1
|
Yao KS, Van de Perre D, Lei HJ, Bai H, Zhou PL, Ying GG, Van den Brink PJ. Assessing ecological responses of exposure to the pyrethroid insecticide lambda-cyhalothrin in sub-tropical freshwater ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:176022. [PMID: 39236830 DOI: 10.1016/j.scitotenv.2024.176022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Pyrethroid insecticides are widely detected in aquatic ecosystems due to their extensive use in agriculture and horticulture, which could pose a potential risk to aquatic non-target organisms. While previous ecotoxicological studies have been conducted mainly with standard tests and local species under temperate conditions, scarce information is available on the effects of pyrethroid insecticides on communities and ecosystems under (sub-)tropical conditions. A single application of lambda-cyhalothrin at concentrations of 0, 9, 30, and 100 ng/L was evaluated in outdoor mesocosms under sub-tropical conditions. Lambda-cyhalothrin was found to dissipate rapidly in the water column, with only 11 % and 7 % of the remaining dose measured at 1 and 3 days after application, respectively. Lambda-cyhalothrin concentrations disappeared considerably faster from the water compartment compared to temperate conditions. Consistent decreases in abundance were observed for Lecane lunaris at the medium and higher treatments (NOEC = 9 ng/L) and at the highest treatment (NOEC = 30 ng/L) for Keratella tropica. On the contrary, two taxa belonging to Cladocera (i.e., Ceriodaphnia sp. and Diaphanosoma sp.) showed the most prominent increase in abundance related to the lambda-cyhalothrin treatments. At the community level, a consistent no observed effect concentrations (NOECs) of 9 ng/L could be calculated for the zooplankton community. A marginal significant overall treatment related effect was observed for the macroinvertebrate community. The results of species sensitivity distribution (SSD) analysis based on results of acute toxicity experiments conducted alongside the mesocosm experiment and obtained from the literature indicated that macroinvertebrates from temperate regions may be generally more sensitive than their counterparts in (sub-)tropical regions. Overall, these findings suggest that environmentally relevant concentrations of the pyrethroid insecticide lambda-cyhalothrin may lead to different ecological outcomes in freshwater ecosystems in the (sub-)tropics relative to temperate regions.
Collapse
Affiliation(s)
- Kai-Sheng Yao
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Dimitri Van de Perre
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Hao-Jun Lei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Hong Bai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Pei-Liang Zhou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
2
|
Römer CI, Ashauer R, Escher BI, Höfer K, Muehlebach M, Sadeghi-Tehran P, Sherborne N, Buchholz A. Fate of synthetic chemicals in the agronomic insect pest Spodoptera littoralis: experimental feeding-contact assay and toxicokinetic model. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:982-992. [PMID: 38691062 DOI: 10.1093/jee/toae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
Insecticides prevent or reduce insect crop damage, maintaining crop quality and quantity. Physiological traits, such as an insect's feeding behavior, influence the way insecticides are absorbed and processed in the body (toxicokinetics), which can be exploited to improve species selectivity. To fully understand the uptake of insecticides, it is essential to study their total uptake and toxicokinetics independent of their toxic effects on insects. We studied the toxicokinetics (TK) of insecticidally inactive test compounds incorporating agro-like structural motifs in larvae of the Egyptian cotton leafworm (Spodoptera littoralis, Lepidoptera), and their distribution across all biological matrices, using laboratory experiments and modeling. We measured Spodoptera larval behavior and temporal changes of whole-body concentrations of test compounds during feeding on treated soybean leaf disks and throughout a subsequent depuration period. Differences in the distribution of the total quantities of compounds were found between the biological matrices leaf, larva, and feces. Rate constants for uptake and elimination of test compounds were derived by calibrating a toxicokinetic model to the whole-body concentrations. Uptake and elimination rate constants depended on the physicochemical properties of the test compounds. Increasing hydrophobicity increased the bioaccumulation potential of test compounds. Incomplete quantities in larval matrices indicated that some compounds may undergo biotransformation. As fecal excretion was a major elimination pathway, the variable time of release and number of feces pellets led to a high variability in the body burden. We provide quantitative models to predict the toxicokinetics and bioaccumulation potential of inactive insecticide analogs (parent compounds) in Spodoptera.
Collapse
Affiliation(s)
- Clara I Römer
- Syngenta Crop Protection AG, Research Biology & Chemistry, Stein CH-4332, Switzerland
- Department of Geosciences, Eberhard Karls University Tübingen, Environmental Toxicology, Tübingen 72076, Germany
| | - Roman Ashauer
- Syngenta Crop Protection AG, Basel 4058, Switzerland
- Environment Department, University of York, Wentworth Way, Heslington, York YO10 5NG, UK
| | - Beate I Escher
- Department of Geosciences, Eberhard Karls University Tübingen, Environmental Toxicology, Tübingen 72076, Germany
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig 04318, Germany
| | - Kristin Höfer
- Syngenta Crop Protection AG, Research Biology & Chemistry, Stein CH-4332, Switzerland
| | - Michel Muehlebach
- Syngenta Crop Protection AG, Research Biology & Chemistry, Stein CH-4332, Switzerland
| | - Pouria Sadeghi-Tehran
- Syngenta Crop Protection AG, Research Biology & Chemistry, Stein CH-4332, Switzerland
| | | | - Anke Buchholz
- Syngenta Crop Protection AG, Research Biology & Chemistry, Stein CH-4332, Switzerland
| |
Collapse
|
3
|
Wu F, Zhang S, Li H, Liu P, Su H, Zhang Y, Brooks BW, You J. Toxicokinetics Explain Differential Freshwater Ecotoxicity of Nanoencapsulated Imidacloprid Compared to Its Conventional Active Ingredient. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9548-9558. [PMID: 38778038 DOI: 10.1021/acs.est.4c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Agricultural applications of nanotechnologies necessitate addressing safety concerns associated with nanopesticides, yet research has not adequately elucidated potential environmental risks between nanopesticides and their conventional counterparts. To address this gap, we investigated the risk of nanopesticides by comparing the ecotoxicity of nanoencapsulated imidacloprid (nano-IMI) with its active ingredient to nontarget freshwater organisms (embryonic Danio rerio, Daphnia magna, and Chironomus kiinensis). Nano-IMI elicited approximately 5 times higher toxicity than IMI to zebrafish embryos with and without chorion, while no significant difference was observed between the two invertebrates. Toxicokinetics further explained the differential toxicity patterns of the two IMI analogues. One-compartmental two-phase toxicokinetic modeling showed that nano-IMI exhibited significantly slower elimination and subsequently higher bioaccumulation potential than IMI in zebrafish embryos (dechorinated), while no disparity in toxicokinetics was observed between nano-IMI and IMI in D. magna and C. kiinensis. A two-compartmental toxicokinetic model successfully simulated the slow elimination of IMI from C. kiinensis and confirmed that both analogues of IMI reached toxicologically relevant targets at similar levels. Although nanopesticides exhibit comparable or elevated toxicity, future work is of utmost importance to properly understand the life cycle risks from production to end-of-life exposures, which helps establish optimal management measures before their widespread applications.
Collapse
Affiliation(s)
- Fan Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Shaoqiong Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Huizhen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Peipei Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Hang Su
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Yueyang Zhang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta 11455, Canada
| | - Bryan W Brooks
- Department of Environmental Science, Institute of Biomedical Studies, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas 76798, United States
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| |
Collapse
|
4
|
Tison L, Beaumelle L, Monceau K, Thiéry D. Transfer and bioaccumulation of pesticides in terrestrial arthropods and food webs: State of knowledge and perspectives for research. CHEMOSPHERE 2024; 357:142036. [PMID: 38615963 DOI: 10.1016/j.chemosphere.2024.142036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Arthropods represent an entry point for pesticide transfers in terrestrial food webs, and pesticide accumulation in upper chain organisms, such as predators can have cascading consequences on ecosystems. However, the mechanisms driving pesticide transfer and bioaccumulation in food webs remain poorly understood. Here we review the literature on pesticide transfers mediated by terrestrial arthropods in food webs. The transfer of pesticides and their potential for bioaccumulation and biomagnification are related to the chemical properties and toxicokinetic of the substances, the resistance and detoxification abilities of the contaminated organisms, as well as by their effects on organisms' life history traits. We further identify four critical areas in which knowledge gain would improve future predictions of pesticides impacts on terrestrial food webs. First, efforts should be made regarding the effects of co-formulants and pesticides mixtures that are currently understudied. Second, progress in the sensitivity of analytical methods would allow the detection of low concentrations of pesticides in small individual arthropods. Quantifying pesticides in arthropods preys, their predators, and arthropods or vertebrates at higher trophic level would bring crucial insights into the bioaccumulation and biomagnification potential of pesticides in real-world terrestrial food webs. Finally, quantifying the influence of the trophic structure and complexity of communities on the transfer of pesticides could address several important sources of variability in bioaccumulation and biomagnification across species and food webs. This narrative review will inspire future studies aiming to quantify pesticide transfers in terrestrial food webs to better capture their ecological consequences in natural and cultivated landscapes.
Collapse
Affiliation(s)
- Léa Tison
- INRAE, UMR1065 SAVE, 33140, Villenave d'Ornon, France; Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366, OENO, ISVV, 33140, Villenave d'Ornon, France.
| | - Léa Beaumelle
- INRAE, UMR1065 SAVE, 33140, Villenave d'Ornon, France; CNRS, Université Toulouse III Paul Sabatier, 31062, Toulouse, France
| | - Karine Monceau
- UMR CNRS 7372 CEBC - La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Denis Thiéry
- INRAE, UMR1065 SAVE, 33140, Villenave d'Ornon, France
| |
Collapse
|
5
|
Liu F, Li H, Zhang X, Hu H, Yuan B, You J. Quantitative differentiation of toxicity contributions and predicted global risk of fipronil and its transformation products to aquatic invertebrates. WATER RESEARCH 2024; 255:121461. [PMID: 38508043 DOI: 10.1016/j.watres.2024.121461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024]
Abstract
Biotransformation often alters chemical toxicity, yet its impacts on risk assessment are hardly quantified due to the challenges in acquiring internal exposure-based thresholds for chemicals that are readily metabolizable. Here, we integrated toxic unit and toxicokinetics to quantitatively assess toxicity contributions and potential risk of both parent compound and transformation products (TPs) to aquatic organisms, using fipronil (FIP) as a representative toxicant. In aquatic invertebrates Chironomus dilutus and Hyalella azteca, approximately 90 % of FIP was transformed to fipronil sulfone (SUL). FIP and SUL exhibited similar intrinsic toxicity to these organisms, which was contrary to conventional perception that SUL was more toxic than FIP. However, biotransformation was still important in risk assessment because the TP had 10-fold slower depuration rate than FIP. The amphipod H. azteca was found to be as sensitive to FIPs as the insect C. dilutus, which was previously considered ten times more sensitive based on external thresholds. This discrepancy has led to overlooking the toxicity of FIP to H. azteca in regional risk assessments. Lastly, we predicted the lethal risk of FIPs in global surface water. When using external thresholds for prediction, FIPs in 3.4 % of the water samples were lethally toxic to H. azteca, and the percentage of water samples at risk increased to 14 % when internal thresholds were used and SUF dominated the risk. This study presents an improved method for quantifying aquatic risk of readily metabolized toxicants. Our findings underscore the urgency of considering TPs in water quality assessments, especially for sensitive species that are at risk in the environment.
