1
|
Zheng M, Zheng T, Huan Z, Li C, Li X, Wang M. Sampling-rate calibration vs. equilibrium calibration for in vivo solid-phase microextraction: Analysis of neonicotinoids in bananas. J Chromatogr A 2024; 1730:465152. [PMID: 39003980 DOI: 10.1016/j.chroma.2024.465152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
In vivo solid-phase microextraction (in vivo SPME) is an emerging fascinating sample pretreatment technique, but its quantitative correction method is different from the traditional correction methods, which has become a bottleneck limiting its development. At present, the sampling-rate calibration and equilibrium calibration are mainly used, however, their characteristics and applicability are not clear. In this study, the sampling-rate calibration and equilibrium calibration were evaluated in the case of the determination of neonicotinoids in bananas by in vivo SPME. The factors that affect the sampling rate (Rs), such as the matrix states, sampling durations, and individual differences were studied, and they all had impacts on Rs. Conversely, the equilibrium distribution coefficient (Kfs) remained constant after extraction equilibrium and the individual differences were smaller. The highest accuracy and precision were achieved by equilibrium calibration, and the relative recoveries were in the range of 83.2 %-104.3 % with the relative standard deviations below 8.1 % compared to a standard QuEChERS-based method. The lower limits of quantification for 4 neonicotinoids in bananas were below 5 ng g-1, lower than the standard method and the maximum residue levels in China and the European Union. This work clarifies the characteristics, rules and performance of the sampling-rate calibration and equilibrium calibration, which is of crucial importance for the development and application of in vivo SPME. The developed method is convenient, sensitive, and accurate for the determination of pesticide residues, which is of great significance to guide the safe use of pesticides in the field and prevent products with excessive pesticide residues from entering the market.
Collapse
Affiliation(s)
- Meijie Zheng
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, 430070, China; Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan, 571101, China
| | - Tengfei Zheng
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, 430070, China; Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan, 571101, China
| | - Zhibo Huan
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan, 571101, China
| | - Chunli Li
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan, 571101, China
| | - Xiujuan Li
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Environment Correlative Dietology (Ministry of Education), Wuhan, 430070, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, 430070, China.
| | - Mingyue Wang
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan, 571101, China.
| |
Collapse
|
2
|
Zheng T, Zheng M, Li S, Liu C, Li X, Wang M. In vivo tracing of cyromazine and three neonicotinoids in cowpea under field conditions by solid-phase microextraction combined with ultra-performance liquid chromatography-tandem mass spectrometry. Anal Chim Acta 2024; 1314:342796. [PMID: 38876515 DOI: 10.1016/j.aca.2024.342796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Excessive pesticide residues in agricultural products could accumulate in organisms through the food chain, causing potential harm to human health. The investigation of dissipation kinetics and residues of pesticides in crops is crucial for the scientific application of pesticides and the mitigation of their adverse effects on human health. In vivo solid-phase microextraction (in vivo SPME) has unique advantages, but the research on field plants is still lacking and the quantitative correction methods need to be further developed. RESULTS A method combining in vivo solid-phase microextraction with ultra-performance liquid chromatography-tandem mass spectrometry (in vivo SPME-UPLC-MS/MS) was developed to monitor the presence of acetamiprid, cyromazine, thiamethoxam and imidacloprid in cowpea fruits grown in the field. The sampling rates (Rs) were determined using both in vitro SPME in homogenized cowpea samples and in vivo SPME in intact cowpea fruit samples. The in vivo-Rs values were significantly higher than the in vitro-Rs for the same analyte, which were used for in vivo SPME correction. The accuracy of this method was confirmed by comparison with a QuEChERS-based approach and subsequently applied to trace pesticide residues in field-grown cowpea fruits. The residual concentrations of each pesticide positively correlated with application doses. After 7 days of application at two different doses, all of the pesticides had residual concentrations below China's maximum residue limits. Both experimental data and predictions indicated that a safe preharvest interval for these pesticides is 7 days; however, if the European Union standards are to be met, a safe preharvest interval for cyromazine should be at least 13 days. SIGNIFICANCE This study highlights the advantages of in vivo SPME for simultaneous analysis and tracking of multiple pesticides in crops under field conditions. This technique is environmentally friendly, minimally invasive, highly sensitive, accurate, rapid, user-friendly, cost-effective, and capable of providing precise and timely data for long-term pesticide surveillance. Consequently, it furnishes valuable insights to guide the safe utilization of pesticides in agricultural production.
Collapse
Affiliation(s)
- Tengfei Zheng
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, 430070, China; Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan, 571101, China
| | - Meijie Zheng
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, 430070, China; Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan, 571101, China
| | - Shuhuai Li
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan, 571101, China
| | - Chunhua Liu
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan, 571101, China
| | - Xiujuan Li
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Environment Correlative Dietology (Ministry of Education), Wuhan, 430070, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, 430070, China.
| | - Mingyue Wang
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan, 571101, China.
| |
Collapse
|
3
|
Wang J, Liu Y, Yu C, Wang X, Wang J. Swellable microneedle-coupled light-addressable photoelectrochemical sensor for in-situ tracking of multiple pesticides pollution in vivo. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134216. [PMID: 38581877 DOI: 10.1016/j.jhazmat.2024.134216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
In vivo monitoring of multiple pesticide contamination is of great significance for evaluating the health risks of different pesticides, agricultural production safety, and ecological and environmental assessment. Here, we report a hydrogel microneedle array coupled light-addressable photoelectrochemical sensor for tracking multiple pesticide uptake and elimination in living animals and plants, holding three prominent merits: i) enables in-situ detection of in vivo pesticides, avoiding cumbersome and complex sample transportation and handling processes; ii) allows repeated in vivo sampling of the same organism, improving tracking test controllability and accuracy; iii) avoids lethal sampling, providing a better understanding of the pesticides fate in living organisms. The coupled sensor is mechanically robust for withstanding more than 0.35 N per needle and highly swellable (800 %) for timely extraction of sufficient in vivo solution for analysis. For proof-of-concept, it achieves in-situ detection of atrazine, acetamiprid, and carbendazim efficiently and quantitatively in artificial agarose skin models, mouse skin interstitial fluids, and plant leaves with little inflammatory reaction. This simple, highly integrated, minimally invasive, and high-throughput in vivo monitoring method is ideal for future field environmental monitoring and plant and animal disease diagnosis.
