1
|
Sørensen MK, Lemming C, Jensen ON, Nielsen NC. Soil Analysis by Mobile Multinuclear NMR: Quantification of Phosphorus, Aluminum, and Sodium. Anal Chem 2024; 96:17086-17091. [PMID: 39413773 DOI: 10.1021/acs.analchem.4c01333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Soil analyses are essential to ensure economically and environmentally sustainable crop production while maintaining the soil fertile for future use. Unfortunately, common soil analyses may be highly demanding in terms of time, chemicals, and costs. This applies, in particular, when total quantities of elements are desired. As an easy and fast alternative without consumption of chemicals, we here present mobile 31P, 27Al, 23Na, and 1H NMR for quantification of phosphorus, aluminum, and sodium contents in soil. This enables accurate on-site analysis and is suitable for direct measurement on fresh, undried soil samples since the water content is quantified as well. For demonstration, 40 various Danish agricultural soil samples were analyzed using a mobile NMR sensor, and the results were compared with external laboratory analyses for P, Al, and Na. The laboratory analyses were conducted with ICP-OES after four-acid digestion, which additionally were compared with aqua regia digestion, showing inadequacies in the performance of the latter. Good agreement between NMR and laboratory analyses (correlation coefficients 0.91 for P, 0.98 for Al, and 0.90 for Na, in the concentration ranges 250-1200 ppm P, 1.4-5% Al, and 0.3-1% Na) were obtained with high accuracy using NMR measuring times of 20 min to 1 h for P, 4-12 min for Al, and 6-20 min for Na. Additionally, the NMR measurements provide information on the amount of P associated with paramagnetic centers (e.g., Fe3+). Good correlations were also observed to other parameters such as the clay content, which is predictable from the intensity of the more fast-relaxing of three 27Al NMR components.
Collapse
Affiliation(s)
- Morten K Sørensen
- NanoNord A/S, Skjernvej 3, DK-9220 Aalborg Ø, Denmark
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Camilla Lemming
- SEGES Innovation P/S, Agro Food Park 15, DK-8200 Aarhus N, Denmark
| | - Ole N Jensen
- NanoNord A/S, Skjernvej 3, DK-9220 Aalborg Ø, Denmark
| | | |
Collapse
|
2
|
Plouviez M, Brown N. Polyphosphate accumulation in microalgae and cyanobacteria: recent advances and opportunities for phosphorus upcycling. Curr Opin Biotechnol 2024; 90:103207. [PMID: 39303380 DOI: 10.1016/j.copbio.2024.103207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Phosphorus (P) must continuously be added to soils as it is lost in the food chain and via leaching. Unfortunately, the mining and import of P to produce fertiliser is unsustainable and costly. Potential solutions to the global issues of P rock depletion and pollution lie in microalgae and cyanobacteria. With an ability to intracellularly store P as polyphosphates, microalgae and cyanobacteria could provide the basis for removing P from water streams, thereby mitigating eutrophication, and even enabling P recovery as P-rich biomass. Metabolic engineering or changes in growing conditions have been demonstrated to improve P removal and recovery by triggering polyphosphates synthesis in the laboratory. This now needs to be replicated at full scale.
Collapse
Affiliation(s)
| | - Nicola Brown
- College of Sciences, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
3
|
Chen Q, Li W, Chen A, Min J, Hu W, Wang C, Fu B, Zhang D. Shallow groundwater table fluctuations promote the accumulation and loss of phosphorus from surface soil to deeper soil in croplands around plateau lakes in Southwest China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121744. [PMID: 38971072 DOI: 10.1016/j.jenvman.2024.121744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
The continuous excessive application of phosphorus (P) fertilizers in intensive agricultural production leads to a large accumulation of P in surface soils, increasing the risk of soil P loss by runoff and leaching. However, there are few studies on the accumulation and loss of P from surface soil to deep soil profiles driven by shallow groundwater table (SGT) fluctuations. This study used the intensive cropland around 7 plateau lakes in Yunnan Province as an example and conducted in situ monitoring of P storage in the soil profile and SGT during the rainy season (RS) and dry season (DS) as well as simulation experiments on soil P loss. The aim was to study the spatiotemporal variation in P accumulation in the soil profile of cropland driven by SGT fluctuations in the RS and DS and estimate the P loss in the soil profile driven by SGT fluctuations. The results showed that fluctuations in the SGT promoted P accumulation from the surface soil to deeper soil. The proportions of P stored in various forms in the 30-60 cm and 60-100 cm soil layers in the RS were greater than those in the DS, while the average proportion in the 0-30 cm soil layer in the DS was as high as 48%. Compared with those in the DS, the maximum decreases in the proportion of P stored as TP and Olsen-P in the 0-100 cm soil layer in the RS were 16% and 58%, respectively, due to the rise in the SGT (SGT <30 cm), while the soil TP storage decreased by only 1% when the SGT was maintained at 60-100 cm. The critical thresholds for soil Olsen-P and TP gradually decreased with increasing soil depth, and the risk of P loss in deeper soil increased. The loss of soil P was increased by fluctuations in the SGT. Based on the cropland area around the 7 plateau lakes, P storage, and SGT fluctuations, the average loss intensity and loss amount of TP in the 0-100 cm soil layer around the 7 plateau lakes were estimated to be 25 kg/ha and 56 t, respectively. Therefore, reducing exogenous P inputs, improving soil endogenous P utilization efficiency and maintaining deep soil P retention are the basic strategies for preventing and controlling P accumulation and loss in deep soil caused by SGT fluctuations.
Collapse
Affiliation(s)
- Qingfei Chen
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China; Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650201, China
| | - Wenchao Li
- College of Resources and Environmental Sciences, State Key Laboratory of North China Crop Improvement and Regulation, Hebei Province Key Laboratory for Farmland Eco-Environment, Hebei Agricultural University, Baoding, 071000, China
| | - Anqiang Chen
- Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650201, China.
| | - Jinheng Min
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Wanli Hu
- Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650201, China
| | - Chi Wang
- Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650201, China
| | - Bin Fu
- Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650201, China
| | - Dan Zhang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
4
|
Murad S, Ahmad M, Hussain A, Ali S, Al-Ansari N, Mattar MA. Efficacy of DAP coated with bacterial strains and their metabolites for soil phosphorus availability and maize growth. Sci Rep 2024; 14:11389. [PMID: 38762518 PMCID: PMC11102545 DOI: 10.1038/s41598-024-61817-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024] Open
Abstract
Phosphorus (P) use efficiency in alkaline/calcareous soils is only 20% due to precipitation of P2O5 with calcium and magnesium. However, coating Diammonium Phosphate (DAP) with phosphorus solubilizing bacteria (PSB) is more appropriate to increase fertilizer use efficiency. Therefore, with the aim to use inorganic fertilizers more effectively present study was conducted to investigate comparative effect of coated DAP with PSB strains Bacillus subtilis ZE15 (MN003400), Bacillus subtilis ZR3 (MN007185), Bacillus megaterium ZE32 (MN003401) and Bacillus megaterium ZR19 (MN007186) and their extracted metabolites with uncoated DAP under axenic conditions. Gene sequencing was done against various sources of phosphorus to analyze genes responsible for phosphatase activity. Alkaline phosphatase (ALP) gene amplicon of 380bp from all tested strains was showed in 1% w/v gel. Release pattern of P was also improved with coated fertilizer. The results showed that coated phosphatic fertilizer enhanced shoot dry weight by 43 and 46% under bacterial and metabolites coating respectively. Shoot and root length up to 44 and 42% with metabolites coated DAP and 41% with bacterial coated DAP. Physiological attributes also showed significant improvement with coated DAP over conventional. The results supported the application of coated DAP as a useful medium to raise crop yield even at lower application rates i.e., 50 and 75% DAP than non-coated 100% DAP application which advocated this coating technique a promising approach for advancing circular economy and sustainable development in modern agriculture.
Collapse
Affiliation(s)
- Sadia Murad
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Maqshoof Ahmad
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Azhar Hussain
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Sajjad Ali
- Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Nadhir Al-Ansari
- Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, 97187, Lulea, Sweden.
| | - Mohamed A Mattar
- Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
5
|
Gao Y, Dong K, Yue Y. Projecting global fertilizer consumption under shared socioeconomic pathway (SSP) scenarios using an approach of ensemble machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169130. [PMID: 38070571 DOI: 10.1016/j.scitotenv.2023.169130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 01/01/2024]
Abstract
Comprehensively projecting global fertilizer consumption is essential for providing critical datasets in related fields such as earth system simulation, the fertilizer industry, and agricultural sciences. However, since previous studies have not fully considered the socioeconomic factors affecting fertilizer consumption, huge uncertainties may remain in fertilizer consumption projections. Here, an approach ensembled six machine learning algorithms was proposed in this study to predict global fertilizer consumption from 2020 to 2100 by considering the impact of socioeconomic factors under shared socioeconomic pathway (SSP) scenarios. It indicates that the proposed approach provides a rational and reliable framework for fertilizer consumption prediction that stably outperforms the single algorithms with relatively high accuracy (Nash-Sutcliffe efficiency of 0.93, Kling-Gupta efficiency of 0.89, and mean absolute percentage error of 10.97 %). We found that global N and P fertilizer consumption may decrease from 2020 to 2100, while K fertilizer may buck the trend. N fertilizer consumption showed a declining trend of -1 %, -17.13 %, and -3.43 % under the SSP1, SSP2, and SSP3 scenarios in 2100, respectively. For P fertilizer, those were -0.68 %, -9.68 %, and -2.03 %. In contrast, global K fertilizer consumption may increase by 18.03 %, 9.18 %, and 6.74 %, respectively. On average, N, P, and K fertilizer consumption is highest in China, and the lowest is in Kazakhstan. However, the hotspots of N fertilizer consumption may shift from China to Latin America and the Caribbean. This study highlighted the ensemble machine learning approach could potentially be a robust method for predicting future fertilizer consumption. Our prediction product will not only contribute to a better understanding of global fertilizer consumption trends and dynamics but also provide flexible and accurate key data/parameters for related research. The Projected Global Fertilizers Consumption Datasets are available at doi:https://doi.org/10.5281/zenodo.8195593 (Gao et al., 2023).
Collapse
Affiliation(s)
- Yulian Gao
- Key Laboratory of Environmental Change and Natural Disasters of Chinese Ministry of Education, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Kecui Dong
- Key Laboratory of Environmental Change and Natural Disasters of Chinese Ministry of Education, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Yaojie Yue
- Key Laboratory of Environmental Change and Natural Disasters of Chinese Ministry of Education, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
6
|
Song X, Alewell C, Borrelli P, Panagos P, Huang Y, Wang Y, Wu H, Yang F, Yang S, Sui Y, Wang L, Liu S, Zhang G. Pervasive soil phosphorus losses in terrestrial ecosystems in China. GLOBAL CHANGE BIOLOGY 2024; 30:e17108. [PMID: 38273551 DOI: 10.1111/gcb.17108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 01/27/2024]
Abstract
Future phosphorus (P) shortages could seriously affect terrestrial productivity and food security. We investigated the changes in topsoil available P (AP) and total P (TP) in China's forests, grasslands, paddy fields, and upland croplands during the 1980s-2010s based on substantial repeated soil P measurements (63,220 samples in the 1980s, 2000s, and 2010s) and machine learning techniques. Between the 1980s and 2010s, total soil AP stock increased with a small but significant rate of 0.13 kg P ha-1 year-1 , but total soil TP stock declined substantially (4.5 kg P ha-1 year-1 ) in the four ecosystems. We quantified the P budgets of soil-plant systems by harmonizing P fluxes from various sources for this period. Matching trends of soil contents over the decades with P budgets and fluxes, we found that the P-surplus in cultivated soils (especially in upland croplands) might be overestimated due to the great soil TP pool compared to fertilization and the substantial soil P losses through plant uptake and water erosion that offset the P additions. Our findings of P-deficit in China raise the alarm on the sustainability of future biomass production (especially in forests), highlight the urgency of P recycling in croplands, and emphasize the critical role of country-level basic data in guiding sound policies to tackle the global P crises.
