMID: 38413916 PMCID: PMC10898060 DOI: 10.1186/s12870-024-04843-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024]
Abstract
Drought stress poses a significant challenge to maize production, leading to substantial harm to crop growth and yield due to the induction of oxidative stress. Deashed biochar (DAB) in combination with carboxymethyl cellulose (CMC) presents an effective approach for addressing this problem. DAB improves soil structure by increasing porosity and water retention and enhancing plant nutrient utilization efficiency. The CMC provides advantages to plants by enhancing soil water retention, improving soil structure, and increasing moisture availability to the plant roots. The present study was conducted to investigate the effects of DAB and CMC amendments on maize under field capacity (70 FC) and drought stress. Six different treatments were implemented in this study, namely 0 DAB + 0CMC, 25 CMC, 0.5 DAB, 0.5 DAB + 25 CMC, 1 DAB, and 1 DAB + 25 CMC, each with six replications, and they were arranged according to a completely randomized design. Results showed that 1 DAB + 25 CMC caused significant enhancement in maize shoot fresh weight (24.53%), shoot dry weight (38.47%), shoot length (32.23%), root fresh weight (19.03%), root dry weight (87.50%) and root length (69.80%) over control under drought stress. A substantial increase in maize chlorophyll a (40.26%), chlorophyll b (26.92%), total chlorophyll (30.56%), photosynthetic rate (21.35%), transpiration rate (32.61%), and stomatal conductance (91.57%) under drought stress showed the efficiency of 1 DAB + 25 CMC treatment compared to the control. The enhancement in N, P, and K concentrations in both the root and shoot validated the effectiveness of the performance of the 1 DAB + 25 CMC treatment when compared to the control group under drought stress. In conclusion, it is recommended that the application of 1 DAB + 25 CMC serves as a beneficial amendment for alleviating drought stress in maize.
Collapse
Affiliation(s)
- Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Zuhair Hasnain
- Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Khadim Dawar
- Department of Soil and Environmental Science, the University of Agriculture Peshawar, Peshawar, Pakistan
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology Rahim Yar Khan, Rahim Yar Khan, Punjab, 64200, Pakistan
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, 244001, India
| |
Collapse
|
10
|
Rombel A, Różyło K, Oleszczuk P. The high dose of biochar reduces polycyclic aromatic hydrocarbons losses during co-composting of sewage sludge and wheat straw. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119628. [PMID: 38070423 DOI: 10.1016/j.jenvman.2023.119628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 01/14/2024]
Abstract
The aim of the study was to investigate the effect of the biochar (BC) dose on solvent extractable (Ctot) and freely dissolved (Cfree) polycyclic aromatic hydrocarbons (PAHs) content during co-composting. A significantly better reduction of Σ16 Ctot PAHs after 98 days occurred during composting with BC (for 1% of BC - 44% and for 5% of BC - 23%) than in the control (15%). Despite the relatively high reduction of Ctot PAHs in the experiment with 5% BC rate, the content of the PAHs was still the highest compared to other variants. Regarding Cfree PAHs, 5% rate of BC resulted in the best reduction of PAHs, while the 1% BC dose resulted in a lower reduction of Cfree than the control. For 1% BC, PAHs losses was more effective, and sequestration processes played a less significant role than in the experiment with 5% dose of BC. The total and dissolved organic carbon, and ash were predominantly responsible for Ctot and Cfree losses, and additionally pH for Cfree. The results of the experiment indicate that BC performs a crucial role in composting, affecting the Ctot and Cfree PAHs in the compost but the final effect strictly depends on the BC dose.
Collapse
Affiliation(s)
- Aleksandra Rombel
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Sklodowska University, Lublin, Poland
| | - Krzysztof Różyło
- Department of Agricultural Ecology, Faculty of Agrobioengineering, University of Life Sciences, Lublin, Poland
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Sklodowska University, Lublin, Poland.
| |
Collapse
|
11
|
Jaffari ZH, Abbas A, Kim CM, Shin J, Kwak J, Son C, Lee YG, Kim S, Chon K, Cho KH. Transformer-based deep learning models for adsorption capacity prediction of heavy metal ions toward biochar-based adsorbents. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132773. [PMID: 37866140 DOI: 10.1016/j.jhazmat.2023.132773] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/24/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
Biochar adsorbents synthesized from food and agricultural wastes are commonly applied to eliminate heavy metal (HM) ions from wastewater. However, biochar's diverse characteristics and varied experimental conditions make the accurate estimation of their adsorption capacity (qe) challenging. Herein, various machine-learning (ML) and three deep learning (DL) models were built using 1518 data points to predict the qe of HM on various biochars. The recursive feature elimination technique with 28 inputs suggested that 14 inputs were significant for model building. FT-transformer with the highest test R2 (0.98) and lowest root mean square error (RMSE) (0.296) and mean absolute error (MAE) (0.145) outperformed various ML and DL models. The SHAP feature importance analysis of the FT-transformer model predicted that the adsorption conditions (72.12%) were more important than the pyrolysis conditions (25.73%), elemental composition (1.39%), and biochar's physical properties (0.73%). The two-feature SHAP analysis proposed the optimized process conditions including adsorbent loading of 0.25 g, initial concentration of 12 mg/L, and solution pH of 9 using phosphoric-acid pre-treated biochar synthesized from banana-peel with a higher O/C ratio. The t-SNE technique was applied to transform the 14-input matrix of the FT-Transformer into two-dimensional data. Finally, we outlined the study's environmental implications.
Collapse
Affiliation(s)
- Zeeshan Haider Jaffari
- Department of Civil and Environmental Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ather Abbas
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Chang-Min Kim
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, South Korea
| | - Jaegwan Shin
- Department of Integrated Energy and Infra system, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Jinwoo Kwak
- Department of Integrated Energy and Infra system, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Changgil Son
- Department of Integrated Energy and Infra system, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Yong-Gu Lee
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Sangwon Kim
- Department of Integrated Energy and Infra system, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Kangmin Chon
- Department of Integrated Energy and Infra system, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea; Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea.
| | - Kyung Hwa Cho
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
12
|
Huang S, Huang P, Hareem M, Tahzeeb-Ul-Hassan M, Younis U, Dawar K, Fahad S, Salmen SH, Ansari MJ, Danish S. Evaluating the hidden potential of deashed biochar in mitigating salinity stress for cultivation of fenugreek. Sci Rep 2024; 14:141. [PMID: 38167554 PMCID: PMC10761952 DOI: 10.1038/s41598-023-49063-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Soil salinity, the second most prominent cause of land degradation after soil erosion, has posed a persistent challenge to agriculture. Currently, approximately 1 billion hectares of Earth's land surface, equivalent to 7%, are affected by salinity. While biochar has proven effective in mitigating salinity stress, the specific role of deashed biochar in salinity mitigation has not been thoroughly explored. Therefore, this study was conducted to investigate the impact of four levels of deashed biochar (0%, 0.4%, 0.8%, and 1.2%) on the growth and physiological attributes of Fenugreek under both non-saline conditions (2.54 dS/m EC) and salinity stress conditions (5.46 dS/m EC). The results revealed a notable enhancement in various parameters under salinity stress. Compared to the control, the application of 1.20% deashed biochar led to a significant increase in shoot fresh weight (30.82%), root fresh weight (13.06%), shoot dry weight (17.43%), root dry weight (33.44%), shoot length (23.09%), and root length (52.39%) under salinity stress. Furthermore, improvements in internal CO2 concentration (9.91%), stomatal conductance (15.49%), photosynthetic rate (25.50%), and transpiration rate (10.46%) were observed, validating the efficacy of 1.20% deashed biochar in alleviating salinity stress. The study also demonstrated a significant decrease in the activities of oxidative stress markers such as peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), electrolyte leakage, and malondialdehyde (MDA). Simultaneously, there was an increase in the concentrations of essential nutrients, namely nitrogen (N), phosphorus (P), and potassium (K), in both shoot and root tissues. These findings collectively suggest that deashed biochar, particularly at a concentration of 1.20%, is recommended for achieving enhanced crop production under conditions of salinity stress.
Collapse
Affiliation(s)
- Shoucheng Huang
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Ping Huang
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, 233000, China
| | - Misbah Hareem
- Department of Environmental Sciences, The Woman University Multan, Multan, Punjab, Pakistan
| | | | - Uzma Younis
- Botany Department, The Islamia University of Bahawalpur, Rahim Yar Khan, Punjab, Pakistan
| | - Khadim Dawar
- Department of Soil and Environmental Science, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, 244001, India
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| |
Collapse
|
13
|
Zhi F, Zhou W, Chen J, Meng Y, Hou X, Qu J, Zhao Y, Hu Q. Adsorption properties of active biochar: Overlooked role of the structure of biomass. BIORESOURCE TECHNOLOGY 2023; 387:129695. [PMID: 37598803 DOI: 10.1016/j.biortech.2023.129695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Vascular plants account for more than 80% of all biomass on earth and are potential precursors of biochar. However, the changes of vascular bundle have received less attention during the preparation of biochar. In this study, loofah sponge (LS), tangerine pith (TP), and rhodiola rosea (RR), were selected to show the role of vascular bundle in biochar through the pretreatment of vascular bundle. The results showed that the active biochar prepared with vascular bundle protection had high adsorption capacity for methylene blue (LS: 953.53 mg/g, TP: 714.77 mg/g, RR: 583.49 mg/g). The Brunauer-Emmett-Teller method was used to measure the specific surface area (SSA) of active biochar. The SSA of LS active biochar prepared by vascular bundle protection was 2262.67 m2/g, and has high adsorption properties under different conditions. In conclusion, the protection of vascular bundle during biochar preparation is important to improve the utilization of biological resources and environmental adsorption.
Collapse
Affiliation(s)
- Fangke Zhi
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110006, PR China
| | - Wenjing Zhou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110006, PR China
| | - Jingru Chen
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110006, PR China
| | - Yumeng Meng
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110006, PR China
| | - Xiaohong Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110006, PR China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yudan Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110006, PR China
| | - Qi Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110006, PR China.
| |
Collapse
|
14
|
Zhang K, Wang L, Qin M, Mulder J, Hou D. Mercury reduction by black carbon under dark conditions. WATER RESEARCH 2023; 242:120241. [PMID: 37392509 DOI: 10.1016/j.watres.2023.120241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 07/03/2023]
Abstract
An accurate depiction of mercury (Hg) reduction is important to predict Hg biogeochemistry in both aquatic and soil systems. Although the photoreduction of Hg is well documented, reduction in the dark is poorly known and is thus the focus of this work. Black carbon (BC), an important constituent of organic matter in environments, can reduce Hg2+ in dark and oxygen-deficient conditions. Fast removal of Hg2+ in BC/Hg2+ solution was observed, with 4.99-86.88 L mg-1h-1 of the reaction rate constant, which could be ascribed to the combined actions of adsorption and reduction. Meanwhile, slow Hg reduction was obtained, compared to Hg removal, with 0.06-2.16 L mg-1h-1 of the reaction rate constant. Thus, in the initial stage, Hg2+ removal was mainly triggered by adsorption, rather than reduction. Afterward, the adsorbed Hg2+ on black carbon was converted into Hg0. Dissolved black carbon and aromatic CH on particulate black carbon were dominant triggers of Hg reduction for black carbon. During Hg reduction, the intastable intermediate, formed in the complex between aromatic CH and Hg2+, behaved as persistent free radicals, which could be detected by in situ electron paramagnetic resonance. Subsequently, the intastable intermediate was mainly converted into CO on black carbon and Hg0. Corresponding results of the present study highlight the important role of black carbon in the Hg biogeochemical cycle.
