1
|
Cai B, Wang Y, Yang X, Li Y, Zhai J, Zeng Y, Ye J, Zhu L, Fu TM, Zhang Q. Rapid aqueous-phase dark reaction of phenols with nitrosonium ions: Novel mechanism for atmospheric nitrosation and nitration at low pH. PNAS NEXUS 2024; 3:pgae385. [PMID: 39295950 PMCID: PMC11410049 DOI: 10.1093/pnasnexus/pgae385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024]
Abstract
Dark aqueous-phase reactions involving the nitrosation and nitration of aromatic organic compounds play a significant role in the production of light-absorbing organic carbon in the atmosphere. This process constitutes a crucial aspect of tropospheric chemistry and has attracted growing research interest, particularly in understanding the mechanisms governing nighttime reactions between phenols and nitrogen oxides. In this study, we present new findings concerning the rapid dark reactions between phenols containing electron-donating groups and inorganic nitrite in acidic aqueous solutions with pH levels <3.5. This reaction generates a substantial amount of nitroso- and nitro-substituted phenolic compounds, known for their light-absorbing properties and toxicity. In experiments utilizing various substituted phenols, we demonstrate that their reaction rates with nitrite depend on the electron cloud density of the benzene ring, indicative of an electrophilic substitution reaction mechanism. Control experiments and theoretical calculations indicate that the nitrosonium ion (NO+) is the reactive nitrogen species responsible for undergoing electrophilic reactions with phenolate anions, leading to the formation of nitroso-substituted phenolic compounds. These compounds then undergo partial oxidation to form nitro-substituted phenols through reactions with nitrous acid (HONO) or other oxidants like oxygen. Our findings unveil a novel mechanism for swift atmospheric nitrosation and nitration reactions that occur within acidic cloud droplets or aerosol water, providing valuable insights into the rapid nocturnal formation of nitrogen-containing organic compounds with significant implications for climate dynamics and human health.
Collapse
Affiliation(s)
- Baohua Cai
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yixiang Wang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xin Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Yanchen Li
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jinghao Zhai
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Yaling Zeng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Jianhuai Ye
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Lei Zhu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Tzung-May Fu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Qi Zhang
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
| |
Collapse
|
2
|
Ma H, Liu D, Deng J, Zhao J, Zhang Q, Zhang Z, Hu W, Wu L, Fu P. Compositions and sources of fluorescent water-soluble and water-insoluble organic aerosols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174627. [PMID: 38986712 DOI: 10.1016/j.scitotenv.2024.174627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Brown carbon (BrC), the light-absorbing component of organic aerosols, plays a significant role in climate change and atmospheric photochemistry. However, the water-insoluble fractions of BrC have not been extensively studied, limiting the assessment of the overall climate effects of BrC. In this study, water-soluble and -insoluble organic carbon (i.e., WSOC and WIOC) in wintertime aerosols in Hefei were subsequently fractionated, and their fluorescence properties were comparatively investigated with the excitation-emission matrix method. WIOC contributing 57.1 % was the major component of organic carbon. WSOC with the largest contribution from humic-like regions exhibited a redshift compared to WIOC. Three humic-like substances (HULIS) with different oxidation degrees and one protein-like substances (PRLIS) were identified as the major fluorescent components by the parallel factor analysis. WSOC had more highly oxygenated HULIS, whereas low-oxygenated HULIS dominated WIOC. Nighttime WIOC contained more less-oxygenated species. The positive matrix factorization analysis suggested that biomass burning (43 %) was the largest source of both fluorescent WSOC and WIOC. Coal combustion contributed much more to fluorescent WIOC (40 %), whereas secondary formation contributed more to fluorescent WSOC (12 %). During aerosol pollution episodes, the increase in fluorescence efficiency was much greater for WIOC (25 %) than for WSOC (12 %), and WSOC and WIOC experienced a redshift and blueshift in emission wavelength, respectively. WSOC had more highly oxygenated HULIS, while WIOC had more less-oxygenated HULIS in aerosol episodes than the non-episodic periods. In addition, aerosol pollution was accompanied by the increased contributions of biomass burning and coal combustion to both fluorescent WSOC and WIOC, while the decreased relative contribution of secondary formation to fluorescent WSOC. Our findings highlighted the different fluorescence properties, compositions and sources of fluorescent WSOC and WIOC, providing a comprehensive view of BrC aerosols.
Collapse
Affiliation(s)
- Hao Ma
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Dandan Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Junjun Deng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Jiaming Zhao
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Qiang Zhang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Zhimin Zhang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; School of Material Engineering, Shanxi College of Technology, Shuozhou 036000, China
| | - Wei Hu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Libin Wu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
3
|
Mabato BG, Li YJ, Huang DD, Chan CK. Aqueous-Phase Photoreactions of Mixed Aromatic Carbonyl Photosensitizers Yield More Oxygenated, Oxidized, and less Light-Absorbing Secondary Organic Aerosol (SOA) than Single Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7924-7936. [PMID: 38652049 PMCID: PMC11080053 DOI: 10.1021/acs.est.3c10199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Aromatic carbonyls have been mainly probed as photosensitizers for aqueous secondary organic aerosol (aqSOA) and light-absorbing organic aerosol (i.e., brown carbon or BrC) formation, but due to their organic nature, they can also undergo oxidation to form aqSOA and BrC. However, photochemical transformations of aromatic carbonyl photosensitizers, particularly in multicomponent systems, are understudied. This study explored aqSOA formation from the irradiation of aromatic carbonyl photosensitizers in mixed and single systems under cloud/fog conditions. Mixed systems consisting of phenolic carbonyls only (VL + ActSyr + SyrAld: vanillin [VL] + acetosyringone [ActSyr] + syringaldehyde [SyrAld]) and another composed of both nonphenolic and phenolic carbonyls (DMB + ActSyr + SyrAld: 3,4-dimethoxybenzaldehyde [DMB], a nonphenolic carbonyl, + ActSyr + SyrAld) were compared to single systems of VL (VL*) and DMB (DMB*), respectively. In mixed systems, the shorter lifetimes of VL and DMB indicate their diminished capacity to trigger the oxidation of other organic compounds (e.g., guaiacol [GUA], a noncarbonyl phenol). In contrast to the slow decay and minimal photoenhancement for DMB*, the rapid photodegradation and significant photoenhancement for VL* indicate efficient direct photosensitized oxidation (i.e., self-photosensitization). Relative to single systems, the increased oxidant availability promoted functionalization in VL + ActSyr + SyrAld and accelerated the conversion of early generation aqSOA in DMB + ActSyr + SyrAld. Moreover, the increased availability of oxidizable substrates countered by stronger oxidative capacity limited the contribution of mixed systems to aqSOA light absorption. This suggests a weaker radiative effect of BrC from mixed photosensitizer systems than BrC from single photosensitizer systems. Furthermore, more oxygenated and oxidized aqSOA was observed with increasing complexity of the reaction systems (e.g., VL* < VL + ActSyr + SyrAld < VL + ActSyr + SyrAld + GUA). This work offers new insights into aqSOA formation by emphasizing the dual role of organic photosensitizers as oxidant sources and oxidizable substrates.
Collapse
Affiliation(s)
- Beatrix
Rosette Go Mabato
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
| | - Yong Jie Li
- Department
of Civil and Environmental Engineering, and Centre for Regional Ocean,
Faculty of Science and Technology, University
of Macau, Macau 999078, China
| | - Dan Dan Huang
- Shanghai
Academy of Environmental Sciences, Shanghai 200233, China
| | - Chak K. Chan
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
- Division
of Physical Sciences and Engineering, King
Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah 23955-6900, Kingdom
of Saudi Arabia
| |
Collapse
|
4
|
Wang W, Liu Y, Wang T, Ge Q, Li K, Liu J, You W, Wang L, Xie L, Fu H, Chen J, Zhang L. Significantly Accelerated Photosensitized Formation of Atmospheric Sulfate at the Air-Water Interface of Microdroplets. J Am Chem Soc 2024; 146:6580-6590. [PMID: 38427385 DOI: 10.1021/jacs.3c11892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The multiphase oxidation of sulfur dioxide (SO2) to form sulfate is a complex and important process in the atmosphere. While the conventional photosensitized reaction mainly explored in the bulk medium is reported to be one of the drivers to trigger atmospheric sulfate production, how this scheme functionalizes at the air-water interface (AWI) of aerosol remains an open question. Herein, employing an advanced size-controllable microdroplet-printing device, surface-enhanced Raman scattering (SERS) analysis, nanosecond transient adsorption spectrometer, and molecular level theoretical calculations, we revealed the previously overlooked interfacial role in photosensitized oxidation of SO2 in humic-like substance (HULIS) aerosol, where a 3-4 orders of magnitude increase in sulfate formation rate was speculated in cloud and aerosol relevant-sized particles relative to the conventional bulk-phase medium. The rapid formation of a battery of reactive oxygen species (ROS) comes from the accelerated electron transfer process at the AWI, where the excited triplet state of HULIS (3HULIS*) of the incomplete solvent cage can readily capture electrons from HSO3- in a way that is more efficient than that in the bulk medium fully blocked by water molecules. This phenomenon could be explained by the significantly reduced desolvation energy barrier required for reagents residing in the AWI region with an open solvent shell.
Collapse
Affiliation(s)
- Wei Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Yangyang Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Tao Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Qiuyue Ge
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Kejian Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Juan Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Wenbo You
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Longqian Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Lifang Xie
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Hongbo Fu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, Peoples' Republic of China
| |
Collapse
|
5
|
Zhang J, Shrivastava M, Ma L, Jiang W, Anastasio C, Zhang Q, Zelenyuk A. Modeling Novel Aqueous Particle and Cloud Chemistry Processes of Biomass Burning Phenols and Their Potential to Form Secondary Organic Aerosols. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3776-3786. [PMID: 38346331 DOI: 10.1021/acs.est.3c07762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Phenols emitted from biomass burning contribute significantly to secondary organic aerosol (SOA) formation through the partitioning of semivolatile products formed from gas-phase chemistry and multiphase chemistry in aerosol liquid water and clouds. The aqueous-phase SOA (aqSOA) formed via hydroxyl radical (•OH), singlet molecular oxygen (1O2*), and triplet excited states of organic compounds (3C*), which oxidize dissolved phenols in the aqueous phase, might play a significant role in the evolution of organic aerosol (OA). However, a quantitative and predictive understanding of aqSOA has been challenging. Here, we develop a stand-alone box model to investigate the formation of SOA from gas-phase •OH chemistry and aqSOA formed by the dissolution of phenols followed by their aqueous-phase reactions with •OH, 1O2*, and 3C* in cloud droplets and aerosol liquid water. We investigate four phenolic compounds, i.e., phenol, guaiacol, syringol, and guaiacyl acetone (GA), which represent some of the key potential sources of aqSOA from biomass burning in clouds. For the same initial precursor organic gas that dissolves in aerosol/cloud liquid water and subsequently reacts with aqueous phase oxidants, we predict that the aqSOA formation potential (defined as aqSOA formed per unit dissolved organic gas concentration) of these phenols is higher than that of isoprene-epoxydiol (IEPOX), a well-known aqSOA precursor. Cloud droplets can dissolve a broader range of soluble phenols compared to aqueous aerosols, since the liquid water contents of aerosols are orders of magnitude smaller than cloud droplets. Our simulations suggest that highly soluble and reactive multifunctional phenols like GA would predominantly undergo cloud chemistry within cloud layers, while gas-phase chemistry is likely to be more important for less soluble phenols. But in the absence of clouds, the condensation of low-volatility products from gas-phase oxidation followed by their reversible partitioning to organic aerosols dominates SOA formation, while the SOA formed through aqueous aerosol chemistry increases with relative humidity (RH), approaching 40% of the sum of gas and aqueous aerosol chemistry at 95% RH for GA. Our model developments of biomass-burning phenols and their aqueous chemistry can be readily implemented in regional and global atmospheric chemistry models to investigate the aqueous aerosol and cloud chemistry of biomass-burning organic gases in the atmosphere.
Collapse
Affiliation(s)
- Jie Zhang
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Manish Shrivastava
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Lan Ma
- Department of Land, Air and Water Resources, University of California, Davis, California 95616-8627, United States
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, California 95616-5270, United States
| | - Wenqing Jiang
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, California 95616-5270, United States
- Department of Environmental Toxicology, University of California, Davis, California 95616-5270, United States
| | - Cort Anastasio
- Department of Land, Air and Water Resources, University of California, Davis, California 95616-8627, United States
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, California 95616-5270, United States
| | - Qi Zhang
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, California 95616-5270, United States
- Department of Environmental Toxicology, University of California, Davis, California 95616-5270, United States
| | - Alla Zelenyuk
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
6
|
Lei Y, Lei X, Tian G, Yang J, Huang D, Yang X, Chen C, Zhao J. Optical Variation and Molecular Transformation of Brown Carbon During Oxidation by NO 3• in the Aqueous Phase. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38319710 DOI: 10.1021/acs.est.3c08726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The NO3•-driven nighttime aging of brown carbon (BrC) is known to greatly impact its atmospheric radiative forcing. However, the impact of oxidation by NO3• on the optical properties of BrC in atmospheric waters as well as the associated reaction mechanism remain unclear. In this work, we found that the optical variation of BrC proxies under environmentally relevant NO3• exposure depends strongly on their sources, with enhanced light absorptivity for biomass-burning BrC but bleaching for urban aerosols and humic substances. High-resolution mass spectrometry using FT-ICR MS shows that oxidation by NO3• leads to the formation of light-absorbing species (e.g., nitrated organics) for biomass-burning BrC while destroying electron donors (e.g., phenols) within charge transfer complexes in urban aerosols and humic substances, as evidenced by transient absorption spectroscopy and NaBH4 reduction experiments as well. Moreover, we found that the measured rate constants between NO3• with real BrCs (k = (1.8 ± 0.6) × 107 MC-1s-1, expressed as moles of carbon) are much higher than those of individual model organic carbon (OC), suggesting the reaction with OCs may be a previously ill-quantified important sink of NO3• in atmospheric waters. This work provides insights into the kinetics and molecular transformation of BrC during the oxidation by NO3•, facilitating further evaluation of BrC's climatic effects and atmospheric NO3• levels.