Collapse
Affiliation(s)
- Xiaodong Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Christine Alewell
- Environmental Geosciences, Department of Environmental Science, University of Basel, Basel, Switzerland
| | - Pasquale Borrelli
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
| | - Panos Panagos
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Yuanyuan Huang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huayong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Shunhua Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yueyu Sui
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Liangjie Wang
- Co-Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Siyi Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ganlin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
7
|
Kodaolu B, Mohammed I, Wang Y, Zhang T, Audette Y, Longstaffe J. Assessment of phosphorus status in a calcareous soil receiving long-term application of chemical fertilizer and different forms of swine manures. JOURNAL OF ENVIRONMENTAL QUALITY 2024; 53:112-122. [PMID: 37909247 DOI: 10.1002/jeq2.20528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/09/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023]
Abstract
The continuous use of organic inputs in crop production calls for an improved understanding of how these inputs might alter soil phosphorus (P). This study assessed how the continuous application of different forms of swine manure influences the mechanism of P transformation and release potential. Soil samples were collected from a clay loam soil receiving no P or 100 kg P ha-1 applied as either chemical fertilizer (CHEM), swine liquid manure (SWL), composted swine manure (SWC), or solid swine manure (SWS) every other year for 16 years in a corn-soybean rotation. Available P increased in soils treated with the chemical and organic fertilizers. The greatest increase was found in the SWC and SWS and was closely related to a 1% increase in the organic C content, and 1.3- and 1.2-unit increase in the soil pH for SWC and SWS treatment, respectively. Nonlabile HCl-P form was also higher in SWC- and SWS-treated soils. Despite the similarities between SWS and SWC, SWS significantly had a lower maximum P sorption (Qmax ) and higher equilibrium P concentration at zero net sorption (EPCO) probably related to the higher organic NaOH-P. Similarly, higher organic NaOH-P together with lower cation exchange capacity, aluminum, and calcium explained the lower Qmax in SWL. This suggests that increase in organic NaOH-P forms limits the soil potential to retain P. Overall, the SWL treatment presents a unique effect on changes in soil property and P chemistry that warrants further investigation.
Collapse
Affiliation(s)
- Busayo Kodaolu
- School of Environmental Sciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| | - Ibrahim Mohammed
- School of Environmental Sciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| | - Yutao Wang
- Greenhouse and Processing Crops Research Center, Agriculture and Agri-Food Canada, Harrow, Ontario, Canada
| | - Tiequan Zhang
- Greenhouse and Processing Crops Research Center, Agriculture and Agri-Food Canada, Harrow, Ontario, Canada
| | - Yuki Audette
- School of Environmental Sciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
- Chitose Laboratory Corporation, Kawasaki, Japan
| | - James Longstaffe
- School of Environmental Sciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
8
|
Henningsen JN, Venturas MD, Quintero JM, Garrido RR, Mühling KH, Fernández V. Leaf surface features of maize cultivars and response to foliar phosphorus application: effect of leaf stage and plant phosphorus status. PHYSIOLOGIA PLANTARUM 2023; 175:e14093. [PMID: 38148186 DOI: 10.1111/ppl.14093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 12/28/2023]
Abstract
Soil phosphorus (P) application is the most common fertilisation technique but may involve constraints due to chemical fixation and microbial immobilisation. Furthermore, excessive P fertilisation leads to P runoff into water bodies, threatening ecosystems, so targeted foliar P fertilisation is an interesting alternative. This study aimed to determine the importance of leaf surface characteristics for foliar P uptake in P-deficient maize (Zea mays L.). The leaf surface of four maize cultivars was characterised by electron microscopy, Fourier transform infrared spectroscopy and contact angle measurements. Uptake of foliar-applied P by maize cultivars was estimated, measuring also leaf photosynthetic rates after foliar P spraying. Plants of cultivar P7948 were found to be wettable from the 4th leaf in acropetal direction, whereas other cultivars were unwettable until the 6th leaf had developed. Minor variations in stomatal number and cuticle composition were recorded, but no differences in foliar P absorption were observed between cultivars. Nevertheless, cultivars showed variation in the improvement of photosynthetic capacity following foliar P application. Phosphorus deficiency resulted in ultrastructural disorganisation of mesophyll cells and chloroplasts, which impaired photosynthetic performance, yet there was no effect on stomatal frequency and leaf wettability. This study provides new insights into the influence of P deficiency and cultivar on leaf surface characteristics, foliar P uptake and its effect on physiological processes. Understanding the relationships between leaf characteristics and P uptake allows a more targeted evaluation of foliar P fertilisation as an application technique and contributes to the understanding of foliar uptake mechanisms.
Collapse
Affiliation(s)
| | - Martin David Venturas
- Systems and Natural Resources Department, School of Forest Engineering, Madrid, Spain
| | | | | | | | - Victoria Fernández
- Systems and Natural Resources Department, School of Forest Engineering, Madrid, Spain
| |
Collapse
|
9
|
Olukayode T, Chen J, Zhao Y, Quan C, Kochian LV, Ham BK. Phloem-Mobile MYB44 Negatively Regulates Expression of PHOSPHATE TRANSPORTER 1 in Arabidopsis Roots. PLANTS (BASEL, SWITZERLAND) 2023; 12:3617. [PMID: 37896080 PMCID: PMC10610484 DOI: 10.3390/plants12203617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023]
Abstract
Phosphorus (P) is an essential plant macronutrient; however, its availability is often limited in soils. Plants have evolved complex mechanisms for efficient phosphate (Pi) absorption, which are responsive to changes in external and internal Pi concentration, and orchestrated through local and systemic responses. To explore these systemic Pi responses, here we identified AtMYB44 as a phloem-mobile mRNA, an Arabidopsis homolog of Cucumis sativus MYB44, that is responsive to the Pi-starvation stress. qRT-PCR assays revealed that AtMYB44 was up-regulated and expressed in both shoot and root in response to Pi-starvation stress. The atmyb44 mutant displayed higher shoot and root biomass compared to wild-type plants, under Pi-starvation conditions. Interestingly, the expression of PHOSPHATE TRANSPORTER1;2 (PHT1;2) and PHT1;4 was enhanced in atmyb44 in response to a Pi-starvation treatment. A split-root assay showed that AtMYB44 expression was systemically regulated under Pi-starvation conditions, and in atmyb44, systemic controls on PHT1;2 and PHT1;4 expression were moderately disrupted. Heterografting assays confirmed graft transmission of AtMYB44 transcripts, and PHT1;2 and PHT1;4 expression was decreased in heterografted atmyb44 rootstocks. Taken together, our findings support the hypothesis that mobile AtMYB44 mRNA serves as a long-distance Pi response signal, which negatively regulates Pi transport and utilization in Arabidopsis.
Collapse
Affiliation(s)
- Toluwase Olukayode
- Global Institute for Food Security (GIFS), University of Saskatchewan, 421 Downey Rd, Saskatoon, SK S7N 4L8, Canada; (T.O.); (J.C.); (Y.Z.); (C.Q.); (L.V.K.)
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Jieyu Chen
- Global Institute for Food Security (GIFS), University of Saskatchewan, 421 Downey Rd, Saskatoon, SK S7N 4L8, Canada; (T.O.); (J.C.); (Y.Z.); (C.Q.); (L.V.K.)
| | - Yang Zhao
- Global Institute for Food Security (GIFS), University of Saskatchewan, 421 Downey Rd, Saskatoon, SK S7N 4L8, Canada; (T.O.); (J.C.); (Y.Z.); (C.Q.); (L.V.K.)
| | - Chuanhezi Quan
- Global Institute for Food Security (GIFS), University of Saskatchewan, 421 Downey Rd, Saskatoon, SK S7N 4L8, Canada; (T.O.); (J.C.); (Y.Z.); (C.Q.); (L.V.K.)
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Leon V. Kochian
- Global Institute for Food Security (GIFS), University of Saskatchewan, 421 Downey Rd, Saskatoon, SK S7N 4L8, Canada; (T.O.); (J.C.); (Y.Z.); (C.Q.); (L.V.K.)
- Department of Plant Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Byung-Kook Ham
- Global Institute for Food Security (GIFS), University of Saskatchewan, 421 Downey Rd, Saskatoon, SK S7N 4L8, Canada; (T.O.); (J.C.); (Y.Z.); (C.Q.); (L.V.K.)
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|
10
|
Li H, Ma X, Huang X, Ji W, Chen K, Xu S, Gao P. Fluoride contents in commonly used commercial phosphate fertilizers and their potential risks in China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1051. [PMID: 37589818 DOI: 10.1007/s10661-023-11623-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023]
Abstract
The application of phosphate fertilizer is an important source of anthropogenic fluoride in agricultural soil. However, relatively few studies have examined the fluoride content of phosphate fertilizers, and that has limited our understanding of the phosphate fertilizer contribution to soil fluoride accumulation and distribution. To examine this problem, we first quantified the total fluoride (TF) and water-soluble fluoride (WF) contents of six of the most commonly used commercial phosphate fertilizers in China (potassium dihydrogen phosphate (MKP), calcium superphosphate (SSP), monoammonium phosphate (MAP), diammonium phosphate (DAP), ternary compound fertilizer (NPK), and water-soluble macroelement fertilizer (WSF)). After calculating the [P2O5]/TF ratio for each of those fertilizers, we used those ratios and the average P2O5 application per crop of five typical crops grown in China (apples, greenhouse vegetables, wheat, corn, and rice) to estimate the annual fluoride accumulations in their soils after application of each type of phosphate fertilizer. Among the six fertilizer types, SSP, DAP, and NPK had much higher total fluoride and water-soluble fluoride contents than MKP, MAP, and WSF had. During crop production, the risk of fluoride accumulation was lower with MKP, MAP, and WSF (high [P2O5]/TF ratios) and higher with SSP, DAP, and NPK (low [P2O5]/TF ratios), especially in cash crops (fruit and greenhouse vegetables), which traditionally have unreasonably high P2O5 applications. Based on our findings, we proposed steps that should be taken to help effectively mitigate fluoride accumulation in China's agricultural soils.