Collapse
Affiliation(s)
- Kaikai Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Muhan Qin
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jan Mulder
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
15
|
Hassaan MA, Yılmaz M, Helal M, El-Nemr MA, Ragab S, El Nemr A. Isotherm and kinetic investigations of sawdust-based biochar modified by ammonia to remove methylene blue from water. Sci Rep 2023; 13:12724. [PMID: 37543711 PMCID: PMC10404293 DOI: 10.1038/s41598-023-39971-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023] Open
Abstract
Chemical industry effluent may pose significant environmental risks to both human health and the economy if it is not properly managed. As a result, scientists and decision-makers are paying increasing attention to developing a sustainable, low-cost wastewater treatment technique. This work aims to investigate the adsorption of Methylene Blue (MB) dye present in water using biochar derived from sawdust modified by boiling in an ammonia solution (SDBA). The properties of SDBA were characterized by BET, SEM, XRD, BJH, FT-IR, DTA, EDX and TGA analyses. The presence of -OH and -NH groups in SDBA was confirmed by FTIR, which proved that the NH4OH treatment of biochar successfully added nitrogen groups on its surface. The influence of pH (2 to 12), MB dye initial concentration (20 to 120 mg/L), adsorbent dosage (0.5 to 4.0 g/L) and contact time (0 to 180 min) on the adsorption process has been investigated. The adsorption of MB dye is more favorable at basic pH, with optimum adsorption at pH 8. Using a starting concentration of 20 mg/L of MB dye and a 4.0 g/L SDBA dose, the maximum percent clearance of MB dye was 99.94%. Experimental results were fitted to the Freundlich (FIM), Tempkin (TIM) and Langmuir (LIM) isotherm models (IMs). The FIM fitted the equilibrium data well, with a 643.74 mg/g Qm. Various error function models were used to test the data obtained from IMs. According to Error Function results, experimental data showed that it fits better for LIM and FIM. Kinetic studies indicated that the MB dye adsorption procedure followed pseudo-second-order (PSOM) kinetics based on film diffusion (FDM), pseudo-first-order (PFOM) and intra-particle diffusion models (IPDM). MB dye sorption on the SDBA involved electrostatic interaction, surface participation, hydrogen bond and π-π interactions. The adsorption mechanism of MB dye by SDBA was proposed as physical adsorption via the electrostatic attraction process. SDBA is an effective adsorbent in removing MB dye from water. Six adsorption-desorption cycles of the MB dye were run through the regeneration of SDBA with only a minimal amount of adsorption capacity loss, demonstrating the reusability of manufactured SDBA.
Collapse
Affiliation(s)
- Mohamed A Hassaan
- National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| | - Murat Yılmaz
- Department of Chemical Engineering, Faculty of Engineering, Osmaniye Korkut Ata University, 80000, Osmaniye, Turkey
| | - Mohamed Helal
- National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| | - Mohamed A El-Nemr
- Department of Chemical Engineering, Faculty of Engineering, Minia University, Minia, 61519, Egypt
| | - Safaa Ragab
- National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| | - Ahmed El Nemr
- National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt.
| |
Collapse
|
16
|
Hassaan MA, Yılmaz M, Helal M, El-Nemr MA, Ragab S, El Nemr A. Improved methylene blue adsorption from an aqueous medium by ozone-triethylenetetramine modification of sawdust-based biochar. Sci Rep 2023; 13:12431. [PMID: 37528164 PMCID: PMC10394039 DOI: 10.1038/s41598-023-39495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023] Open
Abstract
In this study, sawdust biochar-O3-TETA (SDBT), a novel biochar, was prepared via treatment with 80% sulfuric acid, followed by oxidation by ozone and subsequent treatment with boiling Triethylenetetramine (TETA). Characterization studies of the prepared SDBT adsorbent were performed with SEM-EDX, BET, XRD, BJH, FT-IR, DTA and TGA analyses. The adsorption efficiency of MB dye by SDBT biochar from water was investigated. Methylene Blue (MB) dye absorption was most effective when the solution pH was 12. The maximum removal % of MB dye was 99.75% using 20 mg/L as starting MB dye concentration and 2.0 g/L SDBT dose. The Qm of the SDBT was 568.16 mg/g. Actual results were fitted to Temkin (TIM), Freundlich (FIM), and Langmuir (LIM) isotherm models. The experimental results for SDBT fitted well with all three models. Error function equations were used to test the results obtained from these isotherm models, which showed that the experimental results fit better with TIM and FIM. Kinetic data were investigated, and the pseudo-second-order (PSOM) had R2 > 0.99 and was mainly responsible for guiding the absorption rate. The removal mechanism of the MB dye ions in a base medium (pH 12) may be achieved via physical interaction due to electrostatic interaction between the SDBT surface and the positive charge of the MB dye. The results show that SDBT effectively removes the MB dye from the aqueous environment and can be used continually without losing its absorption efficiency.
Collapse
Affiliation(s)
- Mohamed A Hassaan
- National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| | - Murat Yılmaz
- Department of Chemical Engineering, Faculty of Engineering, Osmaniye Korkut Ata University, 80000, Osmaniye, Turkey
| | - Mohamed Helal
- National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| | - Mohamed A El-Nemr
- Department of Chemical Engineering, Faculty of Engineering, Minia University, Minia, 61519, Egypt
| | - Safaa Ragab
- National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| | - Ahmed El Nemr
- National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt.
| |
Collapse
|
17
|
Wang J, Riaz M, Babar S, Xia H, Li Y, Xia X, Wang X, Jiang C. Iron-modified biochar reduces nitrogen loss and improves nitrogen retention in Luvisols by adsorption and microbial regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163196. [PMID: 37004773 DOI: 10.1016/j.scitotenv.2023.163196] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
Nitrogen (N) loss poses a great threat to global environmental sustainability. The application of modified biochar is a novel strategy to improve soil nitrogen retention and alleviate the negative effects caused by N fertilizers. Therefore, in this study iron modified biochar was used as a soil amendment to investigate the potential mechanisms of N retention in Luvisols. The experiment comprised five treatments i.e., CK (control), 0.5 % BC, 1 % BC, 0.5 % FBC and 1 % FBC. Our results showed that the intensity of functional groups and surface structure of FBC was improved. The 1 % FBC treatment showed a significant increment in soil NO3--N, dissolved organic nitrogen (DON), and total nitrogen (TN) content by 374.7 %, 51.9 %, and 14.4 %, respectively, compared with CK. The accumulation of N in cotton shoots and roots was increased by 28.6 % and 6.6 % with 1 % FBC addition. The application of FBC also stimulated the activities of soil enzymes related to C and N cycling i.e., β-glucosidase (βG), β-Cellobiohydrolase (CBH), and Leucine aminopeptidase (LAP). In the soil treated with FBC, a significant improvement in the structure and functions of the soil bacterial community was found. FBC addition altered the taxa involved in the N cycle by affecting soil chemical properties, especially for Achromobacte, Gemmatimonas, and Cyanobacteriales. In addition to direct adsorption, the regulation of FBC on organisms related to N-cycling also played an important role in soil nitrogen retention.
Collapse
Affiliation(s)
- Jiyuan Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China
| | - Saba Babar
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Hao Xia
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yuxuan Li
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiaoyang Xia
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiangling Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; The Key Laboratory of Oasis Ecoagriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832000, PR China
| | - Cuncang Jiang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; The Key Laboratory of Oasis Ecoagriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832000, PR China.
| |
Collapse
|
18
|
Zeng L, Chen Q, Liang N, Ji P, Lu M, Wu M, Oleszczuk P, Pan B, Xing B. The promoted degradation of biochar-adsorbed 2,4-dichlorophenol in the presence of Fe(III). JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131774. [PMID: 37437485 DOI: 10.1016/j.jhazmat.2023.131774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 07/14/2023]
Abstract
Organic pollutant degradation by biochar could be promoted by Fe because of the Fenton-like reaction. However, studies have also confirmed that reactive oxygen species (ROS) play only a limited role in organic pollutant degradation by biochar. Herein, we quantitatively identified 2,4-dichlorophenol (2,4-DCP) adsorption and degradation in Fe-biochar systems and obtained degradation (k1) and adsorption rate constants (k2) by two-compartment first-order kinetics modeling. The k1 was approximately 7-10 times lower than the corresponding k2 and the positive correlation between k1 and k2 illustrated that adsorption and degradation were kinetically associated. ROS quenching only slightly inhibited 2,4-DCP degradation. Chemicals with similar structures to ROS quenchers (without quenching ability) also inhibited 2,4-DCP degradation, probably because of the competition of the active degradation sites on biochars. Electrochemical analysis and pH-impact experiments further elucidated that 2,4-DCP underwent oxidation-dominated degradation in the adsorbed phase via direct electron transfer. Fe(III) obviously increased 2,4-DCP adsorption through cation bridging and enhanced electron density by Fe-O conjugations on the biochar surface, which facilitated subsequent degradation. This study emphasized the importance of degradation on the biochar solid phase and that a breakthrough of the mass transfer bottleneck of adsorption will greatly promote degradation.
Collapse
Affiliation(s)
- Liang Zeng
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Quan Chen
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Ni Liang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Pixia Ji
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Meng Lu
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Min Wu
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Patryk Oleszczuk
- Department of Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
| | - Bo Pan
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
19
|
Li Y, Wang B, Shang H, Cao Y, Yang C, Hu W, Feng Y, Yu Y. Influence of adsorption sites of biochar on its adsorption performance for sulfamethoxazole. CHEMOSPHERE 2023; 326:138408. [PMID: 36925005 DOI: 10.1016/j.chemosphere.2023.138408] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/25/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
In this study, the effects of various types of key adsorption sites on biochar were investigated on its adsorption capacity for sulfamethoxazole (SMX). The biochar obtained by carbonization of corncob at 800 °C (named CC800) was applied to the adsorption of SMX in aqueous environment. The adsorption of SMX by CC800 exhibited a "Three-stage downward adsorption ladder" characteristic in the whole pH range, which was attributed to the different mechanisms corresponding to different adsorption sites of CC800. The organic solvent method and heat treatment method restored the adsorption sites of CC800 after saturated adsorption. And the results revealed that the pore structure and aromatic structure under acidic conditions, and surface functional groups and pore structure under alkaline conditions were confirmed to be key SMX adsorption sites. The adsorption energies of each adsorption mechanism were calculated by density functional theory (DFT), and their order was (-)CAHB (-COO-) > π+-π EDA interaction > (-)CAHB (-O-) > pore filling mechanism > π-π EDA interaction. Based on the above studies, the adsorption performance of biochar to SMX can be improved by targeted modification of its micropore structure, surface functional groups, and aromatic structures.