Collapse
Affiliation(s)
- Yu Lei
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| | - Xin Lei
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Ge Tian
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| | - Jie Yang
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| | - Di Huang
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
7
|
Wang L, Gao K, Li W, Lu L. Research progress on the characteristics, sources, and environmental and potential health effects of water-soluble organic compounds in atmospheric particulate matter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11472-11489. [PMID: 38198085 DOI: 10.1007/s11356-023-31723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024]
Abstract
Water-soluble organic compounds (WSOCs) have received extensive attention due to their indistinct chemical components, complex sources, negative environmental impact, and potential health effects. To the best of our knowledge, until now, there has been no comprehensive review focused on the research progress of WSOCs. This paper reviewed the studies on chemical constituent and characterization, distribution condition, sources, environmental impact, as well as the potential health effects of WSOCs in the past 13 years. Moreover, the main existing challenges and directions for the future research on WSOCs were discussed from several aspects. Because of the complex composition of WSOCs and many unknown individual components that have not been detected, there is still a need for the identification and quantification of WSOCs. As modern people spend more time in indoor environments, it is meaningful to fill the gaps in the component characteristics and sources of indoor WSOCs. In addition, although in vitro cell experiments have shown that WSOCs could induce cellular oxidative stress and trigger the inflammatory response, the corresponding mechanisms of action need to be further explored. The current population epidemiology research of WSOCs is missing. Prospectively, we propose to conduct a comprehensive and simultaneous analysis strategy for concentration screening, source apportionment, potential health effects, and action mechanisms of WSOCs based on high throughput omics coupled with machine learning simulation and prediction.
Collapse
Affiliation(s)
- Linxiao Wang
- Key Laboratory of Beijing On Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Ke Gao
- Key Laboratory of Beijing On Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing, 100124, People's Republic of China.
| | - Wei Li
- Key Laboratory of Beijing On Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Liping Lu
- Key Laboratory of Beijing On Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing, 100124, People's Republic of China
- Department of Chemistry and Biology, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing, 100124, People's Republic of China
| |
Collapse
|
8
|
Upadhyay S, Rahman M, Rinaldi S, Koelmel J, Lin EZ, Mahesh PA, Beckers J, Johanson G, Pollitt KJG, Palmberg L, Irmler M, Ganguly K. Assessment of wood smoke induced pulmonary toxicity in normal- and chronic bronchitis-like bronchial and alveolar lung mucosa models at air-liquid interface. Respir Res 2024; 25:49. [PMID: 38245732 PMCID: PMC10799428 DOI: 10.1186/s12931-024-02686-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) has the highest increased risk due to household air pollution arising from biomass fuel burning. However, knowledge on COPD patho-mechanisms is mainly limited to tobacco smoke exposure. In this study, a repeated direct wood smoke (WS) exposure was performed using normal- (bro-ALI) and chronic bronchitis-like bronchial (bro-ALI-CB), and alveolar (alv-ALI) lung mucosa models at air-liquid interface (ALI) to assess broad toxicological end points. METHODS The bro-ALI and bro-ALI-CB models were developed using human primary bronchial epithelial cells and the alv-ALI model was developed using a representative type-II pneumocyte cell line. The lung models were exposed to WS (10 min/exposure; 5-exposures over 3-days; n = 6-7 independent experiments). Sham exposed samples served as control. WS composition was analyzed following passive sampling. Cytotoxicity, total cellular reactive oxygen species (ROS) and stress responsive NFkB were assessed by flow cytometry. WS exposure induced changes in gene expression were evaluated by RNA-seq (p ≤ 0.01) followed by pathway enrichment analysis. Secreted levels of proinflammatory cytokines were assessed in the basal media. Non-parametric statistical analysis was performed. RESULTS 147 unique compounds were annotated in WS of which 42 compounds have inhalation toxicity (9 very high). WS exposure resulted in significantly increased ROS in bro-ALI (11.2%) and bro-ALI-CB (25.7%) along with correspondingly increased NFkB levels (bro-ALI: 35.6%; bro-ALI-CB: 18.1%). A total of 1262 (817-up and 445-down), 329 (141-up and 188-down), and 102 (33-up and 69-down) genes were differentially regulated in the WS-exposed bro-ALI, bro-ALI-CB, and alv-ALI models respectively. The enriched pathways included the terms acute phase response, mitochondrial dysfunction, inflammation, oxidative stress, NFkB, ROS, xenobiotic metabolism of AHR, and chronic respiratory disorder. The enrichment of the 'cilium' related genes was predominant in the WS-exposed bro-ALI (180-up and 7-down). The pathways primary ciliary dyskinesia, ciliopathy, and ciliary movement were enriched in both WS-exposed bro-ALI and bro-ALI-CB. Interleukin-6 and tumor necrosis factor-α were reduced (p < 0.05) in WS-exposed bro-ALI and bro-ALI-CB. CONCLUSION Findings of this study indicate differential response to WS-exposure in different lung regions and in chronic bronchitis, a condition commonly associated with COPD. Further, the data suggests ciliopathy as a candidate pathway in relation to WS-exposure.
Collapse
Affiliation(s)
- Swapna Upadhyay
- Unit of Integrative Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Mizanur Rahman
- Unit of Integrative Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Selina Rinaldi
- Unit of Integrative Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Jeremy Koelmel
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Elizabeth Z Lin
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Padukudru Anand Mahesh
- Department of Respiratory Medicine, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, 570015, India
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum Für Gesundheit Und Umwelt (GmbH), 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD E.V.), 85764, Neuherberg, Germany
- Chair of Experimental Genetics, Technical University of Munich, 85354, Freising, Germany
| | - Gunnar Johanson
- Unit of Integrative Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Lena Palmberg
- Unit of Integrative Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum Für Gesundheit Und Umwelt (GmbH), 85764, Neuherberg, Germany
| | - Koustav Ganguly
- Unit of Integrative Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
9
|
Chen K, Mayorga R, Hamilton C, Bahreini R, Zhang H, Lin YH. Contribution of Carbonyl Chromophores in Secondary Brown Carbon from Nighttime Oxidation of Unsaturated Heterocyclic Volatile Organic Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20085-20096. [PMID: 37983166 DOI: 10.1021/acs.est.3c08872] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The light absorption properties of brown carbon (BrC), which are linked to molecular chromophores, may play a significant role in the Earth's energy budget. While nitroaromatic compounds have been identified as strong chromophores in wildfire-driven BrC, other types of chromophores remain to be investigated. Given the electron-withdrawing nature of carbonyls ubiquitous in the atmosphere, we characterized carbonyl chromophores in BrC samples from the nighttime oxidation of furan and pyrrole derivatives, which are important but understudied precursors of secondary organic aerosols primarily found in wildfire emissions. Various carbonyl chromophores were characterized and quantified in BrC samples, and their ultraviolet-visible spectra were simulated by using time-dependent density functional theory. Our findings suggest that chromophores with carbonyls bonded to nitrogen (i.e., imides and amides) derived from N-containing heterocyclic precursors substantially contribute to BrC light absorption. The quantified N-containing carbonyl chromophores contributed to over 40% of the total light absorption at wavelengths below 350 nm and above 430 nm in pyrrole BrC. The contributions of chromophores to total light absorption differed significantly by wavelength, highlighting their divergent importance in different wavelength ranges. Overall, our findings highlight the significance of carbonyl chromophores in secondary BrC and underscore the need for further investigation.
Collapse
Affiliation(s)
- Kunpeng Chen
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Raphael Mayorga
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Caitlin Hamilton
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Roya Bahreini
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Haofei Zhang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ying-Hsuan Lin
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| |
Collapse
|
10
|
Jiang W, Ma L, Niedek C, Anastasio C, Zhang Q. Chemical and Light-Absorption Properties of Water-Soluble Organic Aerosols in Northern California and Photooxidant Production by Brown Carbon Components. ACS EARTH & SPACE CHEMISTRY 2023; 7:1107-1119. [PMID: 37223426 PMCID: PMC10202033 DOI: 10.1021/acsearthspacechem.3c00022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023]
Abstract
Atmospheric brown carbon (BrC) can impact the radiative balance of the earth and form photooxidants. However, the light absorption and photochemical properties of BrC from different sources remain poorly understood. To address this gap, dilute water extracts of particulate matter (PM) samples collected at Davis, CA over one year were analyzed using high resolution aerosol mass spectrometry (HR-AMS) and UV-vis spectroscopy. Positive matrix factorization (PMF) on combined AMS and UV-vis data resolved five water-soluble organic aerosol (WSOA) factors with distinct mass spectra and UV-vis spectra: a fresh and an aged water-soluble biomass burning OA (WSBBOAfresh and WSBBOAaged) and three oxygenated OA (WSOOAs). WSBBOAfresh is the most light-absorbing, with a mass absorption coefficient (MAC365 nm) of 1.1 m2 g-1, while the WSOOAs are the least (MAC365 nm = 0.01-0.1 m2 g-1). These results, together with the high abundance of WSBBOAs (∼52% of the WSOA mass), indicate that biomass burning activities such as residential wood burning and wildfires are an important source of BrC in northern California. The concentrations of aqueous-phase photooxidants, i.e., hydroxyl radical (·OH), singlet molecular oxygen (1O2*), and oxidizing triplet excited states of organic carbon (3C*), were also measured in the PM extracts during illumination. Oxidant production potentials (PPOX) of the five WSOA factors were explored. The photoexcitation of BrC chromophores from BB emissions and in OOAs is a significant source of 1O2* and 3C*. By applying our PPOX values to archived AMS data at dozens of sites, we found that oxygenated organic species play an important role in photooxidant formation in atmospheric waters.
Collapse
Affiliation(s)
- Wenqing Jiang
- Department
of Environmental Toxicology, University
of California, 1 Shields Avenue, Davis, California 95616, United States
- Agricultural
and Environmental Chemistry Graduate Program, University of California, 1 Shields Avenue, Davis, California 95616, United States
| | - Lan Ma
- Agricultural
and Environmental Chemistry Graduate Program, University of California, 1 Shields Avenue, Davis, California 95616, United States
- Department
of Land, Air, and Water Resources, University
of California, 1 Shields
Avenue, Davis, California 95616, United States
| | - Christopher Niedek
- Department
of Environmental Toxicology, University
of California, 1 Shields Avenue, Davis, California 95616, United States
- Agricultural
and Environmental Chemistry Graduate Program, University of California, 1 Shields Avenue, Davis, California 95616, United States
| | - Cort Anastasio
- Agricultural
and Environmental Chemistry Graduate Program, University of California, 1 Shields Avenue, Davis, California 95616, United States
- Department
of Land, Air, and Water Resources, University
of California, 1 Shields
Avenue, Davis, California 95616, United States
| | - Qi Zhang
- Department
of Environmental Toxicology, University
of California, 1 Shields Avenue, Davis, California 95616, United States
- Agricultural
and Environmental Chemistry Graduate Program, University of California, 1 Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
11
|
Ma L, Worland R, Tran T, Anastasio C. Evaluation of Probes to Measure Oxidizing Organic Triplet Excited States in Aerosol Liquid Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6052-6062. [PMID: 37011016 DOI: 10.1021/acs.est.2c09672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Oxidizing triplet excited states of organic matter (3C*) drive numerous reactions in fog/cloud drops and aerosol liquid water (ALW). Quantifying oxidizing triplet concentrations in ALW is difficult because 3C* probe loss can be inhibited by the high levels of dissolved organic matter (DOM) and copper in particle water, leading to an underestimate of triplet concentrations. In addition, illuminated ALW contains high concentrations of singlet molecular oxygen (1O2*), which can interfere with 3C* probes. Our overarching goal is to find a triplet probe that has low inhibition by DOM and Cu(II) and low sensitivity to 1O2*. To this end, we tested 12 potential probes from a variety of compound classes. Some probes are strongly inhibited by DOM, while others react rapidly with 1O2*. One of the probe candidates, (phenylthiol)acetic acid (PTA), seems well suited for ALW conditions, with mild inhibition and fast rate constants with triplets, but it also has weaknesses, including a pH-dependent reactivity. We evaluated the performance of both PTA and syringol (SYR) as triplet probes in aqueous extracts of particulate matter. While PTA is less sensitive to inhibition than SYR, it results in lower triplet concentrations, possibly because it is less reactive with weakly oxidizing triplets.