Collapse
Affiliation(s)
- Fen Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Huizhen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| | - Xiaolei Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Hao Hu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Biyao Yuan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
6
|
Margiotta-Casaluci L, Owen SF, Winter MJ. Cross-Species Extrapolation of Biological Data to Guide the Environmental Safety Assessment of Pharmaceuticals-The State of the Art and Future Priorities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:513-525. [PMID: 37067359 DOI: 10.1002/etc.5634] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/23/2023] [Accepted: 04/13/2023] [Indexed: 05/27/2023]
Abstract
The extrapolation of biological data across species is a key aspect of biomedical research and drug development. In this context, comparative biology considerations are applied with the goal of understanding human disease and guiding the development of effective and safe medicines. However, the widespread occurrence of pharmaceuticals in the environment and the need to assess the risk posed to wildlife have prompted a renewed interest in the extrapolation of pharmacological and toxicological data across the entire tree of life. To address this challenge, a biological "read-across" approach, based on the use of mammalian data to inform toxicity predictions in wildlife species, has been proposed as an effective way to streamline the environmental safety assessment of pharmaceuticals. Yet, how effective has this approach been, and are we any closer to being able to accurately predict environmental risk based on known human risk? We discuss the main theoretical and experimental advancements achieved in the last 10 years of research in this field. We propose that a better understanding of the functional conservation of drug targets across species and of the quantitative relationship between target modulation and adverse effects should be considered as future research priorities. This pharmacodynamic focus should be complemented with the application of higher-throughput experimental and computational approaches to accelerate the prediction of internal exposure dynamics. The translation of comparative (eco)toxicology research into real-world applications, however, relies on the (limited) availability of experts with the skill set needed to navigate the complexity of the problem; hence, we also call for synergistic multistakeholder efforts to support and strengthen comparative toxicology research and education at a global level. Environ Toxicol Chem 2024;43:513-525. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Luigi Margiotta-Casaluci
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Stewart F Owen
- Global Sustainability, AstraZeneca, Macclesfield, Cheshire, United Kingdom
| | - Matthew J Winter
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, United Kingdom
| |
Collapse
|
7
|
Liang R, Sinclair TM, Craig PS, Maltby L. Spatial variation in the sensitivity of freshwater macroinvertebrate assemblages to chemical stressors. WATER RESEARCH 2024; 248:120854. [PMID: 37992635 DOI: 10.1016/j.watres.2023.120854] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
Assessing spatial variation in the chemical sensitivity of natural assemblages will enhance ecological relevance and reduce uncertainty in ecological risk assessments and the derivation of environmental quality standards (EQSs). However, the majority of species in natural communities have not undergone toxicity testing for any chemical, which poses a major challenge when assessing their sensitivity. We investigated spatial variation and patterns in the sensitivity of 4084 freshwater macroinvertebrate assemblages across England to 5 general-acting chemicals (heavy metals) and 13 specifically acting chemicals (insecticides) using a novel hierarchical species sensitivity distribution method based on taxonomic relatedness. Furthermore, we explored how river typology relates to spatial variation in assemblage sensitivity to chemicals and the potential impacts of such variation on current EQSs. Our findings revealed that, whereas assemblages with similar taxonomic compositions exhibit comparable sensitivity distributions, assemblages with different taxonomic compositions could have very similar or very different sensitivity distributions. The variation in assemblage sensitivity was greater for specifically acting chemicals than for general-acting chemicals and exhibited spatial clustering patterns. These spatial clustering patterns varied depending on the chemical, and the regions where assemblages were most sensitive to metals were generally not the same as the regions where assemblages were most sensitive to insecticides. Spatial variation in assemblage sensitivity was related to river typology with sensitive assemblages being more common than expected in lowland calcareous (or mixed geology) rivers within very small to small catchments. Comparing spatial variation in assemblage-specific chemical sensitivity to EQSs, we found that the operational EQSs in England would protect most study assemblages (i.e., > 99.5 %), although a small proportion of assemblages may face potential risks associated with azinphos-methyl, copper, and malathion. In many cases the EQSs were very precautionary, potentially requiring expensive control measures or restricting beneficial chemical use with no additional environmental benefit. The development of spatially defined EQSs, possibly based on river types, could be developed to target areas that require the highest level of protection and thus strike a balance between the benefits of chemical use and environmental protection.
Collapse
Affiliation(s)
- Ruoyu Liang
- School of Biosciences, The University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, United Kingdom.
| | - Thomas M Sinclair
- School of Biosciences, The University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Peter S Craig
- Department of Mathematical Sciences, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Lorraine Maltby
- School of Biosciences, The University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
8
|
Raths J, Pinto FE, Janfelt C, Hollender J. Elucidating the spatial distribution of organic contaminants and their biotransformation products in amphipod tissue by MALDI- and DESI-MS-imaging. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115468. [PMID: 37738825 DOI: 10.1016/j.ecoenv.2023.115468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 09/24/2023]
Abstract
The application of mass spectrometry imaging (MSI) is a promising tool to analyze the spatial distribution of organic contaminants in organisms and thereby improve the understanding of toxicokinetic and toxicodynamic processes. MSI is a common method in medical research but has been rarely applied in environmental science. In the present study, the suitability of MSI to assess the spatial distribution of organic contaminants and their biotransformation products (BTPs) in the aquatic invertebrate key species Gammarus pulex was studied. Gammarids were exposed to a mixture of common organic contaminants (carbamazepine, citalopram, cyprodinil, efavirenz, fluopyram and terbutryn). The distribution of the parent compounds and their BTPs in the organisms was analyzed by two MSI methods (MALDI- and DESI-HRMSI) after cryo-sectioning, and by LC-HRMS/MS after dissection into different organ compartments. The spatial distribution of contaminats in gammarid tissue could be successfully analyzed by the different analytical methods. The intestinal system was identified as the main site of biotransformation, possibly due to the presence of biotransforming enzymes. LC-HRMS/MS was more sensitive and provided higher confidence in BTP identification due to chromatographic separation and MS/MS. DESI was found to be the more sensitive MSI method for the analyzed contaminants, whereas additional biomarkers were found using MALDI. The results demonstrate the suitability of MSI for investigations on the spatial distribution of accumulated organic contaminants. However, both MSI methods required high exposure concentrations. Further improvements of ionization methods would be needed to address environmentally relevant concentrations.
Collapse
Affiliation(s)
- Johannes Raths
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology - Eawag, Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - Fernanda E Pinto
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Christian Janfelt
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Juliane Hollender
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology - Eawag, Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
9
|
Raths J, Schnurr J, Bundschuh M, Pinto FE, Janfelt C, Hollender J. Importance of Dietary Uptake for in Situ Bioaccumulation of Systemic Fungicides Using Gammarus pulex as a Model Organism. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1993-2006. [PMID: 36946554 DOI: 10.1002/etc.5615] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/01/2023] [Accepted: 03/17/2023] [Indexed: 05/23/2023]
Abstract
Bioaccumulation of organic contaminants from contaminated food sources might pose an underestimated risk toward shredding invertebrates. This assumption is substantiated by monitoring studies observing discrepancies of predicted tissue concentrations determined from laboratory-based experiments compared with measured concentrations of systemic pesticides in gammarids. To elucidate the role of dietary uptake in bioaccumulation, gammarids were exposed to leaf material from trees treated with a systemic fungicide mixture (azoxystrobin, cyprodinil, fluopyram, and tebuconazole), simulating leaves entering surface waters in autumn. Leaf concentrations, spatial distribution, and leaching behavior of fungicides were characterized using liquid chromatography coupled with high-resolution tandem mass spectrometry (LC-HRMS/MS) and matrix-assisted laser desorption ionization-mass spectrometric imaging. The contribution of leached fungicides and fungicides taken up from feeding was assessed by assembling caged (no access) and uncaged (access to leaves) gammarids. The fungicide dynamics in the test system were analyzed using LC-HRMS/MS and toxicokinetic modeling. In addition, a summer scenario was simulated where water was the initial source of contamination and leaves contaminated by sorption. The uptake, translocation, and biotransformation of systemic fungicides by trees were compound-dependent. Internal fungicide concentrations of gammarids with access to leaves were much higher than in caged gammarids of the autumn scenario, but the difference was minimal in the summer scenario. In food choice and dissectioning experiments gammarids did not avoid contaminated leaves and efficiently assimilated contaminants from leaves, indicating the relevance of this exposure pathway in the field. The present study demonstrates the potential impact of dietary uptake on in situ bioaccumulation for shredders in autumn, outside the main application period. The toxicokinetic parameters obtained facilitate modeling of environmental exposure scenarios. The uncovered significance of dietary uptake for detritivores warrants further consideration from scientific as well as regulatory perspectives. Environ Toxicol Chem 2023;42:1993-2006. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Johannes Raths
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology-Eawag, Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - Jacob Schnurr
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau, Landau, Germany
| | - Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau, Landau, Germany
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Fernanda E Pinto
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Christian Janfelt
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Juliane Hollender
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology-Eawag, Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
10
|
Bowen TJ, Southam AD, Hall AR, Weber RJM, Lloyd GR, Macdonald R, Wilson A, Pointon A, Viant MR. Simultaneously discovering the fate and biochemical effects of pharmaceuticals through untargeted metabolomics. Nat Commun 2023; 14:4653. [PMID: 37537184 PMCID: PMC10400635 DOI: 10.1038/s41467-023-40333-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
Untargeted metabolomics is an established approach in toxicology for characterising endogenous metabolic responses to xenobiotic exposure. Detecting the xenobiotic and its biotransformation products as part of the metabolomics analysis provides an opportunity to simultaneously gain deep insights into its fate and metabolism, and to associate the internal relative dose directly with endogenous metabolic responses. This integration of untargeted exposure and response measurements into a single assay has yet to be fully demonstrated. Here we assemble a workflow to discover and analyse pharmaceutical-related measurements from routine untargeted UHPLC-MS metabolomics datasets, derived from in vivo (rat plasma and cardiac tissue, and human plasma) and in vitro (human cardiomyocytes) studies that were principally designed to investigate endogenous metabolic responses to drug exposure. Our findings clearly demonstrate how untargeted metabolomics can discover extensive biotransformation maps, temporally-changing relative systemic exposure, and direct associations of endogenous biochemical responses to the internal dose.
Collapse
Affiliation(s)
- Tara J Bowen
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrew D Southam
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrew R Hall
- Safety Sciences, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Ralf J M Weber
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Gavin R Lloyd
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ruth Macdonald
- Animal Sciences and Technology, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Amanda Wilson
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Amy Pointon
- Safety Sciences, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Mark R Viant
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
11
|
Su H, Zhang Q, Huang K, Wang WX, Li H, Huang Z, Cheng F, You J. Two-Compartmental Toxicokinetic Model Predicts Interspecies Sensitivity Variation of Imidacloprid to Aquatic Invertebrates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10532-10541. [PMID: 37449839 DOI: 10.1021/acs.est.3c01646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Interspecies sensitivity to the same chemical can be several orders of magnitude different. Quantifying toxicologically internal levels and toxicokinetic (TK) parameters is critical in elucidating the interspecies sensitivity. Herein, a two-compartmental TK model was constructed to characterize the uptake, distribution, and elimination kinetics toward interspecies sensitivity to an insecticide, imidacloprid. Imidacloprid exhibited the highest lethality to the insect Chironomus dilutus, followed by Lumbriculus variegatus, Hyalella azteca, and Daphnia magna. Interspecies sensitivity of imidacloprid to these invertebrates varied by ∼1000 folds based on water concentrations (LC50). Remarkably, the sensitivity variation decreased to ∼50 folds based on the internal residues (LR50), highlighting the critical role of TK in interspecies sensitivity. A one-compartmental TK model failed to simulate the bioaccumulation of imidacloprid in these invertebrates except for D. magna. Instead, a two-compartmental model successfully simulated the slow elimination of imidacloprid in the remaining three species by internally distinguishing the highly dynamic (C1) and toxicologically available (C2) fractions. We further showed that the species sensitivity of the invertebrates to imidacloprid was significantly related to C2, demonstrating that C2 was toxicologically available and responsible for the toxicity of imidacloprid. This mechanistic-based model bridged the internal distribution of organic contaminants in small invertebrates and the associated toxic potency.
Collapse
Affiliation(s)
- Hang Su
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Qingjun Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Kunyang Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Wen-Xiong Wang
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Huizhen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Zhoubing Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Fei Cheng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| |
Collapse
|
12
|
Saha S, Banerjee P, Saha NC, Chukwuka AV. Triazophos-induced Respiratory and Behavioral Effects and Development of Adverse Outcome Pathway (AOP) for short-term Exposed Freshwater Snail, Bellamya Bengalensis. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:94. [PMID: 37171504 DOI: 10.1007/s00128-023-03734-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
The physiological effects of triazophos were examined using respiratory and behavioral endpoints in Bellamya bengalensis under a 96-hour acute exposure regime. Physiological manifestation of respiratory stress was measured using the rate of oxygen consumption while behavioral toxicity was measured using crawling reflexes, touch response, and mucus production. The threshold effect values for LOEC (Lowest Observed Effect Concentration), NOEC (No Observed Effect Concentration), and MATC (Maximum Acceptable Toxicant Concentration) at 96 h were 0.40, 0.60, and 0.075 mg/l, respectively. Definitive 96 h acute exposures for both respiratory and behavioral endpoints tests were determined using a control group and concentrations ranging from 0.40 to 1.60 mg/l monitored for 24, 48, 72, and 96 h. Test organisms irrespective of exposure concentration demonstrated an initial rise in oxygen consumption rate after 24 h, followed by a progressive decrease in toxicant concentration and exposure period. The in silico structural analysis presents triazophos as having an electrophilic toxic structure similar to choline esterase inhibitors, and also capable of inducing oxidative stress. The AOP highlighted neurotoxicity and oxidative stress as plausible pathways of triazophos toxicity in mollusk species.
Collapse
Affiliation(s)
- Shubhajit Saha
- Department of Zoology, Sundarban Hazi Desarat College, South 24 Parganas-743611, Pathankhali, West Bengal, India
| | - Priyajit Banerjee
- Fishery and Ecotoxicology Research Laboratory, Department of Zoology, University of Burdwan, Purba Barddhaman, West Bengal, India
| | - Nimai Chandra Saha
- Fishery and Ecotoxicology Research Laboratory, Department of Zoology, University of Burdwan, Purba Barddhaman, West Bengal, India
| | - Azubuike V Chukwuka
- National Environmental Standards and Regulations Enforcement Agency (NESREA), Osogbo, Nigeria.
| |
Collapse
|
13
|
Singer A, Nickisch D, Gergs A. Joint survival modelling for multiple species exposed to toxicants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159266. [PMID: 36228790 DOI: 10.1016/j.scitotenv.2022.159266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/14/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
In environmental risk assessment (ERA), the multitude of compounds and taxa demands cross-species extrapolation to cover the variability in sensitivity to toxicants. However, only the impact of a single compound to a single species is addressed by the general unified threshold model of survival (GUTS). The reduced GUTS is the recommended model to analyse lethal toxic effects in regulatory aquatic ERA. GUTS considers toxicokinetics and toxicodynamics. Two toxicodynamic approaches are considered: Stochastic death (SD) assumes that survival decreases with an increasing internalized amount of the toxicant. Individual tolerance (IT) assumes that individuals vary in their tolerance to toxic exposure. Existing theory suggests that the product of the threshold zw and killing rate bw (both SD toxicodynamic parameters) are constant across species or compounds if receptors and target sites are shared. We extend that theory and show that the shape parameter β of the loglogistic threshold distribution in IT is also constant. To verify the predicted relationships, we conducted three tests using toxicity studies for eight arthropods exposed to the insecticide flupyradifurone. We confirmed previous verifications of the relation- between SD parameters, and the newly established relation for the IT parameter β. We enhanced GUTS to jointly model survival for multiple species with shared receptors and pathways by incorporating the relations among toxicodynamic parameters described above. The joint GUTS exploits the shared parameter relations and therefore constrains parameter uncertainty for each of the separate species. Particularly for IT, the joint GUTS more precisely predicted risk to the separate species than the standard single species GUTS under environmentally realistic exposure. We suggest that joint GUTS modelling can improve cross-species extrapolation in regulatory ERA by increasing the reliability of risk estimates and reducing animal testing. Furthermore, the shared toxicodynamic response provides potential to reduce complexity of ecosystem models.