Collapse
Affiliation(s)
- Yinxue Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Bin Wang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Hongru Shang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Yongna Cao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Chunhui Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China; State Key Laboratory of Urban Water Resource and Environment, Harbin, 150090, People's Republic of China
| | - Weijie Hu
- School of Chemistry, Guangdong University of Petrochemical Technology, Guangdong, Maoming, 525000, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin, 150090, People's Republic of China
| | - Yanling Yu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| |
Collapse
|
20
|
Ćwieląg-Piasecka I, Jamroz E, Medyńska-Juraszek A, Bednik M, Kosyk B, Polláková N. Deashed Wheat-Straw Biochar as a Potential Superabsorbent for Pesticides. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2185. [PMID: 36984065 PMCID: PMC10056329 DOI: 10.3390/ma16062185] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Biochar activation methods have attracted extensive attention due to their great role in improving sorptive properties of carbon-based materials. As a result, chemically modified biochars gained application potential in the purification of soil and water from xenobiotics. This paper describes changes in selected physicochemical properties of high-temperature wheat-straw biochar (BC) upon its deashing. On the pristine and chemically activated biochar (BCd) retention of five pesticides of endocrine disrupting activity (carbaryl, carbofuran, 2,4-D, MCPA and metolachlor) was studied. Deashing resulted in increased sorbent aromaticity and abundance in surface hydroxyl groups. BCd exhibited more developed meso- and microporosity and nearly triple the surface area of BC. Hydrophobic pesticides (metolachlor and carbamates) displayed comparably high (88-98%) and irreversible adsorption on both BCs, due to the pore filling, whereas the hydrophilic and ionic phenoxyacetic acids were weakly and reversibly sorbed on BC (7.3 and 39% of 2,4-D and MCPA dose introduced). Their removal from solution and hence retention on the deashed biochar was nearly total, due to the increased sorbent surface area and interactions of the agrochemicals with unclogged OH groups. The modified biochar has the potential to serve as a superabsorbent, immobilizing organic pollutant of diverse hydrophobicity from water and soil solution.
Collapse
Affiliation(s)
- Irmina Ćwieląg-Piasecka
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wroclaw University of Environmental and Life Sciences, Grunwaldzka 53 St., 50-357 Wrocław, Poland
| | - Elżbieta Jamroz
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wroclaw University of Environmental and Life Sciences, Grunwaldzka 53 St., 50-357 Wrocław, Poland
| | - Agnieszka Medyńska-Juraszek
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wroclaw University of Environmental and Life Sciences, Grunwaldzka 53 St., 50-357 Wrocław, Poland
| | - Magdalena Bednik
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wroclaw University of Environmental and Life Sciences, Grunwaldzka 53 St., 50-357 Wrocław, Poland
| | - Bogna Kosyk
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wroclaw University of Environmental and Life Sciences, Grunwaldzka 53 St., 50-357 Wrocław, Poland
| | - Nora Polláková
- Faculty of Agrobiology and Food Resources, Institute of Agronomic Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| |
Collapse
|
21
|
Zhao C, Xu Q, Gu Y, Nie X, Shan R. Review of Advances in the Utilization of Biochar-Derived Catalysts for Biodiesel Production. ACS OMEGA 2023; 8:8190-8200. [PMID: 36910936 PMCID: PMC9996642 DOI: 10.1021/acsomega.2c07909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Biochar, obtained from the thermal decomposition of different biomass sources, can be used in various scientific technologies by virtue of its distinguishing performance. Recent developments in advanced biochar synthesis methods have led to continuous growth in the literature related to bulk biochar products and synthesized biochar substrates. This review specifically summarizes the current advanced methods for the synthesis of functional biochar catalysts and applications in (trans)esterification. Herein, first the method and design of synthesized biochar substrate catalysts are briefly introduced. Second, the applications of these synthesized biochar substrate catalysts upon (trans)esterification are comprehensively discussed. Finally, the current research status and the future perspectives of the synthesized biochar substrate catalyst are presented. It is expected that this summary will provide perspectives and instructions for future work on synthesized biochar catalysts for biodiesel products.
Collapse
Affiliation(s)
- Che Zhao
- School
of Naval Architecture and Maritime, Zhejiang
Ocean University, Zhoushan 316022, China
| | - Qinyao Xu
- School
of Naval Architecture and Maritime, Zhejiang
Ocean University, Zhoushan 316022, China
| | - Ying Gu
- School
of Naval Architecture and Maritime, Zhejiang
Ocean University, Zhoushan 316022, China
| | - Xingjin Nie
- School
of Naval Architecture and Maritime, Zhejiang
Ocean University, Zhoushan 316022, China
| | - Rui Shan
- Guangzhou
Institute of Energy Conversion, Chinese
Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
22
|
Hira QUAA, Mahboob M, Azhar R, Munir F, Gul A, Hayat A, Shah T, Amir R. An integrated remediation approach using combinations of biochar, Rhizobium leguminosarum, and Vigna radiata for immobilizing and dissipating cadmium contaminants from the soil-mustard plant system. FRONTIERS IN PLANT SCIENCE 2023; 14:1139136. [PMID: 36950354 PMCID: PMC10025393 DOI: 10.3389/fpls.2023.1139136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) contamination of soils is an environmental concern, as cadmium harms food crops and can therefore impact human health. The use of combinations of biochar (seeded with Rhizobium leguminosarum) and Vigna radiata (as an intercrop) has the potential to reduce the mobilization of Cd from soil via mustard plants (Brassica juncea). Mustard plants are grown as a food and oil production crop that is consumed worldwide. However, this plant has the property of hyperaccumulation; thus, it bioaccumulates Cd in its tissues, which in turn, if eaten, can become part of the human food chain. Hence, reducing Cd bioaccumulation in mustard plants is crucial to making these plants a reliable and safe source of food for consumption. To improve soil sorption capacity and immobilization efficiency, biochar (in the form of wheat husk) was mixed with R. leguminosarum and intercropped (using V. radiata) with mustard plants for further investigation. Sampling was performed at an early growth stage (i.e., at 30 days) and at maturity (i.e., at 60 days) to determine the impact of Cd on a plant's morphophysiological attributes. Data were analyzed in two ways: first by analysis of variance (ANOVA) and then by the post hoc Tukey's honestly significant difference (HSD) test. The statistical analysis concluded that combinations effectively improved plant traits by 65%-90% in the early growth stage and by 70%-90% in the maturity stage. The T6 treatment combination [i.e., biochar + R. leguminosarum + V. radiata (BC + RL + VR)] provided the most effective results in terms of growth, biomass, pod yield, and pigmentation content. In addition, this combination reduced the translocation of Cd in mustard plants by 70%-95%. The combination of BC + RL + VR effectively reduced Cd contamination of mustard tissue and provided a suitable growing environment for the plants. A post-harvesting soil analysis using X-ray diffraction (XRD) found that Cd was undetectable in soil. This provides clear confirmation that these approaches can lead to Cd soil remediation. Moreover, this study provided insight into the responses of different morphophysiological attributes of mustard plants to Cd stress and could aid in developing Cd stress tolerance in mustard plants.
Collapse
Affiliation(s)
- Qurat-ul-Ain Ali Hira
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Midhat Mahboob
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rimsha Azhar
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Faiza Munir
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Alvina Gul
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Asim Hayat
- Land Resource Research Institute, National Agricultural Research Center (NARC), Islamabad, Pakistan
| | - Tariq Shah
- Plant Science Research Unit, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Washington, DC, United States
| | - Rabia Amir
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
23
|
Zuo W, Song B, Shi Y, Zupanic A, Guo S, Huang H, Jiang L, Yu Y. Using Bacillus thuringiensis HM-311@hydroxyapatite@biochar beads to remediate Pb and Cd contaminated farmland soil. CHEMOSPHERE 2022; 307:135797. [PMID: 35930931 DOI: 10.1016/j.chemosphere.2022.135797] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) and lead (Pb) have become serious soil contaminants in China. In this work, we immobilized B. thuringiensis HM-311 (a heavy metal resistant strain) using vinegar residue biochar and hydroxyapatite (HAP) to form BtHM-311@HAP@biochar calcium alginate beads. In aqueous solution, the beads respectively reduced 1000 mg/L Pb2+ to 14.59 mg/L and 200 mg/L Cd2+ to 5.40 mg/L within 20 h. Furthermore, the results of pot experiment showed that the BtHM-311@HAP@biochar beads reduced the bioavailability of Pb and Cd in soil. The accumulation of Pb2+ in rice decreased by 39.97% in shoots and 46.40% in roots, while that of Cd2+ decreased by 34.59 and 44.9%, respectively. Similarly, the accumulation of Pb2+ in corn decreased by 40.86% in shoots and 51.34% in roots, while that of Cd2+ decreased by 41.28 and 42.91%, respectively. The beads also increased the microbial community diversity in the rhizosphere soil. These findings indicate that BtHM-311@HAP@biochar beads may be applicable for the bioremediation of Cd- and Pb-contaminated farmland soil.
Collapse
Affiliation(s)
- Wenlu Zuo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Boyi Song
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Yuxin Shi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Anze Zupanic
- Department of Biotechnology and Systems Biology, National Institute of Biology, Vecna pot 111, Ljubljana, SI-1000, Slovenia
| | - Shuxian Guo
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, 473004, People's Republic of China
| | - He Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Yadong Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China.
| |
Collapse
|
24
|
Fan Z, Fang J, Zhang G, Qin L, Fang Z, Jin L. Improved Adsorption of Tetracycline in Water by a Modified Caulis spatholobi Residue Biochar. ACS OMEGA 2022; 7:30543-30553. [PMID: 36061729 PMCID: PMC9434748 DOI: 10.1021/acsomega.2c04033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
A potassium modified biochar (KBC) using Caulis spatholobi residue as the raw material was prepared by adopting a two-step method of pyrolysis followed by high-temperature potassium hydroxide activation, and its properties were characterized. Activation using potassium hydroxide under high temperature induced the loss of CaCO3 and partial C on biochar, which created a high specific surface area (1336.31 m2/g) together with a developed pore structure. pH displayed a slight influence on tetracycline adsorption, which signified the slight influence of the existence of tetracycline and the charge potential of biochar. Besides, pore filling, hydrogen bonding and π-π EDA stacking interactions possibly resulted in tetracycline adsorption on biochar. Tetracycline adsorption was fast in the original period, followed by a slower rate of adsorption until equilibrium was reached. Adsorption kinetics of tetracycline could be described using secondary and Elovich kinetic models. Adsorption isotherms for tetracycline were well fitted to the Langmuir isotherm model, and the maximum adsorption capacity of KBC was 830.78 mg/g at 318 K. According to a study of the thermodynamics, the adsorption of tetracycline on KBC was an endothermic reaction process. Corresponding results in the present study demonstrated that high-temperature potassium hydroxide activation enabled biochar to effectively eliminate tetracycline from water and wastewater.