Collapse
Affiliation(s)
- Jinmiao Wang
- College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yanwen Liu
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, China
| | - Cheng Yu
- College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xinmeng Wang
- College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Juan Wang
- College of Health Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
4
|
Zhang L, Han H, Zhou J, Wang R, Lv Y, Zong S, Ning X, Ji W. Imprinted covalent organic frameworks solid-phase microextraction fiber for in vivo monitoring of acidic per- and polyfluoroalkyl substances in live aloe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170645. [PMID: 38320695 DOI: 10.1016/j.scitotenv.2024.170645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) can lead to risks associated with animal and human health through the transfer along food chains. It is confirmed that PFASs can be transported to each part of plants after taken up by the roots. To better elucidate the underlying mechanisms for such exposure, it is highly valuable to develop analytical capabilities for in vivo monitoring of PFASs in live plants. In this work, a novel imprinted covalent organic frameworks (CMIP) solid-phase microextraction coupled with ultra-performance liquid chromatography-tandem mass spectrometry was developed with low limits of detection for six acidic PFASs (0.1-0.3 ng g-1) and used for in vivo monitoring in live aloe. The CMIP coating shows good precision (RSD of intra and inter ≤9.6 % and 10.2 %, respectively) and possesses much higher extraction efficiency than the commercial coatings. After cultivating aloe in soil spiked PFASs, the in vivo assays gave a wealth of information, including steady-state concentrations, translocation factors, elimination rate constants, and half-life of PFASs. The in vivo tracing method for live plants can provide much needed and unique information to evaluate the risk of PFASs, which are very important for the safety of agriculture production.
Collapse
Affiliation(s)
- Lidan Zhang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Haoyue Han
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Jing Zhou
- Shandong Lancheng Analysis and Testing Co., Ltd., Jinan 250100, China
| | - Rongyu Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yingchao Lv
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Shaojun Zong
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xiaobei Ning
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Wenhua Ji
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| |
Collapse
|
5
|
Tang Y, Liu Y, Wang J, Wang J, Liu Z. In Vivo Tracking of Persistent Organic Pollutants via a Coaxially Integrated and Implanted Photofuel Microsensor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2826-2836. [PMID: 36775915 DOI: 10.1021/acs.est.2c08245] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In vivo tracking of persistent organic pollutants (POPs) is of great significance for assessing their risks to the ecological environment and human health. However, existing in vivo POPs detection methods are limited by the lethal sampling of living organisms, complex sample preparation processes, or bulky testing equipment. Photoelectrochemical (PEC) sensing with the merits of high sensitivity and simple equipment is a fast-developed method for in vivo analysis. A major obstacle for in vivo PEC sensors is the separated implantation of multiple electrodes and a light source, which raises concerns like multielectrode biofouling and electroactive molecules interference in the complex environment, uncertain electrode implant distance, and multiple insertion operations. Here, a coaxially implanted photofuel microsensor was developed by hiding the optical fiber-based photoanode inside the glass capillary-based biocathode, and the model target PCB77 can be detected with an ultralow detection limit (2.8 fg/mL). This unique photoanode-biocathode-light source integrated structure ensures excellent selectivity, good antifouling ability and biocompatibility, high accuracy, and less implant mechanical damage. Combined with a handheld pH meter, our sensor achieved convenient and direct tracking of the bioaccumulation levels of PCB77 in freely swimming fish.
Collapse
Affiliation(s)
- Ying Tang
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, China
| | - Yanwen Liu
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, China
| | - Jinmiao Wang
- College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Juan Wang
- College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhihong Liu
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, China
- College of Health Science and Engineering, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
6
|
Zang X, Chang Q, Li H, Zhao X, Zhang S, Wang C, Wang Z. Construction of a ringent multi-shelled hollow MIL-88B as the solid-phase microextraction fiber coating for the extraction of organochlorine pesticides. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Chen C, Huang Y, Wu P, Pan J, Guo P, Liu S. In vivo microcapillary sampling coupled with matrix-assisted laser desorption/ionization fourier transform ion cyclotron resonance mass spectrometry for real-time monitoring of paraquat and diquat in living vegetables. Food Chem 2022; 388:132998. [PMID: 35453011 DOI: 10.1016/j.foodchem.2022.132998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 11/26/2022]
Abstract
An in vivo microcapillary sampling (MCS) method coupled with matrix-assisted laser desorption/ionization fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR-MS) analysis was utilized to monitor the real-time bipyridine quaternary ammonium herbicides concentrations and assess their uptake and elimination behaviors in living cabbage plants noninvasively. Under optimized conditions, the proposed method for paraquat (PQ) and diquat (DQ) determination showed wide linear ranges (7.81-500 μg/kg), low limits of detection (0.1-0.9 μg/kg), and good reproducibility. In vivo tracking results demonstrated that different absorption behaviors between PQ and DQ existed in living vegetables and DQ was more easily absorbed. Through decay kinetics model fitting, herbicide half-lives were 1.32 and 1.86 days for PQ and DQ, respectively. To summarize, in vivo MCS method provides valuable information on herbicide risks for agricultural production, which is suitable for temporal, spatial, and longitudinal studies in the same living system and multicompartmental studies in the same organism.
Collapse
Affiliation(s)
- Chao Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Yan Huang
- North China University of Science and Technology Affiliated Hospital, 73 Jianshe South Road, Tangshan 063000, Hebei, China
| | - Peishan Wu
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Jiachuan Pan
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Pengran Guo
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Shuqin Liu
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China.
| |
Collapse
|
8
|
Costa Queiroz ME, Donizeti de Souza I, Gustavo de Oliveira I, Grecco CF. In vivo solid phase microextraction for bioanalysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Chen T, Hu J, Chen Y, Liu Y, Li Y, Xu H. Tracking the environmental fate of fipronil and three of its metabolites in garlic based on sampling rate-corrected in vivo solid phase microextraction combined with gas chromatography-mass spectrometry. Anal Chim Acta 2022; 1190:339263. [PMID: 34857131 DOI: 10.1016/j.aca.2021.339263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 11/01/2022]
Abstract
In this study, a sampling rate-corrected in vivo solid-phase microextraction-gas chromatography-mass spectrometry method (SR-in vivo SPME-GC-MS) was constructed to simultaneously detect fipronil and three of its metabolites in garlic, and their environmental behavior was long-term monitored in in vivo mode. All of three fipronil metabolites were more difficult to degrade than the parent pesticide. The final degradation rates of the metabolites in garlic were in the range of 4.4%-25.1%, much lower than that of the parent (78.6%-85.8%). While their total residues amount was about 3 times as high as fipronil, exceeding the maximum residue limits regulated by China and the European Union. The steady-state concentrations of fipronil and its metabolites in garlic were positively correlated with the pesticide stress dose. In short, the established in vivo tracking method is efficient and convenient. The features of simple operation, fast analysis, acceptable sensitivity, non-harmful or non-lethal to plants, available repeated and long-term monitoring of the same organism make it attractive for in vivo tracking assay, it is of great significance for the guidance of rational use of fipronil and protection of food safety.