Collapse
Affiliation(s)
- Hao Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xuzhe Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xunrong Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wei Ji
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kun Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shaoquan Xu
- Qinghai Delingha Agriculture and Animal Husbandry Comprehensive Service Center, Room 304, Jinghuawan Office Building, Chaidamu West Road, Delingha, 817099, Qinghai, China
| | - Pengcheng Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
11
|
Liu W, Zhang Y, Yu M, Xu J, Du H, Zhang R, Wu D, Xie X. Role of phosphite in the environmental phosphorus cycle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163463. [PMID: 37062315 DOI: 10.1016/j.scitotenv.2023.163463] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/29/2023] [Accepted: 04/08/2023] [Indexed: 06/01/2023]
Abstract
In modern geochemistry, phosphorus (P) is considered synonymous with phosphate (Pi) because Pi controls the growth of organisms as a limiting nutrient in many ecosystems. The researchers therefore realised that a complete P cycle is essential. Limited by thermodynamic barriers, P was long believed to be incapable of redox reactions, and the role of the redox cycle of reduced P in the global P cycling system was thus not ascertained. Nevertheless, the phosphite (Phi) form of P is widely present in various environments and participates in the global P redox cycle. Herein, global quantitative evidences of Phi are enumerated and the early origin and modern biotic/abiotic sources of Phi are elaborated. Further, the Phi-based redox pathway for P reduction is analysed and global multienvironmental Phi redox cycle processes are proposed on the basis of this pathway. The possible role of Phi in controlling algae in eutrophic lakes and its ecological benefits to plants are proposed. In this manner, the important role of Phi in the P redox cycle and global P cycle is systematically and comprehensively identified and confirmed. This work will provide scientific guidance for the future production and use of Phi products and arouse attention and interest on clarifying the role of Phi in the environmental phosphorus cycle.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Yalan Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Mengqin Yu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Jinying Xu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Hu Du
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Ru Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Daishe Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China; School of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337000, China
| | - Xianchuan Xie
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
12
|
Goswami O, Rouff AA. Interaction of divalent metals with struvite: sorption, reversibility, and implications for mineral recovery from wastes. ENVIRONMENTAL TECHNOLOGY 2023; 44:2315-2326. [PMID: 35019833 DOI: 10.1080/09593330.2022.2027026] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/21/2021] [Indexed: 06/04/2023]
Abstract
Phosphorus (P) recovered from wastewater as struvite (MgNH4PO4·6H2O) can meet high P demands in the agricultural sector by reuse as a P fertiliser. Heavy metals are prevalent in wastewaters and are common fertiliser contaminants, therefore struvite as a sorbent for metals requires evaluation. Struvite sorption experiments were conducted in model solutions with cadmium (Cd), cobalt (Co), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) at 1-5 μM concentrations from pH 7-10. The struvite metal loading increased with dissolved metal concentration and pH, ranging from 2 to 493 mg kg-1. Highest loadings were observed for 5 μM Pb, which exceeded the 120 mg kg-1 European Union (EU) struvite fertiliser limit at all pH values. At 5 μM concentrations, Ni and Cd loadings exceeded EU limits of 100 mg kg-1 at pH 10, and 60 mg kg-1 at pH 8-10, respectively. In desorption experiments, 10-85% metal was released after resuspension in metal-free solutions, with a positive correlation between initial loading and amount desorbed. Distortions of the struvite phosphate band, by Fourier transformation infrared (FTIR) spectroscopy, indicated lowered symmetry of phosphate vibrations with metal sorption. X-ray absorption fine structure spectroscopy (XAFS) analysis of pH 9 solids indicated tetrahedral coordination for Cu and Zn, octahedral coordination for Co and Ni, and Pb in 9-fold coordination. Precipitation of Pb-phosphate minerals was a primary mechanism for Pb sorption. The results provide insight into metal contaminant sorption with struvite in wastewaters, and the potential for metal desorption after recovery.
Collapse
Affiliation(s)
- Omanjana Goswami
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, U.S.A
| | - Ashaki A Rouff
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, U.S.A
| |
Collapse
|
13
|
Xiao X, Hu AY, Dong XY, Shen RF, Zhao XQ. Involvement of the 4-coumarate:coenzyme A ligase 4CL4 in rice phosphorus acquisition and rhizosphere microbe recruitment via root growth enlargement. PLANTA 2023; 258:7. [PMID: 37222817 DOI: 10.1007/s00425-023-04158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/14/2023] [Indexed: 05/25/2023]
Abstract
MAIN CONCLUSION The 4-coumarate:coenzyme A ligase 4CL4 is involved in enhancing rice P acquisition and use in acid soil by enlarging root growth and boosting functional rhizosphere microbe recruitment. Rice (Oryza sativa L.) cannot easily acquire phosphorus (P) from acid soil, where root growth is inhibited and soil P is fixed. The combination of roots and rhizosphere microbiota is critical for plant P acquisition and soil P mobilization, but the associated molecular mechanism in rice is unclear. 4CL4/RAL1 encodes a 4-coumarate:coenzyme A ligase related to lignin biosynthesis in rice, and its dysfunction results in a small rice root system. In this study, soil culture and hydroponic experiments were conducted to examine the role of RAL1 in regulating rice P acquisition, fertilizer P use, and rhizosphere microbes in acid soil. Disruption of RAL1 markedly decreased root growth. Mutant rice plants exhibited decreased shoot growth, shoot P accumulation, and fertilizer P use efficiency when grown in soil-but not under hydroponic conditions, where all P is soluble and available for plants. Mutant ral1 and wild-type rice rhizospheres had distinct bacterial and fungal community structures, and wild-type rice recruited some genotype-specific microbial taxa associated with P solubilization. Our results highlight the function of 4CL4/RAL1 in enhancing rice P acquisition and use in acid soil, namely by enlarging root growth and boosting functional rhizosphere microbe recruitment. These findings can inform breeding strategies to improve P use efficiency through host genetic manipulation of root growth and rhizosphere microbiota.
Collapse
Affiliation(s)
- Xun Xiao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - An Yong Hu
- School of Geographical Science, Nantong University, Nantong, 226019, China
| | - Xiao Ying Dong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Qiang Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
14
|
Plouviez M, Bolot P, Shilton A, Guieysse B. Phosphorus uptake and accumulation in Chlamydomonas reinhardtii: Influence of biomass concentration, phosphate concentration, phosphorus depletion time, and light supply. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
15
|
Su N, Xie G, Mao Z, Li Q, Chang T, Zhang Y, Peng J, Rong X, Luo G. The effectiveness of eight-years phosphorus reducing inputs on double cropping paddy: Insights into productivity and soil-plant phosphorus trade-off. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161429. [PMID: 36623670 DOI: 10.1016/j.scitotenv.2023.161429] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/12/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Abundant evidence has demonstrated the feasibility of reducing phosphorus (P) input to face diminishing phosphate rock resources and deteriorating environmental quality in double-cropping paddy. However, the sustainability of reduced P input in the context of maintaining productivity and P efficient utilization is not yet clear. Herein, an 8-year (2013-2021) field-based database was built to explore the effects of reduced P input on rice productivity and the soil-plant P trade-off in double-cropping paddy. In the early and late rice seasons, compared with conventional P fertilization (early rice, 90 kg hm-2; late rice, 60 kg hm-2), the average yield of reduced 10 % P treatment increased by 4.3 % and 2.1 %, respectively; reduced 10-30 % P treatments increased average P use efficiency by 17.1-18.4 % and 14.0-17.2 %, decreased average total P runoff loss by 14.9-33.2 % and 20.8-36.4 %, and decreased average total P leaching loss by 18.5-49.0 % and 24.0-46.1 %, respectively. Compared with conventional fertilization, reduced P fertilizer input by 10 % significantly increased the content of the soil labile-P fraction while reducing that of the soil stable-P fraction. Soil ligand-P and exchangeable-P content decreased with the gradient reduction of P fertilizer input (10-30 %). The main predictors of the change in rice yield and plant P uptake were soil ligand-P and exchangeable-P content, respectively. The dominant predictor of both the P runoff loss and the P activation coefficient was the inorganic P content extracted by NaHCO3. These findings suggest that reduced P input by 10 % could maintain rice productivity and P use efficiency in the double-cropping paddy, and the transformations between soil P components and increases in P bioavailability may be the key drivers maintaining rice productivity and P utilization under the context of reduced P loading.
Collapse
Affiliation(s)
- Ning Su
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Guixian Xie
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha 410128, China.
| | - Zhiwei Mao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Qiaorong Li
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Tian Chang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha 410128, China
| | - Yuping Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha 410128, China
| | - Jianwei Peng
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha 410128, China
| | - Xiangmin Rong
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha 410128, China
| | - Gongwen Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha 410128, China.
| |
Collapse
|
16
|
Sun R, Niu J, Luo B, Wang X, Li W, Zhang W, Wang F, Zhang C, Ye X. Substitution of manure for mineral P fertilizers increases P availability by enhancing microbial potential for organic P mineralization in greenhouse soil. Front Bioeng Biotechnol 2022; 10:1078626. [PMID: 36561049 PMCID: PMC9763603 DOI: 10.3389/fbioe.2022.1078626] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
The shortage of phosphorus (P) as a resource represents a major challenge for the sustainable development of agriculture. Manure has a high P content and is a potential substitute for mineral P fertilizers. However, little is known about the effects on soil P availability and soil microbial P transformation of substituting manure for mineral P fertilizers. In this study, variations in soil P availability and bacterial P mobilization were evaluated under treatment with manure as compared to mineral P fertilizers. In the greenhouse fruit and vegetable production system that provided the setting for the study, substitution of manure for mineral P (PoR treatment) resulted in a similar level of soil total P and a similar fruit and vegetable yield as compared to traditional fertilization, but a significantly increased level of soil available P. In addition, PoR treatment enhanced bacterial organic P mineralization potential and decreased inorganic P dissolution potential. These results demonstrate that manure application increases the availability of soil P primarily by enhancing soil microbial Po mineralization, indicating the potential feasibility of applying manure instead of mineral P fertilizers in greenhouse farming.
Collapse
Affiliation(s)
- Ruibo Sun
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer of Anhui Province, Research Centre of Phosphorous Efficient Utilization and Water Environment Protection Along the Yangtze River Economic Belt, College of Resources and Environment, Anhui Agricultural University, Hefei, China,Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, Hefei, China
| | - Junfang Niu
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Bingbing Luo
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer of Anhui Province, Research Centre of Phosphorous Efficient Utilization and Water Environment Protection Along the Yangtze River Economic Belt, College of Resources and Environment, Anhui Agricultural University, Hefei, China,Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, Hefei, China
| | - Xiaogai Wang
- School of Life Science and Engineering, Handan University, Handan, China
| | - Wenyan Li
- Xiong’an Institute of Innovation, Chinese Academy of Sciences, Shijiazhuang, China
| | - Wenjie Zhang
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer of Anhui Province, Research Centre of Phosphorous Efficient Utilization and Water Environment Protection Along the Yangtze River Economic Belt, College of Resources and Environment, Anhui Agricultural University, Hefei, China,Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, Hefei, China
| | - Fenghua Wang
- Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Experimental Teaching Demonstrating Center of Geographical Science, School of Geographical Sciences, Hebei Normal University, Shijiazhuang, China,*Correspondence: Fenghua Wang, ; Xinxin Ye,
| | - Chaochun Zhang
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer of Anhui Province, Research Centre of Phosphorous Efficient Utilization and Water Environment Protection Along the Yangtze River Economic Belt, College of Resources and Environment, Anhui Agricultural University, Hefei, China,Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, Hefei, China,College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Xinxin Ye
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer of Anhui Province, Research Centre of Phosphorous Efficient Utilization and Water Environment Protection Along the Yangtze River Economic Belt, College of Resources and Environment, Anhui Agricultural University, Hefei, China,Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, Hefei, China,*Correspondence: Fenghua Wang, ; Xinxin Ye,
| |
Collapse
|
17
|
Grzebisz W, Diatta J, Barłóg P, Biber M, Potarzycki J, Łukowiak R, Przygocka-Cyna K, Szczepaniak W. Soil Fertility Clock-Crop Rotation as a Paradigm in Nitrogen Fertilizer Productivity Control. PLANTS (BASEL, SWITZERLAND) 2022; 11:2841. [PMID: 36365294 PMCID: PMC9656335 DOI: 10.3390/plants11212841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
The Soil Fertility Clock (SFC) concept is based on the assumption that the critical content (range) of essential nutrients in the soil is adapted to the requirements of the most sensitive plant in the cropping sequence (CS). This provides a key way to effectively control the productivity of fertilizer nitrogen (Nf). The production goals of a farm are set for the maximum crop yield, which is defined by the environmental conditions of the production process. This target can be achieved, provided that the efficiency of Nf approaches 1.0. Nitrogen (in fact, nitrate) is the determining yield-forming factor, but only when it is balanced with the supply of other nutrients (nitrogen-supporting nutrients; N-SNs). The condition for achieving this level of Nf efficiency is the effectiveness of other production factors, including N-SNs, which should be set at ≤1.0. A key source of N-SNs for a plant is the soil zone occupied by the roots. N-SNs should be applied in order to restore their content in the topsoil to the level required by the most sensitive crop in a given CS. Other plants in the CS provide the timeframe for active controlling the distance of the N-SNs from their critical range.