Collapse
Affiliation(s)
- Zheng Fan
- Membrane
Separation and Water Treatment Center, Zhejiang University of Technology, State Key Lab Breeding Base of Green Chemical Synthesis
Technology, Hangzhou 310014, China
| | - Jie Fang
- School
of Chemical Engineering, Zhejiang University
of Technology, Hangzhou 310014, China
| | - Guoliang Zhang
- Membrane
Separation and Water Treatment Center, Zhejiang University of Technology, State Key Lab Breeding Base of Green Chemical Synthesis
Technology, Hangzhou 310014, China
| | - Lei Qin
- Membrane
Separation and Water Treatment Center, Zhejiang University of Technology, State Key Lab Breeding Base of Green Chemical Synthesis
Technology, Hangzhou 310014, China
| | - Zhenzhen Fang
- School
of Chemical Engineering, Zhejiang University
of Technology, Hangzhou 310014, China
| | - Laiyun Jin
- School
of Chemical Engineering, Zhejiang University
of Technology, Hangzhou 310014, China
| |
Collapse
|
25
|
A Review on Production and Surface Modifications of Biochar Materials via Biomass Pyrolysis Process for Supercapacitor Applications. Catalysts 2022. [DOI: 10.3390/catal12070798] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biochar (BC) based materials are solid carbon enriched materials produced via different thermochemical techniques such as pyrolysis. However, the non-modified/non-activated BC-based materials obtained from the low-temperature pyrolysis of biomass cannot perform well in energy storage applications due to the mismatched physicochemical and electrical properties such as low surface area, poor pore features, and low density and conductivity. Therefore, to improve the surface features and structure of the BC and surface functionalities, surface modifications and activations are introduced to improve its properties to achieve enhanced electrochemical performance. The surface modifications use various activation methods to modify the surface properties of BC to achieve enhanced performance for supercapacitors in energy storage applications. This article provides a detailed review of surface modification methods and the application of modified BC to be used for the synthesis of electrodes for supercapacitors. The effect of those activation methods on physicochemical and electrical properties is critically presented. Finally, the research gap and future prospects are also elucidated.
Collapse
|
26
|
Shen M, Song W, Shi X, Wang S, Wang H, Liu J, Jin W, Fan S, Cao Z. New insights into physicochemical properties of different particulate size-fractions and dissolved organic matter derived from biochars and their sorption capacity for phenanthrene. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128867. [PMID: 35413520 DOI: 10.1016/j.jhazmat.2022.128867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/27/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
To improve the knowledge of the heterogeneity and sorption behavior of biochars on hydrophobic organic contaminants (HOCs), pristine biochars (PBCs, 400 and 700 °C) were fractionated into four particulate fractions (SfBCs) and dissolved organic matter derived from biochars (DBC), then the sorption capacities of them towards phenanthrene were examined. Results showed that the OC-normalized sorption distribution coefficients (Koc) of PBCs were generally at intermediate levels among that of SfBCs and DBCs. The logKoc values of SfBCs increased as particle sizes decreased. By virtue of the higher micropore volume, specific surface area, aromaticity and hydrophobicity, the lowest SfBCs (0.45-10 µm, BC0.45-10) exhibited remarkably higher logKoc. Besides, although SfBCs from 700 °C generally showed larger logKoc than counterparts from 400 °C, almost no difference was observed for logKoc values of BC0.45-10 fractions from 400 and 700 °C. We thus speculated that particle size might have stronger effect on their sorption capacity than pyrolysis temperature. Although DBCs exhibited dramatically lower logKoc values than nano-scale SfBCs, they were interestingly comparable to large-sized SfBCs. Our findings thus suggested the importance of small particulate biochar species and DBCs on HOCs transport should be both highlighted since these fractions were highly dynamic in the environment.
Collapse
Affiliation(s)
- Mohai Shen
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Wenwen Song
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Xinyue Shi
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Shaojie Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Hui Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Jing Liu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Wanwan Jin
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Shunli Fan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China.
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
27
|
Chang Z, Tian L, Zhang J, Zhou D. Comparative study on the relative significance of low-/high-condensation aromatic moieties in biochar to organic contaminant sorption. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113598. [PMID: 35525120 DOI: 10.1016/j.ecoenv.2022.113598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Aromatic moieties of biochar are considered as key components for immobilizing hydrophobic organic contaminants in the environment. However, the relative importance of different aromatic moieties such as low-/high-condensation components in sorption has not been comprehensively investigated. In this study, biochar was produced from flue-cured tobacco straw (TB) and pine wood sawdust (WB) at various pyrolysis temperatures (200-600 °C). Aromatic moieties were characterized via elemental analysis, Fourier transform infrared spectroscopy, Raman spectroscopy, and benzene polycarboxylic acid molecular markers (BPCAs). The significance of different aromatic moieties in the sorption of phenanthrene (PHE) and bisphenol A (BPA) was assessed based on the individual BPCA patterns. The results indicated that aromaticity and aromatic moiety contents increased with increasing pyrolysis temperature. Biochar at 200 °C produced lower mellitic acid (B6CA) contents (18.7-27.9%) than the others. When the pyrolysis temperature was increased to 600 °C, the B6CA contents representing high-condensation aromatic moieties accounted for 55.4-60.9% of all the aromatic moieties. The unitary linear regressions between the individual BPCA distribution patterns and the n values and log Kd suggested that the high-condensation aromatic moieties played a more significant role than the low-condensation aromatic moieties (represented by B3CA-B5CA) in facilitating sorption nonlinearity (for PHE and BPA) and sorption capacity (for PHE). The elevated sorption of PHE can be attributed to the increased specific surface area and hydrophobicity of the newly formed aromatic moieties. Hydrogen bonds and π-π electron-donor-acceptor were the main mechanisms of BPA sorption. Because the WB biochar contained more aromatic moieties and more O-containing groups on the surface of the TB biochar, the WB exhibited a higher sorption for PHE; however, slightly elevated sorption was observed on the TB for BPA. This research may provide a new perspective in understanding the behavior of biochar aromatic moieties in sorption of organic contaminants.
Collapse
Affiliation(s)
- Zhaofeng Chang
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Kunming 650500, Yunnan, China
| | - Luping Tian
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China; Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Kunming 650500, Yunnan, China
| | - Jun Zhang
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China; Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Kunming 650500, Yunnan, China
| | - Dandan Zhou
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China; Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Kunming 650500, Yunnan, China.
| |
Collapse
|
28
|
Exploring the Potential of Straw Biochar for Environmentally Friendly Fertilizers. SUSTAINABILITY 2022. [DOI: 10.3390/su14106323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The pyrolysis of wheat straw in order to produce biochar for soil amendment is a potential strategy for producing environmental friendly fertilizers capable of boosting soil fertility, increasing carbon storage, and lowering greenhouse gas emissions. However, straw biochar’s potential to influence these aspects may vary depending on its properties. Our study sought to investigate biochar from wheat straw from three different regions in Bulgaria. A specially designed set up was used for the biochar production. Three pyrolytic temperatures (300, 400, and 500 °C) were applied, resulting in nine biochar samples. The specific characteristics included moisture content, volatile substances content, ash content, fixed carbon content, and joint ash and carbon content, and they were determined for each sample. The chemical content, resulting in 17 chemical elements and compounds, was measured and analysed. The results obtained showed that the produced straw biochar has the potential to be used as a fertilizer and soil supplement.
Collapse
|
29
|
Yin Q, Nie Y, Han Y, Wang R, Zhao Z. Properties and the Application of Sludge-Based Biochar in the Removal of Phosphate and Methylene Blue from Water: Effects of Acid Treating. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1833-1844. [PMID: 35094510 DOI: 10.1021/acs.langmuir.1c02946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sludge-based biochar could be used to remove phosphate and methylene blue (MB) from water. It is a highly efficient way to treat the sludge and contaminated water synergistically. The high ash content in sludge greatly influenced the adsorption property of the resultant biochar. In this work, the influence of carbonization-activation and acid treating on the adsorption performance of the sludge-based biochar was evaluated. The composition, structure, and surface properties of biochar were improved after acid treating. The biochar was obtained in a sequence of carbonization-activation first and then acid treating, providing the optimal adsorption property. Zn550-H and Zn750-H showed excellent adsorption capacity to phosphate and MB, respectively. The adsorption process was well described by the pseudo-first-order and pseudo-second-order kinetic models. Isothermal studies implied that it was controlled by multiple processes. What is more, sludge-based biochar performed well in the adsorption of phosphate and MB from weakly acidic to alkaline conditions, which was beneficial to utilize the sludge-based biochar in water remediation practically.
Collapse
Affiliation(s)
- Qianqian Yin
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei 071003, China
- Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding, Hebei 071003, China
| | - Yunpeng Nie
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei 071003, China
- Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding, Hebei 071003, China
| | - Yansong Han
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei 071003, China
- Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding, Hebei 071003, China
| | - Ruikun Wang
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei 071003, China
- Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding, Hebei 071003, China
| | - Zhenghui Zhao
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei 071003, China
- Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding, Hebei 071003, China
| |
Collapse
|
30
|
Biswal BK, Vijayaraghavan K, Tsen-Tieng DL, Balasubramanian R. Biochar-based bioretention systems for removal of chemical and microbial pollutants from stormwater: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126886. [PMID: 34419842 DOI: 10.1016/j.jhazmat.2021.126886] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 05/14/2023]
Abstract
Biochar has been increasingly used as a filter medium in engineered low impact development systems (e.g., bioretention systems) for decontamination of urban stormwater and management of hydrology. This review paper critically analyzes the performance of biochar-based biofiltration systems for removal of chemical and microbial pollutants present in urban runoff. Biochar-amended biofiltration systems efficiently remove diverse pollutants such as total nitrogen (32 - 61%), total phosphorus: (45 - 94%), heavy metals (27 - 100%), organics (54 - 100%) and microbial pollutants (log10 removal: 0.78 - 4.23) from urban runoff. The variation of biofiltration performance is due to changes in biochar characteristics, the abundance of dissolved organic matter and/or stormwater chemistry. The dominant mechanisms responsible for removal of chemical pollutants are sorption, ion exchange and/or biotransformation, whereas filtration/straining is the major mechanism for bacteria removal. The pseudo-second order and Langmuir isotherm are the best models that describe the kinetics and chemical equilibrium of pollutants, respectively. This critical review provides the fundamental scientific knowledge for designing highly efficient biochar-based bioretention systems for removal of diverse pollutants from urban stormwater. The key knowledge gaps that should be addressed in future research include long-term field-scale bioretention study, development of novel methods for filter media regeneration/reuse, and dynamics of filter media microbial communities.