Collapse
Affiliation(s)
- Tiantian Chen
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Jiajia Hu
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yanyan Chen
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Ying Liu
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yan Li
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Hui Xu
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
10
|
Liu S, Huang Y, Liu J, Chen C, Ouyang G. In Vivo Contaminant Monitoring and Metabolomic Profiling in Plants Exposed to Carbamates via a Novel Microextraction Fiber. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12449-12458. [PMID: 34494434 DOI: 10.1021/acs.est.1c04368] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, a biocompatible solid-phase microextraction (SPME) fiber with high-coverage capture capacity based on a nitrogen-rich porous polyaminal was developed. The fiber was used to track the bioaccumulation and elimination of carbamates (isoprocarb, carbofuran, and carbaryl) and their metabolites (o-cumenol, carbofuran phenol, and 1-naphthalenol) in living Chinese cabbage plants (Brassica campestris L. ssp. chinensis Makino (var. communis Tsen et Lee)). A case-and-control model was applied in the hydroponically cultured plants, with the exposed plant groups contaminated under three carbamates at 5 μg mL-1. Both bio-enrichment and elimination of carbamates and their metabolites in living plants appeared to be very fast with half-lives at ∼0.39-0.79 and ∼0.56-0.69 days, respectively. Statistical differences in the endogenous plant metabolome occurred on day 3 of carbamate exposure. In the exposed group, the plant metabolic alterations were not reversed after 5 days of contaminant-free growth, although most contaminates had been eliminated. Compared with prior nutriological and toxicological studies, >50 compounds were first identified as endogenous metabolites in cabbage plants. The contents of the glucosinolate-related metabolites demonstrated significant time-dependent dysregulations that the fold changes of these key metabolites decreased from 0.78-1.07 to 0.28-0.82 during carbamate exposure. To summarize, in vivo SPME provided new and important information regarding exogenous carbamate contamination and related metabolic dysregulation in plants.
Collapse
Affiliation(s)
- Shuqin Liu
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Yiquan Huang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Jian Liu
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Chao Chen
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Gangfeng Ouyang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
11
|
Wang Y, Jie Y, Hu Q, Yang Y, Ye Y, Zou S, Xu J, Ouyang G. A polymeric solid-phase microextraction fiber for the detection of pharmaceuticals in water samples. J Chromatogr A 2020; 1623:461171. [PMID: 32505277 DOI: 10.1016/j.chroma.2020.461171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022]
Abstract
A novel disposable styrene based solid-phase microextraction (SPME) fiber was synthesized for the detection of lipid-lowering and antihypertensive drugs in real aquatic environment. Styrene and poly(ethylene glycol) diacrylate were co-polymerized on quartz fibers by thermal polymerization in capillary molds. The polymeric fiber possessed a homogeneous, dense as well as porous surface, showing excellent chemical and mechanical stability. The performance of the fiber was evaluated through the extraction of seven pharmaceuticals by coupling SPME with high performance liquid chromatography-tandem mass spectrometry under the optimized extraction conditions. The extraction efficiency of the fiber was up to 278 times of PDMS fiber and the enrichment factors ranged from 55 to 1183. The limits of detection were in the range from 1.7 ng L-1 to 11.7 ng L-1, with good reproducibility. Moreover, the fiber was used in the real water samples of the Pearl River Delta. The recoveries of the target analytes from river water and sea water samples at different spiked concentrations were in the range from 84.1% to 133.4% and from 81.5% to 105.5%, respectively.
Collapse
Affiliation(s)
- Yuwei Wang
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, PR China
| | - Yuwang Jie
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, PR China
| | - Qingkun Hu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Ying Yang
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, PR China.
| | - Yuxin Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Shichun Zou
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, PR China
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
| |
Collapse
|
12
|
Abstract
In vivo solid-phase microextraction (SPME) has been recently proposed for the extraction, clean-up and preconcentration of analytes of biological and clinical concern. Bioanalysis can be performed by sampling exo- or endogenous compounds directly in living organisms with minimum invasiveness. In this context, innovative and miniaturized devices characterized by both commercial and lab-made coatings for in vivo SPME tissue sampling have been proposed, thus assessing the feasibility of this technique for biomarker discovery, metabolomics studies or for evaluating the environmental conditions to which organisms can be exposed. Finally, the possibility of directly interfacing SPME to mass spectrometers represents a valuable tool for the rapid quali- and quantitative analysis of complex matrices. This review article provides a survey of in vivo SPME applications focusing on the extraction of tissues, cells and simple organisms. This survey will attempt to cover the state-of- the-art from 2014 up to 2019.
Collapse
|
13
|
Roszkowska A, Yu M, Bessonneau V, Ings J, McMaster M, Smith R, Bragg L, Servos M, Pawliszyn J. In vivo solid-phase microextraction sampling combined with metabolomics and toxicological studies for the non-lethal monitoring of the exposome in fish tissue. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:109-115. [PMID: 30884389 DOI: 10.1016/j.envpol.2019.03.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Various environmental studies have employed the biomonitoring of fish in their aquatic ecosystems in order to identify potential metabolic responses to the exposome. In this study, we applied in vivo solid-phase microextraction (SPME) to perform non-lethal sampling on the muscle tissue of living fish to extract toxicants and various endogenous metabolites. Sixty white suckers (Catastomus commersonii) were sampled from sites upstream, adjacent, and downstream from the oil sands development region of the Athabasca River (Alberta, Canada) in order to track their biochemical responses to potential contaminants. In vivo SPME sampling facilitated the extraction of a wide range of endogenous metabolites, mainly related to lipid metabolism. The obtained results revealed significant changes in the levels of numerous metabolites, including eicosanoids, linoleic acids, and fat-soluble vitamins, in fish sampled in different areas of the river, thus demonstrating SPME's applicability for the direct monitoring of exposure to different environmental toxicants. In addition, several classes of toxins, including petroleum-related compounds, that can cause serious physiological impairment were tentatively identified in the extracts. In vivo SPME, combined with the analysis of contaminants and endogenous metabolites, provided important information about the exposome; as such, this approach represents a potentially powerful and non-lethal tool for identifying the mechanisms that produce altered metabolic pathways in response to the mixtures of different environmental pollutants.
Collapse
Affiliation(s)
- Anna Roszkowska
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Miao Yu
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Vincent Bessonneau
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Jennifer Ings
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Mark McMaster
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Richard Smith
- Mass Spectrometry Facility, University of Waterloo, Waterloo, Ontario, Canada
| | - Leslie Bragg
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Mark Servos
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
14
|
Ocaña-Rios I, Peña-Alvarez A, Zuñiga-Perez I, Loeza-Fuentes E. Trace analysis of UV filters and musks in living fish by in vivo SPME-GC-MS. Anal Bioanal Chem 2019; 411:3209-3218. [PMID: 30976896 DOI: 10.1007/s00216-019-01791-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Iran Ocaña-Rios
- Facultad de Química, Departamento de Química Analítica, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Araceli Peña-Alvarez
- Facultad de Química, Departamento de Química Analítica, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | | | - Elena Loeza-Fuentes
- Facultad de Medicina Veterinaria y Zootecnia, Departamento de Abejas, Conejos y Organismos Acuáticos, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| |
Collapse
|
15
|
Jiang R, Lin W, Zhang L, Zhu F, Ouyang G. Development of a novel solid phase microextraction calibration method for semi-solid tissue sampling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:174-180. [PMID: 30469063 DOI: 10.1016/j.scitotenv.2018.11.226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Accurate quantitative analysis using in vivo solid phase microextraction (SPME) for semi-solid tissue can be challenging due to the complexity of the sample matrix. In this paper, a comprehensive study was carried out on the extraction kinetics of SPME in the semi-solid sample, and subsequently proposed a new theoretical model to interpret the kinetic extraction process. Theoretically derived mathematical expressions well described the experimental desorption time profiles of the SPME process. Modelling experiments were also carried out to study the effect of sample tortuosity and binding matrix on the parameters affecting the extraction kinetics. Seven polyaromatic hydrocarbons (PAHs) and eight polychlorinated biphenyls (PCBs) in agarose gel and in real fish tissue were used for these experiments. The experimental data showed excellent agreement with theoretical prediction while providing excellent interpretation of the effect of tortuosity and binding matrix. Based on the theoretical model, an on-fiber standard calibration method with fewer internal standards was developed. The newly developed calibration method was used to quantify PAHs and PCBs in agarose gel and fish tissue. By using the proposed calibration method, a large number of organic compounds can be quantified with fewer internal standards. Current study provides the theoretical foundation for in vivo SPME quantitative semi-solid tissue analysis in the future.
