1
|
Zhou Y, Guo C, Deng Y, Jiang Y, Yin M, Chen K, Zhang S, Lu G, Dang Z. Birnessite enhanced Cr(III) oxidation during subsurface geochemical processes: Role of Mn(III)-induced nonphotochemical reactive oxygen species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125436. [PMID: 39638231 DOI: 10.1016/j.envpol.2024.125436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Cr(III) oxidation by birnessite was the dominant geologic source of Cr(VI), which increases the environmental mobility and toxicity of Cr, threatening ecological safety. Photochemically hydroxyl radical (•OH) generated by birnessite was widely accepted to be the dominant reactive oxygen species (ROS) oxidating Cr(III). However, birnessite and Cr mainly co-exist in dark subsurface soils, with contribution of nonphotochemical ROS remaining unclear. In this work, free-radical quenching experiments, electrochemistry method and density functional theory (DFT) calculations were performed to elucidate ROS generation mechanisms during Cr(III) oxidation in simulated light-deprived environment. The results indicated that •OH was completely suppressed and nonphotochemical O2•- still accelerated Cr(III) oxidation in dark aerobic conditions with the contribution of 15.3%-19.1%. Moreover, DFT calculations proved that O2•- was produced by O2 molecules adsorbed on oxygen vacancies in the structure, thus being generated spontaneously in the dark. The oxidation contribution of O2•- was undetectable after extracting Mn(III), indicating that electron transfer occurred between Mn(III) and O2 to generate O2•-. Additionally, intervention of Cd2+ (for occupying oxygen vacancies) did not reduce participation of •OH, but resulted in suppression of electron transport which greatly reduced the production of O2•-, thereby affecting Cr(III) oxidation process. The above findings provide new insights on Cr(III) oxidation by manganese oxides and is able to have profound significance for predicting the fate of Cr in subsurface environments.
Collapse
Affiliation(s)
- Yuting Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China.
| | - Yanping Deng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Yanjun Jiang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Meiling Yin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Kai Chen
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, Guangzhou, China
| | - Siyu Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
2
|
Sujathan S, Gopakumar TG, Singh A. Impact of Manganese Carbonate Precipitation on Uranium(VI) Fate in Conditions Relevant to Carbonate-Buffered Aquifers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:140-151. [PMID: 39728854 DOI: 10.1021/acs.langmuir.4c03201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Widespread geogenic uranium (U) contamination of Indian groundwaters is of serious concern; yet little is known of the dominant forms and release mechanisms of U in these aquifers. Interestingly, manganese (Mn)-rich aquifers, highly buffered by dissolved inorganic carbon (DIC) and saturated with rhodochrosite [MnCO3(s)], have shown low U (
Collapse
Affiliation(s)
- Surya Sujathan
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | | | - Abhas Singh
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
3
|
Lu X, Wang X, He H, Liu Q, Li J, Zhao Z, Yang P, Pan Z, Wang Z. Bisphenol A degradation by manganese oxides at circumneutral pH: Quantitative evaluation of dissolved Mn(III) species with pyrophosphate. JOURNAL OF HAZARDOUS MATERIALS 2024; 486:137013. [PMID: 39736254 DOI: 10.1016/j.jhazmat.2024.137013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/09/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
Although trivalent manganese (Mn(III)) species have been recognized as crucial intermediates in the degradation of organic contaminants by Mn oxides, quantitative research on their specific roles remains scarce. Our study investigated the degradation processes of an organic pollutant, Bisphenol A (BPA), by dissolved Mn(III) and Mn(III)-bearing oxides, and elucidated the differences of the underlying mechanisms and reaction pathways between several Mn oxides and dissolved Mn(III). Our results indicated that BPA degradation rates with Mn(III)-bearing oxides alone follow the order: δ-MnO2 ≫ γ-MnOOH > Mn3O4. Adding pyrophosphate (PP) significantly enhanced BPA degradation by promoting the formation of Mn(III)-PP complexes and exposing more reactive sites, achieved through destabilizing the crystal structure and mitigating of Mn(II) readsorption, particularly in γ-MnOOH and Mn3O4. Our kinetic model revealed that heterogeneous degradation by Mn oxides is the predominant reaction pathway, accounting for 61.4 %, 87.8 %, and 73.8 % of the total degraded BPA for δ-MnO2, γ-MnOOH, and Mn3O4, respectively, even in the presence of significant amount of dissolved Mn(III) intermediates due to high PP concentrations. These results offer mechanistic details on BPA degradation by Mn oxides and the influence of ligand concentration, providing helpful insights for optimizing degradation strategies of organic pollutants.
Collapse
Affiliation(s)
- Xiaohan Lu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xingxing Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Haohua He
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Qiuyao Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jinfeng Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Ziyi Zhao
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Peng Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Zezhen Pan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, Fudan University, Shanghai 200062, China
| | - Zimeng Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, Fudan University, Shanghai 200062, China; Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
4
|
Liu Y, Zhou R, Tang Y, Li X, Xu L, Fu Y. Enhanced Mn(II)/peracetic acid by nitrilotriacetic acid to degrade organic contaminants: Role of Mn(V) and organic radicals. Sci Rep 2024; 14:29686. [PMID: 39613929 DOI: 10.1038/s41598-024-81368-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024] Open
Abstract
In this work, it was found that the presence of nitrilotriacetic acid (NTA) could enhance the elimination of sulfamethoxazole (SMX) significantly in Mn(II)/peracetic acid (PAA) process. NTA firstly complexed with Mn(II) to produce Mn(II)-NTA complex, which could activate PAA producing CH3C(O)O· and Mn(III)-NTA complex. Subsequently, Mn(V) was generated via two-electron transfer between Mn(III)-NTA complex and PAA. According to the results of UV-vis spectrum analysis, scavenging experiments and chemical probe method, organic radicals and Mn(V) were proved to participate in SMX abatement and Mn(V) was the predominant reactive oxidant. Four possible degradation pathways of SMX in Mn(II)/PAA/NTA process including hydroxylation, amino oxidation, bond cleavage and coupling reaction were proposed based on six identified degradation products. Mn(II)/PAA/NTA process worked only in acidic and neutral conditions and the increase in PAA, Mn(II) or NTA concentration could accelerate SMX removal. This study provides a strategy for improving PAA activation by Mn(II) and an insight into SMX degradation mechanism by Mn(II)/PAA/NTA process.
Collapse
Affiliation(s)
- Yiqing Liu
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| | - Runyu Zhou
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
- Zhejiang Development & Planning Institute, Hangzhou, 310012, China
| | - Yuqi Tang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Xin Li
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Linghan Xu
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yongsheng Fu
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| |
Collapse
|
5
|
Wang X, Jones MR, Pan Z, Lu X, Deng Y, Zhu M, Wang Z. Trivalent manganese in dissolved forms: Occurrence, speciation, reactivity and environmental geochemical impact. WATER RESEARCH 2024; 263:122198. [PMID: 39098158 DOI: 10.1016/j.watres.2024.122198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
The cycling processes of elemental manganese (Mn), including the redox reactions of dissolved Mn(III) (dMn(III)), directly and indirectly influences the biogeochemical processes of many elements. Though increasing evidence indicates the widespread presence of dMn(III) mediates the fate of many elements, its role may be currently underestimated. There is both a lack of clear understanding of the historical research framework of dMn(III) and a systematic overview of its geochemical properties and detection methods. Therefore, the primary aim of this review is to outline the understanding of dMn(III) in multiple fields, including soil science, analytical chemistry, biochemistry, geochemistry, and water treatment, and summarize the formation pathways, species forms, and detection methods of dMn(III) in aquatic systems. This review considers how the characteristics of dMn(III), the intermediate formed in the single-electron reaction processes of Mn(II) oxidation and Mn(IV) reduction, determines its participation in environmental geochemical processes. Its widespread presence in diverse water systems and active redox properties coupling with various elements confirm its significant role in natural elemental geochemistry cycle and artificial water treatment processes. Therefore, further investigation into the role of dissolved Mn(III) in aquatic systems is warranted to unravel unexplored coupled elemental redox reaction processes mediated by dissolved Mn(III), filling in the gaps in our understanding of manganese environmental geochemistry, and providing a theoretical basis for recognizing the role of dMn(III) role in water treatment technologies.
Collapse
Affiliation(s)
- Xingxing Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Matthew R Jones
- Wolfson Atmospheric Chemistry Laboratory, University of York, York YO10 5DD, United Kingdom
| | - Zezhen Pan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Shanghai 200438, China
| | - Xiaohan Lu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Yamin Deng
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of, Geosciences, Wuhan 430078, China
| | - Mengqiang Zhu
- Department of Geology, University of Maryland, College Park, MD, 20740, USA
| | - Zimeng Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Shanghai 200438, China; Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
6
|
Gao S, Wang X, Wang X, Chen X, Liang S, Zhou Z, Xu S, Fang Y, Gao J, Gu C. Role of low-molecular-weight organic compounds on photochemical formation of Mn(III)-ligands in aqueous systems: Implications for BPA removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172468. [PMID: 38615762 DOI: 10.1016/j.scitotenv.2024.172468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/23/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Aqueous trivalent manganese [Mn(III)], an important reactive intermediate, is ubiquitous in natural surface water containing humic acid (HA). However, the effect of low-molecular-weight organic acids (LMWOAs) on the formation, stability and reactivity of Mn(III) intermediate is still unknown. In this study, six LMWOAs, including oxalic acid (Oxa), salicylic acid (Sal), catechol (Cat), caffeic acid (Caf), gallic acid (Gal) and ethylene diamine tetraacetic acid (EDTA), were selected to investigate the effects of LMWOAs on the degradation of BPA induced by in situ formed Mn(III)-L in the HA/Mn(II) system under light irradiation. The chromophoric constituents of HA could absorb light radiation and generate superoxide radical to promote the oxidation of Mn(II) to form Mn(III), which was further involved in transformation of BPA. Our results implied that different LMWOAs did significantly impact on Mn(III) production and its degradation of BPA due to their different functional group. EDTA, Oxa and Sal extensively increased the Mn(III) concentration from 50 to 100 μM compared to the system without LMWOAs, following the order of EDTA > Oxa > Sal, and also enhanced the degradation of BPA with the similar patterns. In contrast, Cat, Caf and Gal had an inhibitory effect on the formation of Mn(III), which is likely because they consumed the superoxide radicals generated from irradiated HA, resulting in the inhibition of Mn(II) oxidation and further BPA removal. The product identification and theoretical calculation indicated that a single electron transfer process occurred between Mn(III)-L and BPA, forming BPA radicals and subsequent self-coupling products. Our results demonstrated that the LMWOAs with different structures could alter the cycling process of Mn via complexation and redox reactions, which would provide new implications for the removal of organic pollutants in surface water.
Collapse
Affiliation(s)
- Song Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xinghao Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Xinhao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiru Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Sijia Liang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ziyan Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shuxia Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yanfen Fang
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Juan Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
7
|
Liu S, Wang YZ, Tang YF, Fu XZ, Luo JL. Emerging Nanomaterials toward Uranium Extraction from Seawater: Recent Advances and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311130. [PMID: 38247198 DOI: 10.1002/smll.202311130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/24/2023] [Indexed: 01/23/2024]
Abstract
Nuclear energy holds great potential to facilitate the global energy transition and alleviate the increasing environmental issues due to its high energy density, stable energy output, and carbon-free emission merits. Despite being limited by the insufficient terrestrial uranium reserves, uranium extraction from seawater (UES) can offset the gap. However, the low uranium concentration, the complicated uranium speciation, the competitive metal ions, and the inevitable marine interference remarkably affect the kinetics, capacity, selectivity, and sustainability of UES materials. To date, massive efforts have been made with varying degrees of success to pursue a desirable UES performance on various nanomaterials. Nevertheless, comprehensive and systematic coverage and discussion on the emerging UES materials presenting the fast-growing progress of this field is still lacking. This review thus challenges this position and emphatically focuses on this topic covering the current mainstream UES technologies with the emerging UES materials. Specifically, this review elucidates the causality between the physiochemical properties of UES materials induced by the intellectual design strategies and the UES performances and further dissects the relationships of materials-properties-activities and the corresponding mechanisms in depth. This review is envisaged to inspire innovative ideas and bring technical solutions for developing technically and economically viable UES materials.