Collapse
Affiliation(s)
- Witold Grzebisz
- Department of Agricultural Chemistry and Environmental Biogeochemistry, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Williams KA, McKay Fletcher DM, Petroselli C, Ruiz SA, Roose T. A 3D image-based modelling approach for understanding spatiotemporal processes in phosphorus fertiliser dissolution, soil buffering and uptake by plant roots. Sci Rep 2022; 12:15891. [PMID: 36151240 PMCID: PMC9508158 DOI: 10.1038/s41598-022-19047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Phosphorus (P) is a key yield-limiting nutrient for crops, but the main source of P fertiliser is finite. Therefore, efficient fertilisation is crucial. Optimal P application requires understanding of the dynamic processes affecting P availability to plants, including fertiliser dissolution rate and soil buffer power. However, standard soil testing methods sample at fixed time points, preventing a mechanistic understanding of P uptake variability. We used image-based modelling to investigate the effects of fertiliser dissolution rate and soil buffer power on P uptake by wheat roots imaged using X-ray CT. We modelled uptake based on 1-day, 1-week, and 14-week dissolution of a fixed quantity of total P for two common soil buffer powers. We found rapid fertiliser dissolution increased short-term root uptake, but total uptake from 1-week matched 1-day dissolution. We quantified the large effects root system architecture had on P uptake, finding that there were trade-offs between total P uptake and uptake per unit root length, representing a carbon investment/phosphorus uptake balance. These results provide a starting point for predictive modelling of uptake from different P fertilisers in different soils. With the addition of further X-ray CT image datasets and a wider range of conditions, our simulation approach could be developed further for rapid trialling of fertiliser-soil combinations to inform field-scale trials or management.
Collapse
Affiliation(s)
- K A Williams
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK.,Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - D M McKay Fletcher
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - C Petroselli
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - S A Ruiz
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - T Roose
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
19
|
Plouviez M, Oliveira da Rocha C, Guieysse B. Intracellular polyphosphate is a P reserve in Chlamydomonas reinhardtii. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
20
|
Arsic M, Persson DP, Schjoerring JK, Thygesen LG, Lombi E, Doolette CL, Husted S. Foliar-applied manganese and phosphorus in deficient barley: Linking absorption pathways and leaf nutrient status. PHYSIOLOGIA PLANTARUM 2022; 174:e13761. [PMID: 36004733 PMCID: PMC9543583 DOI: 10.1111/ppl.13761] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/08/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Foliar fertilization delivers essential nutrients directly to plant tissues, reducing excessive soil fertilizer applications that can lead to eutrophication following nutrient leaching. Foliar nutrient absorption is a dynamic process affected by leaf surface structure and composition, plant nutrient status, and ion physicochemical properties. We applied multiple methods to study the foliar absorption behaviors of manganese (Mn) and phosphorus (P) in nutrient-deficient spring barley (Hordeum vulgare) at two growth stages. Nutrient-specific chlorophyll a fluorescence assays were used to visualize leaf nutrient status, while laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to visualize foliar absorption pathways for P and Mn ions. Rapid Mn absorption was facilitated by a relatively thin cuticle with a low abundance of waxes and a higher stomatal density in Mn-deficient plants. Following absorption, Mn accumulated in epidermal cells and in the photosynthetically active mesophyll, enabling a fast (6 h) restoration of Mn-dependent photosynthetic processes. Conversely, P-deficient plants developed thicker cuticles and epidermal cell walls, which reduced the penetration of P across the leaf surface. Foliar-applied P accumulated in trichomes and fiber cells above leaf veins without reaching the mesophyll and, as a consequence, no restoration of P-dependent photosynthetic processes was observed. This study reveals new links between leaf surface morphology, foliar-applied ion absorption pathways, and the restoration of affected physiological processes in nutrient-deficient leaves. Understanding that ions may have different absorption pathways across the leaf surface is critical for the future development of efficient fertilization strategies for crops in nutrient-limited soils.
Collapse
Affiliation(s)
- Maja Arsic
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
- University of South AustraliaFuture Industries InstituteMawson LakesSouth AustraliaAustralia
- Present address:
CSIRO Agriculture and Food, Queensland Biosciences PrecinctSt. LuciaQueenslandAustralia
| | - Daniel P. Persson
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Jan K. Schjoerring
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Lisbeth G. Thygesen
- Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenFrederiksberg CDenmark
| | - Enzo Lombi
- University of South AustraliaFuture Industries InstituteMawson LakesSouth AustraliaAustralia
| | - Casey L. Doolette
- University of South AustraliaFuture Industries InstituteMawson LakesSouth AustraliaAustralia
| | - Søren Husted
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| |
Collapse
|
21
|
Kalinitchenko VP, Glinushkin AP, Minkina TM, Mandzhieva SS, Sushkova SN, Sukovatov VA, Il'ina LP, Makarenkov DA, Zavalin AA, Dudnikova TS, Barbashev AI, Bren DV, Rajput P, Batukaev AA. Intra-soil waste recycling provides safety of environment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:1355-1376. [PMID: 34241721 DOI: 10.1007/s10653-021-01023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Amelioration and remediation technology was developed for phosphogypsum utilization in Haplic Chernozem of South-European facies (Rostov Region). The technology comprises phosphogypsum dispersed application into the soil layer of 20-45 cm during intra-soil milling. In the model experiment, the phosphogypsum doses 0 (control), 10, 20, and 40 t ha-1 were studied. The Cd thermodynamic forms in soil solution were calculated via the developed mathematical chemical-thermodynamic model and program ION-3. The form of ion in soil solution (or water extract) was considered accounting the calcium-carbonate equilibrium (CCE) and association of ion pairs CaCO30; CaSO40, MgCO30, MgSO40, CaHCO3+, MgHCO3+, NaCO3-, NaSO4-, CaOH+, MgOH+. For calculation of the equilibrium of microelements concentration in soil solution ion including heavy metals (HMs), the coefficient of microelement association kas was proposed. According to calculations, Cd2+ ion in soil solution was mostly bounded to associates CdOH+, partly to associates CdCO30 and CdHCO3+. The calculated kas of Cd was 1.24 units in the control option of experiment and decreased to 0.95 units at phosphogypsum dose 40 t ha-1. The ratio of "active [Cd2+] to total Cd" reduced from 33.5% in control option to 28.0% in the option of phosphogypsum dose 40 t ha-1. The biogeochemical barrier for penetration of HMs from soil to plant roots was high after application of phosphogypsum. According to calculation by ION-3, the standard soil environmental limitations overestimate the toxicity of Cd in soil solution. New decision for intra-soil milling and simultaneous application of phosphogypsum was developed to provide the environmentally safe waste recycling.
Collapse
Affiliation(s)
- Valery P Kalinitchenko
- Institute of Fertility of Soils of South Russia, 2, Krivoshlykova str., Persianovka, Rostov Region, Russia, 346493.
- All-Russian Phytopathology Research Institute of the Russian Academy of Sciences, 5, Institute St., Big Vyazemy, Moscow Region, Russia, 143050.
| | - Alexey P Glinushkin
- All-Russian Phytopathology Research Institute of the Russian Academy of Sciences, 5, Institute St., Big Vyazemy, Moscow Region, Russia, 143050
| | - Tatiana M Minkina
- Southern Federal University, 194/1, Stachki Prosp., Rostov-on-Don, Russia, 344090
| | - Saglara S Mandzhieva
- Southern Federal University, 194/1, Stachki Prosp., Rostov-on-Don, Russia, 344090
| | - Svetlana N Sushkova
- Southern Federal University, 194/1, Stachki Prosp., Rostov-on-Don, Russia, 344090
| | - Vladimir A Sukovatov
- Institute of Fertility of Soils of South Russia, 2, Krivoshlykova str., Persianovka, Rostov Region, Russia, 346493
| | - Ljudmila P Il'ina
- Southern Scientific Center of the Russian Academy of Sciences, 41, Chekhova prosp, Rostov-on-Don, Russia, 344006
| | - Dmitry A Makarenkov
- Institute of Chemical Reagents and High Purity Chemical Substances of National Research Centre Kurchatov Institute, 3, Bogorodskiy Val st, 107076, Moscow, Russia
| | - Alexey A Zavalin
- All-Russian Research Institute for Agrochemistry Named After D.N. Pryanishnikov of the Russian Academy of Sciences, 31a, Pryanishnikova st, Moscow, Russia, 127434
| | - Tamara S Dudnikova
- Southern Federal University, 194/1, Stachki Prosp., Rostov-on-Don, Russia, 344090
| | - Andrey I Barbashev
- Southern Federal University, 194/1, Stachki Prosp., Rostov-on-Don, Russia, 344090
| | - Dmitry V Bren
- Southern Federal University, 194/1, Stachki Prosp., Rostov-on-Don, Russia, 344090
| | - Priyadarshani Rajput
- Southern Federal University, 194/1, Stachki Prosp., Rostov-on-Don, Russia, 344090
| | | |
Collapse
|
22
|
Willey N, Timbs P. Radioactivity in Future Phosphogypsum: New predictions based on estimates of 'Peak P' and rock phosphate resources. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2022; 244-245:106828. [PMID: 35123301 DOI: 10.1016/j.jenvrad.2022.106828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Global food supplies currently depend on producing inorganic P fertilisers from a finite reserve of rock phosphate (RP). P fertilisers are themselves significant pollutants but their production from RP also leaves a phosphogypsum (PG) by-product that is sufficiently radioactive that its reuse is restricted. PG is mostly accumulated in open 'stacks' that make up a significant proportion of all Technologically Enhanced Naturally-Occurring Radioactive Material (TENORM) waste. Using lower and upper estimates of current RP reserves, historic production, and Hubbert's logistic function-based 'peak theory', lower and upper boundaries for possible RP production were predicted to the year 2100. The 'low' boundary scenario had a production peak of c.350 Mt/a RP in c.2050 followed by a steep decline. The 'high' boundary scenario had a production peak of c.1200 Mt/a RP in about 2090. Future trends in P demand for food production were used to predict a possible, demand-driven, RP production scenario until 2100 which peaked at a demand of c.620 Mt/a RP and was within possible production boundaries. An RP:P ratio of 5.62:1 and PG:P fertiliser ratio of 4:1 was used to calculate that this predicted demand-driven scenario would ultimately produce nearly 350 Mt/a of PG and a cumulative total of c.30 Gt by 2100. Average PG activity concentrations of 226Ra (650 Bq/kg), 210Po (300 Bq/kg) and 230Th (100 Bq/kg) give a total of c.30 PBq radioactivity in this by-product. Humanity is faced with a phosphorus dilemma - if the low production scenario unfolds it threatens food security but if predicted demand for P is met from RP the environmental challenges arising from P fertiliser use will be profound and exacerbated by a significant radioactive waste challenge. The estimates reported here show that studies of environmental radioactivity have a role to play in debates about P resources and global food security.
Collapse
Affiliation(s)
- Neil Willey
- Centre for Research In Bioscience, Department of Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol, BS16 1QY, United Kingdom.
| | - Patrick Timbs
- Centre for Research In Bioscience, Department of Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol, BS16 1QY, United Kingdom
| |
Collapse
|
23
|
Staudinger C, Dissanayake BM, Duncan O, Millar AH. The wheat secreted root proteome: Implications for phosphorus mobilisation and biotic interactions. J Proteomics 2022; 252:104450. [PMID: 34890868 DOI: 10.1016/j.jprot.2021.104450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022]
Abstract
Root secreted acid phosphatases and organic anions are widely perceived as major players of plant phosphorus (P) mobilisation from the rhizosphere under P limiting growth conditions. Previous research indicated that other mechanisms play a role, especially in species with fine roots, such as wheat. In this study we characterised the plant-derived extracellular proteome of wheat roots by profiling root tip mucilage, soluble root secreted and root tip proteomes. Extracellular acid phosphatases and enzymes of the central carbon metabolism were targeted using selected reaction monitoring. More than 140 proteins with extracellular localisation prediction were identified in mucilage. P starvation induced proteins predicted to be localised to the apoplast which are related to cell wall modification and defence in both, root tip and soluble root-secreted proteomes. Glycolytic enzymes were strongly increased in abundance by P limitation in root tips, as were PEPC and plastidial MDH. Soluble acid phosphatases were not identified in extracellular protein samples. Our results indicate that root tip mucilage contains proteins with the functional potential to actively shape their immediate environment by modification of plant structural components and biotic interactions. Wheat acid phosphatases appear to play a minor role in P mobilisation beyond the immediate root surface. SIGNIFICANCE: Phosphorus (P) is a plant growth limiting nutrient in many agricultural situations and the development of phosphorus efficient crops is of paramount importance for future agricultural management practices. As P is relatively immobile in soils, processes occurring at the root-soil interface, the rhizosphere, are suspected to play a key role in plant-induced P mobilisation. According to the current view, the secretion of extracellular acid phosphatases and organic anions enhances P mobilisation within several millimetres beyond the root surface, either directly or indirectly through the selection and appropriate soil microbes. However, the mechanisms of P mobilisation in species with fine roots, such as wheat, and the role of other secreted root proteins are poorly understood. Here, we carried out the profiling of wheat root tip mucilage, soluble root secreted and root tip proteomes. We analysed proteome changes in response to P starvation. We found that proteins with a predicted localisation to the apoplast made up a major proportion of stress-responsive proteins. Acid phosphatases were not identified within extracellular protein samples, which were enriched in proteins with predicted extracellular localisation. The absence of extracellular APases was further validated by multiple reaction monitoring. Our data indicates that wheat acid phosphatases play a minor role in P mobilisation beyond the immediate root surface and provides a resource for breeding strategies and further investigations of the functional roles of root tip-released proteins in the rhizosphere under P limitation.