Collapse
Affiliation(s)
- Lan Ma
- Department of Land, Air, and Water Resources, University of California, Davis, California 95616, United States
| | - Reed Worland
- Department of Land, Air, and Water Resources, University of California, Davis, California 95616, United States
| | - Theo Tran
- Department of Land, Air, and Water Resources, University of California, Davis, California 95616, United States
| | - Cort Anastasio
- Department of Land, Air, and Water Resources, University of California, Davis, California 95616, United States
| |
Collapse
|
12
|
El-Sayed MMH, Hennigan CJ. Aqueous processing of water-soluble organic compounds in the eastern United States during winter. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:241-253. [PMID: 35838080 DOI: 10.1039/d2em00115b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aqueous multi-phase processes are significant contributors to organic aerosol (OA) mass in the atmosphere. This study characterizes the formation of water-soluble organic matter during the winter in the eastern United States through simultaneous measurements of water-soluble organic carbon in the gas and particle phases (WSOCg and WSOCp, respectively). The formation of secondary WSOCp occurred primarily through two pathways: (1) absorptive partitioning of oxygenated organics to the bulk OA and (2) aqueous phase processes. WSOCp formation through the former pathway was evident through the relationship between the fraction of total WSOC in the particle phase (Fp) and the total OA concentration. Conversely, evidence for nighttime aqueous WSOCp formation was based upon the strong enhancement in Fp with increasing relative humidity, indicating the uptake of WSOCg to aerosol liquid water (ALW). The Fp-RH relationship was only observed for temperatures between 0-10 °C, suggesting conditions for aqueous multi-phase processes were enhanced during these times. Temperature exhibited an inverse relationship with ALW and a proportional relationship with aerosol potassium. ALW and biomass burning precursors were both abundant in the 0-10 °C temperature range, facilitating aqueous WSOCp formation. To assess the impact of particle drying on the WSOCp concentrations, the particle measurements alternated between ambient and dried channels. No change was observed in the concentration of particles before and after drying, indicating that the WSOCp formed through the uptake of WSOCg into OA and ALW remained in the condensed phase upon particle drying at all temperature ranges. This work contributes to our understanding of sources, pathways, and factors affecting aqueous aerosol formation in the winter.
Collapse
Affiliation(s)
- Marwa M H El-Sayed
- Department of Civil Engineering, Embry-Riddle Aeronautical University, Daytona Beach, FL, USA.
| | - Christopher J Hennigan
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD, USA
| |
Collapse
|
13
|
Yang J, Au WC, Law H, Leung CH, Lam CH, Nah T. pH affects the aqueous-phase nitrate-mediated photooxidation of phenolic compounds: implications for brown carbon formation and evolution. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:176-189. [PMID: 35293417 DOI: 10.1039/d2em00004k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Brown carbon (BrC) is known to have important impacts on atmospheric chemistry and climate. Phenolic compounds are a prominent class of BrC precursors that are emitted in large quantities from biomass burning and fossil fuel combustion. Inorganic nitrate is a ubiquitous component of atmospheric aqueous phases such as cloudwater, fog, and aqueous aerosols. The photolysis of inorganic nitrate can lead to BrC formation via the photonitration of phenolic compounds in the aqueous phase. However, the acidity of the atmospheric aqueous phase adds complexity to these photonitration processes and needs to be considered when investigating BrC formation from the nitrate-mediated photooxidation of phenolic compounds. In this study, we investigated the influence of pH on the formation and evolution of BrC from the aqueous-phase photooxidation of guaiacol, catechol, 5-nitroguaiacol, and 4-nitrocatechol initiated by inorganic nitrate photolysis. The reaction rates, BrC composition and quantities were found to depend on the aqueous phase pH. Guaiacol, catechol, and 5-nitroguaiacol reacted substantially faster at lower pH. In contrast, 4-nitrocatechol reacted at slower rates at lower pH. For all four phenolic compounds, the initial stages of photooxidation resulted in an increase in light absorption (i.e., photo-enhancement) in the near-UV and visible range due to the formation of light absorbing products formed via the addition of nitro and/or hydroxyl groups to the phenolic compound. Greater photo-enhancement was observed at lower pH during the nitrate-mediated photooxidation of guaiacol and catechol. In contrast, greater photo-enhancement was observed at higher pH during the nitrate-mediated photooxidation of 5-nitroguaiacol and 4-nitrocatechol. This indicated that the effect that the aqueous phase pH has on the composition and yields of BrC formed is not universal, and will depend on the initial phenolic compound. These results provide new insights into how the atmospheric aqueous phase acidity influences the reactivities of different phenolic compounds and BrC formation/evolution during photooxidation initiated by inorganic nitrate photolysis, which will have significant implications for how the atmospheric fates of phenolic compounds and BrC formation/evolution are modeled for areas with high levels of inorganic nitrate.
Collapse
Affiliation(s)
- Junwei Yang
- School of Energy and Environment, Yeung Kin Man Academic Building, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Wing Chi Au
- School of Energy and Environment, Yeung Kin Man Academic Building, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Haymann Law
- School of Energy and Environment, Yeung Kin Man Academic Building, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Chun Hei Leung
- School of Energy and Environment, Yeung Kin Man Academic Building, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Chun Ho Lam
- School of Energy and Environment, Yeung Kin Man Academic Building, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Theodora Nah
- School of Energy and Environment, Yeung Kin Man Academic Building, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
14
|
Li F, Zhou S, Du L, Zhao J, Hang J, Wang X. Aqueous-phase chemistry of atmospheric phenolic compounds: A critical review of laboratory studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158895. [PMID: 36130630 DOI: 10.1016/j.scitotenv.2022.158895] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 06/15/2023]
Abstract
Phenolic compounds (PhCs) are crucial atmospheric pollutants typically emitted by biomass burning and receive particular concerns considering their toxicity, light-absorbing properties, and involvement in secondary organic aerosol (SOA) formation. A comprehensive understanding of the transformation mechanisms on chemical reactions in atmospheric waters (i.e., cloud/fog droplets and aerosol liquid water) is essential to predict more precisely the atmospheric fate and environmental impacts of PhCs. Laboratory studies play a core role in providing the fundamental knowledge of aqueous-phase chemical transformations in the atmosphere. This article critically reviews recent laboratory advances in SOA formation from the aqueous-phase reactions of PhCs. It focuses primarily on the aqueous oxidation of PhCs driven by two atmospheric reactive species: OH radicals and triplet excited state organics, including the important chemical kinetics and mechanisms. The effects of inorganic components (i.e., nitrate and nitrite) and transition metal ions (i.e., soluble iron) are highlighted on the aqueous-phase transformation of PhCs and on the properties and formation mechanisms of SOA. The review is concluded with the current knowledge gaps and future perspectives for a better understanding of the atmospheric transformation and SOA formation potential of PhCs.
Collapse
Affiliation(s)
- Fenghua Li
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Shengzhen Zhou
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Field Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Sun Yat-sen University, Guangzhou 510275, China; Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai 519082, China.
| | - Lin Du
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jun Zhao
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Field Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Sun Yat-sen University, Guangzhou 510275, China; Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai 519082, China
| | - Jian Hang
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Field Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Sun Yat-sen University, Guangzhou 510275, China; Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai 519082, China
| | - Xuemei Wang
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou 510000, China
| |
Collapse
|
15
|
Choi J, Jang M. Suppression of the phenolic SOA formation in the presence of electrolytic inorganic seed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158082. [PMID: 35985582 DOI: 10.1016/j.scitotenv.2022.158082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/28/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Phenolic compounds are largely attributed to wildfire gases and rapidly react with atmospheric oxidants to form persistent phenoxy free radicals, which influence atmospheric chemistry and secondary organic aerosol (SOA) formation. In this study, phenol or o-cresol was photochemically oxidized under various conditions (NOx levels, humidity, and seed conditions) in an outdoor photochemical reactor. Unexpectedly, SOA growth of both phenols was suppressed in the presence of salted aqueous aerosol compared to non-seed SOA. This discovery is different from the typical SOA formation of aromatic or biogenic hydrocarbons, which show noticeably higher SOA yields via organic aqueous reactions. Phenol, o-cresol, and their phenolic products (e.g., catechols) are absorbed in aqueous aerosol and form phenoxy radicals via heterogeneous reactions under sunlight. The resulting phenoxy radicals are redistributed between the gas and particle phases. Gaseous phenoxy radicals quickly react with ozone to form phenyl peroxide radicals and regenerated through a NOx cycle to retard phenol oxidation and SOA formation. The explicit oxidation mechanisms of phenol or o-cresol in the absence of aqueous phase were derived including the Master Chemical Mechanism (MCM v3.3.1) and the path for peroxy radical adducts originating from the addition of an OH radical to phenols to form low volatility products (e.g., multi-hydroxy aromatics). The resulting gas mechanisms of phenol or o-cresol were, then, applied to the Unified Partitioning Aerosol Phase Reaction (UNIPAR) model to predict SOA formation via multiphase partitioning of organics and aerosol-phase oligomerization. The model well simulated chamber-generated phenolic SOA in absence of wet-inorganic seed, but significantly overestimated SOA mass in presence of wet seed. This study suggests that heterogeneous chemistry to form phenoxy radicals needs to be included to improve SOA prediction from phenols. The suppression of atmospheric oxidation due to phenoxy radicals in wet inorganic aerosol can explain the low SOA formation during wildfire episodes.
Collapse
Affiliation(s)
- Jiwon Choi
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Myoseon Jang
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
16
|
Xiao Y, Hu M, Li X, Zong T, Xu N, Hu S, Zeng L, Chen S, Song Y, Guo S, Wu Z. Aqueous secondary organic aerosol formation attributed to phenols from biomass burning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157582. [PMID: 35882337 DOI: 10.1016/j.scitotenv.2022.157582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Biomass burning emits large quantities of phenols, which readily partition into the atmospheric aqueous phase and subsequently may react to produce aqueous secondary organic aerosol (aqSOA). For the first time, we quantitatively explored the influence of phenols emitted from biomass burning on aqSOA formation in the winter of Beijing. A typical haze episode associated with significant aqSOA formation was captured. During this episode, aqueous-phase processing of biomass burning promoted aqSOA formation was identified. Furthermore, high-resolution mass spectrum analysis provided molecular-level evidence of the phenolic aqSOA tracers. Estimation of aqSOA formation rate (RaqSOA) with compiled laboratory kinetic data indicated that biomass-burning phenols can efficiently produce aqSOA at midday, with RaqSOA of 0.42 μg m-3 h-1 accounting for 15 % of total aqSOA formation rate. The results highlight that aqSOA formation of phenols contributes the haze pollution. This implies the importance of regional joint control of biomass burning to mitigate the heavy haze.
Collapse
Affiliation(s)
- Yao Xiao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Xiao Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Taomou Zong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Nan Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuya Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Limin Zeng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shiyi Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yu Song
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Song Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhijun Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
17
|
Aregahegn KZ, Felber T, Tilgner A, Hoffmann EH, Schaefer T, Herrmann H. Kinetics and Mechanisms of Aqueous-Phase Reactions of Triplet-State Imidazole-2-carboxaldehyde and 3,4-Dimethoxybenzaldehyde with α,β-Unsaturated Carbonyl Compounds. J Phys Chem A 2022; 126:8727-8740. [DOI: 10.1021/acs.jpca.2c05015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Kifle Z. Aregahegn
- Department of Chemistry, Debre Berhan University, P.O. Box 445, 1000 Debre Berhan, Ethiopia
| | - Tamara Felber
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Andreas Tilgner
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Erik H. Hoffmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Thomas Schaefer
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
18
|
Zhan Y, Li J, Tsona NT, Chen B, Yan C, George C, Du L. Seasonal variation of water-soluble brown carbon in Qingdao, China: Impacts from marine and terrestrial emissions. ENVIRONMENTAL RESEARCH 2022; 212:113144. [PMID: 35341756 DOI: 10.1016/j.envres.2022.113144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Brown carbon (BrC) has been attracting more and more attention owing to its significant effects on climate. However, the limited knowledge on its chemical composition and sources limits the precision of aerosol radiative forcing estimated by climate models. In this study, the chemical components of PM2.5 and optical properties of water-soluble BrC (WS-BrC) were investigated from atmospheric particles collected in summer and winter in Qingdao, China. On the whole, though there were slight diurnal variations, seasonal differences were more obvious. Due to the influence of emission sources and meteorological conditions, the heavier pollution of carbonaceous aerosols occurred in winter. By comparison, the absorption Ångström exponent (AAE) and mass absorption efficiency of WS-BrC at 365 nm (MAE365) showed that WS-BrC in winter had stronger wavelength dependence and light absorption capacity, which might be associated with biomass burning source contributions. This was further confirmed by a strong correlation between the light absorption coefficient at 365 nm (Abs365) and non-sea salt K+, an indicator for biomass burning emissions. Four fluorescent components (C1∼C4) with high unsaturation in water-soluble organic carbon (WSOC) were identified by excitation-emission matrix fluorescence spectroscopy combined with parallel factor analysis method, which showed that WSOC in Qingdao was mainly related to humic-like chromophores. It is worth noting that C1 was similar to the water-soluble chromophore of simulated marine aerosols, which proved that marine emissions do have a certain impact on atmospheric particulate matter in coastal areas. In addition, the results of source analysis showed that WS-BrC originated from different terrestrial sources in different seasons. The current results may help to improve the knowledge of optical properties of WS-BrC in coastal cities, optimize the global climate model and formulate air management policies.