Collapse
Affiliation(s)
- Subiao Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - You-Zi Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Yu-Feng Tang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Xian-Zhu Fu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Jing-Li Luo
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| |
Collapse
|
8
|
Zhou J, Wang X, Sun Z, Gu C, Gao J. The mechanisms of ·OH formation in MnO 2 and oxalate system: Implication for ATZ removal. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134213. [PMID: 38613958 DOI: 10.1016/j.jhazmat.2024.134213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
Manganese oxides (MnO2) are commonly prevalent in groundwater, sediment and soil. In this study, we found that oxalate (H2C2O4) dissolved MnO2, leading to the formation of Mn(II)/(III), CO2(aq) and reactive oxygen species (·CO2-/O2·-/H2O2/·OH). Notably, CO2(aq) played a crucial role in ·OH formation, contributing to the degradation of atrazine (ATZ). To elucidate underneath mechanisms, a series of reactions with different gas-liquid ratios (GLR) were conducted. At the GLR of 0.3, 3.76, and + ∞ 79.4 %, 5.32 %, and 5.28 % of ATZ were eliminated, in which the cumulative ·OH concentration was 39.6 μM, 8.11 μM, and 7.39 μM and the cumulative CO2(aq) concentration was 11.2 mM, 4.7 mM, and 2.8 mM, respectively. The proposed reaction pathway was that CO2(aq) participated in the formation of a ternary complex [C2O4-Mn(II)-HCO4·3 H2O]-, which converted to a transition state (TS) as [C2O4-Mn(II)-CO3-OH·3 H2O]-, then decomposed to a complex radical [C2O4-Mn(II)-CO3·3 H2O]·- and ·OH after electron transfer within TS. It was novel to discover the role of CO2(aq) for ·OH yielding during MnO2 dissolution by H2C2O4. This finding helps revealing the overlooked processes that CO2(aq) influenced the fate of ATZ or other organic compounds in environment and providing us ideas for new technique development in contaminant remediation. ENVIRONMENTAL IMPLICATION: Manganese oxides and oxalate are common in soil, sediment and water. Their interactions could induce the formation of Mn(II)/(III), CO2(aq) and ·CO2-/O2·-/H2O2. This study found that atrazine could be effectively removed due to ·OH radicals under condition of high CO2(aq) concentration. The concentrations of Mn (0.0002-8.34 mg·L-1) and CO2(aq) (15-40 mg·L-1) were high in groundwater, and the surface water or rainfall seeps into groundwater and bring organic acids, which might promote the ·OH formation. The results might explain the missing steps of herbicides transformation in these environments and be helpful in developing new techniques in remediation in future.
Collapse
Affiliation(s)
- Jinjin Zhou
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing, No.188, Tianquan Road, Nanjing, Jiangsu Province 211135, China
| | - Xinghao Wang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhaoyue Sun
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Juan Gao
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing, No.188, Tianquan Road, Nanjing, Jiangsu Province 211135, China.
| |
Collapse
|
9
|
Ruiz-Garcia M, Stanberry J, Ribeiro GB, Anagnostopoulos V. Oxidative dissolution of Cr(OH) 3 and mixed Fe-Cr(III) phases by aqueous Mn(III)-pyrophosphate complex. J Environ Sci (China) 2024; 139:105-113. [PMID: 38105038 DOI: 10.1016/j.jes.2023.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 12/19/2023]
Abstract
The key role of manganese (Mn) in the biogeochemical cycle of trace elements has been of great interest in recent years. Nevertheless, the redox properties of aqueous Mn(III) have been studied to a lesser extent. Mn(III) is not stable in solution by itself. However, when complexed with inorganic ligands, it has shown potential to oxidize and reduce trace elements. In the present study, we are exploring the redox characteristics of the complex Mn(III)-Pyrophosphate (Mn(III)-PP). This complex is stable over a wide range of pH values but requires the ratio of Mn:PP to be less than 1:6. Specifically, the redox reaction of chromium (Cr(III)) and Mn(III)-PP is investigated. A solid, Cr(OH)3, is used as a source of Cr(III). For this reaction, environmentally relevant parameters, such as pH, ionic strength, ratio Mn(III)/Cr(III), and excess of ligand, were assessed. Results showed that Mn(III) can effectively oxidize Cr(III) to Cr(VI), taking about 15 days for the reaction to complete. This reaction occurs only under acidic conditions (pH 4), and with a low excess of Pyrophosphate. The initial Mn(III) concentration decreases as the Cr(VI) is produced, and Cr(VI) can be adsorbed back into the Cr(OH)3 surface, limiting the mobility of this toxic species. Despite this adsorption, significant amounts of Cr(VI) are release in the aqueous phase. This study shows the importance of a mobile species (Mn-PP complex) in the oxidation of Cr(III) and the release of Cr(VI) to the environment.
Collapse
Affiliation(s)
- Mismel Ruiz-Garcia
- Department of Chemistry, University of Central Florida, Orlando FL 32816, USA
| | - Jordan Stanberry
- Department of Chemistry, University of Central Florida, Orlando FL 32816, USA
| | | | | |
Collapse
|
10
|
Wu J, Jiang Z, Yu G, Hu E. Transformation of chlorobenzene by Mn(III) generated in MnO 2/organic acid systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123527. [PMID: 38336136 DOI: 10.1016/j.envpol.2024.123527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Chlorobenzene (CB) is a prevalent organic contaminant in water and soil environments. It presents high chemical stability and is resistant to both oxidation and reduction. In this study, we showed that CB was substantially removed by soluble Mn(III) produced during the reductive dissolution of colloidal MnO2 by naturally-occurring organic acids such as formate (FOR), oxalate (OX), and citrate (CIT). The removal rate was dependent on the physicochemical properties of organic acids. With strong electron-donating and coordination ability, OX and CIT promoted MnO2 dissolution and Mn(III) generation compared to FOR, but had adverse effects on the stability and reactivity of Mn(III). As a result, CB removal followed the order: MnO2/CIT > MnO2/FOR > MnO2/OX. Analysis of the transformation products showed that Mn(III) complexes acted as strong electrophiles, attacking the ortho/para carbons of the benzene ring and transforming CB to chlorophenols via an electrophilic substitution mechanism. The theoretical foundation of this proposed reaction mechanism was supplemented by quantum mechanical calculations. Together, the findings of this study provide new insights into the transformation of CB in natural environments and hold the potential to offer a novel strategy for the development of manganese oxide/ligand systems for CB elimination.
Collapse
Affiliation(s)
- Jun Wu
- Center for Membrane and Water Science & Technology, Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Zhenzhen Jiang
- Center for Membrane and Water Science & Technology, Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province Zhejiang University of Technology, Hangzhou, 310014, China
| | - Guanghui Yu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin Key Laboratory of Earth Critical Zone Science, Sustainable Development in Bohai Rim, Bohai Coastal Critical Zone National Observation and Research Station, Tianjin University, Tianjin, 300072, China
| | - Erdan Hu
- Center for Membrane and Water Science & Technology, Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
11
|
Ruiz-Garcia M, Richards M, Ballerini Ribeiro Gomes G, Anagnostopoulos V. PbO 2 reductive dissolution by dissolved Mn(III) in the presence of low molecular weight organic acids and humic acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18540-18548. [PMID: 38347356 DOI: 10.1007/s11356-024-32319-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/30/2024] [Indexed: 03/09/2024]
Abstract
Although Mn(III) complexes with organic ligands have been previously identified, the information about their stability and reactivity is scarce. In the present study, we analyzed the formation and stability of three different complexes: Mn(III)-citrate, Mn(III)-tartrate, and Mn(III)-humic acid (HA), as well as their reactivity toward an element of high environmental concern, lead (Pb).Our results indicate that the stability of studied complexes is highly dependent on pH. The Mn(III) complexes with citrate and tartrate degrade below pH 8, due to the electron transfer reaction between Mn(III) and the ligand, while the Mn(III)-HA complex's degradation is slower and less sensitive to pH. At pH 4, less than 40% of the initial Mn(III)-HA was found to be stable.The reactivity of the complexes was different depending on the ligand and its concentration. The Mn(III)-citrate and Mn(III)-tartrate complexes effectively reduced PbO2 and releases aqueous Pb2+, although significant differences were found with increasing ligand concentration. There was no evidence of the reduction of PbO2 by Mn(III) when it forms a complex with HA. This is likely due to the large size of HA moieties that prevent the Mn(III) component of the complex from getting close enough to the PbO2 surface to initiate electron transfer and lead to the reduction of Pb(IV) by HA itself.
Collapse
Affiliation(s)
- Mismel Ruiz-Garcia
- Department of Chemistry, University of Central Florida, Orlando FL, 32816, USA
| | - Mark Richards
- Department of Chemistry, University of Central Florida, Orlando FL, 32816, USA
| | | | | |
Collapse
|
12
|
Guo R, Zhang S, Xiao X, Liang Y, Wang Z, Qu R. Potassium permanganate oxidation enhanced by infrared light and its application to natural water. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:133012. [PMID: 37984145 DOI: 10.1016/j.jhazmat.2023.133012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
Photocoupled permanganate (PM) is an effective way to enhance the oxidation efficiency of PM, however, the activation of PM by infrared has received little attention. This study aimed to investigate the ability of infrared light to activate PM. When coupled with infrared, the degradation rate of 4-chlorophenol (4-CP) is increased to 3.54 times of PM oxidation alone. The accelerated reaction was due to the formation of vibrationally excited PM by absorbing 3.1 kJ mol-1 infrared energy, which also leads to the primary reactive intermediates Mn(V/IV) in the reaction system. The infrared coupled PM system also showed 1.14-2.34 times promotion effect on other organic pollutants. Furthermore, solar composed of 45% infrared, coupled PM system showed excellent degradation performance, where the degradation of 4-CP in 10 L of tap water and river water was 68 and 23 times faster than in ultrapure water, respectively. The faster-increased degradation rate in natural waters is mainly due to the abundant inorganic ions, which can stabilize the manganese species, and then has a positive effect on 4-CP degradation. In summary, this work develops a energy-efficient photoactivated PM technology that utilizes infrared and provides new insights into the design of novel sunlight-powered oxidation processes for water treatment.
Collapse
Affiliation(s)
- Ruixue Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Shengnan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Xuejing Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Yeping Liang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China.
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| |
Collapse
|
13
|
Zhang Y, Deng Y, Xue J, Cheng Y, Nie Y, Pi K, Du Y, Xie X, Shi J, Wang Y. Unravelling the impacts of soluble Mn(III)-NOM on arsenic immobilization by ferrihydrite or goethite under aquifer conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133640. [PMID: 38309162 DOI: 10.1016/j.jhazmat.2024.133640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
The environmental fate of arsenic (As) relies substantially on its speciation, which occurs frequently coupled to the redox transformation of manganese. While trivalent manganese (Mn(III)), which is known for its high reactivity, is believed to play a role in As mobilization by iron (oxyhydr)oxides in dynamic aquifers, the exact roles and underlying mechanisms are still poorly understood. Using increasingly complex batch experiments that mimick As-affected aquifer conditions in combination with time-resolved characterization, we demonstrate that Mn(III)-NOM complexes play a crucial role in the manganese-mediated immobilization of As(III) by ferrihydrite and goethite. Under anaerobic condition, Mn(III)-fulvic acid (FA) rapidly oxidized 31.8% of aqueous As(III) and bound both As(III) and As(V). Furthermore, Mn(III)-FA exerted significantly different effects on the adsorption of As by ferrihydrite and goethite. Mn(III)-FA increased the adsorption of As by 6-16% due to the higher affinity of oxidation-produced As(V) for ferrihydrite under circumneutral conditions. In contrast, As adsorption by crystalline goethite was eventually inhibited due to the competitive effect of Mn(III)-FA. To summarize, our results reveal that Mn(III)-NOM complexes play dual roles in As retention by iron oxides, depending on the their crystallization. This highlights the importance of Mn(III) for the fate of As particularly in redox fluctuating groundwater environments.