Collapse
Affiliation(s)
- Ruifen Jiang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| | - Wei Lin
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Lifang Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Fang Zhu
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Gangfeng Ouyang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
16
|
Hu Q, Liu S, Liu Y, Fang X, Xu J, Chen X, Zhu F, Ouyang G. Development of an on–site detection approach for rapid and highly sensitive determination of persistent organic pollutants in real aquatic environment. Anal Chim Acta 2019; 1050:88-94. [DOI: 10.1016/j.aca.2018.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/25/2018] [Accepted: 11/05/2018] [Indexed: 12/29/2022]
|
17
|
In vivo analysis of two new fungicides in mung bean sprouts by solid phase microextraction-gas chromatography-mass spectrometry. Food Chem 2019; 275:688-695. [DOI: 10.1016/j.foodchem.2018.09.148] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/15/2018] [Accepted: 09/24/2018] [Indexed: 12/20/2022]
|
18
|
Enhancing enrichment ability of a nanoporous carbon based solid-phase microextraction device by a morphological modulation strategy. Anal Chim Acta 2019; 1047:1-8. [DOI: 10.1016/j.aca.2018.10.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 01/12/2023]
|
19
|
Liang D, Liu W, Raza R, Bai Y, Liu H. Applications of solid-phase micro-extraction with mass spectrometry in pesticide analysis. J Sep Sci 2018; 42:330-341. [DOI: 10.1002/jssc.201800804] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/21/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Dapeng Liang
- Key Lab of Groundwater Resources and Environment of Ministry of Education; College of New Energy and Environment; Jilin University; Changchun P. R. China
| | - Wenjie Liu
- Key Lab of Groundwater Resources and Environment of Ministry of Education; College of New Energy and Environment; Jilin University; Changchun P. R. China
| | - Rabia Raza
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education; Institute of Analytical Chemistry; College of Chemistry and Molecular Engineering; Peking University; Beijing P. R. China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education; Institute of Analytical Chemistry; College of Chemistry and Molecular Engineering; Peking University; Beijing P. R. China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education; Institute of Analytical Chemistry; College of Chemistry and Molecular Engineering; Peking University; Beijing P. R. China
| |
Collapse
|
20
|
Qiu L, Liu Q, Zeng X, Liu Q, Hou X, Tian Y, Wu L. Sensitive detection of bisphenol A by coupling solid phase microextraction based on monolayer graphene-coated Ag nanoparticles on Si fibers to surface enhanced Raman spectroscopy. Talanta 2018; 187:13-18. [DOI: 10.1016/j.talanta.2018.05.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/25/2018] [Accepted: 05/01/2018] [Indexed: 11/24/2022]
|
21
|
Xie X, Wang J, Zheng J, Huang J, Ni C, Cheng J, Hao Z, Ouyang G. Low-cost Scholl-coupling microporous polymer as an efficient solid-phase microextraction coating for the detection of light aromatic compounds. Anal Chim Acta 2018; 1029:30-36. [PMID: 29907287 DOI: 10.1016/j.aca.2018.05.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 10/16/2022]
Abstract
A cost-effective microporous polymer was synthesized using cheap monomer and catalyst via one-step Scholl-coupling reaction, and its chemical, morphological characteristics and pore structure were investigated. The as-synthesized polymer with large surface area and narrow pore distribution (centered in 1.2 nm) was prepared as a fiber coating for solid-phase microextraction (SPME). Headspace SPME was used for the extraction of the light aromatic compounds, e.g. benzene, toluene, ethylbenzene, m-xylene, naphthalene and acenaphthene. The parameters influencing the extraction and desorption efficiencies, such as extraction temperature and time, salt concentration, desorption temperature and time were investigated and optimized. The results showed that the home-made fiber had superior extraction efficiencies compared with the commercial PDMS fiber. Under the optimized conditions, low detection limits (0.01-1.3 ng/L), wide linear ranges (from 50 to 20000 ng/L to 1-20000 ng/L), good repeatability (4.2-9.3%, n = 6) and reproducibility (0.30-11%, n = 3) were achieved. Moreover, the practical applicability of the coating and proposed method was evaluated by determining the target light aromatic compounds in environmental water samples with satisfied recoveries (83.2%-116%).
Collapse
Affiliation(s)
- Xintong Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou, Guangdong, 510275, China
| | - Junhui Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou, Guangdong, 510275, China.
| | - Juan Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou, Guangdong, 510275, China
| | - Junlong Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou, Guangdong, 510275, China
| | - Chuyi Ni
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou, Guangdong, 510275, China
| | - Jie Cheng
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengping Hao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou, Guangdong, 510275, China.
| |
Collapse
|
22
|
Facile synthesis of hierarchical porous carbon from crude biomass for high-performance solid-phase microextraction. J Chromatogr A 2018; 1548:1-9. [DOI: 10.1016/j.chroma.2018.03.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 01/09/2023]
|
23
|
Tang Y, Xu J, Chen L, Qiu J, Liu Y, Ouyang G. Rapid in vivo determination of fluoroquinolones in cultured puffer fish (Takifugu obscurus) muscle by solid-phase microextraction coupled with liquid chromatography-tandem mass spectrometry. Talanta 2017; 175:550-556. [DOI: 10.1016/j.talanta.2017.07.066] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/18/2017] [Accepted: 07/22/2017] [Indexed: 11/24/2022]
|
24
|
Liu S, Xie L, Hu Q, Yang H, Pan G, Zhu F, Yang S, Ouyang G. A tri-metal centered metal-organic framework for solid-phase microextraction of environmental contaminants with enhanced extraction efficiency. Anal Chim Acta 2017; 987:38-46. [DOI: 10.1016/j.aca.2017.08.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/15/2017] [Accepted: 08/19/2017] [Indexed: 12/30/2022]
|
25
|
Chen L, Qiu J, Tang Y, Xu J, Huang S, Liu Y, Ouyang G. Rapid in vivo determination of tetrodotoxin in pufferfish ( Fugu ) muscle by solid-phase microextraction coupled to high-performance liquid chromatography tandem mass spectrometry. Talanta 2017; 171:179-184. [DOI: 10.1016/j.talanta.2017.04.078] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/25/2017] [Accepted: 04/30/2017] [Indexed: 11/26/2022]
|
26
|
Rapid detection of five anesthetics in tilapias by in vivo solid phase microextraction coupling with gas chromatography-mass spectrometry. Talanta 2017; 168:263-268. [DOI: 10.1016/j.talanta.2017.03.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/11/2017] [Accepted: 03/16/2017] [Indexed: 11/21/2022]
|
27
|
Gao D, Wang DD, Zhang Q, Yang FQ, Xia ZN, Zhang QH, Yuan CS. In Vivo Selective Capture and Rapid Identification of Luteolin and Its Metabolites in Rat Livers by Molecularly Imprinted Solid-Phase Microextraction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1158-1166. [PMID: 28111945 DOI: 10.1021/acs.jafc.6b05269] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A method based on molecularly imprinted solid-phase microextraction (MIP-SPME) coupled with liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (QTOF-MS/MS) was developed for the detection of luteolin and its metabolites in vivo. The MIP-SPME fibers were first fabricated by dopamine and silane, and then luteolin MIPs-coated fibers were successfully prepared using luteolin, acrylamide (AM), and ethylene glycol dimethacrylate (EGDMA) as the template, functional monomer and cross-linker, respectively. The characterizations of polymers were analyzed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and the Brunauer-Emmett-Teller method (BET). The properties involving adsorption and selective experiments were evaluated, and these results revealed that MIP fibers presented high adsorption capacity and selectivity to luteolin. Furthermore, the developed MIP-SPME coupled with the LC-QTOF-MS/MS method was adopted to capture and identify luteolin and its metabolites in rat livers in vivo, and eventually, apigenin, chrysoeriol, and diosmetin were rapidly identified as metabolites.