Collapse
Affiliation(s)
| | - Dirk Nickisch
- RIFCON GmbH, Goldbeckstraße 13, 69493 Hirschberg, Germany.
| | - André Gergs
- Bayer AG, Crop Science Division, Alfred-Nobel Straße 50, 40789 Monheim, Germany.
| |
Collapse
|
14
|
Yang L, Zeng J, Gao N, Zhu L, Feng J. Elucidating the Differences in Metal Toxicity by Quantitative Adverse Outcome Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13233-13244. [PMID: 36083827 DOI: 10.1021/acs.est.2c03828] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Numerous studies have reported that the toxicity differences among metals are widespread; however, little is known about the mechanism of differences in metal toxicity to aquatic organisms due to the lack of quantitative understanding of their adverse outcome pathway. Here, we investigated the effects of Cd and Cu on bioaccumulation, gene expression, physiological responses, and apical effects in zebrafish larvae. RNA sequencing was conducted to provide supplementary mechanistic information for the effects of Cd and Cu exposure. On this basis, we proposed a quantitative adverse outcome pathway (qAOP) suitable for metal risk assessment of aquatic organisms. Our work provides a mechanistic explanation for the differences in metal toxicity where the strong bioaccumulation of Cu enables the newly accumulated Cu to reach the threshold that causes different adverse effects faster than Cd in zebrafish larvae, resulting in a higher toxicity of Cu than that of Cd. Furthermore, we proposed a parameter CIT/BCF (the ratio of internal threshold concentration and bioaccumulation factor) that helps to understand the toxicity differences by combining the information of bioaccumulation and internal threshold of adverse effects. This work demonstrated that qAOP is an effective quantitative tool for understanding the toxicity mechanism and highlight the importance of toxicokinetics and toxicodynamics at different biological levels in determining the metal toxicity.
Collapse
Affiliation(s)
- Lanpeng Yang
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| | - Jing Zeng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410004, P. R. China
| | - Ning Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
15
|
Lawrence MJ, Grayson P, Jeffrey JD, Docker MF, Garroway CJ, Wilson JM, Manzon RG, Wilkie MP, Jeffries KM. Variation in the Transcriptome Response and Detoxification Gene Diversity Drives Pesticide Tolerance in Fishes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12137-12147. [PMID: 35973096 DOI: 10.1021/acs.est.2c00821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pesticides are critical for invasive species management but often have negative effects on nontarget native biota. Tolerance to pesticides should have an evolutionary basis, but this is poorly understood. Invasive sea lamprey (Petromyzon marinus) populations in North America have been controlled with a pesticide lethal to them at lower concentrations than native fishes. We addressed how interspecific variation in gene expression and detoxification gene diversity confer differential pesticide sensitivity in two fish species. We exposed sea lamprey and bluegill (Lepomis macrochirus), a tolerant native species, to 3-trifluoromethyl-4-nitrophenol (TFM), a pesticide commonly used in sea lamprey control. We then used whole-transcriptome sequencing of gill and liver to characterize the cellular response in both species. Comparatively, bluegill exhibited a larger number of detoxification genes expressed and a larger number of responsive transcripts overall, which likely contributes to greater tolerance to TFM. Understanding the genetic and physiological basis for pesticide tolerance is crucial for managing invasive species.
Collapse
Affiliation(s)
- M J Lawrence
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - P Grayson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - J D Jeffrey
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Biology, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
| | - M F Docker
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - C J Garroway
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - J M Wilson
- Department of Biology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - R G Manzon
- Department of Biology, University of Regina, Regina, SK S4S 0A2, Canada
| | - M P Wilkie
- Department of Biology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - K M Jeffries
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
16
|
Jane L Espartero L, Yamada M, Ford J, Owens G, Prow T, Juhasz A. Health-related toxicity of emerging per- and polyfluoroalkyl substances: Comparison to legacy PFOS and PFOA. ENVIRONMENTAL RESEARCH 2022; 212:113431. [PMID: 35569538 DOI: 10.1016/j.envres.2022.113431] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are highly persistent, manufactured chemicals used in various manufacturing processes and found in numerous commercial products. With over 9000 compounds belonging to this chemical class, there is increasing concern regarding human exposure to these compounds due to their persistent, bioaccumulative, and toxic nature. Human exposure to PFAS may occur from a variety of exposure sources, including, air, food, indoor dust, soil, water, from the transfer of PFAS from non-stick wrappers to food, use of cosmetics, and other personal care products. This critical review presents recent research on the health-related impacts of PFAS exposure, highlighting compounds other than Perfluorooctanoic acid (PFOA) and Perfluoroctane sulfonate (PFOS) that cause adverse health effects, updates the current state of knowledge on PFAS toxicity, and, where possible, elucidates cause-and-effect relationships. Recent reviews identified that exposure to PFAS was associated with adverse health impacts on female and male fertility, metabolism in pregnancy, endocrine function including pancreatic dysfunction and risk of developing Type 2 diabetes, lipid metabolism and risk of childhood adiposity, hepatic and renal function, immune function, cardiovascular health (atherosclerosis), bone health including risk for dental cavities, osteoporosis, and vitamin D deficiency, neurological function, and risk of developing breast cancer. However, while cause-and-effect relationships for many of these outcomes were not able to be clearly elucidated, it was identified that 1) the evidence derived from both animal models and humans suggested that PFAS may exert harmful impacts on both animals and humans, however extrapolating data from animal to human studies was complicated due to differences in exposure/elimination kinetics, 2) PFAS precursor kinetics and toxicity mechanism data are still limited despite ongoing exposures, and 3) studies in humans, which provide contrasting results require further investigation of the long-term-exposed population to better evaluate the biological toxicity of chronic exposure to PFAS.
Collapse
Affiliation(s)
- Lore Jane L Espartero
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, South Australia, Australia
| | - Miko Yamada
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, South Australia, Australia
| | - Judith Ford
- University of Sydney, New South Wales, United Kingdom
| | - Gary Owens
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, South Australia, Australia
| | - Tarl Prow
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, South Australia, Australia; Skin Research Centre, York Biomedical Research Institute, Hull York Medical School, University of York, United Kingdom
| | - Albert Juhasz
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, South Australia, Australia.
| |
Collapse
|
17
|
Lares BA, Vignatti AM, Echaniz SA, Gutiérrez MF. Effects of glyphosate on cladocera: A synthetic review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106232. [PMID: 35809430 DOI: 10.1016/j.aquatox.2022.106232] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/02/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Glyphosate [N-(phosphonomethyl) glycine] is currently the most widely used herbicide worldwide. Its application in agricultural and urban areas can lead to the dispersion and arrival to aquatic systems causing environmental deterioration with detrimental effects on the inhabiting biota. This is triggered not only by the herbicide per se but also its metabolite aminomethyl-phosphonic acid (AMPA), which can be highly toxic to many aquatic organisms. Water fleas are some of the key components in aquatic food webs, being one of the most sensitive groups to pollutants. Although being often used in standardized toxicity tests, they are comparatively less studied in relation to glyphosate exposition. Here we examine the current scientific literature regarding the acute and sublethal toxicity of glyphosate in the Cladocera taxonomic group, with special comparisons between the active ingredient (A.I) and formulations. Our results document a high variation in the lethal concentrations reported for different cladoceran species, due to the high diversity of products used in the toxicity tests. Most articles accounting for sublethal effects were performed on the standard Daphnia magna species. Reproduction, including decreased fecundity and delayed age of first reproduction, is usually one of the most severely affected individual traits. Although still scarce, studies documenting metabolic and genetic alterations might provide accurate information on the mechanisms of action of the herbicide.
Collapse
Affiliation(s)
- Betsabé Ailén Lares
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Santa Rosa, La Pampa, Argentina.
| | - Alicia María Vignatti
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Santa Rosa, La Pampa, Argentina
| | - Santiago Andrés Echaniz
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Santa Rosa, La Pampa, Argentina
| | - María Florencia Gutiérrez
- Instituto Nacional de Limnología, CONICET-UNL, Paraje El Pozo, Ciudad Universitaria UNL, Santa Fe, Argentina; Escuela Superior de Sanidad "Dr. Ramón Carrillo" (FBCB-UNL), Ciudad Universitaria, Santa Fe, Argentina.
| |
Collapse
|
18
|
Hano T, Ito K, Ito M, Takashima K, Somiya R, Takai Y, Oshima Y, Ohkubo N. Molting enhances internal concentrations of fipronil and thereby decreases survival of two estuarine resident marine crustaceans. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 247:106172. [PMID: 35468410 DOI: 10.1016/j.aquatox.2022.106172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
In aquatic arthropods, molting is a pivotal physiological process for normal development, but it may also expose them to higher risks from xenobiotics, because the organism may take up additional water during that time. This study aimed to assess the effects of molting on bioconcentration and survival after 96-h exposure to insecticide fipronil with or without oxygenase (CYP450s) inhibitor piperonyl butoxide (PBO) of two estuarine resident marine crustacean species: the sand shrimp Crangon uritai and the kuruma prawn Penaeus japonicus, with 96-h LC50 value of fipronil = 2.0 µg/L and 0.2 µg/L, respectively. Two graded concentrations included group high (H) (equivalent to the 96-h LC50 values) and low (L) (one-tenth of the H group concentration). Molting and survival were individually checked, and internal concentrations of fipronil and its metabolites (fipronil desulfinyl, fipronil sulfide, fipronil sulfone) were measured. The results showed that, only fipronil and fipronil sulfone were detected from organism, and that internal concentrations of these insecticides in molted specimens were higher than those of unmolted ones but comparable with those of dead ones. Accordingly, mortality was more frequent in molted specimens than those that were unmolted. Furthermore, involvement of oxygenase and higher lethal body burden threshold may confer higher tolerance to fipronil in sand shrimp than in the kuruma prawn. This study is the first to demonstrate that the body-residue-based approach is useful for deciphering the causal factors underlying fipronil toxicity, but highlights the need to consider physiological factors in arthropods, which influence and lie beyond body burden, molting and drug metabolism.
Collapse
Affiliation(s)
- Takeshi Hano
- Environment Conservation Division, Fisheries Technology Institute, National Research and Development Agency, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan.
| | - Katsutoshi Ito
- Environment Conservation Division, Fisheries Technology Institute, National Research and Development Agency, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Mana Ito
- Environment Conservation Division, Fisheries Technology Institute, National Research and Development Agency, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Kei Takashima
- Fisheries Research Center, Ehime Research Institute of Agriculture, Forestry and Fisheries, 1611 Tanbara-chou Ikeda, Saijyo, Ehime 791-0508, Japan
| | - Rei Somiya
- Environment Conservation Division, Fisheries Technology Institute, National Research and Development Agency, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Yuki Takai
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuji Oshima
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nobuyuki Ohkubo
- Environment Conservation Division, Fisheries Technology Institute, National Research and Development Agency, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| |
Collapse
|
19
|
Lauper B, Anthamatten E, Raths J, Arlos M, Hollender J. Systematic Underestimation of Pesticide Burden for Invertebrates under Field Conditions: Comparing the Influence of Dietary Uptake and Aquatic Exposure Dynamics. ACS ENVIRONMENTAL AU 2022; 2:166-175. [PMID: 37101586 PMCID: PMC10114668 DOI: 10.1021/acsenvironau.1c00023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Pesticides used in agriculture can end up in nearby streams and can have a negative impact on nontarget organisms such as aquatic invertebrates. During registration, bioaccumulation potential is often investigated using laboratory tests only. Recent studies showed that the magnitude of bioaccumulation in the field substantially differs from laboratory conditions. To investigate this discrepancy, we conducted a field bioaccumulation study in a stream known to receive pollutant loadings from agriculture. Our work incorporates measurements of stream pesticide concentrations at high temporal resolution (every 20 min), as well as sediment, leaves, and caged gammarid analyses (every 2-24 h) over several weeks. Of 49 investigated pesticides, 14 were detected in gammarids with highly variable concentrations of up to 140 ± 28 ng/gww. Toxicokinetic modeling using laboratory-derived uptake and depuration rate constants for azoxystrobin, cyprodinil, and fluopyram showed that despite the highly resolved water concentrations measured, the pesticide burden on gammarids remains underestimated by a factor of 1.9 ± 0.1 to 31 ± 3.0, with the highest underestimations occurring after rain events. Including dietary uptake from polluted detritus leaves and sediment in the model explained this underestimation only to a minor proportion. However, suspended solids analyzed during rain events had high pesticide concentrations, and uptake from them could partially explain the underestimation after rain events. Additional comparison between the measured and modeled data showed that the pesticide depuration in gammarids is slower in the field. This observation suggests that several unknown mechanisms may play a role, including lowered enzyme expression and mixture effects. Thus, it is important to conduct such retrospective risk assessments based on field investigations and adapt the registration accordingly.