Collapse
Affiliation(s)
- Yanan Zhan
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Jianlong Li
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Narcisse T Tsona
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Bing Chen
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Caiqing Yan
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Christian George
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France
| | - Lin Du
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China.
| |
Collapse
|
19
|
Gu C, Cui S, Ge X, Wang Z, Chen M, Qian Z, Liu Z, Wang X, Zhang Y. Chemical composition, sources and optical properties of nitrated aromatic compounds in fine particulate matter during winter foggy days in Nanjing, China. ENVIRONMENTAL RESEARCH 2022; 212:113255. [PMID: 35430278 DOI: 10.1016/j.envres.2022.113255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Functionalized aromatic compounds are one of the most important light-absorbing organic chromophores - so-called brown carbon (BrC) - in fine particulate matter (PM2.5). In this study, we conducted a wintertime field campaign to measure eight nitrated aromatic compounds (NACs) in PM2.5 with offline analysis techniques, including liquid chromatograph mass spectrometer (LC-MS) and aerodyne high-resolution aerosol mass spectrometer (AMS) measurements, during foggy and nonfoggy days in suburban Nanjing in the Yangtze River Delta region, China. On average, 4-nitrophenol could be one of the most important light absorbing materials in the observed BrC, which accounted for over 40% of the mass concentration of identified chromophores. The mass concentration of 2-methyl-4-nitrophenol and 2,6-dimethyl-4-nitrophenol were evidently increased during foggy days, contribution of which to total NACs were increased by 10% and 5%, respectively. Positive matrix factorization analysis of combining LC-MS and AMS dataset was performed to identify the primary and secondary sources of NACs. Primary sources, e.g., traffic and solid-fuel combustion, accounted for 71% of the sum of 4-nitrophenol, 2,6-dimethyl-4-nitrophenol and 3-nitrosalicylic acid, suggesting important contribution of primary emissions to these NACs. The contribution of secondary sources, associated with two oxygenated organic aerosols, could contribute 66% to 4-nitrophenol, reflecting the link of such nitrated aromatic compounds to secondary organic aerosol source. Together with optical measurements, 4-nitrophenol presented a high contribution (>50%) to the identified BrC absorbance in the light range 250 and 550 nm was observed. This could highlight an important role of such NACs in ambient BrC light absorption, despite its mass contribution to total organic carbon was negligible. Our work could improve the understanding of the links between optical properties and chemical composition of BrC, and the difference between BrC chromophores from nonfoggy days and foggy days under the typical polluted atmospheric conditions.
Collapse
Affiliation(s)
- Chenjuan Gu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Shijie Cui
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xinlei Ge
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Zhiying Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Meijuan Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Zihe Qian
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Zhiyi Liu
- Environmental Research Institute, Shandong University, Qingdao, 266237, China
| | - Xinfeng Wang
- Environmental Research Institute, Shandong University, Qingdao, 266237, China
| | - Yunjiang Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| |
Collapse
|
20
|
Pang H, Wang Y, Wu Y, He J, Deng H, Li P, Xu J, Yu Z, Gligorovski S. Unveiling the pH-Dependent Yields of H 2O 2 and OH by Aqueous-Phase Ozonolysis of m-Cresol in the Atmosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7618-7628. [PMID: 35608856 DOI: 10.1021/acs.est.1c08962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogen peroxide (H2O2) and hydroxyl radical (OH) are important oxidants in the atmospheric aqueous phase such as cloud droplets and deliquescent aerosol particles, playing a significant role in the chemical transformation of organic and inorganic pollutants in the atmosphere. Atmospheric aqueous-phase chemistry has been considered to be a source of H2O2 and OH. However, our understanding of the mechanisms of their formation in atmospheric waters is still incomplete. Here, we show that the aqueous-phase reaction of dissolved ozone (O3) with substituted phenols such as m-cresol represents an important source of H2O2 and OH exhibiting pH-dependent yields. Intriguingly, the formation of H2O2 through the ring-opening mechanism is strongly promoted under lower pH conditions (pH 2.5-3.5), while higher pH favors the ring-retaining pathways yielding OH. The rate constant of the reaction of O3 with m-cresol increases with increasing pH. The reaction products formed during the ozonolysis of m-cresol are analyzed by an Orbitrap mass spectrometer, and reaction pathways are suggested based on the identified product compounds. This study indicates that aqueous-phase ozonolysis of phenolic compounds might be an alternative source of H2O2 and OH in the cloud, rain, and liquid water of aerosol particles; thus, it should be considered in future model studies.
Collapse
Affiliation(s)
- Hongwei Pang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Center for Excellence in Deep Earth Science, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yiqun Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Center for Excellence in Deep Earth Science, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jiazhuo He
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Center for Excellence in Deep Earth Science, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Huifan Deng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pan Li
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinli Xu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Center for Excellence in Deep Earth Science, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Center for Excellence in Deep Earth Science, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
21
|
Yan R, Yang W, You D, Yang H, Han C. Photoinduced evolution of optical properties and compositions of methoxyphenols by Fe(III)-carboxylates complexes in atmospheric aqueous phase. CHEMOSPHERE 2022; 295:133860. [PMID: 35124090 DOI: 10.1016/j.chemosphere.2022.133860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
The changes in optical properties and chemical compositions of methoxyphenols, which acted as an important aromatic compound from the biomass burning, were investigated in the presence of Fe(III)-carboxylates under aqueous phase conditions. The light was confirmed to be a key factor for stimulating the reaction of methoxyphenols and Fe(III)-carboxylates. The photoinduced evolution of optical properties of methoxyphenols was dependent on various factors, including irradiation intensity, types of carboxylates, dissolved oxygen and pH. The changes in the mass absorption efficiency at 306 nm (MAE306) positively relied on irradiation intensity and dissolved oxygen. The acceleration effects of carboxylates on the decreases in MAE306 of methoxyphenols followed the order of oxalate > citrate > malonate. The change amplitude of MAE306 decreased with an increasing pH (3.5-9), while that of the mass absorption efficiency at 364 nm (MAE364) increased with pH ranging from 3.5 to 7. The compositional evolutions of methoxyphenols by the photochemical aging were analyzed with the attenuated total reflection infrared spectroscopy (ATR-IR), confirming the decrease of CO groups and the increase of O-H and C-O groups. The photochemical reaction pathways of methoxyphenols with Fe(III)-carboxylates were proposed according to optical properties and compositions measurements.
Collapse
Affiliation(s)
- Ran Yan
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Wangjin Yang
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Di You
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Hongxing Yang
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Chong Han
- School of Metallurgy, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
22
|
Hong Y, Cao F, Fan MY, Lin YC, Gul C, Yu M, Wu X, Zhai X, Zhang YL. Impacts of chemical degradation of levoglucosan on quantifying biomass burning contribution to carbonaceous aerosols: A case study in Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:152007. [PMID: 34856277 DOI: 10.1016/j.scitotenv.2021.152007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Biomass burning (BB) is an important source of carbonaceous aerosols in Northeast China (NEC). Quantifying the original contribution of BB to organic carbon (OC) [BB-OC] can provide an essential scientific information for the policy-makers to formulate the control measures to improve the air quality in the NEC region. Daily PM2.5 samples were collected in the rural area of Changchun city over the NEC region from May 2017 to May 2018. In addition to carbon contents, BB tracers (e.g., levoglucosan and K+BB, defined as potassium from BB) were also determined, in order to investigate the relative contribution of BB-OC. The results showed that OC was the dominant (28%) components of PM2.5 during the sampling period. Higher concentrations of OC, levoglucosan, and K+BB were observed in the autumn followed by the winter, spring, and summer, indicating that the higher BB activities during autumn and winter in Changchun. By using the Bayesian mixing model, it was found that burning of crop residues were the dominant source (65-79%) of the BB aerosols in Changchun. During the sampling period, the aging in air mass (AAM) ratio was 0.14, indicating that ~86% of levoglucosan in Changchun was degraded. Without considering the degradation of levoglucosan in the atmosphere, the BB-OC ratios were 23%, 28%, 7%, and 4% in the autumn, winter, spring, and summer, respectively, which were 1.4-4.8 time lower than those (14-42%) with consideration of levoglucosan degradation. This illustrated that the relative contribution of BB to OC would be underestimated (~59%) without considering degradation effects of levoglucosan. Although some uncertainty was existed in our estimation, our results did highlight that the control of straw burning was an efficient way to decrease the airborne PM2.5, improving the air quality in the NEC plain.
Collapse
Affiliation(s)
- Yihang Hong
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing 210044, China; Key Laboratory Meteorological Disaster, Ministry of Education & Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Provincial Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Fang Cao
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing 210044, China; Key Laboratory Meteorological Disaster, Ministry of Education & Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Provincial Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Mei-Yi Fan
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing 210044, China; Key Laboratory Meteorological Disaster, Ministry of Education & Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Provincial Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yu-Chi Lin
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing 210044, China; Key Laboratory Meteorological Disaster, Ministry of Education & Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Provincial Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Chaman Gul
- Reading Academy, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China
| | - Mingyuan Yu
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing 210044, China; Key Laboratory Meteorological Disaster, Ministry of Education & Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Provincial Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xia Wu
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing 210044, China; Key Laboratory Meteorological Disaster, Ministry of Education & Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Provincial Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiaoyao Zhai
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing 210044, China; Key Laboratory Meteorological Disaster, Ministry of Education & Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Provincial Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yan-Lin Zhang
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing 210044, China; Key Laboratory Meteorological Disaster, Ministry of Education & Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Provincial Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
23
|
Chen Q, Hua X, Li J, Chang T, Wang Y. Diurnal evolutions and sources of water-soluble chromophoric aerosols over Xi'an during haze event, in Northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147412. [PMID: 33962324 DOI: 10.1016/j.scitotenv.2021.147412] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/24/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Atmospheric brown carbon and their chemical behavior potentially impacts the climate and air quality. Due to lack of researches on the atmospheric chromophores by using online experimental instrument, so using the offline EEM approaches to study their types, sources and chemical processes. In this study, PILS-EEM-TOC system (Particle into liquid sampler coupled with excitation-emission matrix and total organic carbon) was developed in order to distinguish the hourly evolutions and sources of water-soluble chromophoric organic matters in atmospheric fine particles. The results suggested that the sources of atmospheric chromophores in winter were primary combustion (~90%) and coal burning, followed by biomass burning and cooking emissions in Xi'an (Northwest China). These atmospheric chromophores decay under the combined action of solar radiation and atmospheric oxidants. Meanwhile, the secondary chromophores were mainly highly-oxygenated humic-like substance (HULIS), produced by atmospheric oxidation reactions with the highest peak in the afternoon. The partly secondary chromophores can also be generated through the Maillard-like reaction in the morning, which depends on the relative humidity of the atmosphere. These findings made a deeper understanding of the sources and transformation of atmospheric brown carbon aerosols.
Collapse
Affiliation(s)
- Qingcai Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Xiaoyu Hua
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jinwen Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Tian Chang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yuqin Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
24
|
Felber T, Schaefer T, He L, Herrmann H. Aromatic Carbonyl and Nitro Compounds as Photosensitizers and Their Photophysical Properties in the Tropospheric Aqueous Phase. J Phys Chem A 2021; 125:5078-5095. [PMID: 34096724 DOI: 10.1021/acs.jpca.1c03503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Secondary organic aerosol formation in the atmospheric aqueous/particulate phase by photosensitized reactions is currently subject to uncertainties. To understand the impact of photosensitized reactions, photophysical and -chemical properties of photosensitizers, kinetic data, and reaction mechanisms of these processes are required. The photophysical properties of acetophenones, benzaldehydes, benzophenones, and naphthalenes were investigated in aqueous solution using laser flash excitation. Quantum yields of excited photosensitizers were determined giving values between 0.06-0.80 at 298 K and pH = 5. Molar absorption coefficients (εmax(3PS*) = (0.8-13) × 104 L mol-1 cm-1), decay rate constants in water (k1st = (9.4 ± 0.5) × 102 to (2.2 ± 0.1) × 105 s-1), and quenching rate constants with oxygen (kq(O2) = (1.7 ± 0.1-4.4 ± 0.4) × 109 L mol-1 s-1) of the excited triplet states were determined at 298 K and pH = 5. Photosensitized reactions of carboxylic acids and alkenes show second-order rate constants in the range of (37 ± 7.0-0.55 ± 0.1) × 104 and (27 ± 5.0-0.04 ± 0.01) × 108 L mol-1 s-1. The results show that different compound classes act differently as a photosensitizer and can be a sink for certain organic compounds in the atmospheric aqueous phase.
Collapse
Affiliation(s)
- Tamara Felber
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Thomas Schaefer
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Lin He
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Hartmut Herrmann
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
25
|
Ma L, Guzman C, Niedek C, Tran T, Zhang Q, Anastasio C. Kinetics and Mass Yields of Aqueous Secondary Organic Aerosol from Highly Substituted Phenols Reacting with a Triplet Excited State. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5772-5781. [PMID: 33851829 DOI: 10.1021/acs.est.1c00575] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biomass burning emits large amounts of phenols, which can partition into cloud/fog drops and aerosol liquid water (ALW) and react to form aqueous secondary organic aerosol (aqSOA). Triplet excited states of organic compounds (3C*) are likely oxidants, but there are no rate constants with highly substituted phenols that have high Henry's law constants (KH) and are likely important in ALW. To address this gap, we investigated the kinetics of six highly substituted phenols with the triplet excited state of 3,4-dimethoxybenzaldehyde. Second-order rate constants at pH 2 are all fast, (2.6-4.6) × 109 M-1 s-1, while values at pH 5 are 2-5 times smaller. Rate constants are reasonably described by a quantitative structure-activity relationship with phenol oxidation potentials, allowing rate constants of other phenols to be predicted. Triplet-phenol kinetics are unaffected by ammonium sulfate, sodium chloride, galactose (a biomass-burning sugar), or Fe(III). In contrast, ammonium nitrate increases the rate of phenol loss by making hydroxyl radicals, while Cu(II) inhibits phenol decay. Mass yields of aqueous SOA from triplet reactions are large and range from 59 to 99%. Calculations using our data along with previous oxidant measurements indicate that phenols with high KH can be an important source of aqSOA in ALW, with 3C* typically the dominant oxidant.