Collapse
Affiliation(s)
- Christiana Staudinger
- School of Biological Sciences, The University of Western Australia, Australia; The ARC Centre of Excellence in Plant Energy Biology, 35 Stirling Highway, Crawley, Perth 6009, Australia; University of Natural Resources and Life Sciences, BOKU-Vienna, Department of Forest and Soil Sciences, Rhizosphere Ecology and Biogeochemistry Group, Austria.
| | - Bhagya M Dissanayake
- The ARC Centre of Excellence in Plant Energy Biology, 35 Stirling Highway, Crawley, Perth 6009, Australia
| | - Owen Duncan
- The ARC Centre of Excellence in Plant Energy Biology, 35 Stirling Highway, Crawley, Perth 6009, Australia
| | - A Harvey Millar
- The ARC Centre of Excellence in Plant Energy Biology, 35 Stirling Highway, Crawley, Perth 6009, Australia
| |
Collapse
|
24
|
Fan B, Ding J, Fenton O, Daly K, Chen S, Zhang S, Chen Q. Investigation of differential levels of phosphorus fixation in dolomite and calcium carbonate amended red soil. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:740-749. [PMID: 34173233 DOI: 10.1002/jsfa.11405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/09/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The pH adjustment of acidic red soils with lime materials is beneficial for the reduction of phosphorus (P) fixation. However, the reasons for varying levels of P activation after adding different lime materials have not been fully investigated. Therefore, this study examined changes in soil labile P and P forms after phosphate application to calcium carbonate (CaCO3 ) and dolomite amended red soil during a 120-day incubation period. Also change of P sorption properties in the amended soil samples from day 120 were examined through a sorption-desorption experiment. RESULTS The increase of soil H2 O-P and NaHCO3 -P in the CaCO3 and dolomite amended soil treatments was mainly ascribed to the decline of the NaOH-P. However, when compared with the control treatment after 120 days, soil Olsen-P significantly increased by 34% and 66% in the CaCO3 and dolomite treatments. The Hedley P fractionation results demonstrated that the CaCO3 application caused a notable increase of HCl-P (stable Ca-P), which was 88.4% higher than that in the dolomite treatment. However, the formation of stable P was strongly suppressed in the dolomite treatment due to the presence of magnesium (Mg), which was identified by the negative relationship between M3-Mg and HCl-P. In line with these findings, P sorption-desorption work showed weaker P binding energy in the dolomite treatment relative to the CaCO3 treatment. CONCLUSION In terms of increasing P availability in red soil, this study suggests that dolomite should be used to substitute CaCO3 in order to reduce the soil P fixation. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bingqian Fan
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Jiahui Ding
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Owen Fenton
- Teagasc, Department of Crops, Environment and Land Use, Environmental Resources Centre, Johnstown Castle, Wexford, Ireland
| | - Karen Daly
- Teagasc, Department of Crops, Environment and Land Use, Environmental Resources Centre, Johnstown Castle, Wexford, Ireland
| | - Shuo Chen
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Shuai Zhang
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Qing Chen
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
25
|
Fan B, Wang H, Zhai L, Li J, Fenton O, Daly K, Lei Q, Wu S, Liu H. Leached phosphorus apportionment and future management strategies across the main soil areas and cropping system types in northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150441. [PMID: 34818792 DOI: 10.1016/j.scitotenv.2021.150441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Excess phosphorus (P) leached from high fertiliser input cropping systems in northern China is having detrimental effects on water quality. Before improved management can be directed at specific soils and cropping system types estimates of P leached loss apportionment and mitigation potentials across the main soil (fluvo-aquic soil, FAS; cinnamon soil, CS; black soil, BS) areas and cropping systems (protected vegetable fields, PVFs; open vegetable fields, OVFs; cereal fields, CFs) are needed. The present study designed and implemented conventional fertilisation and low input system trials at 75 sites inclusive of these main soils and cropping system types in northern China. At all sites, a uniform lysimeter design (to 0.9 m depth) enabled the collection and analysis of leachate samples from 7578 individual events between 2008 and 2018. In addition, site-specific static and dynamic activity data were recorded. Results showed that annual total phosphorus (TP) leached losses across the main soil areas and cropping systems were 4.99 × 106 kg in northern China. A major finding was PVFs contributed to 48.5% of the TP leached losses but only accounted for 5.7% of the total cropping areas. The CFs and OVFs accounted for 40.3% and 11.2% of the TP leached losses, respectively. Across northern China, the TP leached losses in PVFs and OVFs were greatest in FAS areas followed by CS and BS areas. The higher TP leached losses in FAS areas were closely correlated with greater P fertiliser inputs and irrigation practices. From a management perspective in PVFs and OVFs systems, a decrease of P inputs by 10-30% would not negatively affect yields while protecting water quality. The present study highlights the importance of decreasing P inputs in PVFs and OVFs and supporting soil P nutrient advocacy for farmers in China.
Collapse
Affiliation(s)
- Bingqian Fan
- Key laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture and Rural Affairs of P. R. China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongyuan Wang
- Key laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture and Rural Affairs of P. R. China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Limei Zhai
- Key laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture and Rural Affairs of P. R. China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jungai Li
- Key laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture and Rural Affairs of P. R. China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Owen Fenton
- Teagasc, Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland
| | - Karen Daly
- Teagasc, Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland
| | - Qiuliang Lei
- Key laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture and Rural Affairs of P. R. China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuxia Wu
- Key laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture and Rural Affairs of P. R. China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongbin Liu
- Key laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture and Rural Affairs of P. R. China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
26
|
Raniro HR, Bettoni Teles AP, Adam C, Pavinato PS. Phosphorus solubility and dynamics in a tropical soil under sources derived from wastewater and sewage sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:113984. [PMID: 34700086 DOI: 10.1016/j.jenvman.2021.113984] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/09/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Conventional phosphate fertilizers are usually highly water-soluble and rapidly solubilize when moistened by the soil solution. However, if this solubilization is not in alignment with plants demand, P can react with the soil colloidal phase, becoming less available over time. This is more pronounced in acidic, oxidic tropical soils, with high P adsorption capacity, reducing the efficiency of P fertilization. Furthermore, these fertilizers are derived from phosphate rock, a non-renewable resource, generating an environmental impact. To assess these concerns, waste-recycled P sources (struvite, hazenite and AshDec®) were studied for their potential of reducing P fixation by the soil and improving the agronomic efficiency of the P fertilization. In our work, we compared the solubilization dynamics of struvite, hazenite, AshDec® to triple superphosphate (TSP) in a sandy clay loam Ferralsol, as well as their effect on solution pH and on soil P pools (labile, moderately-labile and non-labile) via an incubation experiment. Leaching columns containing 50 g of soil with surface application of 100 mg per column (mg col-1) of P from each selected fertilizer and one control (nil-P) were evaluated for 60 days. Daily leachate samples from the column were analyzed for P content and pH. Soil was stratified in the end and submitted to P fractionation. All results were analyzed considering p < 0.05. Our findings showed that TSP and struvite promoted an acid P release reaction (reaching pHs of 4.3 and 5.5 respectively), while AshDec® and hazenite reaction was alkaline (reaching pHs of 8.4 and 8.5 respectively). Furthermore, TSP promoted the highest P release among all sources in 60 days (52.8 mg col-1) and showed rapid release dynamic in the beginning, while struvite and hazenite showed late release dynamics and lower total leached P (29.7 and 15.5 mg col-1 P respectively). In contrast, no P-release was detected in the leachate of the AshDec® over the whole trial period. Struvite promoted the highest soil labile P concentration (7938 mg kg-1), followed by hazenite (5877 mg kg-1) and AshDec® (4468 mg kg-1), all higher than TSP (3821 mg kg-1), while AshDec® showed high moderately-labile P (9214 mg kg-1), reaffirming its delayed release potential.
Collapse
Affiliation(s)
- Henrique Rasera Raniro
- Department of Soil Science, Luiz de Queiroz College of Agriculture (Esalq), University of São Paulo (USP), Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil.
| | - Ana Paula Bettoni Teles
- Department of Soil Science, Luiz de Queiroz College of Agriculture (Esalq), University of São Paulo (USP), Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil.
| | - Christian Adam
- Division 4.4 - Thermochemical Residues Treatment and Resource Recovery, German Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Straße, 11, 12489, Berlin, Germany.
| | - Paulo Sergio Pavinato
- Department of Soil Science, Luiz de Queiroz College of Agriculture (Esalq), University of São Paulo (USP), Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil.
| |
Collapse
|
27
|
Gong H, Meng F, Wang G, Hartmann TE, Feng G, Wu J, Jiao X, Zhang F. Toward the sustainable use of mineral phosphorus fertilizers for crop production in China: From primary resource demand to final agricultural use. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150183. [PMID: 34520915 DOI: 10.1016/j.scitotenv.2021.150183] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 07/24/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Sustainable phosphorus (P) management is crucial to both food security and environmental conservation. The optimization of P input from mineral fertilizers has been advocated as an effective approach to improve P use efficiency. However, strategies for maximizing P use efficiency by linking soil-crop systems and fertilizer types with the P flow, from a whole P supply chain perspective, are lacking. In this study, a meta-analysis and substance flow analysis (SFA) were employed to evaluate the effects of different mineral P fertilizer types on crop yield and P flow from rock phosphate (RP) exploitation to P use in China. Compared to single superphosphate (SSP), triple superphosphate (TSP), and calcium magnesium phosphate (CMP), a significantly higher yield was obtained when diammonium phosphate (DAP) and monoammonium phosphate (MAP) were used 2005 onwards. However, P loss, from RP extraction to application, was 24% higher for DAP and MAP than for SSP, TSP, and CMP. DAP and MAP use led to a 6% larger P footprint than SSP, TSP, and CMP use. The P use efficiency could be improved by 22%, 36%, and 40% in wheat, maize, and rice production, respectively, by integrating the soil-crop system with mineral P fertilizer types, while P loss and P footprint could be reduced by 13% and 17%, respectively. These results indicate that P use efficiency can be significantly improved by integrating mineral P fertilizer types with soil-crop systems, providing an effective approach for RP exploitation to improve P use efficiency and alleviate the overexploitation of RP.