Collapse
Affiliation(s)
- Benedikt
B. Lauper
- Department
of Environmental Chemistry, Eawag, 8600 Dübendorf, Switzerland
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Eva Anthamatten
- Department
of Environmental Chemistry, Eawag, 8600 Dübendorf, Switzerland
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Johannes Raths
- Department
of Environmental Chemistry, Eawag, 8600 Dübendorf, Switzerland
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Maricor Arlos
- Department
of Environmental Chemistry, Eawag, 8600 Dübendorf, Switzerland
- Department
of Civil and Environmental Engineering, University of Alberta, 9211-116 St. NW, Edmonton, T6G 1H9 AB, Canada
| | - Juliane Hollender
- Department
of Environmental Chemistry, Eawag, 8600 Dübendorf, Switzerland
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
20
|
Li S, Jian J, Poopal RK, Chen X, He Y, Xu H, Yu H, Ren Z. Mathematical modeling in behavior responses: The tendency-prediction based on a persistence model on real-time data. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2021.109836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
21
|
Kuo DTF, Di Toro DM. Determination of In Vivo Biotransformation Kinetics Using Early-Time Biota Concentrations. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:148-158. [PMID: 34967047 DOI: 10.1002/etc.5246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/29/2021] [Accepted: 11/03/2021] [Indexed: 06/14/2023]
Abstract
Technical challenges have hampered the characterization of biotransformation kinetics-a critical link in understanding and predicting the toxicokinetics and ecotoxicology of organic compounds. A shortcut approach to characterize the in vivo biotransformation rate constant (kM ) with incomplete pathway or metabolite details was proposed. The value of kM can be derived as 2tln1fPC(t)) , with fPC (t) being the molar equivalent fraction of the parent compound (PC) at an early time t in both constant exposure and decay source chemical uptake scenarios. The approximation-based kM values agreed well with kM values derived from rigorous fitting or toxicokinetic modeling (n = 42, root mean square error = 0.30) with accuracy exceeding those of typical toxicokinetic or partitioning models. The method is accurate when sampling time is adequately resolved (i.e., t < ln(2)/kM ) but will likely produce biased kM values with improper time-averaging. The approximate equation yields consistent theoretical expectations for fast and slow biotransformation reactions and is fully compatible with standard bioaccumulation and toxicity testing protocols. The simplification strategy circumvents statistical complications and numerical issues inherent in regressing or modeling the toxicokinetics of multimetabolite systems and may be adapted to similar problems at other physiological scales or ecotoxicological contexts. The method can help advance interspecies comparison of chemical metabolism and support the development of in vitro-in vivo extrapolations and in silico models needed for building next-generation ecological and health risk-assessment practices. Environ Toxicol Chem 2022;41:148-158. © 2021 SETAC.
Collapse
Affiliation(s)
- Dave T F Kuo
- Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong
- Kuo Research & Consulting, Toronto, Ontario, Canada
| | - Dominic M Di Toro
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
22
|
Dhara K, Saha S, Pal P, Chukwuka AV, Panigrahi AK, Saha NC, Faggio C. Biochemical, physiological (haematological, oxygen-consumption rate) and behavioural effects of mercury exposures on the freshwater snail, Bellamya bengalensis. Comp Biochem Physiol C Toxicol Pharmacol 2022; 251:109195. [PMID: 34597778 DOI: 10.1016/j.cbpc.2021.109195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023]
Abstract
The widespread occurrence of Mercury (Hg) and its derivatives in the aquatic environment and risks to the health of local populations has necessitated investigations into its toxic effects on sessile species. The toxicity of Mercury was observed sequentially from 96 h acute exposure regime (behavioural endpoints) to chronic durations (haematological and biochemical toxicity endpoints) in Bellamya bengalensis. Time-dependent lethal endpoints for acute toxicity (LC50) of mercury i.e., 24,48,72 and 96 h were estimated as 0.94, 0.88, 0.69 and 0.40 mg/l respectively. Threshold effect values i.e., LOEC (Lowest Observed Effect Concentration), NOEC (No Observed Effect Concentration) and MATC (Maximum Acceptable Toxicant Concentration) at 96 h were found to be 0.10, 0.05, 0.039 mg/l respectively. The study of oxygen consumption rate and behavioural changes during acute toxicity and haematological and biochemical responses during chronic toxicity to sublethal concentrations (10% and 20% of 96 h LC50) of mercury to the snail were also conducted. The organisms showed initial elevation at 24 h but later gradual decrease in oxygen consumption rate with the increase of concentration of mercury and time of exposure. For behavioural studies, variable test concentrations from 0.00 to 1.00 mg/l were used for 24, 48, 72 and 96 h. The crawling activity and clumping tendency decreased with the progress of time at all treatment periods and stopped ultimately at 96 h of exposure from 0.7 mg/l onwards whereas touch reflex was not observed at 96 h exposure at all treatments except at 0.09 mg/l. In haemocyte count, no significant variation was observed among control values between various exposure periods (p > 0.05) though variations were observed in sub-lethal concentrations versus control at all treatment duration (7, 14, 21, 28d, p < 0.05). In biochemical response study, the protein content in hepatopancreas of the snails treated at sublethal concentrations of mercury (10% and 20% of 96 h LC50) reduced significantly versus control after 21d of exposure (p < 0.05). In gonads, the protein content of the treated snails significantly reduced at all treatment concentrations versus control at all exposure times (p < 0.05). Based on the safe levels indicated above, the concentration of 0.01 to 0.04 ppm of mercury can be considered safe for Bellamya bengalensis and any less-hardy aquatic species. These responses elicited by our molluscan model will not only help in biomonitoring of environmental mercury contamination in water bodies but will also provide support to ecological health and risk assessment.
Collapse
Affiliation(s)
- Kishore Dhara
- Freshwater Fisheries Research & Training Centre, Directorate of Fisheries, Kulia, Kalyani, Nadia 741 235, West Bengal, India
| | - Shubhajit Saha
- Department of Zoology, Sundarban Hazi Desarat College, South 24 Parganas, 743 611, West Bengal, India
| | - Prasenjit Pal
- College of Fisheries, Central Agricultural University (I), Lembucherra, Tripura 799210, India
| | - Azubuike V Chukwuka
- National Environmental Standards and Regulations Enforcements Agency (NESREA), Osogbo, Osun State, Nigeria
| | - Asish Kumar Panigrahi
- Ecotoxicology, Fisheries and Aquaculture Extension Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia 741 235, West Bengal, India
| | - Nimai Chandra Saha
- Fisheries and Ecotoxicology Research Laboratory, Department of Zoology, University of Burdwan, Golapbagh, Burdwan 713 104, West Bengal, India
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
23
|
Finlayson KA, van de Merwe JP. Differences in marine megafauna in vitro sensitivity highlights the need for species-specific chemical risk assessments. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 239:105939. [PMID: 34455206 DOI: 10.1016/j.aquatox.2021.105939] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/07/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Sea turtles, dolphins and dugongs can be exposed to large mixtures of contaminants due to the proximity of foraging locations to anthropogenic inputs. Differences in accumulation and effect result in differences of chemical risk to these species. However, little is known about the effect of contaminants in marine wildlife. Cell-based, or in vitro, exposure experiments offer an ethical alternative to investigate the effect of contaminants in wildlife. Data from in vitro studies can then be placed in an environmental context, by using screening risk assessments, comparing effect data with accumulation data from the literature, to identify risk to populations of marine wildlife. Cytotoxicity of Cr6+, Cd2+, Hg2+, 4,4'-DDE, and PFNA were investigated in primary skin fibroblasts of green turtles, loggerhead turtles, hawksbill turtles, dugongs, Burrunan dolphins, and common bottlenose dolphins. The general order of toxicity for all species was Hg2+> Cr6+ > Cd2+> 4,4'-DDE > PFNA, and significant differences in cytotoxicity were found between species for Cr6+, Cd2+ and PFNA. For Cd2+, in particular, cells from turtle species were less sensitive than mammalian species, and dugong cells were by far the most sensitive. The results from the cytotoxicity assay were then used in combination with published data on tissue contaminant concentrations to calculate risk quotients for identifying populations of each species most at risk from these chemicals. Cr, Cd and Hg were identified as posing risk in all six species. Dugongs were particularly at risk from Cd accumulation and dolphin species were particularly at risk from Hg accumulation. These results demonstrate the importance of using species-specific effect and accumulation data for developing chemical risk assessments and can be used to inform managers of priority contaminants, species, or populations. Development of additional in vitro endpoints, and improving links between in vitro and in vivo effects, would further improve this approach to understanding chemical risk in marine megafauna.
Collapse
Affiliation(s)
| | - Jason P van de Merwe
- Australian Rivers Institute, Griffith University, Australia; School of Environment and Science, Griffith University, Gold Coast, Australia
| |
Collapse
|
24
|
Charles S, Ratier A, Lopes C. Generic Solving of One-compartment Toxicokinetic Models. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2021; 000:000-000. [DOI: 10.14218/jerp.2021.00024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Bowen TJ, Hall AR, Lloyd GR, Weber RJM, Wilson A, Pointon A, Viant MR. An Extensive Metabolomics Workflow to Discover Cardiotoxin-Induced Molecular Perturbations in Microtissues. Metabolites 2021; 11:644. [PMID: 34564460 PMCID: PMC8470535 DOI: 10.3390/metabo11090644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/29/2022] Open
Abstract
Discovering modes of action and predictive biomarkers of drug-induced structural cardiotoxicity offers the potential to improve cardiac safety assessment of lead compounds and enhance preclinical to clinical translation during drug development. Cardiac microtissues are a promising, physiologically relevant, in vitro model, each composed of ca. 500 cells. While untargeted metabolomics is capable of generating hypotheses on toxicological modes of action and discovering metabolic biomarkers, applying this technology to low-biomass microtissues in suspension is experimentally challenging. Thus, we first evaluated a filtration-based approach for harvesting microtissues and assessed the sensitivity and reproducibility of nanoelectrospray direct infusion mass spectrometry (nESI-DIMS) measurements of intracellular extracts, revealing samples consisting of 28 pooled microtissues, harvested by filtration, are suitable for profiling the intracellular metabolome and lipidome. Subsequently, an extensive workflow combining nESI-DIMS untargeted metabolomics and lipidomics of intracellular extracts with ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS/MS) analysis of spent culture medium, to profile the metabolic footprint and quantify drug exposure concentrations, was implemented. Using the synthetic drug and model cardiotoxin sunitinib, time-resolved metabolic and lipid perturbations in cardiac microtissues were investigated, providing valuable data for generating hypotheses on toxicological modes of action and identifying putative biomarkers such as disruption of purine metabolism and perturbation of polyunsaturated fatty acid levels.
Collapse
Affiliation(s)
- Tara J. Bowen
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (T.J.B.); (R.J.M.W.)
| | - Andrew R. Hall
- Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK; (A.R.H.); (A.P.)
| | - Gavin R. Lloyd
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Ralf J. M. Weber
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (T.J.B.); (R.J.M.W.)
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Amanda Wilson
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB4 0WG, UK;
| | - Amy Pointon
- Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK; (A.R.H.); (A.P.)
| | - Mark R. Viant
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (T.J.B.); (R.J.M.W.)
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| |
Collapse
|
26
|
Yang L, Feng J, Gao Y, Zhu L. Role of Toxicokinetic and Toxicodynamic Parameters in Explaining the Sensitivity of Zebrafish Larvae to Four Metals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8965-8976. [PMID: 34129327 DOI: 10.1021/acs.est.0c08725] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Given the persistence and toxic potencies of metal contaminants in ecosystems, animals, and human beings, they are considered to be hazardous global pollutants. While the lethality of metal toxicities (e.g., LC50) can significantly vary, even within the same species, the underlying mechanisms are less well-understood. In this study, we developed a subcellular two-compartment toxicokinetic-toxicodynamic (TK-TD) model for zebrafish larvae when exposed to four metals (cadmium, lead, copper, and zinc) to reveal whether differences in metal toxicity (LC50 values) were dominated by the TK or TD processes. Results showed that the subcellular TK and TD parameters of the four metals were significantly different, and the bioconcentration factor (BCF) value of copper was higher than those of the other metals. We also found that the TD parameter internal threshold concentration (CIT) was significantly positively correlated to the LC50 values (R2 = 0.7), suggesting a dominant role of TD processes in metal toxicity. Furthermore, the combined parameter CIT/BCF for a metal-sensitive fraction (BCFMSF), which linked exposure to effects through the TK-TD approach, explained up to 89% of the variation in toxicity to the four metals. The present study suggests that the observed variation in toxicity of these four metals was mainly determined by TD processes but that TK processes should not be ignored, especially for copper.