Collapse
Affiliation(s)
- Lan Ma
- Department of Land, Air, and Water Resources, University of California, Davis, California 95616, United States
| | - Chrystal Guzman
- Department of Land, Air, and Water Resources, University of California, Davis, California 95616, United States
| | - Christopher Niedek
- Department of Environmental Toxicology, University of California, Davis, California 95616, United States
| | - Theodore Tran
- Department of Land, Air, and Water Resources, University of California, Davis, California 95616, United States
| | - Qi Zhang
- Department of Environmental Toxicology, University of California, Davis, California 95616, United States
| | - Cort Anastasio
- Department of Land, Air, and Water Resources, University of California, Davis, California 95616, United States
| |
Collapse
|
26
|
Jiang W, Misovich MV, Hettiyadura APS, Laskin A, McFall AS, Anastasio C, Zhang Q. Photosensitized Reactions of a Phenolic Carbonyl from Wood Combustion in the Aqueous Phase-Chemical Evolution and Light Absorption Properties of AqSOA. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5199-5211. [PMID: 33733745 DOI: 10.1021/acs.est.0c07581] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Guaiacyl acetone (GA) is a phenolic carbonyl emitted in significant quantities by wood combustion that undergoes rapid aqueous-phase oxidation to produce aqueous secondary organic aerosol (aqSOA). We investigate the photosensitized oxidation of GA by an organic triplet excited state (3C*) and the formation and aging of the resulting aqSOA in wood smoke-influenced fog/cloud water. The chemical transformations of the aqSOA were characterized in situ using a high-resolution time-of-flight aerosol mass spectrometer. Additionally, aqSOA samples collected over different time periods were analyzed using high-performance liquid chromatography coupled with a photodiode array detector and a high-resolution Orbitrap mass spectrometer (HPLC-PDA-HRMS) to provide details on the molecular composition and optical properties of brown carbon (BrC) chromophores. Our results show efficient formation of aqSOA from GA, with an average mass yield around 80%. The composition and BrC properties of the aqSOA changed significantly over the course of reaction. Three generations of aqSOA products were identified via positive matrix factorization analysis of the aerosol mass spectrometry data. Oligomerization and functionalization dominated the production of the first-generation aqSOA, whereas fragmentation and ring-opening reactions controlled the formation of more oxidized second- and third-generation products. Significant formation of BrC was observed in the early stages of the photoreaction, while organic acids were produced throughout the experiment. High-molecular weight molecules (m/z > 180) with high aromaticity were identified via HPLC-PDA-HRMS and were found to account for a majority of the UV-vis absorption of the aqSOA.
Collapse
Affiliation(s)
- Wenqing Jiang
- Department of Environmental Toxicology, University of California, Davis, California 95616-5270, United States
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, California 95616-5270, United States
| | - Maria V Misovich
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2050, United States
| | - Anusha P S Hettiyadura
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2050, United States
| | - Alexander Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2050, United States
- Department of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette, Indiana 47907-2050, United States
| | - Alexander S McFall
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, California 95616-5270, United States
- Department of Land, Air, and Water Resources, University of California, Davis, California 95616-5270, United States
| | - Cort Anastasio
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, California 95616-5270, United States
- Department of Land, Air, and Water Resources, University of California, Davis, California 95616-5270, United States
| | - Qi Zhang
- Department of Environmental Toxicology, University of California, Davis, California 95616-5270, United States
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, California 95616-5270, United States
| |
Collapse
|
27
|
Felber T, Schaefer T, Herrmann H. Five-Membered Heterocycles as Potential Photosensitizers in the Tropospheric Aqueous Phase: Photophysical Properties of Imidazole-2-carboxaldehyde, 2-Furaldehyde, and 2-Acetylfuran. J Phys Chem A 2020; 124:10029-10039. [PMID: 33202138 DOI: 10.1021/acs.jpca.0c07028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photosensitized reactions of organic compounds in the atmospheric aqueous and particle phase might be potential sources for secondary organic aerosol (SOA) formation, addressed as aqueous SOA. However, data regarding the photophysical properties of photosensitizers, their kinetics, as well as reaction mechanisms of such processes in the aqueous/particle phase are scarce. The present study investigates the determination of the photophysical properties of imidazole-2-carboxaldehyde, 2-furaldehyde, and 2-acetylfuran as potential photosensitizers using laser flash excitation in aqueous solution. Quantum yields of the formation of the excited photosensitizers were obtained by a scavenging method with thiocyanate, resulting in values between 0.86 and 0.96 at 298 K and pH = 5. The time-resolved absorbance spectra of the excited photosensitizers were measured, and their molar attenuation coefficients were determined ranging between (0.30 and 1.4) × 104 L mol-1 cm-1 at their absorbance maxima (λmax = 335-440 nm). Additionally, the excited photosensitizers are quenched by water and molecular oxygen, resulting in quenching rate constants of k1st = (1.0 ± 0.2-1.8 ± 0.2) × 105 s-1 and kq(O2) = (2.1 ± 0.2-2.7 ± 0.2) × 109 L mol-1 s-1, respectively.
Collapse
Affiliation(s)
- Tamara Felber
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Thomas Schaefer
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
28
|
Altshuler SL, Zhang Q, Kleinman MT, Garcia-Menendez F, Moore CTT, Hough ML, Stevenson ED, Chow JC, Jaffe DA, Watson JG. Wildfire and prescribed burning impacts on air quality in the United States. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2020; 70:961-970. [PMID: 32845818 DOI: 10.1080/10962247.2020.1813217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
| | - Qi Zhang
- Department of Environmental Toxicology, University of California , Davis, CA, USA
| | - Michael T Kleinman
- Environmental Toxicology and Air Pollution Health Effects Laboratory in the Department of Community and Environmental Medicine, University of California , Irvine, CA, USA
| | - Fernando Garcia-Menendez
- Department of Civil, Construction and Environmental Engineering, North Carolina State University , Raleigh, NC, USA
| | - Charles Thomas Tom Moore
- Western Regional Air Partnership (WRAP), Western States Air Resources Council , Fort Collins, CO, USA
| | - Merlyn L Hough
- Lane Regional Air Protection Agency , Springfield-Eugene, OR, USA
| | - Eric D Stevenson
- Meteorology and Measurement, Bay Area Air Quality Management District , San Francisco, CA, USA
| | - Judith C Chow
- Division of Atmospheric Sciences, Desert Research Institute , Reno, NV, USA
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences , Xi'an, People's Republic of China
| | - Daniel A Jaffe
- Atmospheric Chemistry, University of Washington , Seattle, WA, USA
| | - John G Watson
- Division of Atmospheric Sciences, Desert Research Institute , Reno, NV, USA
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences , Xi'an, People's Republic of China
| |
Collapse
|
29
|
Hullar T, Bononi FC, Chen Z, Magadia D, Palmer O, Tran T, Rocca D, Andreussi O, Donadio D, Anastasio C. Photodecay of guaiacol is faster in ice, and even more rapid on ice, than in aqueous solution. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1666-1677. [PMID: 32671365 DOI: 10.1039/d0em00242a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Snowpacks contain a wide variety of inorganic and organic compounds, including some that absorb sunlight and undergo direct photoreactions. How the rates of these reactions in, and on, ice compare to rates in water is unclear: some studies report similar rates, while others find faster rates in/on ice. Further complicating our understanding, there is conflicting evidence whether chemicals react more quickly at the air-ice interface compared to in liquid-like regions (LLRs) within the ice. To address these questions, we measured the photodegradation rate of guaiacol (2-methoxyphenol) in various sample types, including in solution, in ice, and at the air-ice interface of nature-identical snow. Compared to aqueous solution, we find modest rate constant enhancements (increases of 3- to 6-fold) in ice LLRs, and much larger enhancements (of 17- to 77-fold) at the air-ice interface of nature-identical snow. Our computational modeling suggests the absorption spectrum for guaiacol red-shifts and increases on ice surfaces, leading to more light absorption, but these changes explain only a small portion (roughly 2 to 9%) of the observed rate constant enhancements in/on ice. This indicates that increases in the quantum yield are primarily responsible for the increased photoreactivity of guaiacol on ice; relative to solution, our results suggest that the quantum yield is larger by a factor of roughly 3-6 in liquid-like regions and 12-40 at the air-ice interface.
Collapse
Affiliation(s)
- Ted Hullar
- Department of Land, Air and Water Resources, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Akherati A, He Y, Coggon MM, Koss AR, Hodshire AL, Sekimoto K, Warneke C, de Gouw J, Yee L, Seinfeld JH, Onasch TB, Herndon SC, Knighton WB, Cappa CD, Kleeman MJ, Lim CY, Kroll JH, Pierce JR, Jathar SH. Oxygenated Aromatic Compounds are Important Precursors of Secondary Organic Aerosol in Biomass-Burning Emissions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8568-8579. [PMID: 32559089 DOI: 10.1021/acs.est.0c01345] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biomass burning is the largest combustion-related source of volatile organic compounds (VOCs) to the atmosphere. We describe the development of a state-of-the-science model to simulate the photochemical formation of secondary organic aerosol (SOA) from biomass-burning emissions observed in dry (RH <20%) environmental chamber experiments. The modeling is supported by (i) new oxidation chamber measurements, (ii) detailed concurrent measurements of SOA precursors in biomass-burning emissions, and (iii) development of SOA parameters for heterocyclic and oxygenated aromatic compounds based on historical chamber experiments. We find that oxygenated aromatic compounds, including phenols and methoxyphenols, account for slightly less than 60% of the SOA formed and help our model explain the variability in the organic aerosol mass (R2 = 0.68) and O/C (R2 = 0.69) enhancement ratios observed across 11 chamber experiments. Despite abundant emissions, heterocyclic compounds that included furans contribute to ∼20% of the total SOA. The use of pyrolysis-temperature-based or averaged emission profiles to represent SOA precursors, rather than those specific to each fire, provide similar results to within 20%. Our findings demonstrate the necessity of accounting for oxygenated aromatics from biomass-burning emissions and their SOA formation in chemical mechanisms.
Collapse
Affiliation(s)
- Ali Akherati
- Department of Mechanical Engineering, Colorado State University, Fort Collins 80525, Colorado, United States
| | - Yicong He
- Department of Mechanical Engineering, Colorado State University, Fort Collins 80525, Colorado, United States
| | - Matthew M Coggon
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder 80309, Colorado, United States
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder 80305, Colorado, United States
| | - Abigail R Koss
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Boston 02139, Massachusetts, United States
| | - Anna L Hodshire
- Department of Atmospheric Science, Colorado State University, Fort Collins 80525, Colorado, United States
| | - Kanako Sekimoto
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder 80309, Colorado, United States
| | - Carsten Warneke
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder 80309, Colorado, United States
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder 80305, Colorado, United States
| | - Joost de Gouw
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder 80309, Colorado, United States
| | - Lindsay Yee
- Environmental Science, Policy, and Management, University of California Berkeley, Berkeley 94720-3114, California, United States
| | - John H Seinfeld
- Department of Chemical Engineering, California Institute of Technology, Pasadena 91125, California, United States
| | - Timothy B Onasch
- Aerodyne Research Inc., Billerica 01821, Massachusetts, United States
| | - Scott C Herndon
- Aerodyne Research Inc., Billerica 01821, Massachusetts, United States
| | - Walter B Knighton
- Department of Chemistry, Montana State University, Bozeman 59717, Montana, United States
| | - Christopher D Cappa
- Department of Civil and Environmental Engineering, University of California Davis, Davis 95616, California, United States
| | - Michael J Kleeman
- Department of Civil and Environmental Engineering, University of California Davis, Davis 95616, California, United States
| | - Christopher Y Lim
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Boston 02139, Massachusetts, United States
| | - Jesse H Kroll
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Boston 02139, Massachusetts, United States
| | - Jeffrey R Pierce
- Department of Atmospheric Science, Colorado State University, Fort Collins 80525, Colorado, United States
| | - Shantanu H Jathar
- Department of Mechanical Engineering, Colorado State University, Fort Collins 80525, Colorado, United States
| |
Collapse
|
31
|
Chen Y, Li N, Li X, Tao Y, Luo S, Zhao Z, Ma S, Huang H, Chen Y, Ye Z, Ge X. Secondary organic aerosol formation from 3C ⁎-initiated oxidation of 4-ethylguaiacol in atmospheric aqueous-phase. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:137953. [PMID: 32213404 DOI: 10.1016/j.scitotenv.2020.137953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
In this study, we investigated aqueous-phase triplet excited states (3C⁎)-induced photo-degradation of 4-ethylguaiacol (EG) under both simulated sunlight and ultraviolet (UV) light irradiations. Through quencher experiments, the relative contributions of reactive oxygen species (ROS, such as 1O2/O2-/·OH) and 3C⁎ were calculated and results showed three reactive species, e.g., 3C⁎, 1O2 and O2-, all seemed to play important roles in the photo-degradation of EG, but contribution from ·OH was relatively minor. High steady-state 1O2 concentration after 1 h irradiation further revealed the major contribution of 1O2 to photo-degradation under Xe light irradiation. The degradation experiment under three saturated gases (air, O2 and N2) showed that the degradation rate in air-saturated condition was the largest owing to synergistic effect of 1O2 and 3C⁎. Oxidative capacity of aqueous secondary organic aerosol (aqSOA) increased with reaction time by monitoring oxygen-to‑carbon (O/C) ratio and carbon oxidation state (OSc) via an aerodyne soot particle aerosol mass spectrometer (SP-AMS). Moreover, aqSOA mass yields were calculated via SP-AMS data. The UV-vis spectral change suggested formation of light-absorbing organics at first stage under simulated sunlight irradiation. Based on the identified products and the reactive intermediates, we postulated that 3C⁎-induced oxidation might be attributed to direct reactions by 3C⁎ and 1O2, chemical reaction by ROS, as well as oligomerization via H-abstraction. To the best of our knowledge, this is the first time to explore systematically reaction pathways of 4-ethylguaiacol under 3C∗ radical on the basis of thorough analysis of products and reactive species. Our findings highlight the impacts of aqSOA from biomass burning emissions on air quality and climate change.