Collapse
Affiliation(s)
- Basanta Kumar Biswal
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Kuppusamy Vijayaraghavan
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Daryl Lee Tsen-Tieng
- Centre for Urban Greenery and Ecology, National Parks Board, 1 Cluny Road, 259563, Singapore
| | | |
Collapse
|
31
|
Xiao Y, Raheem A, Ding L, Chen WH, Chen X, Wang F, Lin SL. Pretreatment, modification and applications of sewage sludge-derived biochar for resource recovery- A review. CHEMOSPHERE 2022; 287:131969. [PMID: 34450364 DOI: 10.1016/j.chemosphere.2021.131969] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
With the quick increase in industrialization and urbanization, a mass of sludge has been produced on the account of increased wastewater treatment facilities. Sewage sludge (SS) management has become one of the most crucial environmental problems because of the existence of various pollutants. However, SS is a carbon-rich material, which has favored novel technologies for biochar production, which can be utilized for dissimilar applications. This review systematically analyzes and summarizes the pretreatment, modification, and especially application of sewage sludge-derived biochar (SSBC), based on published literature. The comparative assessment of pretreatment technology such as pyrolysis, hydrothermal carbonization, combustion, deashing, and co-feeding is presented to appraise their appropriateness for SS resource availability and the production of SSBC. In addition, the authors summarize and analyze the current modification methods and divide them into two categories: physical properties and surface chemical modifications. The applications of SSBC as absorbent, catalyst and catalyst support, electrode materials, gas storage, soil amendment, and sold biofuel are reviewed in detail. Furthermore, the discussion about the existing problems and the direction of future efforts are presented at the end of each section to envisage SS as a promising opportunity for resources rather than a nuisance.
Collapse
Affiliation(s)
- Yao Xiao
- Institute of Clean Coal Technology, East China University of Science and Technology, 200237, Shanghai, PR China; National Engineering Research Center of CWS Gasification and Coal Chemical Industry (Shanghai), PR China
| | - Abdul Raheem
- Institute of Clean Coal Technology, East China University of Science and Technology, 200237, Shanghai, PR China; National Engineering Research Center of CWS Gasification and Coal Chemical Industry (Shanghai), PR China
| | - Lu Ding
- Institute of Clean Coal Technology, East China University of Science and Technology, 200237, Shanghai, PR China; National Engineering Research Center of CWS Gasification and Coal Chemical Industry (Shanghai), PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan.
| | - Xueli Chen
- Institute of Clean Coal Technology, East China University of Science and Technology, 200237, Shanghai, PR China; National Engineering Research Center of CWS Gasification and Coal Chemical Industry (Shanghai), PR China
| | - Fuchen Wang
- Institute of Clean Coal Technology, East China University of Science and Technology, 200237, Shanghai, PR China; National Engineering Research Center of CWS Gasification and Coal Chemical Industry (Shanghai), PR China
| | - Sheng-Lun Lin
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
32
|
Bentley MJ, Kearns JP, Murphy BM, Summers RS. Pre-pyrolysis metal and base addition catalyzes pore development and improves organic micropollutant adsorption to pine biochar. CHEMOSPHERE 2022; 286:131949. [PMID: 34426297 DOI: 10.1016/j.chemosphere.2021.131949] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Biochars were produced from pine feedstock pretreated with aqueous base, NaOH, at pH 9 and 11, and alkali and alkaline earth metals (AAEMs) Na, K, Ca, and Mg at 10-3 and 1 M. The effects of base and AAEM feedstock pretreatment on biochar surface area, pore size distribution, and adsorption capacity of two organic micropollutants (OMPs), 2,4-dichlorophenoxyacetic acid and sulfamethoxazole, from surface water with background dissolved organic matter (DOM) were evaluated. Base pretreatment significantly increased surface area within micropores (<2 nm diameter). AAEM pretreatment caused pore widening, increasing surface area within pores >2 nm in diameter. The catalytic activity of AAEMs, assessed by generation of non-micropore surface area, decreased in the following order: Ca > K > Na > Mg. All pretreated biochars outperformed untreated biochar for OMP adsorption. Biochar pretreated by aqueous base at pH 11 showed over an order of magnitude increase in OMP adsorption, nearly matching the performance of commercial activated carbon. OMP adsorption from surface water was positively correlated with biochar micropore surface area and negatively correlated with non-micropore surface area, which was linked to higher levels of DOM competition. Base and AAEM pretreatment of biochar feedstocks can increase OMP adsorption for water treatment applications by tuning pore structure and surface area.
Collapse
Affiliation(s)
- Matthew J Bentley
- University of Colorado Boulder, Environmental Engineering, 4001 Discovery Drive - 607 UCB, Boulder, CO, 80309, USA.
| | - Joshua P Kearns
- Aqueous Solutions, 1935 Pike Rd, Moravian Falls, NC, 28654, USA.
| | - Benjamin M Murphy
- Carollo Engineers, 390 Interlocken Crescent, Suite 800, Broomfield, CO, 80021, USA.
| | - R Scott Summers
- University of Colorado Boulder, Environmental Engineering, 4001 Discovery Drive - 607 UCB, Boulder, CO, 80309, USA
| |
Collapse
|
33
|
Wang X, Cheng H, Ye G, Fan J, Yao F, Wang Y, Jiao Y, Zhu W, Huang H, Ye D. Key factors and primary modification methods of activated carbon and their application in adsorption of carbon-based gases: A review. CHEMOSPHERE 2022; 287:131995. [PMID: 34509016 DOI: 10.1016/j.chemosphere.2021.131995] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/26/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
To achieve carbon neutrality, it is necessary to control carbon-based gas emissions to the atmosphere. Among the various carbon-based gas removal technologies reported to date, adsorption is considered one of the most promising because of its economic efficiency, reusability, and low energy consumption. Activated carbon is widely used to treat different types of carbon-based gases owing to its large specific surface area, abundant functional groups, and strong adsorption capacity. This paper reviews the recent research progress into activated carbon as an adsorbent for carbon-based gases. The key factors (i.e., specific surface area, pore structure, and surface functional groups) affecting the adsorption of carbon-based gases by activated carbon were analyzed. The main methods employed to modify activated carbon (i.e., surface oxidation, surface reduction, loading materials, and plasma modification methods) to improve its adsorption capacity are also discussed herein, along with the targeted applications of such material in the adsorption of different types of carbon-based gases (such as aldehydes, ketones, aromatic hydrocarbons, halogenated hydrocarbons, and carbon-based greenhouse gases). Finally, the future development directions and challenges of activated carbon are discussed. Our work will be expected to benefit the development of activated carbon exhibiting selective adsorption properties, and reduce the production costs of adsorbents.
Collapse
Affiliation(s)
- Xiaohong Wang
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China
| | - Hairong Cheng
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China
| | - Guangzheng Ye
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China
| | - Jie Fan
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China
| | - Fan Yao
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China
| | - Yuqin Wang
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China
| | - Yujun Jiao
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China
| | - Wenfu Zhu
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China
| | - Haomin Huang
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, 510006, Guangzhou, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), 510006, Guangzhou, China; Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, 510006, Guangzhou, China.
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, 510006, Guangzhou, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), 510006, Guangzhou, China; Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, 510006, Guangzhou, China
| |
Collapse
|
34
|
Analysis of the Physicochemical Characteristics of Biochar Obtained by Slow Pyrolysis of Nut Shells in a Nitrogen Atmosphere. ENERGIES 2021. [DOI: 10.3390/en14238075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The process of slow pyrolysis of seven nut shell samples, in a nitrogen-purged atmosphere, has been studied, as well as characteristics of biochar obtained. The heat carrier with a temperature of 400–600 °C (with a step of 100 °C) was supplied indirectly using a double-walled reactor. The heating rate was 60 °C/min. At increased temperature of the heating medium, a decrease in the amount of the resulting carbon residue averaged 6.2 wt%. The release of non-condensable combustible gas-phase compounds CO, CH4, and H2, with maximum concentrations of 12.7, 14.0, and 0.7 vol%, respectively, was registered. The features of the obtained biochar sample conversions were studied using thermal analysis in inert (nitrogen) and oxidative (air) mediums at 10 °C/min heating rate. Kinetic analysis was performed using Coats–Redfern method. Thermal analysis showed that the main weight loss (Δm = 32.8–43.0 wt%) occurs at temperatures ranging between 290 °C and 400 °C, which is due to cellulose decomposition. The maximum carbon content and, hence, heat value were obtained for biochars made from macadamia nut and walnut shells. An increased degree of coalification of the biochar samples affected their reactivity and, in particular, caused an increase in the initial temperature of intense oxidation (on average, by 73 °C). While technical and elemental composition of nut shell samples studied were quite similar, the morphology of obtained biochar was different. The morphology of particles was also observed to change as the heating medium temperature increased, which was expressed in the increased inhomogeneity of particle surface. The activation energy values, for biochar conversion in an inert medium, were found to vary in the range of 10–35 kJ/mol and, in an oxidative medium—50–80 kJ/mol. According to literature data, these values were characteristic for lignin fibers decomposition and oxidation, respectively.
Collapse
|
35
|
Xiong Q, Wu X, Lv H, Liu S, Hou H, Wu X. Influence of rice husk addition on phosphorus fractions and heavy metals risk of biochar derived from sewage sludge. CHEMOSPHERE 2021; 280:130566. [PMID: 33932904 DOI: 10.1016/j.chemosphere.2021.130566] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 05/28/2023]
Abstract
This study investigated the effects of rice husk dose and pyrolysis temperature on the phosphorus (P) fractions and environmental risk of heavy metals in biochar co-pyrolyzed from sewage sludge and rice husk. Biochar properties were analyzed, and the transformation of P and heavy metals speciation during co-pyrolysis were also discussed. Co-pyrolysis of raw sludge and rice husk (10-50 wt%) could increase the carbonization degree and stability of biochar at 500 °C. The organic P (OP) in raw sludge (68 wt%) was transformed to inorganic P (IP) during co-pyrolysis, indicating that the addition of rice husk could improve biochar-P bioavailability by promoting the transformation of IP. The IP content increased from 71.5 wt% of sludge biochar to 92 wt% of blended biochar (50 wt% sludge and 50 wt% rice husk) at a pyrolysis temperature of 500 °C. With the mass ratio of sludge to rice husk of 5:5, the OP content decreased from 3 mg g-1 to 0.75 mg g-1 as the pyrolysis temperature increased from 300 °C to 700 °C. The 31P nuclear magnetic resonance spectra and X-ray photoelectron spectroscopy results showed that P species in biochar mainly existed as orthophosphate, which can be directly taken up by plants. After co-pyrolysis, the toxicity and mobility of heavy metals gradually decreased with increasing rice husk dose and pyrolysis temperature. The study indicates that co-pyrolysis of sewage sludge and rice husk could be a promising P reuse strategy.