Collapse
Affiliation(s)
- Yuxi Zhang
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; Geological Survey, China University of Geosciences, Wuhan 430074, PR China
| | - Yamin Deng
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China.
| | - Jiangkai Xue
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yihan Cheng
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yulun Nie
- Faculty of Materials Sciences and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Kunfu Pi
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yao Du
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Xianjun Xie
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Jianbo Shi
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yanxin Wang
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
14
|
Li R, Zhang L, Chen Y, Xia Q, Liu D, Huang Y, Dong H. Oxidation of Biogenic U(IV) in the Presence of Bioreduced Clay Minerals and Organic Ligands. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1541-1550. [PMID: 38199960 DOI: 10.1021/acs.est.3c07385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Bioreduction of soluble U(VI) to sparingly soluble U(IV) is proposed as an effective approach to remediating uranium contamination. However, the stability of biogenic U(IV) in natural environments remains unclear. We conducted U(IV) reoxidation experiments following U(VI) bioreduction in the presence of ubiquitous clay minerals and organic ligands. Bioreduced Fe-rich nontronite (rNAu-2) and Fe-poor montmorillonite (rSWy-2) enhanced U(IV) oxidation through shuttling electrons between oxygen and U(IV). Ethylenediaminetetraacetic acid (EDTA), citrate, and siderophore desferrioxamine B (DFOB) promoted U(IV) oxidation via complexation with U(IV). In the presence of both rNAu-2 and EDTA, the rate of U(IV) oxidation was between those in the presence of rNAu-2 and EDTA, due to a clay/ligand-induced change of U(IV) speciation. However, the rate of U(IV) oxidation in other combinations of reduced clay and ligands was higher than their individual ones because both promoted U(IV) oxidation. Unexpectedly, the copresence of rNAu-2/rSWy-2 and DFOB inhibited U(IV) oxidation, possibly due to (1) blockage of the electron transport pathway by DFOB, (2) inability of DFOB-complexed Fe(III) to oxidize U(IV), and (3) stability of the U(IV)-DFOB complex in the clay interlayers. These findings provide novel insights into the stability of U(IV) in the environment and have important implications for the remediation of uranium contamination.
Collapse
Affiliation(s)
- Runjie Li
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Limin Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Chen
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Qingyin Xia
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Dong Liu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
15
|
Wang Q, Han Z, Liu H, Chen T, Zou X, Chu Z, Hu J, Sun F, Wang H. The pH-sensitive transformation of birnessite and its effect on the fate of norfloxacin. CHEMOSPHERE 2023; 341:139932. [PMID: 37619744 DOI: 10.1016/j.chemosphere.2023.139932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Birnessite plays a crucial role in regulating the fate of contaminants in soil, which is affected by the crystal structure of birnessite. In this study, the transformation of triclinic birnessite to hexagonal birnessite was examined at various pH values, and their reactivity towards norfloxacin was investigated. The findings indicate that the conversion from triclinic birnessite to hexagonal birnessite occurs under pH conditions lower than 7. The lower of the solution pH where the birnessite formed, the higher the surface reactivity. Throughout the transformation process, the migration of Mn3+ and the increased interlayer protons generated more reactive oxygen species, which enhanced the surface reactivity towards norfloxacin. Specifically, at a conversion pH of 1, the norfloxacin removal rate significantly increases from 14% to 97% compared to triclinic birnessite. The mechanism of norfloxacin removal by triclinic and hexagonal birnessite is illustrated. These findings provide valuable insights into the dynamic transformation of birnessites in aqueous environments with varying pH values and their impact on norfloxacin removal.
Collapse
Affiliation(s)
- Qimengzi Wang
- Key Laboratory of Nano-Minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhengyan Han
- Key Laboratory of Nano-Minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Haibo Liu
- Key Laboratory of Nano-Minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Tianhu Chen
- Key Laboratory of Nano-Minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xuehua Zou
- Key Laboratory of Nano-Minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ziyang Chu
- Key Laboratory of Nano-Minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jinchao Hu
- Key Laboratory of Nano-Minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Fuwei Sun
- Key Laboratory of Nano-Minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hanlin Wang
- Key Laboratory of Nano-Minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
16
|
Zong Y, Zhang H, Liu H, Xu J, Zhou Z, Zhang X, Zhang T, Wu D. Selective abatement of electron-rich organic contaminants by trace complexed Mn(II)-catalyzed periodate via high-valent manganese-oxo species. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132447. [PMID: 37677971 DOI: 10.1016/j.jhazmat.2023.132447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Mn(II) is among the most efficient catalysts for the periodate (PI)-based oxidation process. In-situ formed colloidal MnO2 simultaneously serves as the catalyst and oxidant during the degradation of organic contaminants by PI. Here, it is revealed that the complexation of Mn(II) by ethylene diamine tetraacetic acid (EDTA) further enhances the performance of PI-based oxidation in the selective degradation of organic contaminants. As evidenced by methyl phenyl sulfoxide probing, 18O-isotope labeling, and mass spectroscopy, EDTA complexation modulates the reaction pathway between Mn(II) and PI, triggering the generation of high-valent manganese-oxo (MnV-oxo) as the dominant reactive species. PI mediates the single-electron oxidation of Mn(II) to Mn(III), which is stabilized by EDTA complexation and then further oxidized by PI via the oxygen-atom transfer step, ultimately producing the MnV-oxo species. Ligands analogous to EDTA, namely, [S,S]-ethylenediaminedisuccinic acid and L-glutamic acid N,N-diacetic acid, also enhances the Mn(II)/PI process and favors MnV-oxo as the dominant species. This study demonstrates that functional ligands can tune the efficiency and reaction pathways of Mn(II)-catalyzed peroxide and peroxyacid-based oxidation processes.
Collapse
Affiliation(s)
- Yang Zong
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Hao Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China; Shanghai Jianke Environmental Technology Co., Ltd., Shanghai 200032, China
| | - Jun Xu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Zhengwei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Xiaomeng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Ting Zhang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
17
|
Zhong C, Cao H, Huang Q, Xie Y, Zhao H. Degradation of Sulfamethoxazole by Manganese(IV) Oxide in the Presence of Humic Acid: Role of Stabilized Semiquinone Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13625-13634. [PMID: 37650769 DOI: 10.1021/acs.est.3c03698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
In this work, we demonstrate for the first time the abatement of sulfamethoxazole (SMX) induced by stabilized ortho-semiquinone radicals (o-SQ•-) in the MnO2-mediated system in the presence of humic acid. To evaluate the performance of different MnO2/mediator systems, 16 mediators are examined for their effects on MnO2 reactions with SMX. The key role of the bidentate Mn(II)-o-SQ• complex and MnO2 surface in stabilizing SQ•- is revealed. To illustrate the formation of the Mn(II)-o-SQ• complex, electron spin resonance, cyclic voltammetry, and mass spectra were used. To demonstrate the presence of o-SQ• on the MnO2 surface, EDTA was used to quench Mn(II)-o-SQ•. The high stability of o-SQ•- on the MnO2 surface is attributed to the higher potential of o-SQ•- (0.9643 V) than the MnO2 surface (0.8598 V) at pH 7.0. The SMX removal rate constant by different stabilized o-SQ• at pH 7.0 ranges from 0.0098 to 0.2252 min-1. The favorable model is the rate constant ln (kobs, 7.0) = 6.002EHOMO(o-Qred) + 33.744(ELUMO(o-Q) - EHOMO(o-Qred)) - 32.800, whose parameters represent the generation and reactivity of o-SQ•, respectively. Moreover, aniline and cystine are competitive substrates for SMX in coupling o-SQ•-. Due to the abundance of humic constituents in aquatic environments, this finding sheds light on the low-oxidant-demand, low-carbon, and highly selective removal of sulfonamide antibiotics.
Collapse
Affiliation(s)
- Chen Zhong
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
- National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Beijing 100190, China
- Chemistry & Chemical Engineering Data Center, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongbin Cao
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
- National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Beijing 100190, China
- Chemistry & Chemical Engineering Data Center, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingguo Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yongbing Xie
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
- National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Beijing 100190, China
- Chemistry & Chemical Engineering Data Center, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Zhao
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
- National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Beijing 100190, China
- Chemistry & Chemical Engineering Data Center, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Ying C, Liu C, Zhang F, Zheng L, Wang X, Yin H, Tan W, Feng X, Lanson B. Solutions for an efficient arsenite oxidation and removal from groundwater containing ferrous iron. WATER RESEARCH 2023; 243:120345. [PMID: 37516074 DOI: 10.1016/j.watres.2023.120345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/31/2023]
Abstract
Manganese (Mn) oxides are extensively used to oxidize As(III) present in ground, drinking, and waste waters to the less toxic and more easily removable As(V). The common presence of multiple other cations in natural waters, and more especially of redox-sensitive ones such as Fe2+, may however significantly hamper As(III) oxidation and its subsequent removal. The present work investigates experimentally the influence of Mn(III) chelating agents on As(III) oxidation process in such environmentally relevant complex systems. Specifically, the influence of sodium pyrophosphate (PP), an efficient Mn(III) chelating agent, on As(III) oxidation by birnessite in the presence of Fe(II) was investigated using batch experiments at circum-neutral pH. In the absence of PP, competitive oxidation of Fe(II) and As(III) leads to Mn oxide surface passivation by Fe(III) and Mn(II/III) (oxyhydr)oxides, thus inhibiting As(III) oxidation. Addition of PP to the system highly enhances As(III) oxidation by birnessite even in the presence of Fe(II). PP presence prevents passivation of Mn oxide surfaces keeping As and Fe species in solution while lower valence Mn species are released to solution. In addition, reactive oxygen species (ROS), tentatively identified as hydroxyl radicals (•OH), are generated under aerobic conditions through oxygen activation by Fe(II)-PP complexes, enhancing As(III) oxidation further. The positive influence of Mn(III) chelating agents on As(III) oxidation most likely not only depend on their affinity for Mn(III) but also on their ability to promote formation of these active radical species. Finally, removal of As(V) through sorption to Fe (oxyhydr)oxides is efficient even in the presence of significant concentrations of PP, and addition of such Mn(III) chelating agents thus appears as an efficient way to enhance the oxidizing activity of birnessite in large-scale treatment for arsenic detoxification of groundwaters.
Collapse
Affiliation(s)
- Chaoyun Ying
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; University Grenoble Alpes, CNRS, University Savoie Mont Blanc, IRD, University Gustave Eiffel, ISTerre, F-38000 Grenoble, France; Department of Geography and Spatial Information Techniques, Zhejiang Collaborative Innovation Center & Ningbo Universities Collaborative Innovation Center for Land and Marine Spatial Utilization and Governance Research, Donghai Academy, Ningbo University, Ningbo 315211, China
| | - Chang Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Feng Zhang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaoming Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Yin
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xionghan Feng
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bruno Lanson
- University Grenoble Alpes, CNRS, University Savoie Mont Blanc, IRD, University Gustave Eiffel, ISTerre, F-38000 Grenoble, France
| |
Collapse
|
19
|
Liao Z, He H, Cui D, Cui J, Yang X, Guo Z, Chen H, Dao G, Huang B, Sun H, Pan X. Algal organic matter and dissolved Mn cooperatively accelerate 17α-ethinylestradiol photodegradation: Role of photogenerated reactive Mn(III). WATER RESEARCH 2023; 236:119980. [PMID: 37080107 DOI: 10.1016/j.watres.2023.119980] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Algal extracellular organic matter (EOM), a major fraction of the dissolved organic matter found in eutrophic plateau lakes, can act as a photosensitizer to drive the abiotic oxidation of Mn(II). This process has the potential to generate reactive Mn(III) and influence the fate of organic pollutants. In this study, the photodegradation of 17α-ethinylestradiol (EE2) in the presence of Mn(II) and EOM was investigated with emphasis on the photogeneration mechanism of Mn(III). The results indicated that Mn(II) can accelerate EE2 photodegradation in EOM solution owing to the photogeneration of reactive Mn(III), and the enhancement was greater at higher Mn(II) concentrations. The generation of reactive Mn(III) was mainly attributable to the action of superoxide radical generated by photosensitization of EOM. In addition, the photodegradation of EE2 was slower at higher pH, possibly because of the deactivation of Mn(III) under alkaline conditions. Single-electron transfer was an indispensable process in the photodegradation. The differences in fluorophore content, pH, and NO3- concentrations are all important determinants for EE2 photodegradation in natural waters. The information obtained in this research would contribute to the understanding of reactions between Mn(II) and EOM, and provide new insights into the behaviors of reactive Mn(III) in eutrophic water irradiated by sunlight.
Collapse
Affiliation(s)
- Zhicheng Liao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Southwest United Graduate School, Kunming 650092, China
| | - Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Danni Cui
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jingye Cui
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaoxia Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ziwei Guo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Hao Chen
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Guohua Dao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming 650500, China.