Collapse
Affiliation(s)
- Yantong Chen
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Nanwang Li
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Xudong Li
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Ye Tao
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Shipeng Luo
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Zhuzi Zhao
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Shuaishuai Ma
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Hongying Huang
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Yanfang Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Sciences and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhaolian Ye
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China.
| | - Xinlei Ge
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Sciences and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| |
Collapse
|
32
|
Chen Q, Li J, Hua X, Jiang X, Mu Z, Wang M, Wang J, Shan M, Yang X, Fan X, Song J, Wang Y, Guan D, Du L. Identification of species and sources of atmospheric chromophores by fluorescence excitation-emission matrix with parallel factor analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137322. [PMID: 32092515 DOI: 10.1016/j.scitotenv.2020.137322] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/27/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
It is essential to fully understand the physicochemical properties and sources of atmospheric chromophores to evaluate their impacts on environmental quality and global climate. Three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy is an important method for directly characterizing the occurrences, origins, and chemical behaviors of atmospheric chromophores. However, there is still a lack of adequate information on the sources and chemical structures of EEM-defined chromophores. This situation limits the extensive application of the EEM method in the study of atmospheric chromophores. Under these adverse conditions, this work uses the analysis of EEM data by the parallel factor (PARAFAC) analysis model and a comprehensive comparison of the types and abundances of different chromophores in different aerosol samples (combustion source samples, secondary organic aerosols, and ambient aerosols) to demonstrate that the EEM method can distinguish among different chromophore types and aerosol sources. Indeed, approximately half of all fluorescent substances can be attributed to specific chemicals and sources. These findings provide an important basis for the study of the sources and chemical processes of atmospheric chromophores by the EEM approach.
Collapse
Affiliation(s)
- Qingcai Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Jinwen Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaoyu Hua
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaotong Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Zhen Mu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Mamin Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jin Wang
- School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Ming Shan
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China
| | - Xudong Yang
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China
| | - Xingjun Fan
- College of Resource and Environment, Anhui Science and Technology University, 233100, Anhui, China
| | - Jianzhong Song
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yuqin Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Dongjie Guan
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lin Du
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
33
|
Fankhauser AM, Bourque M, Almazan J, Marin D, Fernandez L, Hutheesing R, Ferdousi N, Tsui WG, McNeill VF. Impact of Environmental Conditions on Secondary Organic Aerosol Production from Photosensitized Humic Acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5385-5390. [PMID: 32243755 DOI: 10.1021/acs.est.9b07485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recent studies have shown the potential of the photosensitizer chemistry of humic acid, as a proxy for humic-like substances in atmospheric aerosols, to contribute to secondary organic aerosol mass. The mechanism requires particle-phase humic acid to absorb solar radiation and become photoexcited, then directly or indirectly oxidize a volatile organic compound (VOC), resulting in a lower volatility product in the particle phase. We performed experiments in a photochemical chamber, with aerosol-phase humic acid as the photosensitizer and limonene as the VOC. In the presence of 26 ppb limonene and under atmospherically relevant UV-visible irradiation levels, there is no significant change in particle diameter. Calculations show that SOA production via this pathway is highly sensitive to VOC precursor concentrations. Under the assumption that HULIS is equally or less reactive than the humic acid used in these experiments, the results suggest that the photosensitizer chemistry of HULIS in ambient atmospheric aerosols is unlikely to be a significant source of secondary organic aerosol mass.
Collapse
Affiliation(s)
- Alison M Fankhauser
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Mary Bourque
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - John Almazan
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Daniela Marin
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Lydia Fernandez
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Remy Hutheesing
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Nahin Ferdousi
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - William G Tsui
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - V Faye McNeill
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
34
|
McFall AS, Johnson AW, Anastasio C. Air-Water Partitioning of Biomass-Burning Phenols and the Effects of Temperature and Salinity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3823-3830. [PMID: 32162913 DOI: 10.1021/acs.est.9b06443] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biomass burning (BB) emits organic gases that, with chemical aging, can form secondary organic aerosol (SOA) in both the gas and aqueous phases. One class of biomass-burning emissions, phenols, are of interest because they react rapidly in the aqueous phase to efficiently form SOA, which might affect climate and human health. However, while measurements exist for the air-water partitioning constants of some simple phenols, Henry's law constants (KH) are unknown for more complex BB phenols. In this work, we use a custom-built apparatus to measure KH for a suite of biomass-burning phenols that span a wide range of air-water partitioning coefficients. Comparing our measurements to predicted values from EPI Suite shows that this model consistently overestimates KH unless a suitable measured phenol KH value is included to adjust the calculations. In addition, we determine the effect of five salts on phenol partitioning by measuring the Setschenow coefficients (KS). Across the eight phenols we examined, values of KS depend primarily on salt identity and descend in the order (NH4)2SO4 > NaCl > NH4Cl ≥ KNO3 > NH4NO3. Lastly, we use our KH and KS results to discuss the aqueous processing of biomass-burning phenols in cloud/fog water versus aerosol liquid water.
Collapse
Affiliation(s)
- Alexander S McFall
- Department of Land, Air, and Water Resources, University of California, Davis, Davis, California 95670, United States
| | - Alex W Johnson
- Department of Land, Air, and Water Resources, University of California, Davis, Davis, California 95670, United States
| | - Cort Anastasio
- Department of Land, Air, and Water Resources, University of California, Davis, Davis, California 95670, United States
| |
Collapse
|
35
|
Pang H, Zhang Q, Lu X, Li K, Chen H, Chen J, Yang X, Ma Y, Ma J, Huang C. Nitrite-Mediated Photooxidation of Vanillin in the Atmospheric Aqueous Phase. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14253-14263. [PMID: 31729864 DOI: 10.1021/acs.est.9b03649] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nitrite (NO2-) and its conjugate acid, nitrous acid (HNO2), have long been recognized as a ubiquitous atmospheric pollutant as well as an important photochemical source of hydroxyl radicals (·OH) and reactive nitrogen species (·NO, ·NO2, ·N2O3, etc.) in both the gas phase and aqueous phase. Although NO2-/HNO2 plays an important role in atmospheric chemistry, our understanding on its role in the chemical evolution of organic components in atmospheric waters is rather incomplete and is still in dispute. In this study, the nitrite-mediated photooxidation of vanillin (VL), a phenolic compound abundant in biomass burning emissions, was investigated under pH conditions relevant for atmospheric waters. The influence of solution pH, dissolved oxygen, and ·OH scavengers on the nitrite-mediated photooxidation of VL was discussed in detail. Our study reveals that the molecular composition of the products is dependent on the molar ratio of NO2-/VL in the solution and that nitrophenols are the major reaction products. We also found that the light absorbance of the oxidative products increases with increasing pH in the visible region, which can be attributed to the deprotonation of the nitrophenols formed. These results contribute to a better understanding of methoxyphenol photooxidation mediated by nitrite as a source of toxic nitrophenols and climatically important brown carbon in atmospheric waters.
Collapse
Affiliation(s)
- Hongwei Pang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering , Fudan University , Shanghai 200433 , China
| | - Qi Zhang
- Department of Environmental Toxicology , University of California, Davis , Davis , California 95616 , United States
| | - Xiaohui Lu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering , Fudan University , Shanghai 200433 , China
| | - Kangning Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering , Fudan University , Shanghai 200433 , China
| | - Hong Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering , Fudan University , Shanghai 200433 , China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering , Fudan University , Shanghai 200433 , China
| | - Xin Yang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering , Fudan University , Shanghai 200433 , China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , China
| | - Yingge Ma
- State Environmental Protection Key Laboratory of Formation and Prevention of the Urban Air Pollution Complex , Shanghai Academy of Environmental Sciences , Shanghai 200233 , China
| | - Jialiang Ma
- State Environmental Protection Key Laboratory of Formation and Prevention of the Urban Air Pollution Complex , Shanghai Academy of Environmental Sciences , Shanghai 200233 , China
| | - Cheng Huang
- State Environmental Protection Key Laboratory of Formation and Prevention of the Urban Air Pollution Complex , Shanghai Academy of Environmental Sciences , Shanghai 200233 , China
| |
Collapse
|
36
|
Ye Z, Qu Z, Ma S, Luo S, Chen Y, Chen H, Chen Y, Zhao Z, Chen M, Ge X. A comprehensive investigation of aqueous-phase photochemical oxidation of 4-ethylphenol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:976-985. [PMID: 31390715 DOI: 10.1016/j.scitotenv.2019.06.276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
Secondary organic aerosol (SOA) species formed in atmospheric aqueous phases is recently recognized as an important contributor to fine aerosols, which is known to be a prominent human health risk factor internationally. This work, for the first time, systematically investigated aqueous-phase photochemical oxidation of 4-ethylphenol (4-EP) - a model compound from biomass burning and a surrogate of intermediate volatility organic compounds, under both ultraviolet (UV) (Hg lamp) and simulated sunlight (Xe lamp). We found that 4-EP could degrade upon hydroxal radical (OH) oxidation under UV light nearly 15 times faster than that under simulated sunlight, but large aqueous SOA (aqSOA) yields (108%-122%) were observed under both situations. AqSOA masses and oxidation states continuously increased under simulated sunlight, yet they increased first then decreased quickly under UV light. We proposed a reaction scheme based on identified products, showing that oligomerization, functionalization and fragmentation all can occur during 4-EP oxidation. Our results demonstrate that OH radical may suppress oligomerization and functionalization, but is favorable for fragmentation. Under UV light with H2O2 (high OH), fragmentation was dominant, producing more volatile and smaller molecules, and less aqSOA in later oxidation; Under simulated sunlight with H2O2 (moderate OH), functionalization that can form hydroxylated monomer was more important. Moreover, 4-EP oxidation by the organic triplet excited state (3C*) could form species with stronger visible light absorptivity than those from OH-mediated oxidation, and the absorptivity showed positive link with contents of humic-like substances.
Collapse
Affiliation(s)
- Zhaolian Ye
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Zhenxiu Qu
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Shuaishuai Ma
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Shipeng Luo
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Yantong Chen
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Hui Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Sciences and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yanfang Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Sciences and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhuzi Zhao
- College of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Mindong Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Sciences and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Xinlei Ge
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Sciences and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| |
Collapse
|
37
|
Qian Y, Deng GH, Lapp J, Rao Y. Interfaces of Gas-Aerosol Particles: Relative Humidity and Salt Concentration Effects. J Phys Chem A 2019; 123:6304-6312. [PMID: 31253043 DOI: 10.1021/acs.jpca.9b03896] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The growth of aerosol particles is intimately related to chemical reactions in the gas phase and particle phase and at gas-aerosol particle interfaces. While chemical reactions in gas and particle phases are well documented, there is very little information regarding interface-related reactions. The interface of gas-aerosol particles not only facilitates a physical channel for organic species to enter and exit but also provides a necessary lane for culturing chemical reactions. The physical and chemical properties of gas-particle interfaces have not been studied extensively, nor have the reactions occurring at the interfaces been well researched. This is mainly due to the fact that there is a lack of suitable in situ interface-sensitive analytical techniques for direct measurements of interfacial properties. The motivation behind this research is to understand how interfaces play a role in the growth of aerosol particles. We have developed in situ interface-specific second harmonic scattering to examine interfacial behaviors of molecules of aerosol particles under different relative humidity (RH) and salt concentrations. Both the relative humidity and salt concentration can change the particle size and the phase of the aerosol. RH not only varies the concentration of solutes inside aerosol particles but also changes interfacial hydration in local regions. Organic molecules were found to exhibit distinct behaviors at the interfaces and bulk on NaCl particles under different RH levels. Our quantitative analyses showed that the interfacial adsorption free energies remain unchanged while interfacial areas increase as the relative humidity increases. Furthermore, the surface tension of NaCl particles decreases as the RH increases. Our experimental findings from the novel nonlinear optical scattering technique stress the importance of interfacial water behaviors on aerosol particles in the atmosphere.
Collapse
Affiliation(s)
- Yuqin Qian
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| | - Gang-Hua Deng
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| | - Jordan Lapp
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| | - Yi Rao
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| |
Collapse
|
38
|
Wan X, Kawamura K, Ram K, Kang S, Loewen M, Gao S, Wu G, Fu P, Zhang Y, Bhattarai H, Cong Z. Aromatic acids as biomass-burning tracers in atmospheric aerosols and ice cores: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:216-228. [PMID: 30677666 DOI: 10.1016/j.envpol.2019.01.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/06/2019] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Biomass burning (BB) is one of the largest sources of carbonaceous aerosols with adverse impacts on air quality, visibility, health and climate. BB emits a few specific aromatic acids (p-hydroxybenzoic, vanillic, syringic and dehydroabietic acids) which have been widely used as key indicators for source identification of BB-derived carbonaceous aerosols in various environmental matrices. In addition, measurement of p-hydroxybenzoic and vanillic acids in snow and ice cores have revealed the historical records of the fire emissions. Despite their uniqueness and importance as tracers, our current understanding of analytical methods, concentrations, diagnostic ratios and degradation processes are rather limited and scattered in literature. In this review paper, firstly we have summarized the most established methods and protocols for the measurement of these aromatic acids in aerosols and ice cores. Secondly, we have highlighted the geographical variability in the abundances of these acids, their diagnostic ratios and degradation processes in the environments. The review of the existing data indicates that the concentrations of aromatic acids in aerosols vary greatly with locations worldwide, typically more abundant in urban atmosphere where biomass fuels are commonly used for residential heating and/or cooking purposes. In contrast, their concentrations are lowest in the polar regions which are avoid of localized emissions and largely influenced by long-range transport. The diagnostic ratios among aromatic acids can be used as good indicators for the relative amounts and types of biomass (e.g. hardwood, softwood and herbaceous plants) as well as photochemical oxidation processes. Although studies suggest that the degradation processes of the aromatic acids may be controlled by light, pH and hygroscopicity, a more careful investigation, including closed chamber studies, is highly appreciated.