Collapse
Affiliation(s)
- Qiao Xiong
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiang Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Hang Lv
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Shuhua Liu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei, 430072, China
| | - Haobo Hou
- School of Resource and Environment Science, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xu Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| |
Collapse
|
36
|
Wang W, Zhang Y, Du W, Tao S. Water-induced release of recalcitrant polycyclic aromatic hydrocarbons from soil organic matter during microwave-assisted solvent extraction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117493. [PMID: 34261214 DOI: 10.1016/j.envpol.2021.117493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in soil can be recalcitrant to solvent extraction after aging. We showed in this study that mixing a small amount of water in the extracting solvent during microwave-assisted extraction (MAE) can release recalcitrant PAHs, resulting in significant improvement in the analyzed concentrations. The improvement factor (F) for the total of 16 priority PAHs (∑PAH16) listed by the United States Environmental Protection Agency was 1.44-1.55 for field soils. By comparing the F values for different soil organic components, we demonstrated that the recalcitrant PAHs were primarily associated with biochar, humic acid (HA), and humin (HM), with the F values for ∑PAH16 of 1.94, 6.62, and 4.59, respectively. The results showed that the recalcitrant PAHs comprised a sequestered fraction and a desorption-limited fraction. NMR spectra showed that water worked alone at elevated temperature to promote hydrolysis of biochar and destroy the macromolecular structure, thus causing the release of the otherwise sequestered PAHs during MAE. The substantial reduction in F values for HA and HM after demineralization indicated sequestration of PAHs in organic-mineral complexes, which can be destroyed by hot water treatment. The release of the sequestered fraction was nonselective and independent of compound hydrophobicity. In comparison, the release of the desorption-limited fraction was positively affected by the hydrophobicity of PAHs and was facilitated by the presence of water in the extracting solvent. The results of this study provide important insights into the sequestration and release of recalcitrant PAHs in soil.
Collapse
Affiliation(s)
- Wei Wang
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing, 100871, China
| | - Yanyan Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang Province, China.
| | - Wei Du
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Shu Tao
- College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing, 100871, China
| |
Collapse
|
37
|
Yang CX, Zhu Q, Dong WP, Fan YQ, Wang WL. Preparation and Characterization of Phosphoric Acid-Modified Biochar Nanomaterials with Highly Efficient Adsorption and Photodegradation Ability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9253-9263. [PMID: 34286996 DOI: 10.1021/acs.langmuir.1c01468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phosphoric acid-modified biochar (PMBC) was prepared using biochar (BC) as the carbon source and phosphoric acid as the activating agent. The PMBC exhibited an ordered vessel structure after deashing treatment, but the sidewalls became much rougher, the polarity (O/C atomic ratio of BC = 0.2320 and O/C atomic ratio of PMBC = 0.1604) decreased, and the isoelectric points (PI of BC = 5.22 and PI of PMBC = 5.51) and specific surface area (SSA of BC = 55.322 m2/g and SSA of PMBC = 62.285 m2/g) increased. The adsorption characterization of the removal of sulfadiazine (SDZ) from PMBC was studied. The adsorption of SDZ by PMBC was in accordance with the Langmuir isotherm model and the pseudo-second-order kinetics model, and the adsorption thermodynamics were shown as Gibbs free energy < 0, an enthalpy change of 19.157 kJ/mol, and an entropy change of 0.0718 kJ/(K·mol). The adsorption of SDZ by PMBC was a complicated monolayer adsorption that was spontaneous, irreversible, and endothermic, and physical adsorption and chemical adsorption occurred simultaneously. The adsorption process was controlled by microporous capture, electrostatic interactions, hydrogen-bond interactions, and π-π interactions. PMBC@TiO2 photocatalysts with different mass ratios between TiO2 and PMBC were prepared via the in situ sol-gel method. PMBC@TiO2 exhibited both an ordered vessel structure (PMBC) and irregular particles (TiO2), and it was linked via Ti-O-C bonds. The optimal mass ratio between TiO2 and PMBC was 3:1. The removal of SDZ via PMBC@TiO2 was dependent on the coupling of adsorption and photocatalysis. The PMBC-enhanced photocatalytic performance of PMBC@TiO2 resulted in a higher absorption of UV and visible light, greater generation of reactive oxygen species, high levels of adsorption of SDZ on PMBC, and the conjugated structure and oxygen-containing functional groups that promoted the separation efficiency of the hole-electron pairs.
Collapse
Affiliation(s)
- Chuan Xi Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Qing Zhu
- Shandong Research Center of Statistical Analysis of Science and Technology, Jinan 250101, China
| | - Wen Ping Dong
- Shandong Academy of Environmental Science Co., Ltd., Jinan 250013, China
- Shandong Huankeyuan Environmental Engineering Co., Ltd., Jinan 250013, China
| | - Yu Qi Fan
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, China
| | - Wei Liang Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| |
Collapse
|
38
|
Tang W, Jing F, Laurent ZBLG, Liu Y, Chen J. High-temperature and freeze-thaw aged biochar impacts on sulfonamide sorption and mobility in soil. CHEMOSPHERE 2021; 276:130106. [PMID: 33711795 DOI: 10.1016/j.chemosphere.2021.130106] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Biomass-derived biochar is a carbon-rich product for soil amendment and sulfapyridine (SPY) is a typical sulfonamide of antibiotics in the soil. Amendment with biochar for soil could control SPY sorption or mobility. However, the pristine biochar inevitably goes through the long-term ageing in the environment and the information on such ageing impact on SPY sorption is not fully recognized. The simulated ageing process methods were employed for high-temperature and freeze-thraw climate to treat the biochar for two months in the present study. The batch adsorption of SPY and leaching column experiments were conducted for comparison of the fresh/aged biochar-soil system. The results showed that biochar addition could increase soil pH and saturated moisture, aged biochars own more O-containing functional groups and exhibit higher hydrophilicity and polarity. The sorption mechanism of unamended soil with SPY primarily resulted from the weak hydrophobic distribution. All fresh and aged biochar amended soil increased SPY sorption due to improvement of H-bonding interaction between SPY and biochar surface functional groups, indicating such initiative adsorption was stronger than passive partitioning. It is of importance for us to reconsider that aged biochar-amended soil, especially two-month high-temperature aged biochar-amended soil showed the highest adsorption performance and the lowest desorption capacity towards SPY. Both SPY leaching column experiments and the acid rain leaching tests suggested that the application of biochar in tropical or high-temperature climate regions for organics polluted soil remediation is favorable, but we should be aware of the uncertainty of soil amendment with biochar in cold regions.
Collapse
Affiliation(s)
- Wei Tang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Fanqi Jing
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Zanli Bi Lepohi Guy Laurent
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Yuyan Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Jiawei Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China.
| |
Collapse
|
39
|
Bošković N, Bílková Z, Šudoma M, Bielská L, Škulcová L, Ribitsch D, Soja G, Hofman J. Conazole fungicides epoxiconazole and tebuconazole in biochar amended soils: Degradation and bioaccumulation in earthworms. CHEMOSPHERE 2021; 274:129700. [PMID: 33545596 DOI: 10.1016/j.chemosphere.2021.129700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Biochar usage in agriculture becomes increasingly important for the improvement of soil properties. However, from the perspective of pesticides, biochar can influence exposure to pesticides of both target and non-target organisms and also pesticides' fate in soil. Our study investigated degradation and bioaccumulation (in the Eisenia andrei earthworm) of two conazole fungicides, epoxiconazole and tebuconazole, added to high- and low-sorbing soils (by means of fungicides' sorption measured beforehand) amended with low-, moderate- and high-sorbing biochars at 0.2% and 2% doses. We aimed to investigate the effects of contrasting soil and biochar properties, different doses of biochar in soil-biochar mixtures, and different compounds on the degradation and bioaccumulation. We also wanted to explore if the beforehand determined sorption of fungicides on individual soils and biochars is manifested somehow in their degradation and/or bioaccumulation in soil-biochar mixtures. The biochars' presence in the soils promoted the degradation of fungicides with a clear effect of dose and soil, but less clear effect of biochar or compound. The bioaccumulation factors were higher in low-sorbing soil variants and also decreased with increasing biochar dose. For low-sorbing soil variants, the bioaccumulation was also influenced by the type of biochar corresponding to its sorbing potential and the possible effect on the bioavailability of the fungicides. Our results show that mixing of biochars with soils changes the fate and bioaccumulation of the conazole fungicides. However, the sorption results from original materials are not straightforwardly manifested in the more complex soil-biota system.
Collapse
Affiliation(s)
- Nikola Bošković
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Zuzana Bílková
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Marek Šudoma
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Lucie Bielská
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic; Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1/1665, 613 00, Czech Republic
| | - Lucia Škulcová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Doris Ribitsch
- Institute for Environmental Biotechnology, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences (BOKU), Konrad-Lorenz-Strasse 20, A-3430, Tulln, Austria
| | - Gerhard Soja
- AIT Austrian Institute of Technology GmbH, Environmental Resources & Technologies, Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria; Institute of Chemical and Energy Engineering, University of Natural Resources and Life Sciences (BOKU), Muthgasse 107, 1190, Wien, Austria
| | - Jakub Hofman
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic.
| |
Collapse
|
40
|
Zhang R, Zheng X, Zhang D, Niu X, Ma J, Lin Z, Fu M, Zhou S. Insight into the roles of endogenous minerals in the activation of persulfate by graphitized biochar for tetracycline removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144281. [PMID: 33454481 DOI: 10.1016/j.scitotenv.2020.144281] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Owing to its environmental-friendliness, low-cost, and outstanding characteristics, biochar has been widely used for the catalytic degradation of various organic pollutants. In this study, a pre- and post-deashing graphitized biochar (DBC800 and PBC800-A) was prepared and compared with the pristine biochar (PBC800) to activate persulfate (PS) for tetracycline (TC) degradation. The influence of the natural endogenous mineral on the catalytic ability of biochar was investigated. Characterization results show that the inherent endogenous mineral in biochar not only acted as a natural pore-forming agent to promote the formation of the porous structure, but also facilitated the formation of edge defective structures, and altered the surface functional groups, as well as increased the carbonization and graphitization degree of biochar. The PBC800-A exhibited a much higher catalytic efficiency on PS activation and TC oxidative degradation with the reaction rate of 0.06055 min-1, 7.14 times as that of DBC800 (0.00861 min-1) and 4.63 times as that of PBC800 (0.00158 min-1). The endogenous minerals were conducive to the generation of free radicals and promoted the oxidative degradation of TC, which was mainly attributed to the improved carbon configuration. The post-deashing treatment was also found to significantly improve the electron transport efficiency of biochar by removing the residual ash, thereby promoting the generation of singlet oxygen. This study demonstrated that the natural minerals in biochar was beneficial for the degradation of TC, and more alternative natural minerals can be applied to co-pyrolysis with biochar for the remediation of refractory organic pollutants.