Collapse
Affiliation(s)
- Die Gao
- School of Pharmaceutical Sciences, Chongqing University , Chongqing 400030, China
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University , Luzhou, Sichuan 646000, China
- School of Chemistry and Chemical Engineering, Chongqing University , Chongqing 400030, China
| | - Dan-Dan Wang
- School of Pharmaceutical Sciences, Chongqing University , Chongqing 400030, China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Chongqing University , Chongqing 400030, China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University , Chongqing 400030, China
| | - Zhi-Ning Xia
- School of Pharmaceutical Sciences, Chongqing University , Chongqing 400030, China
- School of Chemistry and Chemical Engineering, Chongqing University , Chongqing 400030, China
| | - Qi-Hui Zhang
- School of Chemistry and Chemical Engineering, Chongqing University , Chongqing 400030, China
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago , Chicago, Illinois 60637, United States
| |
Collapse
|
28
|
Gong ZG, Hu J, Wu X, Xu YJ. The Recent Developments in Sample Preparation for Mass Spectrometry-Based Metabolomics. Crit Rev Anal Chem 2017. [PMID: 28631936 DOI: 10.1080/10408347.2017.1289836] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metabolomics is a critical member in systems biology. Although great progress has been achieved in metabolomics, there are still some problems in sample preparation, data processing and data interpretation. In this review, we intend to explore the roles, challenges and trends in sample preparation for mass spectrometry- (MS-) based metabolomics. The newly emerged sample preparation methods were also critically examined, including laser microdissection, in vivo sampling, dried blood spot, microwave, ultrasound and enzyme-assisted extraction, as well as microextraction techniques. Finally, we provide some conclusions and perspectives for sample preparation in MS-based metabolomics.
Collapse
Affiliation(s)
- Zhi-Gang Gong
- a Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai , P. R. China.,b Key Lab of Training , Monitoring and Intervention of Aquatic Sports of General Administration of Sport of P. R. China, Faculty of Physical Education, Jiangxi Normal University , Nanchang , P. R. China
| | - Jing Hu
- a Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai , P. R. China.,c College of Life Science and Technology , Minnan Normal University , Fujian , P. R. China
| | - Xi Wu
- a Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai , P. R. China
| | - Yong-Jiang Xu
- a Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai , P. R. China.,d Department of Medicine , University of California San Diego , La Jolla , California , USA
| |
Collapse
|
29
|
Wang F, Zheng J, Qiu J, Liu S, Chen G, Tong Y, Zhu F, Ouyang G. In Situ Hydrothermally Grown TiO 2@C Core-Shell Nanowire Coating for Highly Sensitive Solid Phase Microextraction of Polycyclic Aromatic Hydrocarbons. ACS APPLIED MATERIALS & INTERFACES 2017; 9:1840-1846. [PMID: 28001349 DOI: 10.1021/acsami.6b14748] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanostructured materials have great potential for solid phase microextraction (SPME) on account of their tiny size, distinct architectures and superior physical and chemical properties. Herein, a core-shell TiO2@C fiber for SPME was successfully fabricated by the simple hydrothermal reaction of a titanium wire and subsequent amorphous carbon coating. The readily hydrothermal procedure afforded in situ synthesis of TiO2 nanowires on a titanium wire and provided a desirable substrate for further coating of amorphous carbon. Benefiting from the much larger surface area of subsequent TiO2 and good adsorption property of the amorphous carbon coating, the core-shell TiO2@C fiber was utilized for the SPME device for the first time and proved to have better performance in extraction of polycyclic aromatic hydrocarbons. In comparison to the polydimethylsiloxane (PDMS) and PDMS/divinylbenzene (DVB) fiber for commercial use, the TiO2@C fiber obtained gas chromatography responses 3-8 times higher than those obtained by the commercial 100 μm PDMS and 1-9 times higher than those obtained by the 65 μm PDMS/DVB fiber. Under the optimized extraction conditions, the low detection limits were obtained in the range of 0.4-7.1 ng L-1 with wider linearity in the range of 10-2000 ng L-1. Moreover, the fiber was successfully used for the determination of polycyclic aromatic hydrocarbons in Pearl River water, which demonstrated the applicability of the core-shell TiO2@C fiber.