Collapse
Affiliation(s)
- Xin Wan
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Kimitaka Kawamura
- Chubu Institute for Advanced Studies, Chubu University, Kasugai, 487-8501, Japan
| | - Kirpa Ram
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China; Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, CAS, Lanzhou, 730000, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101, China
| | - Mark Loewen
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Shaopeng Gao
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Guangming Wu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Yanlin Zhang
- Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Hemraj Bhattarai
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Zhiyuan Cong
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101, China.
| |
Collapse
|
39
|
Woodrow JE, Gibson KA, Seiber JN. Pesticides and Related Toxicants in the Atmosphere. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 247:147-196. [PMID: 30535549 DOI: 10.1007/398_2018_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pesticides and other toxicants released into the environment can contaminate air, water, soil, and biota. This review focuses on sources, exposures, fate, analysis, and trends. The potential for exposures due to atmospheric transport and deposition of pesticides and related contaminants may pose risks to humans and wildlife. Emissions of chemicals to air are related to physicochemical properties (e.g., vapor pressure and chemical stability). Experimental design and computer-based modeling, as related to emissions and dispersion of pesticides along transects downwind from release sources, will be discussed using the example of pesticide volatilization and drift in California agriculture that results in the transport and deposition downwind to the Sierra Nevada mountains, where much work has been done to refine exposure data for use in risk assessment and management. Predictably, those chemicals found frequently in air are those used most extensively, have multiple emission sources, and resist degradation. Yet to be determined are definitive connections with adverse impacts to humans and wildlife, although the accumulating evidence suggests that endocrine disrupting chemicals, ChE inhibitors, and others warrant further attention. Steps that are being taken to limit emissions, such as in pest control and fuel combustion, offer promising opportunities for improving the quality of air and of the overall environment. Chemical degradation rates and products from trace organics in the air merit more attention, as do the potential for activation by photooxidation and bioaccumulation in food chains. The potential effect of climate change, on atmospheric processes affecting contaminant behavior, is an area ripe for further study.
Collapse
Affiliation(s)
| | - Kate A Gibson
- Department of Chemistry, University of California, Davis, CA, USA
| | - James N Seiber
- Department of Environmental Toxicology, University of California, Davis, CA, USA.
| |
Collapse
|
40
|
Arroyo PC, Malecha KT, Ammann M, Nizkorodov SA. Influence of humidity and iron(iii) on photodegradation of atmospheric secondary organic aerosol particles. Phys Chem Chem Phys 2018; 20:30021-30031. [PMID: 30480278 DOI: 10.1039/c8cp03981j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The absorption of solar actinic radiation by atmospheric secondary organic aerosol (SOA) particles drives condensed-phase photochemical processes, which lead to particle mass loss by the production of CO, CO2, hydrocarbons, and various oxygenated volatile organic compounds (OVOCs). We examined the influence of relative humidity (RH) and Fe(iii) content on the OVOC release and subsequent mass loss from secondary organic aerosol material (SOM) during UV irradiation. The samples were generated in a flow tube reactor from the oxidation of d-limonene by ozone. The SOM was collected with a Micro Orifice Uniform Deposit Impactor (MOUDI) on CaF2 windows. To selected samples, a variable amount of FeCl3 was added before irradiation. The resulting SOM samples, with or without added FeCl3, were irradiated with a 305 nm light-emitting diode and the release of several OVOCs, including acetic acid, acetone, formic acid and acetaldehyde, was measured with a Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS). The release of OVOCs from photodegradation of SOM at typical ambient mid-values of RH (30-70%) was 2-4 times higher than under dry conditions. The release of OVOCs was slightly enhanced in the presence of low concentrations of iron (0.04 Fe molar ratio) but it was suppressed at higher concentrations (0.50 Fe molar ratio) of iron indicating the existence of a complicated radical chemistry driving the photodegradation of SOM. Our findings suggest that the presence of iron in atmospheric aerosol particles will either increase or decrease release of OVOCs due to the photodegradation of SOM depending on whether the relative iron concentration is low or high, respectively. At atmospherically relevant RH conditions, the expected fractional mass loss induced by these photochemical processes from limonene SOA particles would be between 2 and 4% of particle mass per hour. Therefore, photodegradation is an important aging mechanism for this type of SOA.
Collapse
Affiliation(s)
- Pablo Corral Arroyo
- Paul Scherrer Institute, Laboratory of Environmental Chemistry, 5232 Villigen PSI, Switzerland
| | | | | | | |
Collapse
|
41
|
Huang DD, Zhang Q, Cheung HHY, Yu L, Zhou S, Anastasio C, Smith JD, Chan CK. Formation and Evolution of aqSOA from Aqueous-Phase Reactions of Phenolic Carbonyls: Comparison between Ammonium Sulfate and Ammonium Nitrate Solutions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9215-9224. [PMID: 29985589 DOI: 10.1021/acs.est.8b03441] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We investigate the effects of sulfate and nitrate on the formation and evolution of secondary organic aerosol formed in the aqueous phase (aqSOA) from photooxidation of two phenolic carbonyls emitted from wood burning. AqSOA was formed efficiently from the photooxidation of both syringaldehyde (C9H10O4) and acetosyringone (C10H12O4) in ammonium sulfate and ammonium nitrate solutions, with mass yields ranging from 30% to 120%. Positive matrix factorization on the organic mass spectra acquired by an Aerosol Mass Spectrometer revealed a combination of functionalization, oligomerization, and fragmentation processes in the chemical evolution of aqSOA. Functionalization and oligomerization dominated in the first 4 h of reaction, with phenolic oligomers and their derivatives significantly contributing to aqSOA formation; and oxidation of the first-generation products led to an abundance of oxygenated ring-opening products. Degradation rates of syringaldehyde and acetosyringone in nitrate solutions were 1.5 and 3.5 times faster than rates in sulfate solutions, and aqSOA yields in nitrate experiments are twice as high as in sulfate experiments. Nitrate likely promoted the reactions because it is a photolytic source of OH radicals, while sulfate is not, highlighting the importance of aerosol-phase nitrate in the formation of aqSOA by facilitating the photooxidation of organic precursors.
Collapse
Affiliation(s)
- Dan Dan Huang
- School of Energy and Environment , City University of Hong Kong , Kowloon , Hong Kong , P. R. China
- Shanghai Academy of Environmental Sciences , Shang Hai 200233 , China
| | - Qi Zhang
- Department of Environmental Toxicology , University of California , Davis , California 95616 , United States
| | - Heidi H Y Cheung
- Division of Environment , Hong Kong of University of Science and Technology , Kowloon , Hong Kong , P. R. China
| | - Lu Yu
- Department of Environmental Toxicology , University of California , Davis , California 95616 , United States
| | - Shan Zhou
- Department of Environmental Toxicology , University of California , Davis , California 95616 , United States
| | - Cort Anastasio
- Department of Land, Air, and Water Resources , University of California , Davis , California 95616 , United States
| | - Jeremy D Smith
- Department of Land, Air, and Water Resources , University of California , Davis , California 95616 , United States
| | - Chak K Chan
- School of Energy and Environment , City University of Hong Kong , Kowloon , Hong Kong , P. R. China
| |
Collapse
|
42
|
Kaur R, Anastasio C. First Measurements of Organic Triplet Excited States in Atmospheric Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5218-5226. [PMID: 29611699 DOI: 10.1021/acs.est.7b06699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Photooxidants chemically transform organic compounds in atmospheric drops and particles. Photooxidants such as hydroxyl radical (•OH) and singlet molecular oxygen (1O2*) have been characterized in cloud and fog drops, but there are no measurements of the triplet excited states of organic matter (3C*). These "triplets", which are formed from excitation of chromophoric dissolved organic matter (CDOM), i.e., brown carbon, are difficult to measure because they are a mixture of species instead of a single entity. Here, we use a two-probe technique to measure the steady-state concentrations, rates of photoformation, and quantum yields of oxidizing triplet states during simulated-sunlight illumination of bulk fog waters. Concentrations of 3C* are (0.70-15) × 10-14 M with an average (±σ) value of 5.0 (±5.1) × 10-14 M. The average 3C* photoformation rate is 130 (±130) μM h-1, while the average quantum yield is 3.7 (±4.5)%. Based on our previous measurements of •OH and 1O2* in the same fog samples, the ratio of the steady-state concentrations for 1O2*:3C*:•OH is approximately 3:1:0.04, respectively. At our measured concentrations, triplet excited states can be the dominant aqueous oxidants for organic compounds such as phenols from biomass combustion.
Collapse
|
43
|
Arnold WA, Oueis Y, O'Connor M, Rinaman JE, Taggart MG, McCarthy RE, Foster KA, Latch DE. QSARs for phenols and phenolates: oxidation potential as a predictor of reaction rate constants with photochemically produced oxidants. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:324-338. [PMID: 27942650 DOI: 10.1039/c6em00580b] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Quantitative structure-activity relationships (QSARs) for prediction of the reaction rate constants of phenols and phenolates with three photochemically produced oxidants, singlet oxygen, carbonate radical, and triplet excited state sensitizers/organic matter, are developed. The predictive variable is the one-electron oxidation potential (E1), which is calculated for each species using density functional theory. The reaction rate constants are obtained from the literature, and for singlet oxygen, are augmented with new experimental data. Calculated E1 values have a mean unsigned error compared to literature values of 0.04-0.06 V. For singlet oxygen, a single linear QSAR that includes both phenols and phenolates is developed that predicts experimental rate constants, on average, to within a factor of three. Predictions for only 6 out of 87 compounds are off by more than a factor of 10. A more limited data set for carbonate radical reactions with phenols and phenolates also gives a single linear QSAR with prediction of rate constant being accurate to within a factor of three. The data for the reactions of phenols with triplet state sensitizers demonstrate that two sensitizers, 2-acetonaphthone and methylene blue, most closely predict the reactivity trend of triplet excited state organic matter with phenols. Using sensitizers with stronger reduction potentials could lead to overestimation of rate constants and thus underestimation of phenolic pollutant persistence.
Collapse
Affiliation(s)
- William A Arnold
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455-0116, USA.
| | - Yan Oueis
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455-0116, USA.
| | - Meghan O'Connor
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455-0116, USA.
| | - Johanna E Rinaman
- Department of Chemistry, Seattle University, 901 12th Avenue, Seattle, WA 98122, USA.
| | - Miranda G Taggart
- Department of Chemistry, Seattle University, 901 12th Avenue, Seattle, WA 98122, USA.
| | - Rachel E McCarthy
- Department of Chemistry, Seattle University, 901 12th Avenue, Seattle, WA 98122, USA.
| | - Kimberley A Foster
- Department of Chemistry, Seattle University, 901 12th Avenue, Seattle, WA 98122, USA.
| | - Douglas E Latch
- Department of Chemistry, Seattle University, 901 12th Avenue, Seattle, WA 98122, USA.
| |
Collapse
|
44
|
Lin PC, Wu ZH, Chen MS, Li YL, Chen WR, Huang TP, Lee YY, Wang CC. Interfacial Solvation and Surface pH of Phenol and Dihydroxybenzene Aqueous Nanoaerosols Unveiled by Aerosol VUV Photoelectron Spectroscopy. J Phys Chem B 2017; 121:1054-1067. [PMID: 28055205 DOI: 10.1021/acs.jpcb.6b10201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although the significance of aqueous interfaces has been recognized in numerous important fields, it can be even more prominent for nanoscaled aqueous aerosols because of their large surface-to-volume ratios and prevalent existence in nature. Also, considering that organic species are often mixed with aqueous aerosols in nature, a fundamental understanding of the electronic and structural properties of organic species in aqueous nanoaerosols is essential to learn the interplay between water and organic solutes under the nanoscaled size regime. Here, we report for the first time the vacuum ultraviolet photoelectron spectroscopy of phenol and three dihydroxybenzene (DHB) isomers including catechol, resorcinol, and hydroquinone in the aqueous nanoaerosol form. By evaluating two photoelectron features of the lowest vertical ionization energies originated from the b1(π) and a2(π) orbitals for phenolic aqueous nanoaerosols, their interfacial solvation characteristics are unraveled. Phenolic species appear to reside primarily on/near the aqueous nanoaerosol interface, where they appear only partially hydrated on the aqueous interface with the hydrophilic hydroxyl group more solvated in water. An appreciable proportion of phenol is found to coexist with phenolate at/near the nanoaerosol interface even under a high bulk pH of 12.0, indicating that the nanoaerosol interface exhibits a composition distribution and pH drastically different from those of the bulk. The surface pH of phenol-containing aqueous nanoaerosols is found to be ∼2.2 ± 0.1 units more acidic than that of the bulk interior, as measured at the bulk pH of 12.0. From the photoelectron spectra of DHB aqueous nanoaerosols, the effects of numbers/arrangements of -OH groups are assessed. This study shows that the hydration extents, pH values, deprotonation status, and numbers/relative arrangements of -OH groups are crucial factors affecting the ionization energies of phenolic aqueous nanoaerosols and thus their redox-based activities. The multifaceted implications of the present study in the aerosol science, atmospheric/marine chemistry, and biological science are also addressed.