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming 650500, China
| |
Collapse
|
20
|
Sun Y, Wang C, May AL, Chen G, Yin Y, Xie Y, Lato AM, Im J, Löffler FE. Mn(III)-mediated bisphenol a degradation: Mechanisms and products. WATER RESEARCH 2023; 235:119787. [PMID: 36917870 DOI: 10.1016/j.watres.2023.119787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Bisphenol A (BPA) is a high production volume chemical with potential estrogenic effects susceptible to abiotic degradation by MnO2. BPA transformation products and reaction mechanisms with MnO2 have been investigated, but detailed process understanding of Mn(III)-mediated degradation has not been attained. Rapid consumption of BPA occurred in batch reaction vessels with 1 mM Mn(III) and 63.9 ± 0.7% of 1.76 ± 0.02 μmol BPA was degraded in 1 hour at circumneutral pH. BPA was consumed at 1.86 ± 0.09-fold higher rates in vessels with synthetic MnO2 comprising approximately 13 mol% surface-associated Mn(III) versus surface-Mn(III)-free MnO2, and 10-35% of BPA transformation could be attributed to Mn(III) during the initial 10-min reaction phase. High-resolution tandem mass spectrometry (HRMS/MS) analysis detected eight transformation intermediates in reactions with Mn(III), and quantum calculations proposed 14 BPA degradation products, nine of which had not been observed during MnO2-mediated BPA degradation, suggesting mechanistic differences between Mn(III)- versus MnO2-mediated BPA degradation. The findings demonstrate that both Mn(III) and Mn(IV) can effectively degrade BPA and indicate that surface-associated Mn(III) increases the reactivity of synthetic MnO2, offering opportunities for engineering more reactive oxidized Mn species for BPA removal.
Collapse
Affiliation(s)
- Yanchen Sun
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States; Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Chao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Amanda L May
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Gao Chen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States; Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Yongchao Yin
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States; Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Yongchao Xie
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States; Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ashley M Lato
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jeongdae Im
- Department of Civil Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Frank E Löffler
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States; Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States; Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States; Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee 37996, United States; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
| |
Collapse
|
21
|
Zhang S, Li B, Chen Y, Zhu M, Pedersen JA, Gu B, Wang Z, Li H, Liu J, Zhou XQ, Hao YY, Jiang H, Liu F, Liu YR, Yin H. Methylmercury Degradation by Trivalent Manganese. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5988-5998. [PMID: 36995950 DOI: 10.1021/acs.est.3c00532] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Methylmercury (MeHg) is a potent neurotoxin and has great adverse health impacts on humans. Organisms and sunlight-mediated demethylation are well-known detoxification pathways of MeHg, yet whether abiotic environmental components contribute to MeHg degradation remains poorly known. Here, we report that MeHg can be degraded by trivalent manganese (Mn(III)), a naturally occurring and widespread oxidant. We found that 28 ± 4% MeHg could be degraded by Mn(III) located on synthesized Mn dioxide (MnO2-x) surfaces during the reaction of 0.91 μg·L-1 MeHg and 5 g·L-1 mineral at an initial pH of 6.0 for 12 h in 10 mM NaNO3 at 25 °C. The presence of low-molecular-weight organic acids (e.g., oxalate and citrate) substantially enhances MeHg degradation by MnO2-x via the formation of soluble Mn(III)-ligand complexes, leading to the cleavage of the carbon-Hg bond. MeHg can also be degraded by reactions with Mn(III)-pyrophosphate complexes, with apparent degradation rate constants comparable to those by biotic and photolytic degradation. Thiol ligands (cysteine and glutathione) show negligible effects on MeHg demethylation by Mn(III). This research demonstrates potential roles of Mn(III) in degrading MeHg in natural environments, which may be further explored for remediating heavily polluted soils and engineered systems containing MeHg.
Collapse
Affiliation(s)
- Shuang Zhang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P.R. China
- Department of Criminal Science and Technology, Henan Police College, Zhengzhou 450046, P.R. China
| | - Baohui Li
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yi Chen
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Mengqiang Zhu
- Department of Ecosystem Science and Management, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming 82071, United States
| | - Joel A Pedersen
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zimeng Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P.R. China
| | - Hui Li
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jinling Liu
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, P.R. China
| | - Xin-Quan Zhou
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yun-Yun Hao
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Hong Jiang
- College of Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Fan Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yu-Rong Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Hui Yin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P.R. China
| |
Collapse
|
22
|
Wang X, Shu Z, He H, Zhou M, Lu X, Wang J, Zhang L, Pan Z, Wang Z. Arsenopyrite dissolution in circumneutral oxic environments: The effect of pyrophosphate and dissolved Mn(III). WATER RESEARCH 2023; 230:119595. [PMID: 36642031 DOI: 10.1016/j.watres.2023.119595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/07/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The oxidative dissolution of As from arsenopyrite, one important arsenic mineral in reducing conditions, poses an environmental hazard to natural aquatic systems. The dissolution of arsenopyrite occurs slowly due to the surface precipitates of iron oxides in circumneutral oxic environments. However, the presence of natural ligands and coexisting metals may change the release of Fe species, which would be of critical importance to the dissolution of arsenopyrite. Here, we investigated the oxidative dissolution of arsenopyrite induced by pyrophosphate (PP) and dissolved Mn(III) species as a natural occurring Mn species with strong complexation affinity to PP. With the presence of PP, the formation of Fe(II)-PP complexes and its rapid oxidation to dissolved Fe(III)-PP species resulted in a substantial increase in the generation of hydroxyl radicals (•OH) under ambient dark conditions, contributing to faster dissolution of arsenopyrite and higher percentage of As(V) in the dissolved products. Dissolved Mn(III), though considered as an extra oxidant besides oxygen, unexpectedly acted as a radical scavenger for •OH and inhibited the production of As(V). Moreover, the oxidation of sulfur species differed in the two systems as significant formation of thiosulfate was observed with the presence of PP, which did not occur in the system with dissolved Mn(III). Overall, the effects of dissolved Mn(III) and PP on the dissolution of arsenopyrite and the subsequent transformation of Fe, As and S species have important implications for disentangling the interactions among these metastable elements, and for assessing their transport and environmental impacts in aquatic systems.
Collapse
Affiliation(s)
- Xingxing Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Zhipeng Shu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Haohua He
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Ming Zhou
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Xiaohan Lu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Jiajia Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Liwu Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Zezhen Pan
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China; National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Shanghai, China.
| | - Zimeng Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China; National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| |
Collapse
|
23
|
Lingamdinne LP, Godlaveeti SK, Angaru GKR, Chang YY, Nagireddy RR, Somala AR, Koduru JR. Highly efficient surface sequestration of Pb 2+ and Cr 3+ from water using a Mn 3O 4 anchored reduced graphene oxide: Selective removal of Pb 2+ from real water. CHEMOSPHERE 2022; 299:134457. [PMID: 35367227 DOI: 10.1016/j.chemosphere.2022.134457] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/16/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Owing to the ubiquitous existence of detrimental heavy metals in the environment, simple adsorption-oriented approaches are becoming increasingly appealing for the effective removal of Pb2+ and Cr3+ from water bodies. These techniques use nanocomposites (NC) of reduced graphene oxide (rGO) and Mn3O4 (rGO-Mn3O4), they employ a hydrothermal technique featuring NaBH4 and NaOH solutions. Here, spectroscopic and microscopic instrumental techniques were used to evaluate the morphological and physicochemical characteristics of prepared reduced graphene oxide manganese oxide (rGO-Mn3O4), revealing that it possessed a well-defined porous structure with a specific surface area of 126 m2 g-1. The prepared rGO-Mn3O4 had significant adsorption efficiencies for Pb2+ and Cr3+, achieving maximum sequestration capacities of 130.28 and 138.51 mg g-1 for Pb2+ and Cr3+, respectively, according to the Langmuir model. These adsorption capacities are comparable to or greater than those of previously reported graphene-based materials. The Langmuir isotherm and pseudo-second-order models adequately represented the experimental results. Thermodynamic analysis revealed that adsorption occurred through spontaneous endothermic reactions. Recycling studies showed that the developed r-GO-Mn3O4 had excellent recyclability, with <70% removal at the 5th cycle; its feasibility was evaluated using industrial wastewater, suggesting that Pb2+ was selectively removed from Pb2+ and Cr3+ contaminated water. The instrumental analysis and surface phenomena studies presented here revealed that the adsorptive removal processes of both heavy metals involved π electron donor-acceptor interactions, ion exchange, and electrostatic interactions, along with surface complexation. Overall, the developed rGO-Mn3O4 has the potential to be a high-value adsorbent for removing heavy metals.
Collapse
Affiliation(s)
| | - Sreenivasa Kumar Godlaveeti
- Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India
| | | | - Yoon-Young Chang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Ramamanohar Reddy Nagireddy
- Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India
| | - Adinarayana Reddy Somala
- Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa, 516005, Andhra Pradesh, India.
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| |
Collapse
|
24
|
Guan C, Guo Q, Wang Z, Wei X, Han B, Luo X, Pan H, Jiang J. Bisulfite activated permanganate for oxidative water decontamination. WATER RESEARCH 2022; 216:118331. [PMID: 35358879 DOI: 10.1016/j.watres.2022.118331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Recently, bisulfite-activated permanganate (MnO4-; Mn(VII)) process has attracted considerable attention as a novel class of advanced oxidation technology for destruction of organic contaminants in water. However, disputes over the underlying activation mechanism as well as reactive species generated in the Mn(VII)/bisulfite system remain for a long period due to the fairly complex chemistry involved in this system. This article aims to present a critical review on scientific development of the Mn(VII)/bisulfite system, with particular focus on the generation and contribution of various reactive intermediates. Both reactive manganese species (RMnS) (i.e., soluble Mn(III), Mn(V), and Mn(VI)) and radical species (primarily SO4•-) are identified as the oxidizing components responsible for enhanced degradation of organic contaminants by the Mn(VII)/bisulfite system. Bisulfite plays a dual role of being an activating agent for reactive intermediates generation and acting as a complexing agent to stabilize RMnS. Solution chemistry (e.g., the [Mn(VII)]/[bisulfite] molar ratio, solution pH, the type of contaminants, ligands, and water matrix components) greatly impacts the generation and consumption of RMnS and radicals, thus influencing the degradation kinetics and pathways of organics. Particularly, dissolved oxygen (DO) is a vital factor for driving the oxidation of organics since the absence of DO can block the generation of SO4•- and meantime causes the consumption of RMnS by excess SO3•- as a strong reductant. Interestingly, ferrate (FeO42-, Fe(VI)) and hexavalent chromium (CrO42-/HCrO4-, Cr(VI)) that are high-valent metal oxyanions analogous to Mn(VII) can be activated by bisulfite via a similar pathway (i.e. both high-valent metal-oxo intermediates and reactive radicals are involved). Furthermore, key knowledge gaps are identified and future research needs are proposed to address the potential challenges encountered in practical application of the Mn(VII)/bisulfite oxidation technology.
Collapse
Affiliation(s)
- Chaoting Guan
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Qin Guo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Zhen Wang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xipeng Wei
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Bin Han
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xiaonan Luo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Hanping Pan
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| |
Collapse
|
25
|
Xia Q, Jin Q, Chen Y, Zhang L, Li X, He S, Guo D, Liu J, Dong H. Combined Effects of Fe(III)-Bearing Nontronite and Organic Ligands on Biogenic U(IV) Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1983-1993. [PMID: 35012308 DOI: 10.1021/acs.est.1c04946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bioreduction of soluble U(VI) to sparingly soluble U(IV) solids was proposed as a remediation method for uranium contamination. Therefore, the stability and longevity of biogenic U(IV) are critical to the success of uranium remediation. However, co-occurrence of clay minerals and organic ligands could potentially reoxidize U(IV) to U(VI). Herein, we report a combined effect of Fe(III)-rich nontronite (NAu-2) and environmentally prevalent organic ligands on reoxidation of biogenic U(IV) at circumneutral pH. After 30 days of incubation, structural Fe(III) in NAu-2 oxidized 45.50% U(IV) with an initial rate of 2.7 × 10-3 mol m-2 d-1. Addition of citrate and ethylenediaminetetraacetic acid (EDTA) greatly promoted the oxidative dissolution of U(IV) by structural Fe(III) in NAu-2, primarily through the formation of aqueous ligand-U(IV) complexes. In contrast, a model siderophore, desferrioxamine B (DFOB), partially inhibited U(IV) oxidation due to the formation of stable DFOB-Fe3+ complexes. The resulting U(VI) species intercalated into an NAu-2 interlayer or adsorbed onto an NAu-2 surface. Our results highlight the importance of organic ligands in oxidative dissolution of U(IV) minerals by Fe(III)-bearing clay minerals and have important implications for the design of nuclear waste storage and remediation strategies, especially in clay- and organic-rich environments.