Collapse
Affiliation(s)
- Runyuan Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaoxian Zheng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Dongqing Zhang
- College of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China.
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; College of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Jinlin Ma
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Zhang Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Mingli Fu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Shaoqi Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
41
|
Xiong Q, Jiang S, Fang R, Chen L, Liu S, Liu Y, Yin S, Hou H, Wu X. An environmental-friendly approach to remove cyanide in gold smelting pulp by chlorination aided and corncob biochar: Performance and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124465. [PMID: 33191029 DOI: 10.1016/j.jhazmat.2020.124465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/14/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
In this study, a new process was developed using ClO- and corncob biochar (CB) combined with HAS (a stabilizer) to remove cyanide from gold smelting pulp. The Box-Behnken design was employed to optimize the doses of treatment reagents during cyanide removal. Results showed that the optimal doses of the three reagents were as follows: ClO- dose of 20 mg/g dry solid (DS), CB dose of 22 mg/g DS, and an HAS dose of is 24 mg/g DS. The cyanide concentration in the filtrate was the lowest (0.114 mg/L), with a 98.36% removal efficiency after a contact time of 2 h at 25 °C under optimized conditions. Compared with those of ClO- and HAS, it was found that the dose of biochar was the dominant factor influencing cyanide removal. Batch sorption experiments of cyanide to biochar indicated that the Langmuir isotherm model fit the sorption data, and the maximum cyanide sorption capacity was expected to be 2.57 ± 0.06 mg/g. Density functional theory (DFT) calculations (interaction energy was -74.42 kcal/mol) indicated that the adsorption peak resulted from cation-π interactions between the cyanide and CB. This study could lead to a novel environmental-friendly approach for the removal of cyanide from gold smelting pulp.
Collapse
Affiliation(s)
- Qiao Xiong
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; School of Resource and Environment Science, Wuhan University, Wuhan 430072, China
| | - Shijie Jiang
- School of Resource and Environment Science, Wuhan University, Wuhan 430072, China
| | - Ran Fang
- School of Resource and Environment Science, Wuhan University, Wuhan 430072, China
| | - Lei Chen
- School of Resource and Environment Science, Wuhan University, Wuhan 430072, China
| | - Shuhua Liu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
| | - Yao Liu
- College of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan, Hubei, 430065, China
| | - Shanshan Yin
- Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Haobo Hou
- School of Resource and Environment Science, Wuhan University, Wuhan 430072, China
| | - Xiang Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| |
Collapse
|
42
|
Leng L, Xiong Q, Yang L, Li H, Zhou Y, Zhang W, Jiang S, Li H, Huang H. An overview on engineering the surface area and porosity of biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:144204. [PMID: 33385838 DOI: 10.1016/j.scitotenv.2020.144204] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 05/22/2023]
Abstract
Surface area and porosity are important physical properties of biochar, playing a crucial role in many biochar applications, such as wastewater treatment and soil remediation. The production of engineered biochar with highly porous structure and large surface area has received extensive attention. This paper comprehensively reviewed the effects of biomass and pyrolysis parameters on the surface area and porosity of biochar. The composition of biomass feedstock and pyrolysis temperature are the major influencing factors. It is suggested that the lignocellulosic biomass is an outstanding candidate, wood and woody biomass in particular. Besides, moderate temperatures (400-700 °C) are suitable for the development of the pore structure. Further improvement can be implemented by additional treatments. Activation is the most widely used and effective way to promote biochar surface area and porosity, especially the chemical activation. Enhancement can also be achieved by using other treatment methods, such as carbonaceous materials coating, ball milling, and templating. Future research should focus on upgrading or developing treatment technology to achieve enhanced functionality and porous structure of biochar simultaneously.
Collapse
Affiliation(s)
- Lijian Leng
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Qin Xiong
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Lihong Yang
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Hui Li
- State Key Laboratory of the Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Weijin Zhang
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Shaojian Jiang
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Huajun Huang
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| |
Collapse
|
43
|
Zhao J, Zhou D, Zhang J, Li F, Chu G, Wu M, Pan B, Steinberg CEW. The contrasting role of minerals in biochars in bisphenol A and sulfamethoxazole sorption. CHEMOSPHERE 2021; 264:128490. [PMID: 33035951 DOI: 10.1016/j.chemosphere.2020.128490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 05/18/2023]
Abstract
Biochars are one of carbon-rich substances that have attracted enormous attention because of its values in energy storage, carbon sequestration, and environment remediation. Apart from the carbon structure, biochars also contain inherent mineral component and polar functional groups. However, the importance of the inherent minerals to the stability of biochars as well as the sorption of organic compounds remains unclear. In this work, the demineralized treatment by the hydrofluoric acid was employed to remove the inorganic minerals from biochars produced at 300 and 500 °C. The inorganic minerals in biochars were identified and quantified by XRD, XPS and SEM-EDS techniques. Approximately 75% of biochar minerals belonged to the Si- and Al-containing minerals, which connected with carbon skeletons. The impact of these minerals to bisphenol A (BPA) and sulfamethoxazole (SMX) sorption was investigated. The mineral removal decreased BPA sorption but increased SMX sorption. Moreover, the relative contributions of surface adsorption and partition processes were quantified for both compounds through isotherm modeling. The BPA sorption was regulated by the joint effect of adsorption and partition, while more than 82% of the SMX sorption was dominated by the partition process. Such understanding of biochar minerals and carbon structure to the migration of organic contaminants will benefit biochar production and application.
Collapse
Affiliation(s)
- Jing Zhao
- Faculty of Environment Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming, 650500, Yunnan, China
| | - Dandan Zhou
- Faculty of Environment Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming, 650500, Yunnan, China
| | - Jun Zhang
- Faculty of Environment Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming, 650500, Yunnan, China
| | - Fangfang Li
- Faculty of Environment Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming, 650500, Yunnan, China
| | - Gang Chu
- Faculty of Resources and Environment, Anhui Agricultural University, Hefei, 230036, Anhui, China; Faculty of Environment Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming, 650500, Yunnan, China.
| | - Min Wu
- Faculty of Environment Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming, 650500, Yunnan, China
| | - Bo Pan
- Faculty of Environment Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming, 650500, Yunnan, China
| | - Christian E W Steinberg
- Faculty of Environment Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China; Faculty of Life Sciences, Institute of Biology, Freshwater & Stress Ecology, Humboldt-University at Berlin, Arboret Späthstr. 80/81, 12437, Berlin, Germany
| |
Collapse
|
44
|
Yuan Y, Li J, Dai H. Microcystin-LR sorption and desorption by diverse biochars: Capabilities, and elucidating mechanisms from novel insights of sorption domains and site energy distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:141921. [PMID: 32916485 DOI: 10.1016/j.scitotenv.2020.141921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
This study accurately assessed microcystin-LR (MCLR)-trapping capabilities of diverse biochars based on sorption and sequential desorption (SDE), and elucidated MCLR sorption-desorption mechanisms from novel views of sorption domains and site energy distribution along sorption-SDE process. Results showed that maize straw biochar (MSB) and chicken manure biochar (CMB) excelled in trapping MCLR (91.0%-97.4% and 85.7%-96.4%, respectively, at 60-600 μg/L of initial MCLR amount), followed by their respective HCl-treated ones (HCMB, HSMB), while HCl-treated bamboo biochar and pine sawdust biochar poorly trapped MCLR (48.9%-77.8% for HBB, 22.6%-67.2% for HPSB). Non-partition sorption domains (NPSD) contributed more than partition sorption domain (PSD) to MCLR sorption by each biochar. Higher NPSD contribution to MCLR sorption in CMBs and MSBs than other biochars resulted from their higher pHPZC and mesoporosity, which provided stronger electrostatic and pore-filling interaction for MCLR. Desorption hysteresis was weaken with rising aqueous MCLR amount for most biochars. Along SDE process, remaining MCLR in PSD of MSBs, HPSB and HBB could transfer to NPSD, thus desorption ratio continuously decreased with increasing desorption cycle. Differently, remaining MCLR in NPSD of CMBs converted into PSD during 1st-3rd desorption, causing fluctuated desorption ratio without obvious decrease as desorption cycle increased. These implied that MCLR in PSD was more easily desorbed than NPSD for each biochar. Site energy distribution dynamics supported the results of PSD and NPSD contribution changes along SDE. This study was greatly implicated in cost-efficient emergent MCLR-pollution remediation and deeply understanding MCLR sorption-desorption mechanisms of diverse biochars.
Collapse
Affiliation(s)
- Yue Yuan
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Jieming Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China.
| | - Haixiao Dai
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| |
Collapse
|
45
|
Zhu Z, Zou J, Li Q, Zhou H, Liu M. The adsorption efficiency of nitrogen and phosphorus by in-situ remediation of modified sediment composite material. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:922-933. [PMID: 33617498 DOI: 10.2166/wst.2021.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dredged sediment can occupy a large amount of land area, resulting in waste of land resources, and high disposal costs. In response to the problem, this work calcinates and modified the sediment and compounds it with the modified water purification plant sludge, zeolite powder, and bentonite. This is used as a covering material to inhibit the release of nitrogen (N) and phosphorus (P) in the sediment. The results showed that sediment modified composite material covering effectively reduces the release of nitrogen (N) and phosphorus (P) in the sediment, especially the release of P. When the thickness of the covering layer is 3 cm, the reduction rate of total N, NH4+-N, and total P in the overlying water by the modified composite material of sediment is 61.58, 79.59, and 70.34%, respectively. It can be seen that the covering material has a significant effect on the control of the release of N and P in the sediment. Additionally, the reduction of nutrients in the overlying water can overcome the negative effects of temperature rise in controlling the release of N and P in the sediment.