Collapse
Affiliation(s)
- Fuxin Wang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University , Guangzhou 510275, P. R. China
| | - Juan Zheng
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University , Guangzhou 510275, P. R. China
| | - Junlang Qiu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University , Guangzhou 510275, P. R. China
| | - Shuqin Liu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University , Guangzhou 510275, P. R. China
| | - Guosheng Chen
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University , Guangzhou 510275, P. R. China
| | - Yexiang Tong
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University , Guangzhou 510275, P. R. China
| | - Fang Zhu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University , Guangzhou 510275, P. R. China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University , Guangzhou 510275, P. R. China
| |
Collapse
|
30
|
Xu J, Chen G, Huang S, Qiu J, Jiang R, Zhu F, Ouyang G. Application of in vivo solid-phase microextraction in environmental analysis. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.03.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Hierarchical Graphene coating for highly sensitive solid phase microextraction of organochlorine pesticides. Talanta 2016; 160:217-224. [DOI: 10.1016/j.talanta.2016.07.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 02/02/2023]
|
32
|
Qiu J, Chen G, Xu J, Luo E, Liu Y, Wang F, Zhou H, Liu Y, Zhu F, Ouyang G. In vivo tracing of organochloride and organophosphorus pesticides in different organs of hydroponically grown malabar spinach (Basella alba L.). JOURNAL OF HAZARDOUS MATERIALS 2016; 316:52-59. [PMID: 27209519 DOI: 10.1016/j.jhazmat.2016.05.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 05/03/2016] [Accepted: 05/08/2016] [Indexed: 06/05/2023]
Abstract
An in vivo uptake and elimination tracing study based on solid phase microextraction (SPME) was conducted to investigate the accumulation, persistence and distribution of organochloride pesticides (OCPs) and organophosphorus pesticides (OPPs) in malabar spinach (Basella alba L.) plants. Uptake and elimination of the pesticides were traced in leaves, stems and roots of living malabar spinach plants. Root concentration factor (RCF), distribution concentration factor (DCF) and transpiration stream concentration factor (TSCF) were calculated based on the in vivo tracing data. The tracing data showed that the OCPs were much more accumulative and persistent than the OPPs in roots, while they were similarly accumulative and persistent in leaves and stems. RCF values of the OPPs or OCPs were likely to increase with the increase in LogKow values except fenthion. Obtained DCF values indicated that OPPs and OCPs were more accumulative in the organs containing more lipids. TSCF values showed that the translocation of OPPs and OCPs from roots to foliage was firstly dependent on the hydrophobicity of the compounds, but also significantly affected by the water solubility. This is the first study of generating RCF, DCF and TSCF data in living plants by in vivo sampling method, which provides a foundation to promote the application of in vivo SPME and improve understanding of contaminant behaviors in living plants.
Collapse
Affiliation(s)
- Junlang Qiu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Guosheng Chen
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jianqiao Xu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Erlun Luo
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yan Liu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Fuxin Wang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hong Zhou
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuan Liu
- Department of Food Science and Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Fang Zhu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
33
|
Xu J, Huang S, Wei S, Yang M, Cao C, Jiang R, Zhu F, Ouyang G. Study on the Diffusion-Dominated Solid-Phase Microextraction Kinetics in Semisolid Sample Matrix. Anal Chem 2016; 88:8921-5. [DOI: 10.1021/acs.analchem.6b02673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | | | - Ruifen Jiang
- School
of Environment, Jinan University, Guangzhou, Guangdong 510632, China
| | | | | |
Collapse
|
34
|
Zhang Q, Zhou L, Chen H, Wang CZ, Xia Z, Yuan CS. Solid-phase microextraction technology for in vitro and in vivo metabolite analysis. Trends Analyt Chem 2016; 80:57-65. [PMID: 27695152 DOI: 10.1016/j.trac.2016.02.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Analysis of endogenous metabolites in biological samples may lead to the identification of biomarkers in metabolomics studies. To achieve accurate sample analysis, a combined method of continuous quick sampling and extraction is required for online compound detection. Solid-phase microextraction (SPME) integrates sampling, extraction and concentration into a single solvent-free step for chemical analysis. SPME has a number of advantages, including simplicity, high sensitivity and a relatively non-invasive nature. In this article, we reviewed SPME technology in in vitro and in vivo analyses of metabolites after the ingestion of herbal medicines, foods and pharmaceutical agents. The metabolites of microorganisms in dietary supplements and in the gastrointestinal tract will also be examined. As a promising technology in biomedical and pharmaceutical research, SPME and its future applications will depend on advances in analytical technologies and material science.
Collapse
Affiliation(s)
- Qihui Zhang
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Liandi Zhou
- Department of Immunology, Basic Medical College, Chongqing Medical University, Chongqing 400016, China
| | - Hua Chen
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, U.S.A
| | - Zhining Xia
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, U.S.A
| |
Collapse
|
35
|
Xu CH, Chen GS, Xiong ZH, Fan YX, Wang XC, Liu Y. Applications of solid-phase microextraction in food analysis. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.02.022] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
36
|
Qiu J, Chen G, Liu S, Zhang T, Wu J, Wang F, Xu J, Liu Y, Zhu F, Ouyang G. Bioinspired Polyelectrolyte-Assembled Graphene-Oxide-Coated C18 Composite Solid-Phase Microextraction Fibers for In Vivo Monitoring of Acidic Pharmaceuticals in Fish. Anal Chem 2016; 88:5841-8. [DOI: 10.1021/acs.analchem.6b00417] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Junlang Qiu
- MOE Key Laboratory of Aquatic
Product Safety/KLGHEI of Environment and Energy Chemistry, School
of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Guosheng Chen
- MOE Key Laboratory of Aquatic
Product Safety/KLGHEI of Environment and Energy Chemistry, School
of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuqin Liu
- MOE Key Laboratory of Aquatic
Product Safety/KLGHEI of Environment and Energy Chemistry, School
of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Tianlang Zhang
- MOE Key Laboratory of Aquatic
Product Safety/KLGHEI of Environment and Energy Chemistry, School
of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiayi Wu
- MOE Key Laboratory of Aquatic
Product Safety/KLGHEI of Environment and Energy Chemistry, School
of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Fuxin Wang
- MOE Key Laboratory of Aquatic
Product Safety/KLGHEI of Environment and Energy Chemistry, School
of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianqiao Xu
- MOE Key Laboratory of Aquatic
Product Safety/KLGHEI of Environment and Energy Chemistry, School
of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yan Liu
- MOE Key Laboratory of Aquatic
Product Safety/KLGHEI of Environment and Energy Chemistry, School
of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Fang Zhu
- MOE Key Laboratory of Aquatic
Product Safety/KLGHEI of Environment and Energy Chemistry, School
of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Aquatic
Product Safety/KLGHEI of Environment and Energy Chemistry, School
of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
37
|
Liu S, Hu Q, Zheng J, Xie L, Wei S, Jiang R, Zhu F, Liu Y, Ouyang G. Knitting aromatic polymers for efficient solid-phase microextraction of trace organic pollutants. J Chromatogr A 2016; 1450:9-16. [PMID: 27155913 DOI: 10.1016/j.chroma.2016.04.065] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/19/2022]
Abstract
A series of knitting aromatic polymers (KAPs) were successfully synthesized using a simple one-step Friedel-Crafts alkylation of aromatic monomers and were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Then, as-synthesized KAPs with large surface areas, unique pore structures and high thermal stability were prepared as solid-phase microextraction (SPME) coatings that exhibited good extraction abilities for a series of benzene compounds (i.e., benzene, toluene, ethylbenzene and m-xylene, which are referred to as BTEX) and polycyclic aromatic hydrocarbons (PAHs). Under the optimized conditions, the methodologies established for the determination of BTEX and PAHs using the KAPs-triPB and KAPs-B coatings, respectively, possessed wide linear ranges, low limits of detection (LODs, 0.10-1.13ngL(-1) for BTEX and 0.05-0.49ngL(-1) for PAHs) and good reproducibility. Finally, the proposed methods were successfully applied to the determination of BTEX and PAHs in environmental water samples, and satisfactory recoveries (93.6-124.2% for BTEX and 77.2-113.3% for PAHs) were achieved. This study provides a benchmark for exploiting novel microporous organic polymers (MOPs) for SPME applications.