Collapse
Affiliation(s)
- Qingyin Xia
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China
| | - Qusheng Jin
- Department of Earth Sciences, University of Oregon, Eugene, Oregon 97403, United States
| | - Yu Chen
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Limin Zhang
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoxu Li
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Sheng He
- Beijing Research Institute of Uranium Geology, Beijing 100029, China
| | - Dongyi Guo
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Juan Liu
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
26
|
Sun S, Wang Y, Zhou L, Wang X, Kang C. Enhanced degradation mechanism of tetracycline by MnO 2 with the presence of organic acids. CHEMOSPHERE 2022; 286:131606. [PMID: 34311402 DOI: 10.1016/j.chemosphere.2021.131606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/08/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
In this study, we constructed MnO2/organic acid (OA) systems using MnO2 colloid, the most reactive phase of Mn(IV), and two kinds of OA (oxalic acid and l-tartaric acid). We investigated the effect of OA on tetracycline (TC) degradation by MnO2. The results show that both OA obviously accelerate TC degradation by MnO2. Mn(III) formed during the reaction lead to the acceleration. Mn(III)-oxalate complex formed in oxalic acid system resulted in the lower degradation efficiency than that in l-tartaric acid system. The acceleration of oxalic acid was decreased when the concentration was more than 75 μM, and even completely disappeared with the concentration of 500 μM, owning to the fact that excess oxalic acid decreased the pH and some MnO2 was fast reduced to Mn2+ by oxalic acid and unable to react with TC. The impact of pH on TC degradation resulted from the influences of H+ on MnO2 redox potentials and TC deprotonation. And acidic conditions accelerated TC degradation. The addition of Mg2+, Ca2+, Fe3+ and Zn2+ exhibited an inhibitory effect in both systems for their occupying reactive sites on MnO2 surface and blocking the access of TC to MnO2. Similar intermediates in the two systems were detected, indicating a similar TC degradation mechanism including a series of reactions like dehydration, hydroxylation and oxidation. The MnO2/OA system provides an efficient treatment of TC in wastewater. And it is also noticeable that MnO2/OA system should also have an important effect on the fate of pollutants in environment, from our results.
Collapse
Affiliation(s)
- Siyang Sun
- Key Laboratory of Groundwater Resources and Environment, Jilin University, Ministry of Education, Changchun, 130021, Jilin, PR China
| | - Yuhan Wang
- Key Laboratory of Groundwater Resources and Environment, Jilin University, Ministry of Education, Changchun, 130021, Jilin, PR China
| | - Lin Zhou
- Key Laboratory of Groundwater Resources and Environment, Jilin University, Ministry of Education, Changchun, 130021, Jilin, PR China
| | - Xiaoyu Wang
- Key Laboratory of Groundwater Resources and Environment, Jilin University, Ministry of Education, Changchun, 130021, Jilin, PR China
| | - Chunli Kang
- Key Laboratory of Groundwater Resources and Environment, Jilin University, Ministry of Education, Changchun, 130021, Jilin, PR China.
| |
Collapse
|
27
|
Jones MR, Tebo BM. Novel manganese cycling at very low ionic strengths in the Columbia River Estuary. WATER RESEARCH 2021; 207:117801. [PMID: 34741899 DOI: 10.1016/j.watres.2021.117801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Mixing of waters of different ionic strengths induces the geochemical cycling of reactive elements. The most reactive zone is where the gradient in ionic strength is steepest. In oxygenated systems, the redox-active metal manganese cycles between soluble and particulate fractions through three oxidation states, manganese(II), manganese(III) and manganese(IV). This cycling strongly affects the mobility of inorganic and organic chemicals. The most accessible environmental system where waters with different ionic strengths mix are estuaries. During six Eulerian studies in the Columbia River Estuary, each up to 26 h, we measured manganese speciation and concentration across a salinity (SP) gradient centred around SP = 0.06-6, equivalent to a seawater ionic strength (ISp) of 1.2-120 mM. This zone, representing the region between freshwater and the more intensively studied estuarine turbidity maximum, presents a highly dynamic geochemical environment in which the manganese cycle propagates through four steps as ISp increases due to mixing: 1. Before a measurable change in ISp, manganese, as particulate manganese(III/IV) oxides (MnOx), undergoes reduction, independent of photochemical processes, to soluble manganese(III) stabilized in organic complexes (Mn(III)-L) and manganese(II); 2. As ISp increases between 5 and 80 mM, Mn(III)-L reduction continues and manganese(II) adsorbs onto particle surfaces; 3. As ISp increases further, though remaining below 80 mM (SP ≈ 4), adsorbed manganese(II) desorbs and/or is oxidized and is released as Mn(III)-L or oxidises further to MnOx; 4. The breakdown of Mn(III)-L complexes leads to higher manganese(II) and MnOx, which at Mid-Estuary-Salinities (ISp = 320-480 mM) precipitates. This manganese cycling in low ISp waters directly affects a system's redox chemistry and provides a window into understanding the extensive, yet hidden, freshwater/saline water interface in aquifers, soils, sediments and estuaries.
Collapse
Affiliation(s)
- Matthew Ross Jones
- Division of Environmental and Biomolecular Systems, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Bradley M Tebo
- Division of Environmental and Biomolecular Systems, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
28
|
Morgan JJ, Schlautman MA, Bilinski H. Rates of Abiotic Mn II Oxidation by O 2: Influence of Various Multidentate Ligands at High pH. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14426-14435. [PMID: 34232614 DOI: 10.1021/acs.est.1c01795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Oxidation of manganous manganese (MnII) is an important process driving manganese cycles in natural aquatic systems and leading to the formation of solid-phase MnIII,IV (hydr)oxide products. Previous research has shown that some simple ligands (e.g., phosphate, sulfate, chloride, fluoride) can bind with MnII to make it unreactive to oxidation by dissolved oxygen. However, there is little to no understanding of the role played by stronger, complex-forming ligands in MnII oxidation reactions. The objective of this study was to evaluate the rates of abiotic MnII oxidation by O2 in the presence of low concentrations of several complex-forming model ligands (pyrophosphate, tripolyphosphate, ethylenediaminetetraacetic acid, oxalate) in bicarbonate-carbonate buffered laboratory solutions of pH 9.42, 9.65, and 10.19. The influence of increasing ligand concentrations on observed autocatalytic profiles of MnII oxidation was investigated, and initial oxidation rates were linked quantitatively to the initial MnII speciation in experimental solutions. Observed rates of MnII oxidation decreased with increasing ligand concentration for all four ligands tested. However, the profiles observed with time and the magnitudes of decrease in initial oxidation rates were different for the different ligands. Likely explanations for these observations include the denticity of the tested ligands, the relative strength of the ligands to complex MnII versus MnIII, and the ability of some ligands to enhance the reduction of MnIII back to MnII on a time scale comparable to the forward homogeneous MnII oxidation reaction.
Collapse
Affiliation(s)
- James J Morgan
- Department of Environmental Science and Engineering, California Institute of Technology, Pasadena, California 91125 United States
| | - Mark A Schlautman
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, South Carolina 29625 United States
| | - Halka Bilinski
- Ruđer Bošković Institute, Division for Marine and Environmental Research, POB 180, HR-10002 Zagreb, Croatia
| |
Collapse
|
29
|
Sun Y, Im J, Shobnam N, Fanourakis SK, He L, Anovitz LM, Erickson PR, Sun H, Zhuang J, Löffler FE. Degradation of Adsorbed Bisphenol A by Soluble Mn(III). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13014-13023. [PMID: 34559517 DOI: 10.1021/acs.est.1c03862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA), a high production volume chemical and potential endocrine disruptor, is found to be associated with sediments and soils due to its hydrophobicity (log KOW of 3.42). We used superfine powdered activated carbon (SPAC) with a particle size of 1.38 ± 0.03 μm as a BPA sorbent and assessed degradation of BPA by oxidized manganese (Mn) species. SPAC strongly sorbed BPA, and desorption required organic solvents. No degradation of adsorbed BPA (278.7 ± 0.6 mg BPA g-1 SPAC) was observed with synthetic, solid α-MnO2 with a particle size of 15.41 ± 1.35 μm; however, 89% mass reduction occurred following the addition of 0.5 mM soluble Mn(III). Small-angle neutron scattering data suggested that both adsorption and degradation of BPA occurred in SPAC pores. The findings demonstrate that Mn(III) mediates oxidative transformation of dissolved and adsorbed BPA, the latter observation challenging the paradigm that contaminant desorption and diffusion out of pore structures are required steps for degradation. Soluble Mn(III) is abundant near oxic-anoxic interfaces, and the observation that adsorbed BPA is susceptible to degradation has implications for predicting, and possibly managing, the fate and longevity of BPA in environmental systems.
Collapse
Affiliation(s)
- Yanchen Sun
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jeongdae Im
- Department of Civil Engineering, Kansas State University, Manhattan, Kansas 66503, United States
| | - Nusrat Shobnam
- Department of Civil Engineering, Kansas State University, Manhattan, Kansas 66503, United States
| | - Sofia K Fanourakis
- Department of Materials Science and Engineering, University of Houston, Houston, Texas 77204, United States
| | - Lilin He
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Lawrence M Anovitz
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | | | - Huihui Sun
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jie Zhuang
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Frank E Löffler
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
30
|
Gong Z, Wang G, Shi H, Shao S, Wang M, Lu K, Gao S. Mn(II)-Mn(III)-Mn(IV) redox cycling inhibits the removal of methylparaben and acetaminophen mediated by horseradish peroxidase: New insights into the mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147788. [PMID: 34029809 DOI: 10.1016/j.scitotenv.2021.147788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Catalyzed oxidative coupling reactions mediated by enzyme have been proposed as an effective remediation strategy to remove micropollutants, however, little is known about how the Mn(II) redox cycling affects the horseradish peroxidase (HRP)-mediated reactions in wastewater treatment. Here, we explored the removal of two pharmaceuticals and personal care products (PPCPs), methylparaben (MeP) and acetaminophen (AAP), in HRP-mediated reaction system with dissolved Mn (II). It was found that the conversion rate of AAP was about 284 times higher than that of MeP, and Mn (II) significantly inhibited HRP-catalyzed MeP removal but had little influence on that of AAP. X-ray photoelectron spectroscopy (XPS) and theoretical calculations demonstrated that HRP converted Mn(II) into Mn(III), and then generated MnO2 colloid, which inhibited the removal of the substrates. Moreover, the results of theoretical calculations also showed that the binding energy between HRP and Mn was 27.68 kcal/mol, which was higher than that of MeP (25.24 kcal/mol) and lower than that of AAP (30.19 kcal/mol). Therefore, when MeP and Mn (II) coexisted in the reaction system, HRP preferentially reacted with Mn(II), which explained the different impacts of Mn (II) on the removal of MeP and AAP. Additionally, Mn (II) significantly altered the product distribution by decreasing the amount of polymerization products. Overall, our work here revealed the roles of Mn (II) in the removal of MeP and AAP mediated by HRP, having strong implications for an accurate assessment of the influence of Mn(II) redox cycling on the removal of PPCPs in wastewater treatment.
Collapse
Affiliation(s)
- Zhimin Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China
| | - Gaobo Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093, PR China
| | - Huanhuan Shi
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Shuai Shao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China
| | - Mengjie Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China
| | - Kun Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China.