Collapse
Affiliation(s)
- Lanpeng Yang
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| | - Yongfei Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
27
|
Li H, Zhang Q, Su H, You J, Wang WX. High Tolerance and Delayed Responses of Daphnia magna to Neonicotinoid Insecticide Imidacloprid: Toxicokinetic and Toxicodynamic Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:458-467. [PMID: 33332108 DOI: 10.1021/acs.est.0c05664] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Species sensitivity to neonicotinoids has been shown to be highly variable among aquatic invertebrates. Toxicokinetic and toxicodynamic (TKTD) models were constructed to mechanistically elucidate the susceptibility of Daphnia magna to imidacloprid. D. magna was highly tolerant to single short-term exposure to imidacloprid (96-h LC50 of 8.47 μg/mL), but delayed and carry-over toxicity occurred under repeated pulse exposures. Kinetic distribution of imidacloprid between exoskeleton and soft tissues of D. magna was evaluated using a newly developed method. Approximately 84% imidacloprid was distributed to soft tissues but was rapidly depurated from the tissue (t1/2 of 1.2 h), resulting in low bioaccumulation and high tolerance. TKTD modeling also successfully simulated the survival of D. magna after pulsed exposures. The calculated recovery time was 45 d, indicating significant delayed and carry-over toxicity of the insecticide. While complete elimination of imidacloprid only took about 5 h (TK), slow damage recovery (45 d) caused slow organism recovery (TD). Consequently, although D. magna was tolerant to imidacloprid due to fast depuration from soft tissue, long damage recovery time significantly enhanced the toxicity under repeated pulse exposures. Our study highlights the necessity of integrating delayed and carry-over toxicity quantification in assessing the risk of neonicotinoids to aquatic invertebrates.
Collapse
Affiliation(s)
- Huizhen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Qingjun Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Hang Su
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
28
|
Dalhoff K, Hansen AMB, Rasmussen JJ, Focks A, Strobel BW, Cedergreen N. Linking Morphology, Toxicokinetic, and Toxicodynamic Traits of Aquatic Invertebrates to Pyrethroid Sensitivity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5687-5699. [PMID: 32227918 DOI: 10.1021/acs.est.0c00189] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pyrethroid insecticides are known to be highly toxic to most aquatic nontarget organisms, but little is known about the mechanisms causing some species to be highly sensitive while others are hardly affected by the pyrethroids. The aim of the present study was to measure the sensitivity (EC50-values) of 10 aquatic invertebrates toward a 24 h pulse of the pyrethroid cypermethrin and subsequently test if the difference in sensitivity could be explained by measured morphological and physiological traits and modeled toxicokinetic (TK) and toxicodynamic (TD) parameters. Large differences were observed for the measured uptake and elimination kinetics, with bioconcentration factors (BCFs) ranging from 53 to 2337 at the end of the exposure. Similarly, large differences were observed for the TDs, and EC50-values after 168 h varied 120-fold. Modeling the whole organism cypermethrin concentrations indicated compartmentation into a sorbed fraction and two internal fractions: a bioavailable and non-bioavailable internal fraction. Strong correlations between surface/volume area and the TK parameters (sorption and uptake rate constants and the resulting BCF) were found, but none of the TK parameters correlated with sensitivity. The only parameter consistently correlating with sensitivity across all species was the killing rate constant of the GUTS-RED-SD model (the reduced general unified threshold models of survival assuming stochastic death), indicating that sensitivity toward cypermethrin is more related to the TD parameters than to TK parameters.
Collapse
Affiliation(s)
- Kristoffer Dalhoff
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Anna M B Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Jes J Rasmussen
- Department of Bioscience-Stream and Wetland Ecology, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark
| | - Andreas Focks
- Team Environmental Risk Assessment, Wageningen Environmental Research (Alterra), P.O. Box 47 6700 AA Wageningen, The Netherlands
| | - Bjarne W Strobel
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Nina Cedergreen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
29
|
Lebrun JD, De Jesus K, Rouillac L, Ravelli M, Guenne A, Tournebize J. Single and combined effects of insecticides on multi-level biomarkers in the non-target amphipod Gammarus fossarum exposed to environmentally realistic levels. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 218:105357. [PMID: 31812648 DOI: 10.1016/j.aquatox.2019.105357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
Aquatic media are ultimate recipients of various contaminants including pesticides pervasively applied in agrosystems. Characterizing the ecotoxicity of pesticides and their mixtures to aquatic wildlife at field-realistic levels is thus crucial for environmental risk assessment. This study aims at assessing the effects of two current-use insecticides, imidacloprid and chlorpyrifos, on Gammarus fossarum using multi-level biomarkers. In microcosms, gammarids were exposed for 72 h to insecticides tested individually or in mixture at 0.01, 0.1 and 1 μg/L of each chemical. Multi-metric responses were assessed at the individual level (behavioural traits: locomotion, respiration and amplexus formation) and the cellular level (enzymes involved in growth, moulting, digestion and cell stress). The results showed insecticide-elicited behavioural and biochemical responses from the lowest concentration of 0.01 μg/L. Overall, single exposures stimulated behavioural traits and inhibited enzymatic activities, highlighting subtle impacts at different organizational levels but these were not dose related. For binary mixtures, antagonistic effects (i.e. less-than-additive) on biomarkers were mainly observed when compared with single exposures. Multi-variable analyses indicated the complementarity of behavioural and biochemical biomarkers in identifying sublethal biological alterations and dose-dependent multiple action sites of insecticides. Besides, the mortality observed only for the mixture at 1 μg/L demonstrated a high lethal potential of insecticides in a simple binary combination. To conclude, this study demonstrates disturbances in individual performances and cellular impairments occurring at environmentally realistic exposure levels in a non-target wild species. Since the sublethal effects, such as those identified with this multi-biomarker approach, could lead to long-term alterations in population dynamics of agricultural areas, they constitute promising early endpoints for risk assessment of insecticides.
Collapse
Affiliation(s)
- Jérémie D Lebrun
- Irstea, UR HYCAR - Artemhys, CS 10030, 92761 Antony cedex, France; Federation of Research FIRE, FR-3020, 75005 Paris, France.
| | - Kelly De Jesus
- Irstea, UR HYCAR - Artemhys, CS 10030, 92761 Antony cedex, France
| | | | - Marie Ravelli
- Irstea, UR HYCAR - Artemhys, CS 10030, 92761 Antony cedex, France; Irstea, UR PROSE, CS 10030, 92761 Antony cedex, France
| | | | - Julien Tournebize
- Irstea, UR HYCAR - Artemhys, CS 10030, 92761 Antony cedex, France; Federation of Research FIRE, FR-3020, 75005 Paris, France
| |
Collapse
|
30
|
Taylor MD, Bräunig J, Mueller JF, Crompton M, Dunstan RH, Nilsson S. Metabolomic profiles associated with exposure to per- and polyfluoroalkyl substances (PFASs) in aquatic environments. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1980-1990. [PMID: 31553340 DOI: 10.1039/c9em00394k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are frequently detected in aquatic environments. Longer chained perfluoroalkyl acids (PFAAs), in particular, have been found to bioaccumulate in a broad range of aquatic biota. PFAAs have a physiochemical similarity to naturally occurring fatty acids and could potentially disrupt metabolic processes, however, there has been limited study in this area, especially in aquatic species. In this study, the associations between PFAAs and metabolite profiles were investigated in crustaceans. Eastern School Prawn (Metapenaeus macleayi) were obtained from three different locations (n = 15 per location) with similar environmental conditions but different levels of PFAA contamination. The concentrations of PFAAs, fatty acids and amino acids were analysed and differences in PFAA and metabolite profiles were evaluated. Different PFAA profiles were mirrored by significant differences in the composition of both fatty acid and amino acid profiles, indicating a potential association between PFAA concentration and the composition of metabolites in prawns. These results highlight a need for further research investigating the impacts of PFAA exposure, with the current study providing a foundation for further investigation of the relationship between PFAA bioaccumulation and organism metabolism.
Collapse
Affiliation(s)
- Matthew D Taylor
- Port Stephens Fisheries Institute, New South Wales Department of Primary Industries, Locked Bag 1, Nelson Bay, NSW 2315, Australia. and The University of Queensland, Queensland Alliance for Environmental Health Sciences, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia and School of Environmental and Life Sciences, University of Newcastle, New South Wales 2308, Australia
| | - Jennifer Bräunig
- The University of Queensland, Queensland Alliance for Environmental Health Sciences, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Jochen F Mueller
- The University of Queensland, Queensland Alliance for Environmental Health Sciences, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Marcus Crompton
- School of Environmental and Life Sciences, University of Newcastle, New South Wales 2308, Australia
| | - R Hugh Dunstan
- School of Environmental and Life Sciences, University of Newcastle, New South Wales 2308, Australia
| | - Sandra Nilsson
- The University of Queensland, Queensland Alliance for Environmental Health Sciences, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
31
|
Salo T, Kropf T, Burdon FJ, Seppälä O. Diurnal variation around an optimum and near-critically high temperature does not alter the performance of an ectothermic aquatic grazer. Ecol Evol 2019; 9:11695-11706. [PMID: 31695879 PMCID: PMC6822032 DOI: 10.1002/ece3.5666] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/18/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022] Open
Abstract
The growing threat of global climate change has led to a profusion of studies examining the effects of warming on biota. Despite the potential importance of natural variability such as diurnal temperature fluctuations, most experimental studies on warming are conducted under stable temperatures. Here, we investigated whether the responses of an aquatic invertebrate grazer (Lymnaea stagnalis) to an increased average temperature differ when the thermal regime is either constant or fluctuates diurnally. Using thermal response curves for several life-history and immune defense traits, we first identified the optimum and near-critically high temperatures that Lymnaea potentially experience during summer heat waves. We then exposed individuals that originated from three different populations to these two temperatures under constant or fluctuating thermal conditions. After 7 days, we assessed growth, reproduction, and two immune parameters (phenoloxidase-like activity and antibacterial activity of hemolymph) from each individual. Exposure to the near-critically high temperature led to increased growth rates and decreased antibacterial activity of hemolymph compared to the optimum temperature, whilst temperature fluctuations had no effect on these traits. The results indicate that the temperature level per se, rather than the variability in temperature was the main driver altering trait responses in our study species. Forecasting responses in temperature-related responses remains challenging, due to system-specific properties that can include intraspecific variation. However, our study indicates that experiments examining the effects of warming using constant temperatures can give similar predictions as studies with fluctuating thermal dynamics, and may thus be useful indicators of responses in nature.
Collapse
Affiliation(s)
- Tiina Salo
- Environmental and Marine BiologyÅbo Akademi UniversityTurkuFinland
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
- Department of Aquatic EcologyEawag, Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
| | - Tabea Kropf
- Department of Aquatic EcologyEawag, Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| | - Francis J. Burdon
- Department of Aquatic EcologyEawag, Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Department of Aquatic Sciences and AssessmentSwedish University of Agricultural SciencesUppsalaSweden
| | - Otto Seppälä
- Department of Aquatic EcologyEawag, Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
- Research Department for LimnologyUniversity of InnsbruckMondseeAustria
| |
Collapse
|
32
|
Hano T, Ito K, Ohkubo N, Sakaji H, Watanabe A, Takashima K, Sato T, Sugaya T, Matsuki K, Onduka T, Ito M, Somiya R, Mochida K. Occurrence of neonicotinoids and fipronil in estuaries and their potential risks to aquatic invertebrates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:205-215. [PMID: 31151059 DOI: 10.1016/j.envpol.2019.05.067] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/27/2019] [Accepted: 05/13/2019] [Indexed: 05/07/2023]
Abstract
This study aimed to evaluate and qualify field-based potential risks of seven neonicotinoid and phenylpyrazole (fipronil) insecticides on aquatic invertebrates, including estuary-resident marine crustaceans. One hundred and ninety-three estuarine water samples, with salinity ranging from 0.5 to 32.7, were collected from four estuarine sites in the Seto Inland Sea of Japan, in 2015-2018 and the insecticide levels were measured. Five neonicotinoid and fipronil insecticides were successfully identified, and their occurrence varied temporally. Marine crustaceans were simultaneously harvested every month from one of the estuarine water sampling sites in 2015-2017. Three predominant crustacean species, kuruma prawn (Penaeus japonicus), sand shrimp (Crangon uritai), and mysid (Neomysis awatschensis), were captured and their seasonal presence was species independent. A 96-h laboratory toxicity study with the insecticides using kuruma prawn, sand shrimp, and a surrogate mysid species (Americamysis bahia) indicated that fipronil exerted the highest toxicity to the three crustaceans. Using both toxicity data and insecticide occurrence in estuarine water (salinity ≥10, n = 169), the potential risks on the three marine crustaceans were quantified by calculating the proportion of mixture toxicity effects (Pmix). The Pmix of seven neonicotinoids on the crustaceans was less than 0.8%, which is likely to be too low to indicate adverse effects caused by the insecticides. However, short temporal detection of fipronil (exclusively in June and July) significantly affected the Pmix, which presented the maximal Pmix values of 21%, 3.4%, and 72% for kuruma prawn, sand shrimp, and mysid, respectively, indicating a significant effect on the organisms. As for estuarine water (salinity <10), some water samples contained imidacloprid and fipronil exceeding the freshwater benchmarks for aquatic invertebrates. The present study provides novel insights into the seasonally varying risks of insecticides to estuarine crustaceans and highlights the importance of considering whether ecological risk periods coincide with crustacean presence.