Collapse
Affiliation(s)
- Haiqing Gong
- National Academy of Agriculture Green Development, Department of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Fanlei Meng
- National Academy of Agriculture Green Development, Department of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Guohao Wang
- National Academy of Agriculture Green Development, Department of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
| | | | - Gu Feng
- National Academy of Agriculture Green Development, Department of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Jiechen Wu
- Department of Sustainable Development, Environmental Science and Engineering (SEED), KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Xiaoqiang Jiao
- National Academy of Agriculture Green Development, Department of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China.
| | - Fusuo Zhang
- National Academy of Agriculture Green Development, Department of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
| |
Collapse
|
28
|
Hussain MZ, Hamilton SK, Robertson GP, Basso B. Phosphorus availability and leaching losses in annual and perennial cropping systems in an upper US Midwest landscape. Sci Rep 2021; 11:20367. [PMID: 34645938 PMCID: PMC8514564 DOI: 10.1038/s41598-021-99877-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/24/2021] [Indexed: 11/10/2022] Open
Abstract
Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems may leach legacy P from past cropland management.
Collapse
Affiliation(s)
- Mir Zaman Hussain
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, 49060, USA. .,Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA.
| | - Stephen K Hamilton
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, 49060, USA.,Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA.,Department of Integrative Biology, Michigan State University, East Lansing, MI, 48824, USA.,Cary Institute of Ecosystem Studies, Millbrook, NY, 12545, USA
| | - G Philip Robertson
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, 49060, USA.,Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA.,Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Bruno Basso
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, 49060, USA.,Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA.,Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
29
|
Zhang Z, Zhu L, Li D, Wang N, Sun H, Zhang Y, Zhang K, Li A, Bai Z, Li C, Liu L. In situ Root Phenotypes of Cotton Seedlings Under Phosphorus Stress Revealed Through RhizoPot. FRONTIERS IN PLANT SCIENCE 2021; 12:716691. [PMID: 34527012 PMCID: PMC8435733 DOI: 10.3389/fpls.2021.716691] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/28/2021] [Indexed: 06/01/2023]
Abstract
Phosphorus (P) deficiency is a common challenge in crop production because of its poor mobility through the soil. The root system plays a significant role in P absorption from the soil and is the initial indicator of low P levels. However, the phenotypic dynamics and longevity of cotton roots under P stress remain unknown. In this study, RhizoPot, an improvised in situ root observation device, was used to monitor the dynamics of root phenotypes of cotton seedlings under P-deficient (PD) and P-replete (PR) conditions. Low P stress reduced P absorption and accumulation in the roots, leading to low dry weight accumulation. Cotton seedlings responded to low P stress by increasing the number of lateral roots, specific root length, branch density, root length density, and length of root hairs. Additionally, the life span of root hairs was prolonged. Low P stress also reduced the average diameter of roots, promoted root extension, expanded the root coverage area, and increased the range of P acquisition. Principal component analysis revealed that the net root growth rate, root length density, root dry weight, P absorption efficiency, average root hair length, and taproot daily growth significantly influenced the cotton root architecture. Collectively, these results show that low P stress reduces the net growth rate of cotton seedling roots and restricts plant growth. Plants respond to P deficiency by extending the life span of root hairs and increasing specific root length and lateral root branch density. This change in root system architecture improves the adaptability of plants to low P conditions. The findings of this study may guide the selection of cotton varieties with efficient P utilization.
Collapse
|
30
|
Huang J, Zhang Y, Bing H, Peng J, Dong F, Gao J, Arhonditsis GB. Characterizing the river water quality in China: Recent progress and on-going challenges. WATER RESEARCH 2021; 201:117309. [PMID: 34116294 DOI: 10.1016/j.watres.2021.117309] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/11/2021] [Accepted: 05/25/2021] [Indexed: 05/25/2023]
Abstract
Food production systems, urbanization, and other anthropogenic activities dramatically alter natural hydrological and nutrient cycles, and are primarily responsible for water quality impairments in China's rivers. This study compiled a 16-year (2003-2018) dataset of river water quality (161,337 records from 2424 sites), watershed/landscape features, and meteorological conditions to investigate the spatial water quality patterns and underlying drivers of river impairment (defined as water quality worse than Class V according to China's Environmental Quality Standards for Surface Waters, GB3838-2002) at a national scale. Our analysis provided evidence of a distinct water quality improvement with a gradual decrease in the frequency of prevalence of anoxic conditions, an alleviation of the severity of heavy metal pollution, whereas the cultural eutrophication has only been moderately mitigated between 2003 and 2018. We also identified significant spatial variation with relatively poorer water quality in eastern China, where 17.2% of the sampling sites registered poor water quality conditions, compared with only 4.6% in western China. Total phosphorus (TP) and ammonia-nitrogen (NH3-N) are collectively responsible for >85% of the identified incidences of impaired conditions. Bayesian modelling was used to delineate the most significant covariates of TP/NH3-N riverine levels in six large river basins (Liao, Hai, Yellow, Yangtze, Huai, and Pearl). Water quality impairments are predominantly shaped by anthropogenic drivers (82.5% for TP, 79.5% for NH3-N), whereas natural factors appear to play a secondary role (20.5% for TP, 17.5% for NH3-N). Two indicator variables of urbanization (urban areal extent and nighttime light intensity) and farmland areal extent were the strongest predictors of riverine TP/NH3-N levels and collectively accounted for most of the ambient nutrient variability. We concluded that there is still a long way to go in order to eradicate eutrophication and realize acceptable ecological conditions. The design of the remedial measures must be tailored to the site-specific landscape characteristics, meteorological conditions, and should also consider the increasing importance of non-point source pollution and internal nutrient loading.
Collapse
Affiliation(s)
- Jiacong Huang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China.
| | - Yinjun Zhang
- China National Environmental Monitoring Centre, 8(B) Dayangfang Beiyuan Road, Chaoyang District, Beijing, 100012, China
| | - Haijian Bing
- Key Laboratory of Mountain Surface Process and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, 9, Block 4, Renminnanlu Road, Chengdu, 610041, China
| | - Jian Peng
- Department of Remote Sensing, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany; Remote Sensing Centre for Earth System Research, Leipzig University, 04103, Leipzig, Germany
| | - Feifei Dong
- Institute of Groundwater and Earth Sciences, Jinan University, 601 Huangpu Avenue, Guangzhou, 510630, China
| | - Junfeng Gao
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - George B Arhonditsis
- Ecological Modelling Laboratory, Department of Physical & Environmental Sciences, University of Toronto, Toronto, ON, M1C 1A4, Canada.
| |
Collapse
|
31
|
Papangelou A, Mathijs E. Assessing agro-food system circularity using nutrient flows and budgets. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112383. [PMID: 33780823 DOI: 10.1016/j.jenvman.2021.112383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Nutrient reuse and recycling is a key strategy towards more circular and sustainable food systems and depends on the specific conditions of the area under study, such as geography and the type of agricultural system. In this study we analysed nutrient flows and assessed the circularity of a livestock-dominated and export-oriented agro-food system at different system levels and spatial scales. We quantified the nitrogen (N), phosphorus (P) and potassium (K) flows and soil balances in the Belgian agro-food system at the sub-regional, regional and national scale, and assessed five P-based indicators that capture different aspects of circularity: total inputs, phosphorus use efficiency, share of reused to total input, recycling rate, and losses. We found that nutrient soil balances depend on the type of agricultural system: areas with intense livestock production accumulate up to 108 kgN/ha, 4.8 kgP/ha and 150 kgK/ha in their soil annually, whereas areas of mostly arable production have low N and K surpluses of <20 kg/ha and P deficits of < -10 kg/ha. We further found that Wallonia, the southern region of the country that is characterized by lower livestock densities and a partial reuse of sewage sludge, outperforms the Flemish region in the North in all five indicators. The food system in the whole of Belgium has a 34% phosphorus use efficiency rate and a 63% overall recycling rate, while 84% of the total inputs in agriculture are from secondary sources. Our results show that the type of production system is the most crucial determinant for circularity, and highlight the benefit of working at different levels and spatial scales to capture all aspects of circularity in agro-food systems.
Collapse
Affiliation(s)
- Anastasia Papangelou
- KU Leuven, Department of Earth and Environmental Sciences, Division of Bio-economics, Celestijnenlaan 200E, 3001, Leuven, Belgium.
| | - Erik Mathijs
- KU Leuven, Department of Earth and Environmental Sciences, Division of Bio-economics, Celestijnenlaan 200E, 3001, Leuven, Belgium
| |
Collapse
|
32
|
Saia SM, Carrick HJ, Buda AR, Regan JM, Walter MT. Critical Review of Polyphosphate and Polyphosphate Accumulating Organisms for Agricultural Water Quality Management. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2722-2742. [PMID: 33559467 DOI: 10.1021/acs.est.0c03566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Despite ongoing management efforts, phosphorus (P) loading from agricultural landscapes continues to impair water quality. Wastewater treatment research has enhanced our knowledge of microbial mechanisms influencing P cycling, especially regarding microbes known as polyphosphate accumulating organisms (PAOs) that store P as polyphosphate (polyP) under oxic conditions and release P under anoxic conditions. However, there is limited application of PAO research to reduce agricultural P loading and improve water quality. Herein, we conducted a meta-analysis to identify articles in Web of Science on polyP and its use by PAOs across five disciplines (i.e., wastewater treatment, terrestrial, freshwater, marine, and agriculture). We also summarized research that provides preliminary support for PAO-mediated P cycling in natural habitats. Terrestrial, freshwater, marine, and agriculture disciplines had fewer polyP and PAO articles compared to wastewater treatment, with agriculture consistently having the least. Most meta-analysis articles did not overlap disciplines. We found preliminary support for PAOs in natural habitats and identified several knowledge gaps and research opportunities. There is an urgent need for interdisciplinary research linking PAOs, polyP, and oxygen availability with existing knowledge of P forms and cycling mechanisms in natural and agricultural environments to improve agricultural P management strategies and achieve water quality goals.
Collapse
Affiliation(s)
- Sheila M Saia
- Depatment of Biological and Agricultural Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Hunter J Carrick
- Department of Biology and Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Anthony R Buda
- Pasture Systems and Watershed Management Research Unit, Agricultural Research Service, United States Department of Agriculture, University Park, Pennsylvania 16802, United States
| | - John M Regan
- Department of Civil and Environmental Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - M Todd Walter
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
33
|
Hirte J, Richner W, Orth B, Liebisch F, Flisch R. Yield response to soil test phosphorus in Switzerland: Pedoclimatic drivers of critical concentrations for optimal crop yields using multilevel modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:143453. [PMID: 33199000 DOI: 10.1016/j.scitotenv.2020.143453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Phosphorus (P) management in agroecosystems is driven by opposing requirements in agronomy, ecology, and environmental protection. The widely used maintenance P fertilization strategy relies on critical concentrations of soil test P (STP), which should cause the lowest possible impact on the environment while still ensuring optimal yield. While both soil P availability and crop yields are fundamentally related to pedoclimatic conditions, little is known about the extent to which soil and climate variables control critical STP. The official P fertilization guidelines for arable crops in Switzerland are based on empirically derived critical concentrations for two soil test methods (H2O-CO2 and AAE10). To validate those values and evaluate their relation to pedoclimatic conditions, we established nonlinear multivariate multilevel yield response models fitted to long-term data from six sites. The Mitscherlich function proved most suitable out of three functions and model fit was significantly enhanced by taking the multilevel data structure into account. Yield response to STP was strongest for potato, intermediate for barley, and lowest for wheat and maize. Mean critical STP at 95% maximum yield ranged among crops from 0.15-0.58 mg kg-1 (H2O-CO2) and 0-36 mg kg-1 (AAE10). However, pedoclimatic conditions such as annual temperature or soil clay content had a large impact on critical STP, entailing changes of up to 0.9 mg kg-1 (H2O-CO2) and 80 mg kg-1 (AAE10). Critical STP for the AAE10 method was also affected by soil pH. Our findings suggest that the current Swiss fertilization guidelines overestimate actual crop P demand on average and that site conditions account for large parts of the variation in critical STP. We propose that site-specific fertilization recommendations could be improved on the basis of agro-climate classes in addition to soil information, which can help to counteract the accumulation of unutilized soil P by long-term P application.