Collapse
Affiliation(s)
- Shuqin Liu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Qingkun Hu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Juan Zheng
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Lijun Xie
- Department of Chemistry, Guangdong University of Education, Guangzhou 510303, PR China
| | - Songbo Wei
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Ruifen Jiang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Fang Zhu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yuan Liu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, PR China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
38
|
Qiu J, Chen G, Zhou H, Xu J, Wang F, Zhu F, Ouyang G. In vivo tracing of organophosphorus pesticides in cabbage (Brassica parachinensis) and aloe (Barbadensis). THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 550:1134-1140. [PMID: 26878720 DOI: 10.1016/j.scitotenv.2015.11.108] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/22/2015] [Accepted: 11/22/2015] [Indexed: 06/05/2023]
Abstract
In vivo solid-phase microextraction (SPME) sampling method coupled with gas chromatography-mass spectrometry (GC-MS) analysis was employed to trace the uptake and elimination of organophosphorus pesticides (OPPs) in two kinds of edible plants, cabbage (Brassica parachinensis) and aloe (Barbadensis). The metabolism of fenthion in aloe was also investigated by the liquid chromatography tandem mass spectrometry analysis (LC-MS/MS) to understand the fate of OPPs in living plants better. Transpiration stream concentration factor (TSCF) and depuration rate constants of the OPPs in living plants were obtained therein. The health risk of the OPPs treated aloe was estimated by the maximum residue limit (MRL) approach, and it revealed that the OPPs were rather safe for their fast degradable property. However, peak concentration of fenthion-sulfoxide was found to exceed the MRL and was higher than that of the parent fenthion, which indicated the potential risk of pesticide metabolites. This study highlighted the application of in vivo SPME for contaminant tracing in different living edible plants. The in vivo tracing method is very convenient and can provide more data to evaluate the risk of different pesticides, which are very important for the safety of agriculture production.
Collapse
Affiliation(s)
- Junlang Qiu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Guosheng Chen
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Hong Zhou
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianqiao Xu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Fuxin Wang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Fang Zhu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
39
|
Ocaña-González JA, Fernández-Torres R, Bello-López MÁ, Ramos-Payán M. New developments in microextraction techniques in bioanalysis. A review. Anal Chim Acta 2016; 905:8-23. [DOI: 10.1016/j.aca.2015.10.041] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/08/2015] [Accepted: 10/28/2015] [Indexed: 12/21/2022]
|
40
|
Chen G, Qiu J, Liu Y, Jiang R, Cai S, Liu Y, Zhu F, Zeng F, Luan T, Ouyang G. Carbon Nanotubes Act as Contaminant Carriers and Translocate within Plants. Sci Rep 2015; 5:15682. [PMID: 26498499 PMCID: PMC4620501 DOI: 10.1038/srep15682] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/30/2015] [Indexed: 12/11/2022] Open
Abstract
Nanotechnology permits broad advances in agriculture. However, as it is still at a relatively early stage of development, the potential risks remain unclear. Herein, for the first time, we reveal the following: 1) the impact of multi-walled carbon nanotubes (MWCNTs) on the accumulation/depuration behaviors of contaminants in crop, mustard (Brassica juncea), and 2) the permeability and transportability of MWCNTs in intact mature mustard plants. Using an in vivo sampling technique, the kinetic accumulation/depuration processes of several contaminants in mustard plans exposed to MWCNTs were traced, and an enhancement of contaminant accumulation in living plants was observed. Meanwhile, we observed that the MWCNTs permeated into the roots of intact living plants (three months old) and were then transported to the upper organs under the force of transpiration steam. This study demonstrated that MWCNTs can act as contaminant carriers and be transported to the edible parts of crops.
Collapse
Affiliation(s)
- Guosheng Chen
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Junlang Qiu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yan Liu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Ruifen Jiang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Siying Cai
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuan Liu
- Department of Food Science and Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Fang Zhu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Feng Zeng
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Tiangang Luan
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
41
|
Xu J, Wu R, Huang S, Yang M, Liu Y, Liu Y, Jiang R, Zhu F, Ouyang G. Polyelectrolyte Microcapsules Dispersed in Silicone Rubber for in Vivo Sampling in Fish Brains. Anal Chem 2015; 87:10593-9. [DOI: 10.1021/acs.analchem.5b03036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jianqiao Xu
- MOE
Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and
Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Rongben Wu
- MOE
Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and
Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Shuyao Huang
- MOE
Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and
Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Muzi Yang
- MOE
Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and
Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yan Liu
- MOE
Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and
Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yuan Liu
- Department
of Food Science and Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ruifen Jiang
- MOE
Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and
Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Fang Zhu
- MOE
Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and
Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Gangfeng Ouyang
- MOE
Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and
Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| |
Collapse
|
42
|
Study of complex matrix effect on solid phase microextraction for biological sample analysis. J Chromatogr A 2015; 1411:34-40. [DOI: 10.1016/j.chroma.2015.07.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 11/22/2022]
|
43
|
Ye D, Wu S, Xu J, Jiang R, Zhu F, Ouyang G. Rapid Determination of Clenbuterol in Pork by Direct Immersion Solid-Phase Microextraction Coupled with Gas Chromatography-Mass Spectrometry. J Chromatogr Sci 2015; 54:112-8. [PMID: 26306572 DOI: 10.1093/chromsci/bmv126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Indexed: 01/31/2023]
Abstract
Direct immersion solid-phase microextraction (DI-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) was developed for rapid analysis of clenbuterol in pork for the first time. In this work, a low-cost homemade 44 µm polydimethylsiloxane (PDMS) SPME fiber was employed to extract clenbuterol in pork. After extraction, derivatization was performed by suspending the fiber in the headspace of the 2 mL sample vial saturated with a vapor of 100 µL hexamethyldisilazane. Lastly, the fiber was directly introduced to GC-MS for analysis. All parameters that influenced absorption (extraction time), derivatization (derivatization reagent, time and temperature) and desorption (desorption time) were optimized. Under optimized conditions, the method offered a wide linear range (10-1000 ng g(-1)) and a low detection limit (3.6 ng g(-1)). Finally, the method was successfully applied in the analysis of pork from the market, and recoveries of the method for spiked pork were 97.4-105.7%. Compared with the traditional solvent extraction method, the proposed method was much cheaper and fast.
Collapse
Affiliation(s)
- Diru Ye
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Susu Wu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianqiao Xu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Ruifen Jiang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Fang Zhu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
44
|
Zheng J, Liang Y, Liu S, Ding Y, Shen Y, Luan T, Zhu F, Jiang R, Wu D, Ouyang G. Ordered mesoporous polymers in situ coated on a stainless steel wire for a highly sensitive solid phase microextraction fibre. NANOSCALE 2015; 7:11720-11726. [PMID: 26102576 DOI: 10.1039/c5nr02674a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Development of facile and effective methods for fabrication of high-performance solid phase microextraction (SPME) fibres remains a great challenge. Herein, a new class of ordered mesoporous polymers (OMPs) in situ coated on a stainless steel wire were successfully developed and utilized as a highly sensitive and stable SPME fibre for the first time. Because of the highly ordered mesoporous structure of its OMP coating, the π-π interactions and the dispersion forces, the OMP-coated SPME fibre exhibited much better extraction properties as compared to the commercial PDMS fibre. The findings could provide a new benchmark for preparing well-defined porous materials for the SPME application.