Collapse
Affiliation(s)
- Takeshi Hano
- National Research Institute of Fisheries and Environment of Inland Sea, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima, 739-0452, Japan. http://feis.fra.affrc.go.jp/
| | - Katsutoshi Ito
- National Research Institute of Fisheries and Environment of Inland Sea, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima, 739-0452, Japan
| | - Nobuyuki Ohkubo
- National Research Institute of Fisheries and Environment of Inland Sea, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima, 739-0452, Japan
| | - Hideo Sakaji
- National Research Institute of Fisheries and Environment of Inland Sea, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima, 739-0452, Japan
| | - Akio Watanabe
- Fisheries Research Center, Ehime Research Institute of Agriculture, Forestry and Fisheries, 1611 Tanbara-chou Ikeda, Saijyo, Ehime, 791-0508, Japan
| | - Kei Takashima
- Fisheries Research Center, Ehime Research Institute of Agriculture, Forestry and Fisheries, 1611 Tanbara-chou Ikeda, Saijyo, Ehime, 791-0508, Japan
| | - Taku Sato
- National Research Institute of Fisheries and Environment of Inland Sea, Japan Fisheries Research and Education Agency, 1760 Momoshima, Onomichi, Hiroshima, 722-0061, Japan
| | - Takuma Sugaya
- National Research Institute of Fisheries and Environment of Inland Sea, Japan Fisheries Research and Education Agency, 1760 Momoshima, Onomichi, Hiroshima, 722-0061, Japan
| | - Kosuke Matsuki
- Public Interest Incorporated Foundation for Ehime Sea Development, 4-6-2, Nibancho, Matsuyama, Ehime, 790-0002, Japan
| | - Toshimitsu Onduka
- National Research Institute of Fisheries and Environment of Inland Sea, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima, 739-0452, Japan
| | - Mana Ito
- National Research Institute of Fisheries and Environment of Inland Sea, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima, 739-0452, Japan
| | - Rei Somiya
- National Research Institute of Fisheries and Environment of Inland Sea, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima, 739-0452, Japan
| | - Kazuhiko Mochida
- National Research Institute of Fisheries and Environment of Inland Sea, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima, 739-0452, Japan
| |
Collapse
|
33
|
Fayemi PO, Ozturk I, Kaan D, Özcan S, Yerer MB, Dokumaci AH, Özcan C, Uwaya GE, Fayemi OE, Yetim H. Bioactivities of phytochemicals in Callistemon citrinus against multi-resistant foodborne pathogens, alpha glucosidase inhibition and MCF-7 cancer cell line. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1616615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Peter Olutope Fayemi
- Department of Food Engineering, Faculty of Engineering, Erciyes University, Kayseri, Turkey
| | - Ismet Ozturk
- Department of Food Engineering, Faculty of Engineering, Erciyes University, Kayseri, Turkey
| | - Dilek Kaan
- Genomic and Stem Cell Centre (GENKOK), Erciyes University, Kayseri, Turkey
| | - Servet Özcan
- Genomic and Stem Cell Centre (GENKOK), Erciyes University, Kayseri, Turkey
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Alim Hüseyin Dokumaci
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Ceyda Özcan
- Department of Food Engineering, Faculty of Engineering, Erciyes University, Kayseri, Turkey
| | - Gloria Ebube Uwaya
- Department of Chemistry, Materials Science Innovation and Modelling Research Focus Area, Faculty of Natural and Agricultural Sciences, North West University, Mmabatho, South Africa
| | - Omolola Esther Fayemi
- Department of Chemistry, Materials Science Innovation and Modelling Research Focus Area, Faculty of Natural and Agricultural Sciences, North West University, Mmabatho, South Africa
| | - Hasan Yetim
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, İstanbul Sabahattin Zaim Üniversites, Istanbul, Turkey
| |
Collapse
|
34
|
Sardi AE, Augustine S, Olsen GH, Camus L. Exploring inter-species sensitivity to a model hydrocarbon, 2-Methylnaphtalene, using a process-based model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:11355-11370. [PMID: 30798500 DOI: 10.1007/s11356-019-04423-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
We compared inter-species sensitivity to a model narcotic compound, 2-Methylnaphthalene, to test if taxonomical relatedness, feeding guilds, and trophic level govern species sensitivities on species distributed in different regions. We fitted a toxicokinetic-toxicodynamic model to survival patterns over time for 26 species using new and raw data from the literature. Species sensitivity distributions provided little insight into understanding patterns in inter-species sensitivity. The range of no-effect concentrations (NEC) obtained for 26 species showed little variation (mean 0.0081 mM; SD 0.009). Results suggest that the NEC alone does not explain the complexity of the species tolerances. The dominant rate constant and the derived time to observe an effect (t0), a function of concentration, might provide the means for depicting patterns in sensitivity and better ecotoxicological testing. When comparing the t0 functions, we observed that Arctic species have shorter time frames to start showing effects. Mollusks and second trophic level species took longer to build up a lethal body burden than the rest. Coupling our results with fate and transport models would allow forecasting narcotic compounds toxicity in time and thus improve risk assessment.
Collapse
Affiliation(s)
- Adriana E Sardi
- Akvaplan-niva, High North Research Centre for Climate and the Environment, 9296, Tromsø, Norway.
- Faculty of Science, Faculty of Science and Technology, Department of Science & Safety, University of Tromsø, N-9037, Tromsø, Norway.
| | - Starrlight Augustine
- Akvaplan-niva, High North Research Centre for Climate and the Environment, 9296, Tromsø, Norway
| | - Gro H Olsen
- Akvaplan-niva, High North Research Centre for Climate and the Environment, 9296, Tromsø, Norway
| | - Lionel Camus
- Akvaplan-niva, High North Research Centre for Climate and the Environment, 9296, Tromsø, Norway
| |
Collapse
|
35
|
Vehovszky Á, Farkas A, Csikós V, Székács A, Mörtl M, Győri J. Neonicotinoid insecticides are potential substrates of the multixenobiotic resistance (MXR) mechanism in the non-target invertebrate, Dreissena sp. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 205:148-155. [PMID: 30384196 DOI: 10.1016/j.aquatox.2018.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
Mussels are among the most frequently used invertebrate animals in aquatic toxicology to detect toxic exposure in the environment. The presence and activity of a cellular defence system, the multixenobiotic resistance (MXR) mechanism, was also established in these organisms. In isolated gill tissues of dreissenid mussels (D. bugensis) the MXR activity was assayed after treatment by commercially available insecticides (formulated products) which contain neonicotinoids as their active ingredients: Actara (thiamethoxam), Apacs (clothianidin), Calypso (thiacloprid) and Kohinor (imidacloprid), respectively. While applying the accumulation assay method, 0.5 μM rhodamine B was used as model substrate and 20 μM verapamil as model inhibitor of the MXR mechanism. In acute (in vitro) experiments when isolated gills were co-incubated in graded concentrations of insecticides and rhodamine B simultaneously, Calypso and Kohinor treatment resulted increasing rhodamine accumulation. Chemical analysis of gills in vitro incubated in insecticides demonstrated higher tissue concentrations of thiamethoxam, clothianidin and thiacloprid in the presence of verapamil suggesting that the active ingredients of Actara, Apacs and Calypso are potential substrates of the MXR mediated cellular efflux. In contrast, verapamil did significantly alter the accumulated imidacloprid concentrations in gills, suggesting that the active component of Kohinor is not transported by the MXR mechanism. Chronic (in vivo) exposures of the intact animals in lower, 1, 10 mg/L concentration of neonicotinoid products, resulted in a decreased level of both rhodamine accumulation and verapamil inhibition by the 12th-14th days of treatment. These results suggest an enhancement of MXR activity (chemostimulation), building up gradually in the animals exposed to Actara, Apacs and Kohinor, respectively. Neonicotinoid-type insecticides are generally considered as selective neurotoxins for insects, targeting the nicotinic type acetylcholine receptors (nAChRs) in their central nervous system. Our present results provide the first evidences that neonicotinoid insecticides are also able to alter the transmembrane transport mechanisms related to the MXR system.
Collapse
Affiliation(s)
- Ágnes Vehovszky
- MTA Centre for Ecological Research, Balaton Limnological Institute, Tihany, Hungary.
| | - Anna Farkas
- MTA Centre for Ecological Research, Balaton Limnological Institute, Tihany, Hungary
| | - Vivien Csikós
- MTA Centre for Ecological Research, Balaton Limnological Institute, Tihany, Hungary
| | - András Székács
- Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary
| | - Mária Mörtl
- Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary
| | - János Győri
- MTA Centre for Ecological Research, Balaton Limnological Institute, Tihany, Hungary
| |
Collapse
|
36
|
Freitas EC, Rocha O, Espíndola ELG. Effects of florfenicol and oxytetracycline on the tropical cladoceran Ceriodaphnia silvestrii: A mixture toxicity approach to predict the potential risks of antimicrobials for zooplankton. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:663-672. [PMID: 30056931 DOI: 10.1016/j.ecoenv.2018.06.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/30/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Antimicrobials are commonly used in aquaculture to treat infectious diseases in fish. The overuse of these chemicals, however, has made them a contamination source for the aquatic environments. In this study, single and combined effects of florfenicol (FLO) and oxytetracycline (OTC), two antimicrobials widely used in the fish farming, were evaluated in acute and chronic toxicity tests using the tropical cladoceran Ceriodaphnia silvestrii as a model species. Also, a preliminary risk characterization of FLO and OTC for zooplankton was carried out, taking into account different exposure scenarios. The results obtained revealed that FLO and OTC have adverse effects on the mobility, reproduction and population growth rate of C. silvestrii in single exposures. In addition, mixture effects on the C. silvestrii were more severe than predicted effects based on the Concentration Addition model, showing a synergistic deviation for the mobility and a dose-level dependent deviation for the reproduction (synergism at higher levels than EC60). In relation to the risk characterization, risk quotients (RQs) exceeded 1 for chronic toxicity data obtained in both OTC and mixture exposures, indicating that the concentrations of these chemicals in Brazilian freshwater bodies could potentially present risks for the reproduction of zooplankton species in tropical regions. The RQs obtained for the mixtures were higher than those obtained for each chemical separately. Therefore, it is highly recommended that RQs are derived from single and mixture exposure data in order to obtain a more accurate risk characterization.
Collapse
Affiliation(s)
- Emanuela Cristina Freitas
- Department of Hydraulic and Sanitation (NEEA/CRHEA/SHS), Engineering School of São Carlos, University of São Paulo, Avenue Trabalhador São-Carlense 400, CEP 13560-970 São Carlos, SP, Brazil.
| | - Odete Rocha
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rodovia Washington Luis km 235, CEP 13565-905 São Carlos, SP, Brazil.
| | - Evaldo Luiz Gaeta Espíndola
- Department of Hydraulic and Sanitation (NEEA/CRHEA/SHS), Engineering School of São Carlos, University of São Paulo, Avenue Trabalhador São-Carlense 400, CEP 13560-970 São Carlos, SP, Brazil.
| |
Collapse
|
37
|
Munz NA, Fu Q, Stamm C, Hollender J. Internal Concentrations in Gammarids Reveal Increased Risk of Organic Micropollutants in Wastewater-Impacted Streams. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10347-10358. [PMID: 30117321 DOI: 10.1021/acs.est.8b03632] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Internal concentrations link external exposure to the potential effect, as they reflect what the organisms actually take up and experience physiologically. In this study, we investigated whether frequently detected risk-driving substances in water were found in the exposed organisms and if they are classified the same based on the whole body internal concentrations. Field gammarids were collected upstream and downstream of ten wastewater treatment plants in mixed land use catchments. The sampling was conducted in autumn and winter, during low flow conditions when diffuse agricultural input was reduced. The field study was complemented with laboratory and flume experiments to determine the bioaccumulation potentials of selected substances. For 32 substances, apparent bioaccumulation factors in gammarids were determined for the first time. With a sensitive multiresidue method based on online-solid phase extraction followed by liquid chromatography coupled to high resolution mass spectrometry, we detected 63 (semi-) polar organic substances in the field gammarids, showing higher concentrations downstream than upstream. Interestingly, neonicotinoids, which are particularly toxic toward invertebrates, were frequently detected and were further determined as major contributors to the toxic pressure based on the toxic unit approach integrating internal concentration and toxic potency. The total toxic pressure based on internal concentrations was substantially higher compared to when external concentrations were used. Thus, internal concentrations may add more value to the current environmental risk assessment that is typically based solely on external exposure.