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
31
|
Li J, Pang SY, Wang Z, Guo Q, Duan J, Sun S, Wang L, Cao Y, Jiang J. Oxidative transformation of emerging organic contaminants by aqueous permanganate: Kinetics, products, toxicity changes, and effects of manganese products. WATER RESEARCH 2021; 203:117513. [PMID: 34392042 DOI: 10.1016/j.watres.2021.117513] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/22/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Permanganate (Mn(VII)) has been widely studied for removal of emerging organic contaminants (EOCs) in water treatment and in situ chemical oxidation process. Studies on the reactive intermediate manganese products (e.g., Mn(III) and manganese dioxide (MnO2)) generated from Mn(VII) reduction by EOCs in recent decades shed new light on Mn(VII) oxidation process. The present work summarizes the latest research findings on Mn(VII) reactions with a wide range of EOCs (including phenols, olefins, and amines) in detailed aspects of reaction kinetics, oxidation products, and toxicity changes, along with special emphasis on the impacts of intermediate manganese products (mainly Mn(III) and MnO2) in-situ formed. Mn(VII) shows appreciable reactivities towards EOCs with apparent second-order rate constants (kapp) generally decrease in the order of olefins (kapp = 0.3 - 2.1 × 104 M-1s-1) > phenols (kapp = 0.03 - 460 M-1s-1) > amines (kapp = 3.5 × 10-3 - 305.3 M-1s-1) at neutral pH. Phenolic benzene ring (for phenols), (conjugated) double bond (for olefins), primary amine group and the N-containing heterocyclic ring (for amines) are the most reactive sites towards Mn(VII) oxidation, leading to the formation of products with different structures (e.g., hydroxylated, aldehyde, carbonyl, quinone-like, polymeric, ring-opening, nitroso/nitro and C-N cleavage products). Destruction of functional groups of EOCs (e.g., benzene ring, (conjugated) double bond, and N-containing heterocyclic) by Mn(VII) tends to decrease solution toxicity, while oxidation products with higher toxicity than parent EOCs (e.g., quinone-like products in the case of phenolic EOCs) are sometimes formed. Mn(III) stabilized by model or unknown ligands remarkably accelerates phenolic EOCs oxidation by Mn(VII) under acidic to neutral conditions, while MnO2 enhances the oxidation efficiency of phenolic and amine EOCs by Mn(VII) at acidic pH. The intermediate manganese products participate in Mn(VII) oxidation process most likely as both oxidants and catalysts with their generation/stability/reactivity affecting by the presence of NOM, ligand, cations, and anions in water matrices. This work presents the state-of-the-art findings on Mn(VII) oxidation of EOCs, especially highlights the significant roles of manganese products, which advances our understanding on Mn(VII) oxidation and its application in future water treatment processes.
Collapse
Affiliation(s)
- Juan Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Su-Yan Pang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Zhen Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qin Guo
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 51006, China
| | - Jiebin Duan
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 51006, China
| | - Shaofang Sun
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China
| | - Lihong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ying Cao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jin Jiang
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 51006, China
| |
Collapse
|
32
|
Zhang S, Lv J, Han R, Wang Z, Christie P, Zhang S. Sustained production of superoxide radicals by manganese oxides under ambient dark conditions. WATER RESEARCH 2021; 196:117034. [PMID: 33756111 DOI: 10.1016/j.watres.2021.117034] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Manganese (Mn) oxides are ubiquitous in the environment and have strong reactivity to induce the transformation of various contaminants. However, whether reactive oxygen species contribute to their surface reactivity remains unclear. Here, sustainable production of superoxide radicals (O2•-) by various MnO2 polymorphs in the dark was quantified and the mechanisms involved were explored. The results confirm that O2•- was produced through one-electron transfer from surface Mn(III) to adsorbed O2. In contrast, no H2O2 was detected due to its decomposition by Mn oxides to form O2•- and Mn(III), leading to the sustained production of O2•- on Mn oxide surfaces. In addition, the production of O2•- was found to make a clear contribution (4 - 28%) to the transformation of a series of halophenols by MnO2, suggesting that the O2•--mediated surface reaction is an important supplement to the direct electron-transfer mechanism in the reactivity of Mn oxides. These findings advance our understanding of the surface reactivity of Mn oxides and also reveal an important but hitherto unrecognized abiotic source of O2•- in the natural environment.
Collapse
Affiliation(s)
- Suhuan Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Ruixia Han
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Peter Christie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuzhen Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
33
|
Qin W, Tan P, Song Y, Wang Z, Nie J, Ma J. Enhanced transformation of phenolic compounds by manganese(IV) oxide, manganese(II) and permanganate in the presence of ligands: The determination and role of Mn(III). Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Gao Y, Zhou Y, Pang SY, Jiang J, Shen YM, Song Y, Duan JB, Guo Q. Enhanced peroxymonosulfate activation via complexed Mn(II): A novel non-radical oxidation mechanism involving manganese intermediates. WATER RESEARCH 2021; 193:116856. [PMID: 33550170 DOI: 10.1016/j.watres.2021.116856] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
In recent years, the activation of persulfates (peroxydisulfate (PDS) and peroxymonosulfate (PMS)) via transition metal ions for contaminants degradation has received extensive attention in water treatment. There has been growing interest on the mechanism (radical versus non-radical pathway) of activation processes. Interestingly, in contrast to copper, iron or cobalt ions regarded as effective activators for persulfates, manganese ion (Mn(II)) is inefficient for persulfates activation. Inspired by the enhanced stability of manganese species by ligands, this study for the first time systematically investigated the Mn(II)/persulfates with different ligands as a novel oxidation technology. UV-vis spectrometry, chemical probing method and mass spectrometry were used to explore the reactive intermediate (free radical versus high-valent manganese species) therein. It was surprisingly found that the oxidation efficiency of Mn(II)/ligand/persulfates system was highly dependent on the nature of persulfates and ligands. Mn(II) chelated by amino ligands such as ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetate (NTA) could efficiently trigger the oxidation of contaminants (e.g., recalcitrant compounds nitrophenol, benzoic acid and atrazine) by PMS, suggesting a promising Mn(II)/ligand/PMS technology for environmental decontamination especially under manganese-rich conditions. High-valent Mn species (Mn(V)) but not free radicals was demonstrated to be the dominant reactive intermediate, where Mn(III) species played a vital role in Mn(V) generation. The formation of Mn(III) species was found to be affected by the reactivity of persulfates and the type of ligands, thus influencing its further oxidation to Mn(V) species. This study presents a new oxidation process based on the combination of PMS and Mn(II) complex and broadens the knowledge of persulfates activation as well as manganese chemistry for decontamination in water treatment.
Collapse
Affiliation(s)
- Yuan Gao
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Yang Zhou
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Su-Yan Pang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| | - Yong-Ming Shen
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116023, China
| | - Yang Song
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jie-Bin Duan
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Qin Guo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
35
|
Wang X, Wang Q, Yang P, Wang X, Zhang L, Feng X, Zhu M, Wang Z. Oxidation of Mn(III) Species by Pb(IV) Oxide as a Surrogate Oxidant in Aquatic Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14124-14133. [PMID: 33064452 DOI: 10.1021/acs.est.0c05459] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dissolved Mn(III) species have been recognized as a significant form of Mn in redox transition environments, but a holistic understanding of their geochemical properties still lacks the characterization of their reactivity as reductants. Through using PbO2 as a surrogate oxidant and pyrophosphate (PP) as a model ligand, we evaluated the thermodynamic and kinetic constrains of dissolved Mn(III) oxidation under environmentally relevant pH. Without disproportionation, Mn(III) complexes could be directly oxidized by PbO2 to produce Mn oxides. The reaction rates decreased with increasing PP:Mn(III) ratio and became negligible when the ratio was above a threshold value. Particulate manganite could also be oxidized by PbO2 with detectable production of Pb(II). The favorability of Mn(III) oxidation by PbO2 as a function of the PP:Mn ratio could be predicted by the stability constant of the Mn(III)-PP complex. We developed kinetic models that couple multiple pathways of Mn oxidation by PbO2 to simulate the dynamics of Pb release, loss of dissolved Mn, as well as Mn(III) production and consumption. Beyond the context of Mn geochemistry, the interactions between Pb and various Mn species, including its trivalent forms, may also have important implications to the water quality in lead service lines within distribution systems.
Collapse
Affiliation(s)
- Xingxing Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Qihuang Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Peng Yang
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Xiaoming Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Liwu Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xionghan Feng
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengqiang Zhu
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Zimeng Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
36
|
Optimization and evaluation of the method for the determination of the manganese content in manganese ores and concentrates as described in ISO 4298:1984. Anal Bioanal Chem 2020; 412:6823-6831. [DOI: 10.1007/s00216-020-02805-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 10/23/2022]
|
37
|
Zou Y, Cheng H, Wang H, Huang R, Xu Y, Jiang J, He Q, Liu C, Liu J, Xiong J, Yao J, Huangfu X, Ma J. Thallium(I) Oxidation by Permanganate and Chlorine: Kinetics and Manganese Dioxide Catalysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7205-7216. [PMID: 32310655 DOI: 10.1021/acs.est.0c00068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The oxidation of the toxic heavy metal thallium(I) (Tl(I)) is an efficient way to enhance Tl removal from water and wastewater. However, few studies have focused on the kinetics of Tl(I) oxidation in water, especially at environmentally relevant pH values. Therefore, the kinetics and mechanisms of Tl(I) oxidation by the common agents KMnO4 and HOCl under environmentally relevant pH condition were explored in the present study. The results indicated that the pH-dependent oxidation of Tl(I) by KMnO4 exhibited second-order kinetics under alkaline conditions (pH 8-10) with the main active species being TlOH, while the reaction could be characterized by autocatalysis at pH 4-6, and Mn(III) might also play an essential role in the MnO2 catalysis. Furthermore, a two-electron transfer mechanism under alkaline conditions was preliminarily proposed by using linear free energy relationships and X-ray photoelectron spectroscopy (XPS) analysis. Distinctively, the reaction rate of Tl(I) oxidation by HOCl decreased with increasing pH, and protonated chlorine might be the main active species. Moreover, the Tl(I)-HOCl reaction could be regarded as first order with respect to Tl(I), but the order with respect to HOCl was variable. Significant catalysis by MnO2 could also be observed in the oxidation of Tl(I) by HOCl, mainly due to the vacancies on MnO2 as active sites for sorbing Tl. This study elucidates the oxidation characteristics of thallium and establishes a theoretical foundation for the oxidation processes in thallium removal.
Collapse
Affiliation(s)
- Yijie Zou
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Haijun Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Hainan Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Ruixing Huang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yanghui Xu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Jin Jiang
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Caihong Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Juchao Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Jiaming Xiong
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Jinni Yao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
38
|
Zhong S, Zhang H. Mn(III)-ligand complexes as a catalyst in ligand-assisted oxidation of substituted phenols by permanganate in aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121401. [PMID: 31784140 DOI: 10.1016/j.jhazmat.2019.121401] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/20/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
Ligands can significantly increase the oxidation rates of phenolic compounds by MnO4-. This was often explained by the in situ formed Mn(III)- or Mn(X)-ligand complexes that can oxidize phenols faster than MnO4- can. This work discovered that Mn(III)-ligand complexes also acted as a catalyst for the oxidation of phenolic compounds by MnO4- (i.e., the catalytic role of Mn(III)-ligand). First, when phenol was mixed with MnO4- and pyrophosphate (PP, a representative ligand), Mn(III)-PP was found to form while phenol was quickly oxidized. However, the amount of phenol that was directly oxidized by Mn(III)-PP only accounted for ∼25% of phenol that was oxidized in the mixture, indicating that there were other pathways. Then, when pentachlorophenol (PCP) was used as another phenolic probe, the externally prepared Mn(III)-PP was observed to only slightly oxidize PCP, but its addition significantly accelerated PCP oxidation by MnO4-. The Mn(III)-PP concentration also remained unchanged during the above reaction, thus suggesting the catalyst role of Mn(III)-PP. This new pathway was further validated by successfully explaining all the experimental observations obtained so far, including the effect of pH, effects of different ligand amounts and types, product patterns, and the induction period. Finally, possible catalytic mechanisms of Mn(III)-ligand were discussed based on the experimental results.
Collapse
Affiliation(s)
- Shifa Zhong
- Department of Civil Engineering, Case Western Reserve University, 2104 Adelbert Road, Cleveland, OH, 44106-7201, USA
| | - Huichun Zhang
- Department of Civil Engineering, Case Western Reserve University, 2104 Adelbert Road, Cleveland, OH, 44106-7201, USA.
| |
Collapse
|
39
|
Chow CH, Sze-Yin Leung K. Transformations of organic micropollutants undergoing permanganate/bisulfite treatment: Kinetics, pathways and toxicity. CHEMOSPHERE 2019; 237:124524. [PMID: 31549647 DOI: 10.1016/j.chemosphere.2019.124524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/28/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
Permanganate/bisulfite (PM/BS) is a relatively new advanced oxidation process that can degrade organic micropollutants at extraordinary high rates. In this study, the degradability of PM/BS process towards different representative types of compounds was studied by investigating the kinetics, reaction site specificity and transformation chemistry. Acesulfame (ACE) and carbamazepine (CBZ) were two typical compounds containing olefinic moieties. Sucralose (SUC) was selected as a reference compound, and it is without aromatic and olefinic moieties. The kinetics results indicated that ACE and CBZ were effectively degraded while SUC was not. Preferred reaction sites of Mn3+ species was elucidated by identification of the ACE-transformation products (TPs) and CBZ-TPs with UHPLC-QTOF-MS. Seventeen ACE-TPs including two new compounds and eleven CBZ-TPs produced during the PM/BS process were identified and characterized. Transformation pathways revealed that cleavage of olefinic double bonds was the main reaction mechanism. Chemical structures containing electron-donating groups preferentially reacted with electrophilic Mn3+ species during the process. In addition, transformation products of ACE and CBZ during PM/BS process did not induce higher toxicity. This study provides a preliminary interpretation on the selectivity of PM/BS process according to the micropollutants' chemical structures, which hope to shed light on the future development of PM/BS treatment.