Collapse
Affiliation(s)
- Zhaoliang Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250000, China E-mail:
| | - Jiale Zou
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250000, China E-mail:
| | - Qi Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250000, China E-mail:
| | - Hao Zhou
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250000, China E-mail:
| | - Mengmeng Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250000, China E-mail:
| |
Collapse
|
46
|
Xia H, Kong W, Liu L, Lin K, Li H. Effects of harvest time and desalination of feedstock on Spartina alterniflora biochar and its efficiency for Cd 2+ removal from aqueous solution. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111309. [PMID: 32931970 DOI: 10.1016/j.ecoenv.2020.111309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/02/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd2+), as the primary contaminant in Chinese soils, is dangerous to human health and ecological security. Invasive plant Spartina alterniflora in Chinese coastal wetlands presents a promising feedstock for biochar, which is an efficient adsorbent for heavy metal removal. S. alterniflora harvested in summer, autumn and winter were pyrolyzed to produce biochars. We analyzed the effects of harvest time and desalination of feedstock on biochar properties and Cd2+ adsorption capacity in aqueous solution. Biochars were characterized by pH probe, elemental analyzer, SEM, BJH, BET, and FTIR, and the Cd2+ concentrations were measured using AAS. Except pH (9.85-10.95) and nitrogen contents (0.71-1.59%), other biochar properties had no linear correlations with harvest time. Biochars produced from feedstock harvested in autumn had the highest carbon contents (73.25%) and lowest functional groups diversity (CC and -CHx). The pH and carbon contents (64.44-73.25%) were increased by desalination treatment. The surface area (0.48-2.27 m2/g), total pore volume (0.0015-0.0055 mL/g), mesopore volume (0.0015-0.0052 mL/g), and Cd2+ adsorption capacities (16.29-32.34 mg/g) were affected by desalination treatment, and the effects varied with harvest time. Biochars produced from desalted feedstock harvested in summer and untreated feedstock harvested in winter showed higher surface area, porosity, and Cd2+ adsorption capacity. Moderate salt contents (1.5-3.0% in chloride content) in feedstock promote the formation of biochars with higher surface area and porosity.
Collapse
Affiliation(s)
- Huijuan Xia
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu, State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Weijing Kong
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu, State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Lusan Liu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu, State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Kuixuan Lin
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu, State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Hongli Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
47
|
Luo J, Lin L, Liu C, Jia C, Chen T, Yang Y, Shen M, Shang H, Zhou S, Huang M, Wang Y, Zhou D, Fan J, Clark JH, Zhang S, Zhu X. Reveal a hidden highly toxic substance in biochar to support its effective elimination strategy. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123055. [PMID: 32526445 DOI: 10.1016/j.jhazmat.2020.123055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/10/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
With the aim to develop optimized biochar with minimal contaminants, it is important significance to broaden the understanding of biochar. Here, we disclose for the first time, a highly toxic substance (metal cyanide, MCN, such as KCN or NaCN) in biochar. The cyanide ion (CN-) content in biochar can be up to 85,870 mg/kg, which is determined by the inherent metal content and type in the biomass with K and Na increasing and Ca, Mg and Fe decreasing its formation. Density functional theory (DFT) analysis shows that unstable alkali oxygen-containing metal salts such as K2CO3 can induce an N rearrangement reaction to produce for example, KOCN. The strong reducing character of the carbon matrix further converts KOCN to KCN, thus resulting biochar with high risk. However, the stable Mg, Ca and Fe salts in biomass cannot induce an N rearrangement reaction due to their high binding energies. We therefore propose that high valent metal chloride salts such as FeCl3 and MgCl2 could be used to inhibit the production of cyanide via metal interactive reaction. These findings open a new point of view on the potential risk of biochar and provide a mitigation solution for biochar's sustainable application.
Collapse
Affiliation(s)
- Jiewen Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Litao Lin
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Cun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chao Jia
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Tianyue Chen
- School of Mathematical Science, Fudan University, Shanghai 200438, China
| | - Yang Yang
- Bioenergy Research Group, European Bioenergy Research Institute, Aston University, Birmingham B4 7ET, UK
| | - Minghao Shen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Hua Shang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Shaojie Zhou
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Meiying Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dongmei Zhou
- School of the Environment, Nanjing University, Xianlin Ave. 163, Nanjing 210023, China
| | - Jiajun Fan
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - James H Clark
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Xiangdong Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China.
| |
Collapse
|
48
|
Liang J, Xu X, Zhong Q, Xu Z, Zhao L, Qiu H, Cao X. Roles of the mineral constituents in sludge-derived biochar in persulfate activation for phenol degradation. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122861. [PMID: 32768814 DOI: 10.1016/j.jhazmat.2020.122861] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Biochar as an environmental-friendly and low-cost catalyst has gained increasing attention in the catalytic degradation of organic pollutants. However, the roles of endogenous mineral constituents in biochar in the catalytic degradation are still unclear. In this study, the mineral-rich biochar produced from sewage sludge at 400 °C (SS400) and 700 °C (SS700) and their corresponding demineralized biochar (DSS400 and DSS700) were used to be the persulfate (PS) activator for phenol degradation. Results showed that the mineral-rich biochar + PS system had negligible phenol degradation (≤12.6 %), whereas distinct degradation of phenol were obtained in the demineralized biochar + PS system where DSS400 + PS and DSS700 + PS exhibited 36.3 % and 57.8 % degradation, respectively. Different minerals in mineral-rich biochar exhibited varying functions on phenol degradation. Mg and K in biochar had less effect on the phenol degradation, while Fe-containing minerals favored the phenol degradation. However, Ca-containing minerals more greatly reduced the formation of hydroxyl radical, resulting in more inhibited degradation of phenol. Thus, the overall degradation of phenol was reduced by the mineral-rich biochar. The findings indicated that the inherent minerals in biochar were not favorable for the phenol degradation, which guides us the application of biochar containing different minerals in the remediation of organic pollutants.
Collapse
Affiliation(s)
- Jun Liang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Qijun Zhong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zibo Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environment Protection Institution, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
49
|
Yang F, Zhang Q, Jian H, Wang C, Xing B, Sun H, Hao Y. Effect of biochar-derived dissolved organic matter on adsorption of sulfamethoxazole and chloramphenicol. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122598. [PMID: 32388001 DOI: 10.1016/j.jhazmat.2020.122598] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/14/2020] [Accepted: 03/26/2020] [Indexed: 05/24/2023]
Abstract
Biochar-derived dissolved organic matter (DOM) plays a crucial role in controlling the interactions between pollutants and biochars. Here, we determined the compositions of DOMs extracting from biochars (BCs) and acid-modified-biochars (MBCs) at different pH using UV, 3D-fluorescence and ultra-high-resolution mass spectroscopy (ESI-FTICR MS), which allowed us, for the first time, to distinguish the effect of DOM from biochars on sulfamethoxazole (SMX) and chloramphenicol (CAP) adsorbed onto biochars. The detailed results showed DOM shortened SMX and CAP adsorption equilibrium time, and more DOM increased SMX adsorbed, while inhibit CAP adsorbed onto biochar. Low-temperature biochar with a high extracting solution pH could release more DOM, and the polarity index of DOM was opposite with corresponding biochar. The correlation between the polarity of biochar and adsorption capacity was opposite to the correlation between the DOM released from corresponding biochars and adsorption capacity. Moreover, we found the fulvic and humic acid-like of DOMs inhibited biochar adsorption for SMX, however, the more compounds fulvic and humic acid-like of DOMs and CcHhOoNnSs molecular structure would promote biochar adsorption of CAP. This study demonstrates the potential of DOM as a new mechanism in adsorption and remediation studies but also reveals challenges for the future application of biochar.
Collapse
Affiliation(s)
- Fang Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Qi Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Hongxian Jian
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Yueli Hao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
50
|
Zhang H, Chen W, Li Q, Zhang X, Wang C, Yang L, Wei R, Ni J. Difference in characteristics and nutrient retention between biochars produced in nitrogen-flow and air-limitation atmospheres. JOURNAL OF ENVIRONMENTAL QUALITY 2020; 49:1396-1407. [PMID: 33016453 DOI: 10.1002/jeq2.20133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
The different effects of nitrogen-flow (NF) and air-limitation (AL) pyrolysis on the characteristics and nutrient retention of biochars (BCs) are unclear. Hence, in this study, BCs derived from bamboo, corn straw, and wheat straw were produced in AL and NF atmospheres at various temperatures (300-750 °C), and their different characteristics and nutrient retention rates were compared systematically. Nitrogen-flow pyrolysis facilitates C retention and graphitic C formation, and AL pyrolysis improves the polarity and supports the formation of oxygen-containing groups. With increasing pyrolysis temperature, C retention and graphitic C formation in BCs derived from AL pyrolysis decreases more significantly compared with BCs from NF pyrolysis. At 750 °C, the polarity and oxygen-containing groups of BCs derived from AL pyrolysis increase, whereas those from BCs derived from NF pyrolysis decrease. The observations are attributable to the AL and high-temperature-enhanced oxidization and gasification of C. An AL atmosphere with a higher pyrolysis temperature supports porosity and results in a larger specific surface area. Although pyrolysis temperature and atmosphere have negligible effects on nutrient retention, a low pyrolysis temperature facilitates the formation of water-soluble Ca, Mg, and P, and AL pyrolysis facilitates the formation of water-soluble P because the high pyrolysis temperature improves the pH and mineral stability of BCs, and air limitation facilitates the oxidation of organic P into PO4 3- . This study provides a reference for selecting AL or NF pyrolysis based on various pyrolysis temperatures to produce BCs and applying these in C sequestration, contaminant sorption, and soil quantity improvement.
Collapse
Affiliation(s)
- Huiying Zhang
- College of Geographical Science/Ministry of Education Key Lab. of Humid Subtropical Eco-geographical Process/Fujian Provincial Key Lab. for Plant Eco-Physiology, Fujian Normal Univ., Fuzhou, Fujian, China, 350007
| | - Weifeng Chen
- College of Geographical Science/Ministry of Education Key Lab. of Humid Subtropical Eco-geographical Process/Fujian Provincial Key Lab. for Plant Eco-Physiology, Fujian Normal Univ., Fuzhou, Fujian, China, 350007
| | - Qingyang Li
- College of Geographical Science/Ministry of Education Key Lab. of Humid Subtropical Eco-geographical Process/Fujian Provincial Key Lab. for Plant Eco-Physiology, Fujian Normal Univ., Fuzhou, Fujian, China, 350007
| | - Xia Zhang
- College of Geographical Science/Ministry of Education Key Lab. of Humid Subtropical Eco-geographical Process/Fujian Provincial Key Lab. for Plant Eco-Physiology, Fujian Normal Univ., Fuzhou, Fujian, China, 350007
| | - Caiting Wang
- College of Geographical Science/Ministry of Education Key Lab. of Humid Subtropical Eco-geographical Process/Fujian Provincial Key Lab. for Plant Eco-Physiology, Fujian Normal Univ., Fuzhou, Fujian, China, 350007
| | - Liuming Yang
- College of Geographical Science/Ministry of Education Key Lab. of Humid Subtropical Eco-geographical Process/Fujian Provincial Key Lab. for Plant Eco-Physiology, Fujian Normal Univ., Fuzhou, Fujian, China, 350007
| | - Ran Wei
- College of Geographical Science/Ministry of Education Key Lab. of Humid Subtropical Eco-geographical Process/Fujian Provincial Key Lab. for Plant Eco-Physiology, Fujian Normal Univ., Fuzhou, Fujian, China, 350007
| | - Jinzhi Ni
- College of Geographical Science/Ministry of Education Key Lab. of Humid Subtropical Eco-geographical Process/Fujian Provincial Key Lab. for Plant Eco-Physiology, Fujian Normal Univ., Fuzhou, Fujian, China, 350007
| |
Collapse
|