Collapse
Affiliation(s)
- Nicole A Munz
- Eawag , Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf , Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics , ETH Zürich , 8092 Zürich , Switzerland
| | - Qiuguo Fu
- Eawag , Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf , Switzerland
| | - Christian Stamm
- Eawag , Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf , Switzerland
| | - Juliane Hollender
- Eawag , Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf , Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics , ETH Zürich , 8092 Zürich , Switzerland
| |
Collapse
|
38
|
Villa S, Di Nica V, Pescatore T, Bellamoli F, Miari F, Finizio A, Lencioni V. Comparison of the behavioural effects of pharmaceuticals and pesticides on Diamesa zernyi larvae (Chironomidae). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:130-139. [PMID: 29554561 DOI: 10.1016/j.envpol.2018.03.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 05/20/2023]
Abstract
Several studies have indicated the presence of contaminants in Alpine aquatic ecosystems. Even if measured concentrations are far below those that cause acute effects, continuous exposure to sub-lethal concentrations may have detrimental effects on the aquatic species present in these remote environments. This may lead to a cascade of indirect effects at higher levels of the ecological hierarchy (i.e., the community). To improve the determination of ecologically relevant risk endpoints, behavioural alterations in organisms due to pollutants are increasingly studied in ecotoxicology. In fact, behaviour links physiological function with ecological processes, and can be very sensitive to environmental stimuli and chemical exposure. This is the first study on behavioural alteration in a wild population of an Alpine species. In the present study, a video tracking system was standardized and subsequently used to identify contaminant-induced behavioural alterations in Diamesa zernyi larvae (Diptera, Chironomidae). Diamesa zernyi larvae, collected in an Italian Alpine stream (Rio Presena, Trentino Region), were acclimated for 24 h and successively exposed to several aquatic contaminants (pesticides: chlorpyrifos, metolachlor, boscalid, captan; pharmaceuticals: ibuprofen, furosemide, trimethoprim) at concentrations corresponding to their Lowest Observed Effect Concentration (LOEC). After 24, 48, 72, and 96 h of exposure, changes in the distance moved, the average speed, and the frequency of body bends were taken to reflect contaminant- and time-dependent effects on larval behaviour. In general, metolachlor, captan, and trimethoprim tended to reduce all the endpoints under consideration, whereas chlorpyrifos, boscalid, ibuprofen, and furosemide seemed to increase the distances moved by the larvae. This could be related to the different mechanisms of action of the investigated chemicals. Independently of the contaminant, after 72 h a general slowing down of all the behavioural activities occurred. Finally, we propose a behavioural stress indicator to compare the overall behavioural effects induced by the various contaminants.
Collapse
Affiliation(s)
- Sara Villa
- Department of Earth and Environmental Sciences, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Valeria Di Nica
- Department of Earth and Environmental Sciences, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
| | - Tanita Pescatore
- Water Research Institute, National Research Council (IRSA-CNR), Via Salaria km 29.300, Monterotondo, 00015 Rome, Italy
| | - Francesco Bellamoli
- Section of Invertebrate Zoology and Hydrobiology, MUSE - Museo delle Scienze, Corso del Lavoro e della Scienza 3, 38122 Trento, Italy
| | - Francesco Miari
- Section of Invertebrate Zoology and Hydrobiology, MUSE - Museo delle Scienze, Corso del Lavoro e della Scienza 3, 38122 Trento, Italy
| | - Antonio Finizio
- Department of Earth and Environmental Sciences, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Valeria Lencioni
- Section of Invertebrate Zoology and Hydrobiology, MUSE - Museo delle Scienze, Corso del Lavoro e della Scienza 3, 38122 Trento, Italy.
| |
Collapse
|
39
|
Daam MA, Rico A. Freshwater shrimps as sensitive test species for the risk assessment of pesticides in the tropics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:13235-13243. [PMID: 27530199 DOI: 10.1007/s11356-016-7451-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/08/2016] [Indexed: 06/06/2023]
Abstract
The aquatic risk assessment of pesticides in tropical areas has often been disputed to rely on toxicity data generated from tests performed with temperate species. Given the differences in ecosystem structure between temperate and tropical ecosystems, test species other than those used in temperate regions have been proposed as surrogates for tropical aquatic effect assessments. Freshwater shrimps, for example are important components of tropical freshwater ecosystems, both in terms of their role in ecosystem functioning and their economic value. In the present study, available toxicity data of (tropical and sub-tropical) freshwater shrimps for insecticides and fungicides were compiled and compared with those available for Daphnia magna and other aquatic invertebrates. Freshwater shrimps appeared to be especially sensitive to GABA-gated chloride channel antagonist and sodium channel modulator insecticides. However, shrimp taxa showed a moderate and low sensitivity to acetylcholinesterase inhibiting insecticides and fungicides respectively. Implications for the use of freshwater shrimps in tropical pesticide effect assessments and research needs are discussed.
Collapse
Affiliation(s)
- Michiel A Daam
- DCEA/Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, 2829-516, Caparica, Portugal.
- NEEA/CRHEA São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, SP, 13560-970, Brazil.
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, P.O. Box 28805, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
40
|
Griffith MB, Zheng L, Cormier SM. Using extirpation to evaluate ionic tolerance of freshwater fish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:871-883. [PMID: 29091302 PMCID: PMC5886021 DOI: 10.1002/etc.4022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/08/2017] [Accepted: 10/29/2017] [Indexed: 05/30/2023]
Abstract
Field data of fish occurrences and specific conductivity were used to estimate the tolerance of freshwater fish to elevated ion concentrations and to compare the differences between species- and genus-level analyses for individual effects. We derived extirpation concentrations at the 95th percentile (XC95) of a weighted cumulative frequency distribution for fish species inhabiting streams of the central and southern Appalachians by customizing methods used previously with macroinvertebrate genera. Weighting factors were calculated based on the number of sites in basins where each species occurred, reducing overweighting observations of species restricted to fewer basins. Comparing the species- and genus-level fish XC95 values, XC95s for fish genera were near the XC95s for the most salt-tolerant species in the genus. Therefore, a genus-level effect threshold is not reliably predictive of species-level extirpation, unless the genus is monospecific in the assessed assemblage. Of the 101 fish species XC95 values, 5% were <509 and 10% were <565 µS/cm. The lowest XC95 for a species was 322 µS/cm, which is >300 µS/cm, the exposure estimated to extirpate 5% of macroinvertebrate genera in the central Appalachians. Above 509 µS/cm, 41 of the 101 species are expected to decline in occurrence. Environ Toxicol Chem 2018;37:871-883. Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Michael B. Griffith
- U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, Cincinnati, Ohio, USA
| | - Lei Zheng
- Tetra Tech, Owings Mills, Maryland, USA
| | - Susan M. Cormier
- U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, Cincinnati, Ohio, USA
| |
Collapse
|
41
|
Chaousis S, Leusch FDL, van de Merwe JP. Charting a path towards non-destructive biomarkers in threatened wildlife: A systematic quantitative literature review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:59-70. [PMID: 29156442 DOI: 10.1016/j.envpol.2017.11.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
Threatened species are susceptible to irreversible population decline caused by adverse sub-lethal effects of chemical contaminant exposure. It is therefore vital to develop the necessary tools to predict and detect these effects as early as possible. Biomarkers of contaminant exposure and effect are widely applied to this end, and a significant amount of research has focused on development and validation of sensitive and diagnostic biomarkers. However, progress in the use biomarkers that can be measured using non-destructive techniques has been relatively slow and there are still many difficulties to overcome in the development of sound methods. This paper systematically quantifies and reviews studies that have aimed to develop or validate non-destructive biomarkers in wildlife, and provides an analysis of the successes of these methods based on the invasiveness of the methods, the potential for universal application, cost, and the potential for new biomarker discovery. These data are then used to infer what methods and approaches appear the most effective for successful development of non-destructive biomarkers of contaminant exposure in wildlife. This review highlights that research on non-destructive biomarkers in wildlife is severely lacking, and suggests further exploration of in vitro methods in future studies.
Collapse
Affiliation(s)
- Stephanie Chaousis
- Griffith School of Environment, Australian Rivers Institute, Griffith University, Qld, 4222 Australia.
| | - Frederic D L Leusch
- Griffith School of Environment, Australian Rivers Institute, Griffith University, Qld, 4222 Australia
| | - Jason P van de Merwe
- Griffith School of Environment, Australian Rivers Institute, Griffith University, Qld, 4222 Australia
| |
Collapse
|
42
|
Glover CN. Defence mechanisms: the role of physiology in current and future environmental protection paradigms. CONSERVATION PHYSIOLOGY 2018; 6:coy012. [PMID: 29564135 PMCID: PMC5848810 DOI: 10.1093/conphys/coy012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/09/2018] [Accepted: 02/22/2018] [Indexed: 05/13/2023]
Abstract
Ecological risk assessments principally rely on simplified metrics of organismal sensitivity that do not consider mechanism or biological traits. As such, they are unable to adequately extrapolate from standard laboratory tests to real-world settings, and largely fail to account for the diversity of organisms and environmental variables that occur in natural environments. However, an understanding of how stressors influence organism health can compensate for these limitations. Mechanistic knowledge can be used to account for species differences in basal biological function and variability in environmental factors, including spatial and temporal changes in the chemical, physical and biological milieu. Consequently, physiological understanding of biological function, and how this is altered by stressor exposure, can facilitate proactive, predictive risk assessment. In this perspective article, existing frameworks that utilize physiological knowledge (e.g. biotic ligand models, adverse outcomes pathways and mechanistic effect models), are outlined, and specific examples of how mechanistic understanding has been used to predict risk are highlighted. Future research approaches and data needs for extending the incorporation of physiological information into ecological risk assessments are discussed. Although the review focuses on chemical toxicants in aquatic systems, physical and biological stressors and terrestrial environments are also briefly considered.
Collapse
Affiliation(s)
- Chris N Glover
- Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, Canada
- Department of Biological Sciences, CW 405, Biological Sciences Bldg. University of Alberta Edmonton, Alberta, Canada T6G 2E9
- Corresponding author: 1 University Drive, Athabasca, Alberta, Canada T9S 3A3. Tel: +(587) 985 8007.
| |
Collapse
|
43
|
Obiakor MO, Tighe M, Wang Z, Ezeonyejiaku CD, Pereg L, Wilson SC. The relative sensitivity of freshwater species to antimony(III): Implications for water quality guidelines and ecological risk assessments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:25276-25290. [PMID: 28929352 DOI: 10.1007/s11356-017-0168-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
Antimony (Sb) is a pollutant in many jurisdictions, yet its threat to aquatic biota is unclear. Water quality guidelines (WQGs) for Sb are not well established and large uncertainty factors are commonly applied in derivation. We constructed freshwater species sensitivity distributions (SSDs) for Sb(III) using available acute toxicity data sourced from temperate and tropical regional studies. A tiered ecological risk assessment (ERA) approach using risk quotients (RQs) was applied for characterisation of risks presented by Sb(III) concentrations measured in the freshwater environment. Multiple parametric models were fitted for each SSD, with the optimal model used to derive the 5% hazardous concentration (HC5), defined as protective of 95% of species, and the corresponding predicted no effect concentration (PNEC). The HC5 values for whole and temperate SSDs were estimated at 781 and 976 μg L-1 Sb(III), respectively, while the PNECs for both datasets were 156 and 195 μg L-1 Sb(III), respectively. Due to limited tropical data, a temperate-to-tropic extrapolation factor of 10 was used to estimate an interim PNEC for tropical regions of 20 μg L-1 Sb(III). Based on published freshwater Sb(III) concentration values across a range of locations, potential ecological risks posed by Sb(III) in some freshwater systems studied would be classified as medium to high risk, but the majority of locations sampled would fall into the low ecological risk category. Our results facilitate the understanding of toxic effects of Sb(III) to freshwater species but also demonstrate that data for Sb ERA are extremely limited.
Collapse
Affiliation(s)
| | - Matthew Tighe
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Zhen Wang
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | | | - Lily Pereg
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Susan C Wilson
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia.
| |
Collapse
|
44
|
Fahd F, Khan F, Veitch B, Yang M. Aquatic ecotoxicological models and their applicability in Arctic regions. MARINE POLLUTION BULLETIN 2017; 120:428-437. [PMID: 28392091 DOI: 10.1016/j.marpolbul.2017.03.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 03/20/2017] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
Dose-response modeling is one of the most important steps of ecological risk assessment. It requires concentration-effects relationships for the species under consideration. There are very limited studies and experimental data available for the Arctic aquatic species. Lack of toxicity data hinders obtaining dose-response relationships for lethal (LC50 values), sub-lethal and carcinogenic effects. Gaps in toxicity data could be filled using a variety of in-silico ecotoxicological methods. This paper reviews the suitability of such methods for the Arctic scenario. Mechanistic approaches like toxicokinetic and toxicodynamic analysis are found to be better suited for interspecies extrapolation than statistical methods, such as Quantitative Structure-Activity Relationships/Quantitative Structure Activity-Activity Relationship, ICE, and other empirical models, such as Haber's law and Ostwald's equation. A novel approach is proposed where the effects of the toxicant exposure are quantified based on the probability of cellular damage and metabolites interactions. This approach recommends modeling cellular damage using a toxicodynamic model and physiology or metabolites interactions using a toxicokinetic model. Together, these models provide more reliable estimates of toxicity in the Arctic aquatic species, which will assist in conducting ecological risk assessment of Arctic environment.