Collapse
Affiliation(s)
- Chi-Hang Chow
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region; HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, China.
| |
Collapse
|
40
|
Zhu Y, Zhao C, Liang J, Shang R, Zhu X, Ding L, Deng H, Zheng H, Strathmann TJ. Rapid removal of diclofenac in aqueous solution by soluble Mn(III) (aq) generated in a novel Electro-activated carbon fiber-permanganate (E-ACF-PM) process. WATER RESEARCH 2019; 165:114975. [PMID: 31430653 DOI: 10.1016/j.watres.2019.114975] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/29/2019] [Accepted: 08/11/2019] [Indexed: 06/10/2023]
Abstract
Electrolysis and permanganate (PM) oxidation are two commonly used technologies for water treatment. However, they are often handicapped by their slow reaction rates. To improve the removal efficiency of refractory contaminants, we combined electrolysis with PM using an activated carbon fiber (ACF) as cathode (E-ACF-PM) for the first time to treat diclofenac (DCF) in aqueous solution. Up to 90% DCF was removed in 5 min by E-ACF-PM process. In comparison, only 3.95 and 27.35% of DCF was removed by individual electrolysis and PM oxidation at the same time, respectively. Acidic condition was more conducive to DCF removal. Surprisingly, soluble Mn(III) (aq) formed on the surface of ACF was demonstrated as the principal oxidizing agent in E-ACF-PM process. Further studies showed that all three components (electrolysis + ACF + PM) were necessary to facilitate the heterogeneous generation of reactive Mn(III) (aq). Moreover, SEM images and XPS spectra of ACF before and after treatment revealed that the morphologies and elemental compositions of reacted ACF were nearly unchanged during the E-ACF-PM process. ACF can be remained active and utilized to the rapid degradation of DCF in E-ACF-PM process even after reused for 20 times. Therefore, the E-ACF-PM process may provide a novel and effective alternative on the generation of reactive Mn(III) (aq) in situ for water treatment by green electrochemical reactions.
Collapse
Affiliation(s)
- Yunhua Zhu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Chun Zhao
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| | - Jialiang Liang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Ran Shang
- Delft University of Technology, P.O. Box 5048, 2600, GA, Delft, the Netherlands
| | - Xuanmo Zhu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Lei Ding
- School of Civil Engineering and Architecture, Anhui University of Technology, 59 Hudong Road, Maanshan, 243002, PR China
| | - Huiping Deng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, PR China
| | - Huaili Zheng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Timothy J Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 80401, USA
| |
Collapse
|
41
|
Pang SY, Duan JB, Zhou Y, Gao Y, Jiang J. Oxidation kinetics of anilines by aqueous permanganate and effects of manganese products: Comparison to phenols. CHEMOSPHERE 2019; 235:104-112. [PMID: 31255750 DOI: 10.1016/j.chemosphere.2019.06.156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 06/09/2023]
Abstract
In this study, the potential applicability of potassium permanganate (Mn(VII)) for anilines elimination was systematically investigated firstly, with a focus on the effect of manganese intermediates on the kinetics of anilines versus phenols. It was found that Mn(VII) could fairly oxidize anilines, where the second-order rate constants (kMn(VII)) values for anilines always decreased as pH increased from 5 to 9. This interesting pH-dependency was successfully described by the kinetic models proposed in literature to account for the unusual pH-rate profiles for phenols, where the formation of intermediates between Mn(VII) and phenols or anilines was likely involved. The effect of manganese products such as MnO2 and Mn(III) on the oxidation of anilines by Mn(VII) was demonstrated. Under slightly acidic conditions, the reactions of Mn(VII) with anilines displayed autocatalysis, suggesting a similar catalytic role of MnO2 formed in situ as compared to phenols. Several ligands (e.g., pyrophosphate) inhibited the formation of MnO2 colloids and lowered the oxidation rates of anilines by Mn(VII) at acidic pH, while these ligands greatly accelerated the kinetics of phenols under similar conditions. The contrasting effects of ligands might be mainly attributed to the different reactivity of ligand-stabilized Mn(III) formed in situ toward anilines vs phenols. The complex effect of humic acid was highly dependent on solution pH, possible due to the dual role of humic acid that it could act as a reductant (competitively consuming Mn(VII) and phenoxy or aniline radical) as well as a ligand (stabilizing manganese intermediates such as Mn(III) species) to affect Mn(VII) reactions.
Collapse
Affiliation(s)
- Su-Yan Pang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China; College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Jie-Bin Duan
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China; College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Yang Zhou
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuan Gao
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Jin Jiang
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
42
|
Liu W, Sun B, Qiao J, Guan X. Influence of Pyrophosphate on the Generation of Soluble Mn(III) from Reactions Involving Mn Oxides and Mn(VII). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10227-10235. [PMID: 31408326 DOI: 10.1021/acs.est.9b03456] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The detection of soluble Mn(III) is typically accomplished using strong complexing agents to trap Mn(III), but the generation of soluble Mn(III) induced by strong complexing agents has seldom been considered. In this study, pyrophosphate (PP), a nonredox active ligand, was chosen as a typical Mn(III) chelating reagent to study the influence of ligands on soluble Mn(III) formation in reactions involving Mn oxides and Mn(VII). The presence of excess PP induced the generation of soluble Mn(III)-PP from α- and δ-MnO2 and led to the conproportionation reaction of α-, β-, δ-, or colloidal MnO2 with Mn(II) at pH 7.0. Compared to MnO2 minerals, colloidal MnO2 showed much higher reactivity toward Mn(II) in the presence of PP and the conproportionation rate of colloidal MnO2 with Mn(II) elevated with increasing PP dosage and decreasing pH. The generation of Mn(III) was not observed in MnO4-/S2O32- or MnO4-/NH3OH+ system without PP while the introduction of excess PP induced the generation of Mn(III)-PP. Thermodynamic calculation results were consistent with the experimental observations. These findings not only provide evidence for the unsuitability of using strong ligands in quantification of soluble Mn(III) in manganese-involved redox reactions, but also advance the understanding of soluble Mn(III) generation in aquatic environment.
Collapse
Affiliation(s)
- Weifan Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering , Tongji University , Shanghai 200092 , P. R. China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , P. R. China
| | - Bo Sun
- Department of Civil and Environmental Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong
| | - Junlian Qiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering , Tongji University , Shanghai 200092 , P. R. China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , P. R. China
- International Joint Research Center for Sustainable Urban Water System , Tongji University , Shanghai 200092 , P. R. China
| | - Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering , Tongji University , Shanghai 200092 , P. R. China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , P. R. China
- International Joint Research Center for Sustainable Urban Water System , Tongji University , Shanghai 200092 , P. R. China
| |
Collapse
|
43
|
Zhu Y, Wang X, Zhang J, Ding L, Li J, Zheng H, Zhao C. Generation of Active Mn(III) aq by a Novel Heterogeneous Electro-permanganate Process with Manganese(II) as Promoter and Stabilizer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9063-9072. [PMID: 31240913 DOI: 10.1021/acs.est.9b01510] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Our study on the synergetic effect of electrolysis and permanganate (E-PM) revealed a novel alternative method for generating active Mn(III)aq heterogeneously by electrochemically activating PM with Mn2+ as promoter and stabilizer. We systematically explored the generation mechanism of Mn(III)aq. It indicated that all three components (electrolysis + PM + Mn2+) were necessary to facilitate the generation of active Mn(III) in the E-PM-Mn2+ process. It was worth noting that Mn2+, as essential promoter and Mn(III)aq stabilizer, could considerably enhance the concentration of Mn(III) in the E-PM-Mn2+ process. Further study revealed that the active Mn(III) was mainly produced on cathode rather than in aqueous solution or on anode. In addition, the soluble Mn(III)aq generated in the E-PM-Mn2+ process was demonstrated to be very efficient for the degradation and mineralization of diclofenac (DCF) as well as methyl blue, carbamazepine, phenol, sulfamethoxazole, and nitrobenzene. Moreover, the effects of the main operating parameters (Mn2+ dosage, PM dosage, applied current density, pH of solution, and contaminant concentration) and different water matrices on the E-PM-Mn2+ process were investigated systematically. Possible degradation pathways of DCF in the E-PM-Mn2+ process were also proposed. The results demonstrated that the E-PM-Mn2+ system based on active Mn(III)aq could create a more efficient, sustainable, and less energy costing technology for water treatment.
Collapse
Affiliation(s)
- Yunhua Zhu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control , Chongqing University , Chongqing 400044 , People's Republic of China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education , Chongqing University , Chongqing 400045 , People's Republic of China
| | - Xuxu Wang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control , Chongqing University , Chongqing 400044 , People's Republic of China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education , Chongqing University , Chongqing 400045 , People's Republic of China
| | - Jing Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education , Chongqing University , Chongqing 400045 , People's Republic of China
| | - Lei Ding
- School of Civil Engineering and Architecture , Anhui University of Technology , 59 Hudong Road , Maanshan 243002 , People's Republic of China
| | - Junfeng Li
- College of Water & Architectural Engineering , Shihezi University , Shihezi 832000 , People's Republic of China
| | - Huaili Zheng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control , Chongqing University , Chongqing 400044 , People's Republic of China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education , Chongqing University , Chongqing 400045 , People's Republic of China
| | - Chun Zhao
- State Key Laboratory of Coal Mine Disaster Dynamics and Control , Chongqing University , Chongqing 400044 , People's Republic of China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education , Chongqing University , Chongqing 400045 , People's Republic of China
- College of Water & Architectural Engineering , Shihezi University , Shihezi 832000 , People's Republic of China
| |
Collapse
|
44
|
Li Y, Gai T, Shao L, Tang H, Li R, Yang S, Wang S, Wu Q, Ren Y. Synthesis of sandwich-like Mn 3O 4@reduced graphene oxide nano-composites via modified Hummers' method and its application as uranyl adsorbents. Heliyon 2019; 5:e01972. [PMID: 31294118 PMCID: PMC6595401 DOI: 10.1016/j.heliyon.2019.e01972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 04/09/2019] [Accepted: 06/17/2019] [Indexed: 11/18/2022] Open
Abstract
Efficient and sustainable remediation technologies for uranium have recently been gaining more and more interest. Adsorption techniques are facile, effective and universal for kinds of heavy metal ions. In this paper, sandwich-like Mn3O4@reduced graphene oxide (Mn3O4@G) nano-composites were prepared facilely and greenly by adding NaOH solution into crude graphite oxide suspension prepared via the Hummers' method to modify the pH. The Mn3O4@G nanocomposites possess a reasonable maximum equilibrium adsorption quantity 195.6 mg [U] g-1. Moreover, the magnetism of Mn3O4@G makes it easy to remove Mn3O4@G from water by strong magnet field.
Collapse
|
45
|
Qian A, Zhang W, Shi C, Pan C, Giammar DE, Yuan S, Zhang H, Wang Z. Geochemical Stability of Dissolved Mn(III) in the Presence of Pyrophosphate as a Model Ligand: Complexation and Disproportionation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5768-5777. [PMID: 30973718 DOI: 10.1021/acs.est.9b00498] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Dissolved Mn(III) species have recently been recognized as a significant form of Mn in redox transition zones, but their speciation, stability, and reactivity are poorly understood. Besides acting as the intermediate for Mn redox chemistry, Mn(III) can undergo disproportionation producing insoluble Mn oxides and aqueous Mn(II). Using pyrophosphate(PP) as a model ligand, we evaluated the thermodynamic and kinetic stability of Mn(III) complexes. They were stable at circumneutral pH and were prone to (partial) disproportionation at acidic or basic pH. With an initial lag phase, the kinetics of Mn(III)-PP disproportionation was autocatalytic with the produced Mn oxides promoting the disproportionation. X-ray diffraction and the average Mn oxidation state indicated that the solid products were not pure Mn(IV) oxides but a mixture of triclinic birnessite and δ-MnO2. Addition of synthetic analogs of the precipitates eliminated the lag phase, confirming their catalytic roles. Thermodynamic calculations adequately predicted the stability regime of Mn(III)-PP. The present results refined the constant for Mn(PP)25- formation, which allows a consistent and quantitative prediction of equilibrium speciation of Mn(III)-Mn(II)-birnessite with PP. A simple and robust model, which incorporated the thermodynamic constraints, autocatalytic rate law, and verified reaction stoichiometry, successfully simulated all kinetic data.