Collapse
Affiliation(s)
- Juan Zheng
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Li S, Lu C, Zhu F, Jiang R, Ouyang G. Preparation of C18 composite solid-phase microextraction fiber and its application to the determination of organochlorine pesticides in water samples. Anal Chim Acta 2015; 873:57-62. [DOI: 10.1016/j.aca.2015.03.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/04/2015] [Accepted: 03/22/2015] [Indexed: 01/12/2023]
|
46
|
Huang S, He S, Xu H, Wu P, Jiang R, Zhu F, Luan T, Ouyang G. Monitoring of persistent organic pollutants in seawater of the Pearl River Estuary with rapid on-site active SPME sampling technique. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 200:149-158. [PMID: 25732847 DOI: 10.1016/j.envpol.2015.02.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 06/04/2023]
Abstract
An on-site active solid-phase microextraction (SPME) sampling technique coupled with gas chromatography-mass spectrometry (GC-MS) for sampling and monitoring 16 polycyclic aromatic hydrocarbons (PAHs) and 8 organochlorine pesticides (OCPs) in seawater was developed. Laboratory experiments demonstrated that the sampling-rate calibration method was practical and could be used for the quantification of on-site sampling. The proposed method was employed for field tests which covered large amounts of water samples in the Pearl River Estuary in rainy and dry seasons. The on-site SPME sampling method can avoid the contamination of sample, the losses of analytes during sample transportation, as well as the usage of solvent and time-consuming sample preparation process. Results indicated that the technique with the designed device can address the requirement of modern environment water analysis. In addition, the sources, bioaccumulation and potential risk to human of the PAHs and OCPs in seawater of the Pearl River Estuary were discussed.
Collapse
Affiliation(s)
- Siming Huang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuming He
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Hao Xu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Peiyan Wu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Ruifen Jiang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Fang Zhu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Tiangang Luan
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
47
|
Liu S, Xie L, Zheng J, Jiang R, Zhu F, Luan T, Ouyang G. Mesoporous TiO₂ nanoparticles for highly sensitive solid-phase microextraction of organochlorine pesticides. Anal Chim Acta 2015; 878:109-17. [PMID: 26002332 DOI: 10.1016/j.aca.2015.03.054] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/29/2015] [Accepted: 03/31/2015] [Indexed: 12/28/2022]
Abstract
Mesoporous TiO2 nanoparticles were synthesized with the hydrothermal method and characterized by powder X-ray diffraction (PXRD) and transmission electron microscope (TEM). Then a superior solid-phase microextraction (SPME) fiber was fabricated by sequentially coating the stainless steel fiber with silicone sealant film and mesoporous TiO2 powder. The developed fiber possessed a homogeneous surface and a long life-span up to 100 times at direct immersing (DI) extraction mode. Under the optimized conditions, the extraction efficiencies of the self-made 17 μm TiO2 fiber for six organochlorine pesticides (OCPs) were higher than those of the two commercial fibers (65 μm PDMS/DVB and 85 μm PA fibers) which were much thicker than the former. As for analytical performance, low detection limits (0.08-0.60 ng L(-1)) and wide linearity (5-5000 ng L(-1)) were achieved under the optimal conditions. The repeatabilities (n=5) for single fiber were between 2.8 and 12.3%, while the reproducibilities (n=3) of fiber-to-fiber were in the range of 3.7-15.7%. The proposed fiber was successfully applied to the sensitive analysis of OCPs in real water samples and four of the six analytes were detected from the rainwater and the lake water samples.
Collapse
Affiliation(s)
- Shuqin Liu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Lijun Xie
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Juan Zheng
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Ruifeng Jiang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Fang Zhu
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Tiangang Luan
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
48
|
Xu J, Huang S, Wu R, Jiang R, Zhu F, Wang J, Ouyang G. Bioinspired Polydopamine Sheathed Nanofibers for High-Efficient in Vivo Solid-Phase Microextraction of Pharmaceuticals in Fish Muscle. Anal Chem 2015; 87:3453-9. [DOI: 10.1021/ac5048357] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jianqiao Xu
- MOE Key Laboratory of Aquatic
Product Safety/KLGHEI of Environment and Energy Chemistry, School
of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Shuyao Huang
- MOE Key Laboratory of Aquatic
Product Safety/KLGHEI of Environment and Energy Chemistry, School
of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Rongben Wu
- MOE Key Laboratory of Aquatic
Product Safety/KLGHEI of Environment and Energy Chemistry, School
of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Ruifen Jiang
- MOE Key Laboratory of Aquatic
Product Safety/KLGHEI of Environment and Energy Chemistry, School
of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Fang Zhu
- MOE Key Laboratory of Aquatic
Product Safety/KLGHEI of Environment and Energy Chemistry, School
of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jing Wang
- MOE Key Laboratory of Aquatic
Product Safety/KLGHEI of Environment and Energy Chemistry, School
of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Aquatic
Product Safety/KLGHEI of Environment and Energy Chemistry, School
of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| |
Collapse
|
49
|
Liu C, Zhang X, Li L, Cui J, Shi YE, Wang L, Zhan J. Silver nanoparticle aggregates on metal fibers for solid phase microextraction–surface enhanced Raman spectroscopy detection of polycyclic aromatic hydrocarbons. Analyst 2015; 140:4668-75. [DOI: 10.1039/c5an00590f] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silver–copper fibers loaded with silver nanoparticles are used for SPME–SERS detection of polycyclic aromatic hydrocarbons, which can be further confirmed by GC-MS.
Collapse
Affiliation(s)
- Cuicui Liu
- National Engineering Research Center for Colloidal Materials and Key Laboratory for Colloid & Interface Chemistry of Education Ministry
- Department of Chemistry
- Shandong University
- Jinan Shandong
- P. R. China
| | - Xiaoli Zhang
- National Engineering Research Center for Colloidal Materials and Key Laboratory for Colloid & Interface Chemistry of Education Ministry
- Department of Chemistry
- Shandong University
- Jinan Shandong
- P. R. China
| | - Limei Li
- Department of Physics
- Xiamen University
- Xiamen Fujian
- P. R. China
| | - Jingcheng Cui
- National Engineering Research Center for Colloidal Materials and Key Laboratory for Colloid & Interface Chemistry of Education Ministry
- Department of Chemistry
- Shandong University
- Jinan Shandong
- P. R. China
| | - Yu-e Shi
- National Engineering Research Center for Colloidal Materials and Key Laboratory for Colloid & Interface Chemistry of Education Ministry
- Department of Chemistry
- Shandong University
- Jinan Shandong
- P. R. China
| | - Le Wang
- Center of Technology
- Jinan Entry-Exit Inspection and Quarantine Bureau
- Jinan 250014
- China
| | - Jinhua Zhan
- National Engineering Research Center for Colloidal Materials and Key Laboratory for Colloid & Interface Chemistry of Education Ministry
- Department of Chemistry
- Shandong University
- Jinan Shandong
- P. R. China
| |
Collapse
|