Collapse
Affiliation(s)
- Faisal Fahd
- Centre for Risk, Integrity and Safety Engineering (CRISE), Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Faisal Khan
- Centre for Risk, Integrity and Safety Engineering (CRISE), Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada.
| | - Brian Veitch
- Centre for Risk, Integrity and Safety Engineering (CRISE), Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Ming Yang
- Centre for Risk, Integrity and Safety Engineering (CRISE), Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada; Department of Chemical Engineering, School of Engineering, Nazarbayev University, Astana, Kazakhstan 010000
| |
Collapse
|
45
|
Englert D, Zubrod JP, Link M, Mertins S, Schulz R, Bundschuh M. Does Waterborne Exposure Explain Effects Caused by Neonicotinoid-Contaminated Plant Material in Aquatic Systems? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5793-5802. [PMID: 28447782 DOI: 10.1021/acs.est.7b00827] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Neonicotinoids are increasingly applied on trees as protection measure against insect pests. Consequently, neonicotinoids are inevitably transferred into aquatic environments either via spray drift or surface runoff or (due to neonicotinoids' systemic nature) via senescent leaves. There particularly leaf-shredding invertebrates may be exposed to neonicotinoids through both the water phase and the consumption of contaminated leaves. In 7 day bioassays (n = 30), we examined ecotoxicological differences between these two exposure scenarios for an amphipod and an insect nymph with their feeding rate as the response variable. Organisms either experienced waterborne neonicotinoid (i.e., imidacloprid, thiacloprid, and acetamiprid) exposure only or a combined exposure (waterborne and dietary) through both the consumption of contaminated leaves and neonicotinoids leaching from leaves into water. The amphipod (7 day EC50s from 0.3 to 8.4 μg/L) was more sensitive than the insect nymph (7 day EC50s from 7.0 to 19.4 μg/L). Moreover, for both species, concentration-response models derived from water concentrations indicated higher effects under the combined exposure. Together with the observed inability of shredders to avoid neonicotinoid-contaminated leaves, our results emphasize the relevance of dietary exposure (e.g., via leaves) for systemic insecticides. Thus, it would be prudent to consider dietary exposure during the registration of systemic insecticides to safeguard ecosystem integrity.
Collapse
Affiliation(s)
- Dominic Englert
- Institute for Environmental Sciences, University of Koblenz-Landau , Landau Campus, Fortstrasse 7, 76829 Landau, Germany
| | - Jochen P Zubrod
- Institute for Environmental Sciences, University of Koblenz-Landau , Landau Campus, Fortstrasse 7, 76829 Landau, Germany
| | - Moritz Link
- Institute for Environmental Sciences, University of Koblenz-Landau , Landau Campus, Fortstrasse 7, 76829 Landau, Germany
| | - Saskia Mertins
- Institute for Environmental Sciences, University of Koblenz-Landau , Landau Campus, Fortstrasse 7, 76829 Landau, Germany
| | - Ralf Schulz
- Institute for Environmental Sciences, University of Koblenz-Landau , Landau Campus, Fortstrasse 7, 76829 Landau, Germany
| | - Mirco Bundschuh
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences , Lennart Hjelms väg 9, SWE-75007 Uppsala, Sweden
| |
Collapse
|
46
|
Ashauer R, O'Connor I, Escher BI. Toxic Mixtures in Time-The Sequence Makes the Poison. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:3084-3092. [PMID: 28177231 DOI: 10.1021/acs.est.6b06163] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
"The dose makes the poison". This principle assumes that once a chemical is cleared out of the organism (toxicokinetic recovery), it no longer has any effect. However, it overlooks the other process of re-establishing homeostasis, toxicodynamic recovery, which can be fast or slow depending on the chemical. Therefore, when organisms are exposed to two toxicants in sequence, the toxicity can differ if their order is reversed. We test this hypothesis with the freshwater crustacean Gammarus pulex and four toxicants that act on different targets (diazinon, propiconazole, 4,6-dinitro-o-cresol, 4-nitrobenzyl chloride). We found clearly different toxicity when the exposure order of two toxicants was reversed, while maintaining the same dose. Slow toxicodynamic recovery caused carry-over toxicity in subsequent exposures, thereby resulting in a sequence effect-but only when toxicodynamic recovery was slow relative to the interval between exposures. This suggests that carry-over toxicity is a useful proxy for organism fitness and that risk assessment methods should be revised as they currently could underestimate risk. We provide the first evidence that carry-over toxicity occurs among chemicals acting on different targets and when exposure is several days apart. It is therefore not only the dose that makes the poison but also the exposure sequence.
Collapse
Affiliation(s)
- Roman Ashauer
- Department of Environmental Toxicology, Eawag - Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf, Switzerland
- Environment Department, University of York , Heslington, York YO10 5DD, United Kingdom
| | - Isabel O'Connor
- Department of Environmental Toxicology, Eawag - Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf, Switzerland
| | - Beate I Escher
- Department of Environmental Toxicology, Eawag - Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf, Switzerland
- Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Environmental Toxicology, Center for Applied Geosciences, Eberhard Karls University , Tübingen, Germany
| |
Collapse
|
47
|
Franco A, Price OR, Marshall S, Jolliet O, Van den Brink PJ, Rico A, Focks A, De Laender F, Ashauer R. Toward refined environmental scenarios for ecological risk assessment of down-the-drain chemicals in freshwater environments. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2017; 13:233-248. [PMID: 27260272 DOI: 10.1002/ieam.1801] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/11/2016] [Accepted: 05/26/2016] [Indexed: 05/03/2023]
Abstract
Current regulatory practice for chemical risk assessment suffers from the lack of realism in conventional frameworks. Despite significant advances in exposure and ecological effect modeling, the implementation of novel approaches as high-tier options for prospective regulatory risk assessment remains limited, particularly among general chemicals such as down-the-drain ingredients. While reviewing the current state of the art in environmental exposure and ecological effect modeling, we propose a scenario-based framework that enables a better integration of exposure and effect assessments in a tiered approach. Global- to catchment-scale spatially explicit exposure models can be used to identify areas of higher exposure and to generate ecologically relevant exposure information for input into effect models. Numerous examples of mechanistic ecological effect models demonstrate that it is technically feasible to extrapolate from individual-level effects to effects at higher levels of biological organization and from laboratory to environmental conditions. However, the data required to parameterize effect models that can embrace the complexity of ecosystems are large and require a targeted approach. Experimental efforts should, therefore, focus on vulnerable species and/or traits and ecological conditions of relevance. We outline key research needs to address the challenges that currently hinder the practical application of advanced model-based approaches to risk assessment of down-the-drain chemicals. Integr Environ Assess Manag 2017;13:233-248. © 2016 SETAC.
Collapse
Affiliation(s)
- Antonio Franco
- Unilever, Safety & Environmental Assurance Centre, Colworth Science Park, Sharnbrook, United Kingdom
| | - Oliver R Price
- Unilever, Safety & Environmental Assurance Centre, Colworth Science Park, Sharnbrook, United Kingdom
| | - Stuart Marshall
- Unilever, Safety & Environmental Assurance Centre, Colworth Science Park, Sharnbrook, United Kingdom
| | - Olivier Jolliet
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Paul J Van den Brink
- Alterra, Wageningen University and Research Centre, Wageningen, The Netherlands
- Department of Aquatic Ecology and Water Quality Management, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Andreu Rico
- Alterra, Wageningen University and Research Centre, Wageningen, The Netherlands
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalà, Alcalà de Henares, Madrid, Spain
| | - Andreas Focks
- Alterra, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Frederik De Laender
- Research Unit in Environmental and Evolutionary Biology, University of Namur, Namur, Belgium
| | - Roman Ashauer
- Environment Department, University of York Heslington, York, United Kingdom
| |
Collapse
|
48
|
Johnston CU, Clothier LN, Quesnel DM, Gieg LM, Chua G, Hermann PM, Wildering WC. Embryonic exposure to model naphthenic acids delays growth and hatching in the pond snail Lymnaea stagnalis. CHEMOSPHERE 2017; 168:1578-1588. [PMID: 27932040 DOI: 10.1016/j.chemosphere.2016.11.156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 06/06/2023]
Abstract
Naphthenic acids (NAs), a class of structurally diverse carboxylic acids with often complex ring structures and large aliphatic tail groups, are important by-products of many petrochemical processes including the oil sands mining activity of Northern Alberta. While it is evident that NAs have both acute and chronic harmful effects on many organisms, many aspects of their toxicity remain to be clarified. Particularly, while substantive data sets have been collected on NA toxicity in aquatic prokaryote and vertebrate model systems, to date, nothing is known about the toxic effects of these compounds on the embryonic development of aquatic invertebrate taxa, including freshwater mollusks. This study examines under laboratory conditions the toxicity of NAs extracted from oil sands process water (OSPW) and the low-molecular weight model NAs cyclohexylsuccinic acid (CHSA), cyclohexanebutyric acid (CHBA), and 4-tert-butylcyclohexane carboxylic acid (4-TBCA) on embryonic development of the snail Lymnaea stagnalis, a common freshwater gastropod with a broad Palearctic distribution. Evidence is provided for concentration-dependent teratogenic effects of both OSPW-derived and model NAs with remarkably similar nominal threshold concentrations between 15 and 20 mg/L and 28d EC50 of 31 mg/L. In addition, the data provide evidence for substantial toxicokinetic differences between CHSA, CHBA and 4-TBCA. Together, our study introduces Lymnaea stagnalis embryonic development as an effective model to assay NA-toxicity and identifies molecular architecture as a potentially important toxicokinetic parameter in the toxicity of low-molecular weight NA in embryonic development of aquatic gastropods.
Collapse
Affiliation(s)
- Christina U Johnston
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Lindsay N Clothier
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Dean M Quesnel
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Lisa M Gieg
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Gordon Chua
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Petra M Hermann
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, T2N 1N4, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Willem C Wildering
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, T2N 1N4, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
49
|
Prosser RS, de Solla SR, Holman EAM, Osborne R, Robinson SA, Bartlett AJ, Maisonneuve FJ, Gillis PL. Sensitivity of the early-life stages of freshwater mollusks to neonicotinoid and butenolide insecticides. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:428-435. [PMID: 27450416 DOI: 10.1016/j.envpol.2016.07.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/06/2016] [Accepted: 07/09/2016] [Indexed: 05/03/2023]
Abstract
Neonicotinoid insecticides can be transported from agricultural fields, where they are used as foliar sprays or seed treatments, to surface waters by surface or sub-surface runoff. Few studies have investigated the toxicity of neonicotinoid or the related butenolide insecticides to freshwater mollusk species. The current study examined the effect of neonicotinoid and butenolide exposures to the early-life stages of the ramshorn snail, Planorbella pilsbryi, and the wavy-rayed lampmussel, Lampsilis fasciola. Juvenile P. pilsbryi were exposed to imidacloprid, clothianidin, or thiamethoxam for 7 or 28 d and mortality, growth, and biomass production were measured. The viability of larval (glochidia) L. fasciola was monitored during a 48 h exposure to six neonicotinoids (imidacloprid, thiamethoxam, clothianidin, acetamiprid, thiacloprid, or dinotefuran), or a butenolide (flupyradifurone). The 7-d LC50s of P. pilsbryi for imidacloprid, clothianidin, and thiamethoxam were ≥4000 μg/L and the 28-d LC50s were ≥182 μg/L. Growth and biomass production were considerably more sensitive endpoints than mortality with EC50s ranging from 33.2 to 122.0 μg/L. The 48-h LC50s for the viability of glochidia were ≥456 μg/L for all seven insecticides tested. Our data indicate that neonicotinoid and butenolide insecticides pose less of a hazard with respect to mortality of the two species of mollusk compared to the potential hazard to other non-target aquatic insects.
Collapse
Affiliation(s)
- R S Prosser
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada.
| | - S R de Solla
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, Burlington, Ontario, Canada
| | - E A M Holman
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - R Osborne
- University of Waterloo, Department of Biology, Waterloo, Ontario, Canada
| | - S A Robinson
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, Ottawa, Ontario, Canada
| | - A J Bartlett
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - F J Maisonneuve
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, Ottawa, Ontario, Canada
| | - P L Gillis
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| |
Collapse
|
50
|
Willming MM, Lilavois CR, Barron MG, Raimondo S. Acute Toxicity Prediction to Threatened and Endangered Species Using Interspecies Correlation Estimation (ICE) Models. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:10700-10707. [PMID: 27585402 DOI: 10.1021/acs.est.6b03009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Evaluating contaminant sensitivity of threatened and endangered (listed) species and protectiveness of chemical regulations often depends on toxicity data for commonly tested surrogate species. The U.S. EPA's Internet application Web-ICE is a suite of Interspecies Correlation Estimation (ICE) models that can extrapolate species sensitivity to listed taxa using least-squares regressions of the sensitivity of a surrogate species and a predicted taxon (species, genus, or family). Web-ICE was expanded with new models that can predict toxicity to over 250 listed species. A case study was used to assess protectiveness of genus and family model estimates derived from either geometric mean or minimum taxa toxicity values for listed species. Models developed from the most sensitive value for each chemical were generally protective of the most sensitive species within predicted taxa, including listed species, and were more protective than geometric means models. ICE model estimates were compared to HC5 values derived from Species Sensitivity Distributions for the case study chemicals to assess protectiveness of the two approaches. ICE models provide robust toxicity predictions and can generate protective toxicity estimates for assessing contaminant risk to listed species.
Collapse
Affiliation(s)
- Morgan M Willming
- Oak Ridge Institute for Science and Education, Gulf Ecology Division, U.S. Environmental Protection Agency , 1 Sabine Island Drive, Gulf Breeze, Florida 32561, United States
| | - Crystal R Lilavois
- National Health and Environmental Effects Laboratory, Gulf Ecology Division, U.S. Environmental Protection Agency , 1 Sabine Island Drive, Gulf Breeze, Florida 32561, United States
| | - Mace G Barron
- National Health and Environmental Effects Laboratory, Gulf Ecology Division, U.S. Environmental Protection Agency , 1 Sabine Island Drive, Gulf Breeze, Florida 32561, United States
| | - Sandy Raimondo
- National Health and Environmental Effects Laboratory, Gulf Ecology Division, U.S. Environmental Protection Agency , 1 Sabine Island Drive, Gulf Breeze, Florida 32561, United States
| |
Collapse
|