Collapse
Affiliation(s)
- Juliane Hirte
- Agroscope, Agroecology and Environment, Water Protection and Substance Flows, 8046 Zurich, Switzerland.
| | - Walter Richner
- Agroscope, Agroecology and Environment, Water Protection and Substance Flows, 8046 Zurich, Switzerland
| | - Barbara Orth
- Agroscope, Agroecology and Environment, Water Protection and Substance Flows, 8046 Zurich, Switzerland
| | - Frank Liebisch
- Agroscope, Agroecology and Environment, Water Protection and Substance Flows, 8046 Zurich, Switzerland; ETH Zurich, Department of Environmental Systems Sciences, Institute of Agricultural Sciences, Crop Science Group, 8001 Zurich, Switzerland
| | - René Flisch
- Agroscope, Agroecology and Environment, Water Protection and Substance Flows, 8046 Zurich, Switzerland
| |
Collapse
|
34
|
Jiang W, Zhu A, Wang C, Zhang F, Jiao X. Optimizing wheat production and reducing environmental impacts through scientist-farmer engagement: Lessons from the North China Plain. Food Energy Secur 2021; 10:e255. [PMID: 33791100 PMCID: PMC7988609 DOI: 10.1002/fes3.255] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/10/2020] [Accepted: 09/29/2020] [Indexed: 11/30/2022] Open
Abstract
Producing high economic benefits and high grain yields with limited environmental impacts is crucial for feeding the world's growing population. Yet it remains challenging to improve the performance of one objective without creating unintended consequences for other objectives. This is especially difficult for smallholders navigating a diverse array of environmental and personal demands. This study demonstrates how combining participatory research through the Science and Technology Backyards (STB) approach with Pareto-based ranking modeling can increase smallholder production while also reducing environmental impact. Through an intensive farmer survey in a 1 × 1 km grid in Quzhou County, we demonstrate that farmers engaged in STBs performed better according to multiple objectives (i.e., optimizing overall grain yield, benefit-cost ratio, and GHG emissions, without compromising any one of these objectives) than farmer's not engaged in STBs. Moreover, we used a Pareto optimization approach (OPT) to determine the optimal smallholder scenario. We found that under OPT, grain yield could reach 9.5 t/ha, with a benefit-cost ratio of 2.1, a 100% N recovery efficiency, and 7,395 kg CO2eq ha-1 GHG emissions. With OPT as a final goal, our research team worked with STB farmers to improve economic and environmental outcomes without compromising yield. Our findings demonstrate that no significant difference was obtained between farmers engaged in STBs and these under OPT. Compared with non-STB farmers, STB farmers' grain yield improved by 18%, benefit-cost ratio improved by 26% due to improved N recovery efficiency, and GHG emissions were reduced by 31%. These improvements demonstrate the power of scientist-farmer engagement for optimizing wheat production. Such engagement allows farmers to modify their agronomic practices to more closely match Pareto optimal conditions, thus improving environmental and economic benefits without compromising yield. Our results provide solid evidence of the potential for sustainable wheat production by combining modeling with participatory research.
Collapse
Affiliation(s)
- Wei Jiang
- National Academy of Agriculture Green DevelopmentDepartment of Plant Nutrition, College of Resources and Environmental SciencesChina Agricultural UniversityBeijing100193China
| | - Annah Zhu
- Environmental Policy groupWageningen UniversityWageningenNetherlands
| | - Chong Wang
- National Academy of Agriculture Green DevelopmentDepartment of Plant Nutrition, College of Resources and Environmental SciencesChina Agricultural UniversityBeijing100193China
| | - Fusuo Zhang
- National Academy of Agriculture Green DevelopmentDepartment of Plant Nutrition, College of Resources and Environmental SciencesChina Agricultural UniversityBeijing100193China
| | - Xiaoqiang Jiao
- National Academy of Agriculture Green DevelopmentDepartment of Plant Nutrition, College of Resources and Environmental SciencesChina Agricultural UniversityBeijing100193China
| |
Collapse
|
35
|
Brownlie WJ, Sutton MA, Reay DS, Heal KV, Hermann L, Kabbe C, Spears BM. Global actions for a sustainable phosphorus future. NATURE FOOD 2021; 2:71-74. [PMID: 37117414 DOI: 10.1038/s43016-021-00232-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Will J Brownlie
- UK Centre for Ecology & Hydrology, Edinburgh, UK.
- School of GeoSciences, The University of Edinburgh, Edinburgh, UK.
| | | | - David S Reay
- School of GeoSciences, The University of Edinburgh, Edinburgh, UK
| | - Kate V Heal
- School of GeoSciences, The University of Edinburgh, Edinburgh, UK
| | | | | | | |
Collapse
|
36
|
Zhao Z, Wang Y, Shi J, Wang S, White PJ, Shi L, Xu F. Effect of balanced application of boron and phosphorus fertilizers on soil bacterial community, seed yield and phosphorus use efficiency of Brassica napus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141644. [PMID: 32866830 DOI: 10.1016/j.scitotenv.2020.141644] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/09/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Rapeseed (Brassica napus L.) is extremely sensitive to both boron (B) and phosphorus (P) deficiencies. Application of chemical fertilizers is generally considered to be an effective agronomic practice to improve crop productivity, and it also affects soil bacterial community. However, there are few studies of the effects of balanced B and P fertilizer applications on crop yield and bacterial communities. In the present study, field experiments with five P application rates (0, 45, 90, 135 and 180 kg P2O5 ha-1) and four B application rates (0, 4.5, 9 and 18 kg Na2B4O7·5H2O ha-1) were conducted in 2016-2017 and 2017-2018 to investigate their effects on seed yield and P use efficiency (PUE) of B. napus. The smallest seed yields were obtained when B or P fertilizers were not applied (P90B0 or P0B9). Balanced B and P applications benefitted yields. The P45B4.5 treatment produced greater seed yield and PUE than the P45B18 treatment, and the P180B18 treatment produced greater seed yield and PUE than the P180B4.5 treatment. Sequencing of 16S rRNA genes revealed that the P90B9 treatment had greater soil bacterial diversity, and a different bacterial community composition, compared with the P90B0 or P0B9 treatments. Overall, our results underline the importance of balanced B and P nutrition for maximal seed yield of B. napus and the effects of B and P fertilizers on the soil bacterial community of B. napus.
Collapse
Affiliation(s)
- Zhe Zhao
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China.
| | - Youqiang Wang
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jianqi Shi
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China.
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China.
| | - Philip J White
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China; The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK; Distinguished Scientist Fellowship Program, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China.
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
37
|
Babaee S, Zarei M, Zolfigol MA, Khazalpour S, Hasani M, Rinner U, Schirhagl R, Norouzi N, Rostamnia S. Synthesis of biological based hennotannic acid-based salts over porous bismuth coordination polymer with phosphorous acid tags. RSC Adv 2021; 11:2141-2157. [PMID: 35424185 PMCID: PMC8693640 DOI: 10.1039/d0ra06674e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/20/2020] [Indexed: 11/30/2022] Open
Abstract
In this paper, a novel porous polymer capable of coordinating to bismuth (PCPs-Bi) was synthesized. The Bi-PCPs was then reacted with phosphorous acid to produce a novel polymer PCPs(Bi)N(CH2PO3H2)2 which is shown to act as an efficient and recyclable catalyst. The mentioned catalyst was applied for the efficient synthesis of new mono and bis naphthoquinone-based salts of piperidine and/or piperazine via the reaction of hennotannic acid with various aldehydes, piperidine and/or piperazine, respectively. The structure of the resulting mono and bis substituted piperazine or piperidine-based naphthoquinone salts was thoroughly characterized spectroscopically. The electrochemical behavior of the products was also investigated. The presented protocol has the advantages of excellent yields (82-95%), short reaction times (4-30 min) and simple work-up.
Collapse
Affiliation(s)
- Saeed Babaee
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University PO Box 6517838683 Hamedan Iran +988138380709 +988138282807
| | - Mahmoud Zarei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University PO Box 6517838683 Hamedan Iran +988138380709 +988138282807
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University PO Box 6517838683 Hamedan Iran +988138380709 +988138282807
| | - Sadegh Khazalpour
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan Iran
| | - Masoumeh Hasani
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan Iran
| | - Uwe Rinner
- Department of Life Sciences, IMC University of Applied Sciences Piaristengasse 1, 3500 Krems Austria
| | - Romana Schirhagl
- University Medical Center Groningen, Groningen University Antonius Deusinglaan 1, 9713 AV Groningen Netherlands
| | - Neda Norouzi
- University Medical Center Groningen, Groningen University Antonius Deusinglaan 1, 9713 AV Groningen Netherlands
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Faculty of Science, University of Maragheh PO Box 55181-83111 Maragheh Iran
| |
Collapse
|
38
|
Gureev I. The use of micronutrient fertilizers in the cultivation of winter wheat. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213202003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The aim of the research was to improve the technology for the production of winter wheat in Central Chernozem Region (CChR) by increasing the efficiency of the application of modern micronutrient fertilizers in conjunction with seed disinfectants and foliar dressing. To achieve this goal, the representative of FSBSI Kursk Federal Agricultural Research Center with the participation of specialists of Central Chernozem Machine Testing Station developed a technology and conducted field experiments on slightly leached medium loamy chernozem with pHKCl = 5.1 and humus content of 5.0%. For the first time on a scientific basis, a significant reserve for saving fertilizer resources has been realized through the use of synergy of interaction between nutrients. For this, the nomenclature and the ratio of the components of the nutritional mixture for foliar applications were established by an innovative method of functional foliar diagnostics using the Aquadonis device. Micronutrient fertilizer Aquamix ST (100 g/t) was applied to the seeds together with various seed disinfectants. As a control, we used a Lamador seed disinfectant (0.2 l /t), as well as new seed disinfectant: Scenic Combi (1.5 l/t), Baritone (1.5 l/t) + Nuprid (0.6 l/t) , Redigo (0.55 l/t) + Nuprid (0.6 l/t). Positive annual total cost savings of 119 rubles per 1 ton of produced grain was shown by the variant of seed treatment with a combination of Aquamix ST + Lamador. Other variants with the same agronomical efficiency, but with more expensive new seed disinfectants, turned out to be unprofitable. When evaluating the methods of foliar dressing, the highest yield of winter wheat at 3.98 t/ha was obtained using the innovative method of functional foliar diagnostics. The best indicators of the economic efficiency of the improved technology for the production of winter wheat were established in the variant of seed treatment Aquamix ST + Lamador with the application of foliar dressing using an innovative method. At the same time, the annual savings in total costs amounted to 476 rubles/t, which is 1.34 times higher than the variant with standard fertilizing with complex fertilizer Aquarin 5.
Collapse
|
39
|
Rubin JA, Görres JH. Potential for Mycorrhizae-Assisted Phytoremediation of Phosphorus for Improved Water Quality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:E7. [PMID: 33374981 PMCID: PMC7792571 DOI: 10.3390/ijerph18010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 11/21/2022]
Abstract
During this 6th Great Extinction, freshwater quality is imperiled by upland terrestrial practices. Phosphorus, a macronutrient critical for life, can be a concerning contaminant when excessively present in waterways due to its stimulation of algal and cyanobacterial blooms, with consequences for ecosystem functioning, water use, and human and animal health. Landscape patterns from residential, industrial and agricultural practices release phosphorus at alarming rates and concentrations threaten watershed communities. In an effort to reconcile the anthropogenic effects of phosphorus pollution, several strategies are available to land managers. These include source reduction, contamination event prevention and interception. A total of 80% of terrestrial plants host mycorrhizae which facilitate increased phosphorus uptake and thus removal from soil and water. This symbiotic relationship between fungi and plants facilitates a several-fold increase in phosphorus uptake. It is surprising how little this relationship has been encouraged to mitigate phosphorus for water quality improvement. This paper explores how facilitating this symbiosis in different landscape and land-use contexts can help reduce the application of fertility amendments, prevent non-point source leaching and erosion, and intercept remineralized phosphorus before it enters surface water ecosystems. This literature survey offers promising insights into how mycorrhizae can aid ecological restoration to reconcile humans' damage to Earth's freshwater. We also identify areas where research is needed.