Collapse
Affiliation(s)
| | | | | | | | | | - Tzu-Ping Huang
- National Synchrotron Radiation Research Center , Hsinchu, Taiwan 30076, ROC
| | - Yin-Yu Lee
- National Synchrotron Radiation Research Center , Hsinchu, Taiwan 30076, ROC
| | | |
Collapse
|
45
|
Chen Z, Anastasio C. Concentrations of a triplet excited state are enhanced in illuminated ice. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:12-21. [PMID: 28060386 DOI: 10.1039/c6em00534a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Photochemical reactions influence the fates and lifetimes of organic compounds in snow and ice, both through direct photoreactions and via photoproduced transient species such as hydroxyl radical (˙OH) and, perhaps, triplet excited states of organic compounds (i.e., triplets). While triplets can be important oxidants in atmospheric drops and surface waters, little is known of this class of oxidants in frozen samples. To investigate this, we examined the photoreaction of phenol with the triplet state of 3,4-dimethoxybenzaldehyde (3DMB*), a product from biomass combustion, in illuminated laboratory ices. Our results show that the rate of phenol loss due to 3DMB* is, on average, increased by a factor of 95 ± 50 in ice compared to the equivalent liquid sample. We find that this experimentally measured freeze concentration factor, FEXP, is independent of total solute concentration and temperature, in contrast to what is expected from a liquid-like region whose composition follows freezing point depression. We also find that FEXP for triplets is independent of pH, although the rates of phenol loss increase with decreasing pH in both solution and ice. The enhancement in the rate of phenol loss in/on ice indicates that concentrations of triplet excited states are enhanced in ice relative to solution and suggests that this class of oxidants might be a significant sink for organics in snow and ice.
Collapse
Affiliation(s)
- Zeyuan Chen
- Department of Land, Air and Water Resources, University of California, Davis, 1 Shields Ave., Davis, CA 95616, USA. and Atmospheric Science Graduate Group, University of California, Davis, 1 Shields Ave., Davis, CA, USA
| | - Cort Anastasio
- Department of Land, Air and Water Resources, University of California, Davis, 1 Shields Ave., Davis, CA 95616, USA. and Atmospheric Science Graduate Group, University of California, Davis, 1 Shields Ave., Davis, CA, USA
| |
Collapse
|
46
|
Finlayson-Pitts BJ. Introductory lecture: atmospheric chemistry in the Anthropocene. Faraday Discuss 2017; 200:11-58. [DOI: 10.1039/c7fd00161d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The term “Anthropocene” was coined by Professor Paul Crutzen in 2000 to describe an unprecedented era in which anthropogenic activities are impacting planet Earth on a global scale. Greatly increased emissions into the atmosphere, reflecting the advent of the Industrial Revolution, have caused significant changes in both the lower and upper atmosphere. Atmospheric reactions of the anthropogenic emissions and of those with biogenic compounds have significant impacts on human health, visibility, climate and weather. Two activities that have had particularly large impacts on the troposphere are fossil fuel combustion and agriculture, both associated with a burgeoning population. Emissions are also changing due to alterations in land use. This paper describes some of the tropospheric chemistry associated with the Anthropocene, with emphasis on areas having large uncertainties. These include heterogeneous chemistry such as those of oxides of nitrogen and the neonicotinoid pesticides, reactions at liquid interfaces, organic oxidations and particle formation, the role of sulfur compounds in the Anthropocene and biogenic–anthropogenic interactions. A clear and quantitative understanding of the connections between emissions, reactions, deposition and atmospheric composition is central to developing appropriate cost-effective strategies for minimizing the impacts of anthropogenic activities. The evolving nature of emissions in the Anthropocene places atmospheric chemistry at the fulcrum of determining human health and welfare in the future.
Collapse
|
47
|
Chen Q, Miyazaki Y, Kawamura K, Matsumoto K, Coburn S, Volkamer R, Iwamoto Y, Kagami S, Deng Y, Ogawa S, Ramasamy S, Kato S, Ida A, Kajii Y, Mochida M. Characterization of Chromophoric Water-Soluble Organic Matter in Urban, Forest, and Marine Aerosols by HR-ToF-AMS Analysis and Excitation-Emission Matrix Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:10351-10360. [PMID: 27518497 DOI: 10.1021/acs.est.6b01643] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Chromophoric water-soluble organic matter in atmospheric aerosols potentially plays an important role in aqueous reactions and light absorption by organics. The fluorescence and chemical-structural characteristics of the chromophoric water-soluble organic matter in submicron aerosols collected in urban, forest, and marine environments (Nagoya, Kii Peninsula, and the tropical Eastern Pacific) were investigated using excitation-emission matrices (EEMs) and a high-resolution aerosol mass spectrometer. A total of three types of water-soluble chromophores, two with fluorescence characteristics similar to those of humiclike substances (HULIS-1 and HULIS-2) and one with fluorescence characteristics similar to those of protein compounds (PLOM), were identified in atmospheric aerosols by parallel factor analysis (PARAFAC) for EEMs. We found that the chromophore components of HULIS-1 and -2 were associated with highly and less-oxygenated structures, respectively, which may provide a clue to understanding the chemical formation or loss of organic chromophores in atmospheric aerosols. Whereas HULIS-1 was ubiquitous in water-soluble chromophores over different environments, HULIS-2 was abundant only in terrestrial aerosols, and PLOM was abundant in marine aerosols. These findings are useful for further studies regarding the classification and source identification of chromophores in atmospheric aerosols.
Collapse
Affiliation(s)
| | - Yuzo Miyazaki
- Institute of Low Temperature Science, Hokkaido University , Sapporo 060-0819, Japan
| | - Kimitaka Kawamura
- Institute of Low Temperature Science, Hokkaido University , Sapporo 060-0819, Japan
| | - Kiyoshi Matsumoto
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi , Kofu 400-8510, Japan
| | | | | | | | | | | | | | - Sathiyamurthi Ramasamy
- Graduate School of Global Environmental Studies, Kyoto University , Kyoto 606-8501, Japan
| | - Shungo Kato
- Department of Applied Chemistry, Tokyo Metropolitan University , Tokyo 192-0397, Japan
| | - Akira Ida
- Graduate School of Global Environmental Studies, Kyoto University , Kyoto 606-8501, Japan
| | - Yoshizumi Kajii
- Graduate School of Global Environmental Studies, Kyoto University , Kyoto 606-8501, Japan
- Center for Regional Environmental Research, National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | | |
Collapse
|
48
|
Frka S, Šala M, Kroflič A, Huš M, Čusak A, Grgić I. Quantum Chemical Calculations Resolved Identification of Methylnitrocatechols in Atmospheric Aerosols. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:5526-35. [PMID: 27136117 DOI: 10.1021/acs.est.6b00823] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Methylnitrocatechols (MNCs) are secondary organic aerosol (SOA) tracers and major contributors to atmospheric brown carbon; however, their formation and aging processes in atmospheric waters are unknown. To investigate the importance of aqueous-phase electrophilic substitution of 3-methylcatechol with nitronium ion (NO2(+)), we performed quantum calculations of their favorable pathways. The calculations predicted the formation of 3-methyl-5-nitrocatechol (3M5NC), 3-methyl-4-nitrocatechol (3M4NC), and a negligible amount of 3-methyl-6-nitrocatechol (3M6NC). MNCs in atmospheric PM2 samples were further inspected by LC/(-)ESI-MS/MS using commercial as well as de novo synthesized authentic standards. We detected 3M5NC and, for the first time, 3M4NC. In contrast to previous reports, 3M6NC was not observed. Agreement between calculated and observed 3M5NC/3M4NC ratios cannot unambiguously confirm the electrophilic mechanism as the exclusive formation pathway of MNCs in aerosol water. However, the examined nitration by NO2(+) is supported by (1) the absence of 3M6NC in the ambient aerosols analyzed and (2) the constant 3M5NC/3M4NC ratio in field aerosol samples, which indicates their common formation pathway. The magnitude of error one could make by incorrectly identifying 3M4NC as 3M6NC in ambient aerosols was also assessed, suggesting the importance of evaluating the literature regarding MNCs with special care.
Collapse
Affiliation(s)
- Sanja Frka
- Analytical Chemistry Laboratory, National Institute of Chemistry , 1000 Ljubljana, Slovenia
- Division for Marine and Environmental Research, Ruđer Bošković Institute , 10000 Zagreb, Croatia
| | - Martin Šala
- Analytical Chemistry Laboratory, National Institute of Chemistry , 1000 Ljubljana, Slovenia
| | - Ana Kroflič
- Analytical Chemistry Laboratory, National Institute of Chemistry , 1000 Ljubljana, Slovenia
| | - Matej Huš
- Laboratory of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry , 1000 Ljubljana, Slovenia
| | - Alen Čusak
- Alkemika, Ltd. , 3000 Celje, Slovenia
- Acies Bio, Ltd. , 1000 Ljubljana, Slovenia
| | - Irena Grgić
- Analytical Chemistry Laboratory, National Institute of Chemistry , 1000 Ljubljana, Slovenia
| |
Collapse
|
49
|
Zangrando R, Barbaro E, Vecchiato M, Kehrwald NM, Barbante C, Gambaro A. Levoglucosan and phenols in Antarctic marine, coastal and plateau aerosols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 544:606-616. [PMID: 26674690 DOI: 10.1016/j.scitotenv.2015.11.166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/27/2015] [Accepted: 11/29/2015] [Indexed: 06/05/2023]
Abstract
Due to its isolated location, Antarctica is a natural laboratory for studying atmospheric aerosols and pollution in remote areas. Here, we determined levoglucosan and phenolic compounds (PCs) at diverse Antarctic sites: on the plateau, a coastal station and during an oceanographic cruise. Levoglucosan and PCs reached the Antarctic plateau where they were observed in accumulation mode aerosols (with median levoglucosan concentrations of 6.4 pg m(-3) and 4.1 pg m(-3), and median PC concentrations of 15.0 pg m(-3) and 7.3 pg m(-3)). Aged aerosols arrived at the coastal site through katabatic circulation with the majority of the levoglucosan mass distributed on larger particulates (24.8 pg m(-3)), while PCs were present in fine particles (34.0 pg m(-3)). The low levoglucosan/PC ratios in Antarctic aerosols suggest that biomass burning aerosols only had regional, rather than local, sources. General acid/aldehyde ratios were lower at the coastal site than on the plateau. Levoglucosan and PCs determined during the oceanographic cruise were 37.6 pg m(-3) and 58.5 pg m(-3) respectively. Unlike levoglucosan, which can only be produced by biomass burning, PCs have both biomass burning and other sources. Our comparisons of these two types of compounds across a range of Antarctic marine, coastal, and plateau sites demonstrate that local marine sources dominate Antarctic PC concentrations.
Collapse
Affiliation(s)
- Roberta Zangrando
- Institute for the Dynamics of Environmental Processes CNR, Via Torino 155, 30170 Venezia, Mestre, Italy.
| | - Elena Barbaro
- Institute for the Dynamics of Environmental Processes CNR, Via Torino 155, 30170 Venezia, Mestre, Italy; Department of Environmental Sciences, Informatics and Statistics, University of Venice, Ca' Foscari, Calle, Via Torino 155, 30170 Venezia, Mestre, Italy
| | - Marco Vecchiato
- Department of Environmental Sciences, Informatics and Statistics, University of Venice, Ca' Foscari, Calle, Via Torino 155, 30170 Venezia, Mestre, Italy
| | - Natalie M Kehrwald
- Department of Environmental Sciences, Informatics and Statistics, University of Venice, Ca' Foscari, Calle, Via Torino 155, 30170 Venezia, Mestre, Italy
| | - Carlo Barbante
- Institute for the Dynamics of Environmental Processes CNR, Via Torino 155, 30170 Venezia, Mestre, Italy
| | - Andrea Gambaro
- Institute for the Dynamics of Environmental Processes CNR, Via Torino 155, 30170 Venezia, Mestre, Italy; Department of Environmental Sciences, Informatics and Statistics, University of Venice, Ca' Foscari, Calle, Via Torino 155, 30170 Venezia, Mestre, Italy
| |
Collapse
|
50
|
Liang CS, Duan FK, He KB, Ma YL. Review on recent progress in observations, source identifications and countermeasures of PM2.5. ENVIRONMENT INTERNATIONAL 2016; 86:150-170. [PMID: 26595670 DOI: 10.1016/j.envint.2015.10.016] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 10/27/2015] [Accepted: 10/29/2015] [Indexed: 06/05/2023]
Abstract
Recently, PM2.5 (atmospheric fine particulate matter with aerodynamic diameter ≤ 2.5 μm) have received so much attention that the observations, source appointment and countermeasures of it have been widely studied due to its harmful impacts on visibility, mood (mental health), physical health, traffic safety, construction, economy and nature, as well as its complex interaction with climate. A review on the PM2.5 related research is necessary. We start with summary of chemical composition and characteristics of PM2.5 that contains both macro and micro observation results and analysis, wherein the temporal variability of concentrations of PM2.5 and major components in many recent reports is embraced. This is closely followed by an overview of source appointment, including the composition and sources of PM2.5 in different countries in the six inhabitable continents based on the best available results. Besides summarizing PM2.5 pollution countermeasures by policy, planning, technology and ideology, the World Air Day is proposed to be established to inspire and promote the crucial social action in energy-saving and emission-reduction. Some updated knowledge of the important topics (such as formation and evolution mechanisms of hazes, secondary aerosols, aerosol mass spectrometer, organic tracers, radiocarbon, emissions, solutions for air pollution problems, etc.) is also included in the present review by logically synthesizing the studies. In addition, the key research challenges and future directions are put forward. Despite our efforts, our understanding of the recent reported observations, source identifications and countermeasures of PM2.5 is limited, and subsequent efforts both of the authors and readers are needed.
Collapse
Affiliation(s)
- Chun-Sheng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Feng-Kui Duan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Ke-Bin He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Tsinghua University, Beijing 100084, China.
| | - Yong-Liang Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Tsinghua University, Beijing 100084, China
| |
Collapse
|