Collapse
Affiliation(s)
- Ao Qian
- State Key Laboratory of Biogeology and Environmental Geology , China University of Geosciences , Wuhan , Hubei China
| | - Wen Zhang
- Department of Environmental Science and Engineering , Fudan University , Shanghai , China
| | - Cheng Shi
- Department of Civil and Environmental Engineering , Louisiana State University , Baton Rouge , Louisiana United States
| | - Chao Pan
- Department of Energy, Environmental and Chemical Engineering , Washington University in St. Louis , St. Louis , Missouri United States
| | - Daniel E Giammar
- Department of Energy, Environmental and Chemical Engineering , Washington University in St. Louis , St. Louis , Missouri United States
| | - Songhu Yuan
- State Key Laboratory of Biogeology and Environmental Geology , China University of Geosciences , Wuhan , Hubei China
| | - Hongliang Zhang
- Department of Civil and Environmental Engineering , Louisiana State University , Baton Rouge , Louisiana United States
| | - Zimeng Wang
- Department of Environmental Science and Engineering , Fudan University , Shanghai , China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai , China
| |
Collapse
|
46
|
Zhang J, Wu S, Lu X, Wu P, Liu J. Manganese as a Catalytic Mediator for Photo-oxidation and Breaking the pH Limitation of Nanozymes. NANO LETTERS 2019; 19:3214-3220. [PMID: 30964691 DOI: 10.1021/acs.nanolett.9b00725] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A long-standing challenge in nanozyme catalysis is low activity at physiological pH, especially for oxidase- and peroxidase-mimicking nanozymes. We herein communicate that Mn(II) can promote catalysis at neutral pH for carbon dots (C-dots) as a photo-oxidase nanozyme. The C-dots produce singlet oxygen upon light irradiation to oxidize Mn(II) to Mn(III), which is confirmed by a suite of spectroscopic evidence. The in situ produced Mn(III) acts as a mediator, analogous to mediators in electrochemistry to enhance electron transfer. None of the other divalent metal ions show such an effect, allowing the selective detection of Mn(II) down to 5 nM. EDTA further enhances the activity by stabilizing the highly active Mn(III), producing an intense blue color by oxidizing 3,3',5,5'-tetramethylbenzidine (TMB) in just 10 s. Finally, this reaction was used to evaluate antioxidants. With this method, more analytical and biomedical applications of nanozymes can be exploited at neutral pH, and it may inspire other strategies to overcome the pH limitation in nanozyme catalysis.
Collapse
Affiliation(s)
- Jinyi Zhang
- Department of Chemistry , Waterloo Institute for Nanotechnology , Waterloo , Ontario , Canada N2L 3G1
| | - Shihong Wu
- Analytical & Testing Center, College of Chemistry, State Key Laboratory of Hydraulics and Mountain River Engineering , Sichuan University , Chengdu 610064 , China
| | - Xiaomei Lu
- Analytical & Testing Center, College of Chemistry, State Key Laboratory of Hydraulics and Mountain River Engineering , Sichuan University , Chengdu 610064 , China
| | - Peng Wu
- Analytical & Testing Center, College of Chemistry, State Key Laboratory of Hydraulics and Mountain River Engineering , Sichuan University , Chengdu 610064 , China
| | - Juewen Liu
- Department of Chemistry , Waterloo Institute for Nanotechnology , Waterloo , Ontario , Canada N2L 3G1
| |
Collapse
|
47
|
Sun B, Xiao Z, Dong H, Ma S, Wei G, Cao T, Guan X. Bisulfite triggers fast oxidation of organic pollutants by colloidal MnO 2. JOURNAL OF HAZARDOUS MATERIALS 2019; 363:412-420. [PMID: 30326356 DOI: 10.1016/j.jhazmat.2018.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 05/25/2023]
Abstract
Colloidal MnO2 is the most reactive phase of Mn(IV) while HSO3- is a common reductant in water treatment. This study shows that the presence of HSO3- resulted in significant increase in the decomposition rate of organic contaminants by colloidal MnO2. The degradation rate of contaminants in the MnO2/HSO3- process dropped with elevating pH and a proper MnO2/HSO3- molar ratio was critical for efficient decomposition of contaminants. The time-resolved spectroscopy of manganese species, the influence of pyrophosphate on UV absorbance spectra, and the relative rate constants of contaminants oxidation in MnO2/HSO3- process suggested that the synergetic effect of HSO3- and colloidal MnO2 arose from the generation of Mn(III)aq, which could oxidize contaminants rapidly. The presence of pyrophosphate, ethylenediaminetetraacetic acid, and humic acid depressed the degradation of contaminants in MnO2/HSO3- process by complexing with Mn(III)aq, buffering the solution or competing with contaminants for Mn(III)aq, and/or inhibiting the consumption of bisulfite. However, Ca2+ and Mg2+ accelerated the oxidation of contaminants in MnO2/HSO3- process by enhancing the reduction of MnO2 by HSO3-. The good negative correlation of the O/N or H Mulliken charges of organic contaminants with their removal in MnO2/HSO3- process suggested that organic contaminants were oxidized by Mn(III)aq via electrophilic attack.
Collapse
Affiliation(s)
- Bo Sun
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhongjin Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China
| | - Hongyu Dong
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China
| | - Shangchen Ma
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China
| | - Guangfeng Wei
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Tongcheng Cao
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
48
|
Huang ZS, Wang L, Liu YL, Jiang J, Xue M, Xu CB, Zhen YF, Wang YC, Ma J. Impact of Phosphate on Ferrate Oxidation of Organic Compounds: An Underestimated Oxidant. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13897-13907. [PMID: 30379540 DOI: 10.1021/acs.est.8b04655] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ferrate (K2FeO4) is a powerful oxidant and up to 3 mol of electrons could be captured by 1 mol of ferrate in the theoretical conversion of Fe(VI)-Fe(V)-Fe(IV)-Fe(III). However, it is reported that the utilization efficiency of the ferrate oxidation capacity is quite low because of the rapid autodecomposition of intermediate iron species, which negatively influences the potential of ferrate on organic pollutants control. We accidentally found that for the ferrate oxidation of carbamazepine (CBZ), bisphenol S (BPS), diclofenac (DCF), and ciprofloxacin (CIP), the determined reaction rate constants were 1.7-2.4 times lower in phosphate buffer than those in borate buffer at pH 8.0. For the reaction of ferrate with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) at pH 7.0, the determined reaction stoichiometries were 1:1.04 in 100 mM phosphate buffer, 1:1.18 in 10 mM phosphate buffer, and 1:1.93 in 10 mM borate buffer, respectively. The oxidation ability of ferrate seems depressed in phosphate buffer. A kinetic model involving the oxidation of ABTS by Fe(VI), Fe(V) and Fe(IV) species was developed and fitted the ABTS•+ formation kinetics well under different buffer conditions. The results showed that phosphate exhibited little influence on the oxidation ability of Fe(VI) and Fe(IV) species, but decreased the specific rate constants of ABTS with Fe(V) species by 1-2 orders of magnitude, resulting in the outcompeting of Fe(V) autodecomposition pathway. The complexation between phosphate anions and Fe(V) species may account for the inhibition effect of phosphate buffer. Considering that many studies regarding ferrate oxidation were carried out in phosphate buffer, the actual oxidation ability of ferrate may be underestimated.
Collapse
Affiliation(s)
- Zhuang-Song Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Lu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Yu-Lei Liu
- Technology R&D Center for Environmental Engineering , Dongguan University of Technology , Dongguan 523808 , China
| | - Jin Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Mang Xue
- State Key Laboratory of Urban Water Resource and Environment, School of Environment , Harbin Institute of Technology , Harbin 150090 , China
- School of Light Industry & Chemical Engineering , Dalian Polytechnic University , Dalian 116034 , China
| | - Cheng-Biao Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Yu-Fei Zhen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Yi-Cheng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment , Harbin Institute of Technology , Harbin 150090 , China
| |
Collapse
|
49
|
Wang X, Wang S, Qu R, Ge J, Wang Z, Gu C. Enhanced Removal of Chlorophene and 17β-estradiol by Mn(III) in a Mixture Solution with Humic Acid: Investigation of Reaction Kinetics and Formation of Co-oligomerization Products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13222-13230. [PMID: 30339370 DOI: 10.1021/acs.est.8b04116] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Reaction with soluble Mn(II) has been considered as a main decay pathway for superoxide in natural waters, accompanied by an important Mn redox cycling. In this study, the interaction of Mn(II) and humic acid (HA) was investigated in visible light irradiated water. Our results indicate that HA may play a dual role to act as a photosensitizer to produce superoxide anions (O2-) and as a strong ligand to stabilize the Mn(III), forming soluble Mn(III)L species for substrate transformation. Furthermore, the reaction kinetics, products, and mechanisms of chlorophene (CP) and estradiol (E2) mixture in the Mn(II)/HA/visible light reaction systems were assessed. The removal of CP and E2 was enhanced by 24.3% and 13.2%, respectively, in mixture solution at initial concentration of 1.0 μM for each target contaminant, as compared to the case of single-compound degradation. Product identification and density functional theory calculations indicated that cross-coupling reaction of CP and E2 radicals was more likely to occur than the self-coupling reaction in mixture solution. In addition, estrogenic activities of initial reaction solution were also effectively decreased during the transformation process. These findings provide new insights into Mn(III)-mediated reactions to better understand the environmental fate of organic contaminant mixture in waters.
Collapse
Affiliation(s)
- Xinghao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Jiangsu, Nanjing 210023 , P. R. China
| | - Siyuan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Jiangsu, Nanjing 210023 , P. R. China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Jiangsu, Nanjing 210023 , P. R. China
| | - Jiali Ge
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Jiangsu, Nanjing 210023 , P. R. China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Jiangsu, Nanjing 210023 , P. R. China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Jiangsu, Nanjing 210023 , P. R. China
| |
Collapse
|
50
|
Zhou NQ, Liu DF, Min D, Cheng L, Huang XN, Tian LJ, Li DB, Yu HQ. Continuous degradation of ciprofloxacin in a manganese redox cycling system driven by Pseudomonas putida MnB-1. CHEMOSPHERE 2018; 211:345-351. [PMID: 30077930 DOI: 10.1016/j.chemosphere.2018.07.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/16/2018] [Accepted: 07/21/2018] [Indexed: 05/22/2023]
Abstract
Ciprofloxacin (CIP), as an extensively used antibiotic, has been widely detected at a high level in the environment and has raised environmental pollution concerns. Thus, efficient and cost-effective methods for CIP degradation are highly desired. Biologically produced manganese oxides (BioMnOx) offer a promising perspective for CIP degradation because of their catalytic reactivity and cost-effectiveness. However, the release of Mn(II) from BioMnOx prevents the further oxidation of pollutants. As a consequence, continuous CIP degradation by BioMnOx is not feasible. In this work, a manganese redox cycling system driven by Pseudomonas putida MnB-1 was constructed for continuous degradation of CIP. In such a system CIP was oxidized continuously and rapidly by re-oxidizing the formed Mn(II) to regenerate reactive BioMnOx, which also protected the strain from CIP toxicity. CIP was degraded through N-dealkylation passway. No significant loss of BioMnOx reactivity was observed in three-cycle CIP degradation process, suggesting the stability of this system. An overlooked intracellular BioMnOx, which was involved in CIP degradation, was discovered in P. putida MnB-1. Moreover, the important role of Mn(III) in facilitating CIP removal in this system was also identified. This work provides useful information to better understand the degradation of antibiotic compounds mediated by microbes in environments.
Collapse
Affiliation(s)
- Nan-Qing Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| | - Di Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Lei Cheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xue-Na Huang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Li-Jiao Tian
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Dao-Bo Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|