Collapse
Affiliation(s)
- Jessica A. Rubin
- Plant and Soil Science, University of Vermont, Burlington, VT 05405, USA;
| | | |
Collapse
|
40
|
Rothwell S, Doody D, Johnston C, Forber K, Cencic O, Rechberger H, Withers P. Phosphorus stocks and flows in an intensive livestock dominated food system. RESOURCES, CONSERVATION, AND RECYCLING 2020; 163:105065. [PMID: 33273754 PMCID: PMC7534034 DOI: 10.1016/j.resconrec.2020.105065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 05/26/2023]
Abstract
Current use and management of phosphorus (P) in our food systems is considered unsustainable and considerable improvements in the efficiency of P use are required to mitigate the environmental impact of poor P stewardship. The inherent low P use efficiency of food production from animals means food systems dominated by livestock agriculture can pose unique challenges for improving P management. This paper presents the results of a substance flow analysis for P in the Northern Ireland (NI) food system for the year 2017 as a case study for examining P stewardship in a livestock dominated agricultural system. Imported livestock feed was by far the largest flow of P into the NI food system in 2017 (11,700 t ± 1300 t) and P from livestock excreta the largest internal flow of P (20,400 ± 1900t). The P contained in livestock slurries and manures alone that were returned to agricultural land exceeded total crop and grass P requirement by 20% and were the largest contributor to an annual excess soil P accumulation of 8.5 ± 1.4 kg ha-1. This current livestock driven P surplus also limits the opportunities for P circularity and reuse from other sectors within the food system, e.g. wastewater biosolids and products from food processing waste. Management of livestock P demand (livestock numbers, feed P content) or technological advancements that facilitate the processing and subsequent export of slurries and manures are therefore needed.
Collapse
Affiliation(s)
- S.A. Rothwell
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - D.G. Doody
- Agri Food and Biosciences Institute, Belfast, Northern Ireland, UK
| | - C. Johnston
- Agri Food and Biosciences Institute, Belfast, Northern Ireland, UK
| | - K.J. Forber
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - O. Cencic
- Institute for Water Quality and Resource Management, TU Wien, Vienna, Austria
| | - H. Rechberger
- Institute for Water Quality and Resource Management, TU Wien, Vienna, Austria
| | - P.J.A. Withers
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
41
|
Identifying the Influence of Land Cover and Human Population on Chlorophyll a Concentrations Using a Pseudo-Watershed Analytical Framework. WATER 2020. [DOI: 10.3390/w12113215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Increasing agricultural development and urbanization exacerbates the degradation of water quality in vulnerable freshwater systems around the world. Advances in remote sensing and greater availability of open-access data provides a valuable resource for monitoring water quality but harmonizing between databases remains a challenge. Here, we: (i) developed a pseudo-watershed analytical framework to associate freshwater lakes with adjacent land cover and human population data and (ii) applied the framework to quantify the relative influence of land cover and human population on primary production for 9313 lakes from 72 countries. We found that land cover and human population explained 30.2% of the variation in chlorophyll a concentrations worldwide. Chlorophyll a concentrations were highest in regions with higher agricultural activities and human populations. While anthropogenic land cover categories equated to only 4 of the 18 categories, they accounted for 41.5% of the relative explained variation. Applying our pseudo-watershed analytical framework allowed us to quantify the importance of land cover and human population on chlorophyll concentration for over 9000 lakes. However, this framework has broader applicability for any study or monitoring program that requires quantification of lake watersheds.
Collapse
|
42
|
Evaluating the Struvite Recovered from Anaerobic Digestate in a Farm Bio-Refinery as a Slow-Release Fertiliser. ENERGIES 2020. [DOI: 10.3390/en13205342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Biogas production in agricultural biogas plants generates digestate—liquid waste containing organic matter and mineral nutrients. Utilisation of the digestate on farm fields adjacent to the biogas plants is limited. Therefore, bio-refineries implement advanced forms of digestate processing, including precipitation of struvite (MgNH4PO4.6H2O). Struvite can be transported over long distances and dosed precisely to meet the nutritional needs of the plants. Divergent opinions on the fertilising value of struvite and its function over time call for further research on its effects on crop yields in the first and subsequent years after application. This study investigates the effects of struvite (STR), struvite with ammonium sulphate (STR + N), and commercial ammonium phosphate (AP) on the yields, nutrient concentration in the crops, nutrient uptake by the crops, and soil N, P, and Mg content in the second growing period after the application of fertilisers to silty loam (SL) and loamy sand (LS) soils under grass cultivation. Struvite was recovered from the liquid fraction of digestate obtained from a bio-refinery on the De Marke farm (Netherlands). The soils investigated in the pot experiment originated from Obory (SL) and Skierniewice (LS) (Central Poland). The results obtained over the first growing period following fertilisation were published earlier. In our prior work, we showed that the majority of the struvite phosphorus remains in the soil. We hypothesised that, in the second year, the yield potential of the struvite might be higher than that of commercial P fertiliser. Currently, we have demonstrated that, in the second growing period following the application, struvite causes an increase in grass yield, nutrient uptake by the crops, and P and Mg content in the soil. On SL and LS soils, the yields of the four grass harvests from the STR and STR + N treatments were higher than those from AP by approximately 8% and 16.5%, respectively. Our results confirm that struvite is more effective as a fertiliser compared to commercial ammonium phosphate. Struvite can be, therefore, recommended for fertilising grasslands at higher doses once every two years.
Collapse
|
43
|
Multi-Objective Optimization of Smallholder Apple Production: Lessons from the Bohai Bay Region. SUSTAINABILITY 2020. [DOI: 10.3390/su12166496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Transforming apple production to one with high yield and economic benefit but low environmental impact by improving P-use efficiency is an essential objective in China. However, the potential for multi-objective improvement for smallholders and the corresponding implications for horticultural practices are not fully appreciated. Survey data collected from 99 apple producers in Quzhou County of Bohai Bay Region were analyzed by the Pareto-based multi-objective optimization method to determine the potential of multi-objective improvement in apple production. With current practices, apple yield was 45 t ha−1, and the economic benefit was nearly 83,000 CNY ha−1 but with as much as 344 kg P ha−1 input mainly from chemical fertilizer and manure. P gray water footprint was up to 27,200 m3 ha−1 due to low P-use efficiency. However, Pareto-optimized production, yield, and economic benefit could be improved by 38% and 111%, respectively. With a concurrent improvement in P-use efficiency, P gray water footprint was reduced by 29%. Multi-objective optimization was achieved with integrated horticultural practices. The study indicated that multi-objective optimization could be achieved at a smallholder scale with realistic changes in integrated horticultural practices. These findings serve to improve the understanding of multi-objective optimization for smallholders, identify possible constraints, and contribute to the development of strategies for sustainable apple production.
Collapse
|
44
|
Zhao Z, Wang S, White PJ, Wang Y, Shi L, Xu F. Boron and Phosphorus Act Synergistically to Modulate Absorption and Distribution of Phosphorus and Growth of Brassica napus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7830-7838. [PMID: 32614576 DOI: 10.1021/acs.jafc.0c02522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Rapeseed (Brassica napus L.) is highly susceptible to boron (B) and phosphorus (P) deficiencies, yet knowledge of how these two essential elements interact to contribute to plant growth and crop yield is limited. To this end, a pot experiment with three P application rates (5, 75, and 150 mg P2O5 kg-1 dry soil) and two B application rates (0.25 and 1 mg B kg-1 dry soil) was conducted. The results showed that high P combined with high B optimized plant growth and facilitated P distribution forward to seeds compared with high P and low B combination at the maturity stage. Under low P conditions, low B supply was more beneficial for P absorption at seedling and bolting stages and increased P distribution ratio in seeds at the maturity stage, resulting in higher photosynthetic efficiency and growth parameters than low P and high B combination. Interestingly, high B supply could upregulate the expression of the P-starvation-induced gene BnaC3.SPX3 and P transport genes in roots under low P conditions, so low B-facilitated P absorption appears to be a BnaPHT1s-independent process. Significant differences of B and P interaction on the seed yield, net photosynthetic rate, and total P absorption and distribution at the maturity stage between two cultivars might reflect the distinct genotypic properties. Overall, our findings highlight the importance of balanced B and P nutrition which acts synergistically to modulate growth and yield formation of B. napus either in nutrition deficiency or sufficiency.
Collapse
Affiliation(s)
- Zhe Zhao
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Philip John White
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, U.K
| | - Youqiang Wang
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
45
|
Kalinitchenko VP, Glinushkin AP, Minkina TM, Mandzhieva SS, Sushkova SN, Sukovatov VA, Il’ina LP, Makarenkov DA. Chemical Soil-Biological Engineering Theoretical Foundations, Technical Means, and Technology for Safe Intrasoil Waste Recycling and Long-Term Higher Soil Productivity. ACS OMEGA 2020; 5:17553-17564. [PMID: 32715240 PMCID: PMC7377223 DOI: 10.1021/acsomega.0c02014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/22/2020] [Indexed: 05/21/2023]
Abstract
The amelioration and remediation technology was developed on the basis of research of phosphogypsum and utilization in the Haplic Chernozem of South-European facies (Rostov Region). Phosphogypsum was utilized via dispersed application into a soil layer of 20-45 cm with intrasoil milling of this layer. The phosphogypsum utilization doses were 0, 10, 20, and 40 t ha-1. The Pb analytical content in soil solution was studied in the model experiment. The soil solution Pb thermodynamic forms were calculated. The mathematical chemical-thermodynamic model ION-2 was developed to calculate the real soil solution (water extract) calcium-carbonate equilibrium (CCE) ion forms, considering the ion pair association. The associated ion pairs CaCO3 0, CaSO4 0, MgCO3 0, MgSO4 0, CaHCO3 +, MgHCO3 +, NaCO3 -, NaSO4 -, CaOH+, and MgOH+ were accounted for in soil solution equilibrium macroion form calculation. The procedure for the microelement ion [including heavy metals (HMs)] equilibrium concentration in the soil solution coefficient k as calculation was proposed to account for the real soil solution CCE, macroions, and HM (including Pb) association. The Pb2+ ion in soil solution was mostly bound to associates PbOH+, Pb(OH)2 0, PbCO3 0, Pb(CO3)2 2-, and PbHCO3 +. The calculation of CCE and ion association in soil solution revealed 14.5-21.5 times HM passivation compared to HM water-soluble values. The calculated HM activity in the soil solution in the example of the Pb2+ ion was less than 4% after phosphogypsum application in the target amelioration layer of 20-45 cm. The studied phosphogypsum doses were substantiated as environmentally safe. This was because the real soil solution CCE provided HM ion form association and consequent passivation. The dry steppe soil remediation after phosphogypsum application was justified as highly probable. The intrasoil milling chemical soil-biological engineering technology was developed for simultaneous soil amelioration and remediation on the basis of the biogeosystem technique (BGT*) transcendental methodology. The BGT*-based technology was tested in the long-term field experiments and is capable of ensuring the priority geophysical micro- and macroaggregate structure via intrasoil milling and mixing of soil illuvial and transitional horizons. This helps synthesize soil multilevel architecture, providing intrasoil-dispersed environmentally safe recycling of wastes of different origin. Addressing the environment safety concerns, a new decision of the intrasoil milling device was proposed for phosphogypsum and other substance application to soil.
Collapse
Affiliation(s)
- Valery P. Kalinitchenko
- Institute
of Fertility of Soils of South Russia, Krivoshlykova Street, 2, Persianovka, Oktyabr’skii district, Rostov Region 346493, Russia
- All-Russian
Phytopathology Research Institute RAS, Institute Street, 5, Big Vyazemy, Moscow Region 143050, Russia
| | - Alexey P. Glinushkin
- All-Russian
Phytopathology Research Institute RAS, Institute Street, 5, Big Vyazemy, Moscow Region 143050, Russia
| | - Tatiana M. Minkina
- Southern
Federal University, Prosp. Stachki, 194/1, Rostov-on-Don 344090, Russia
| | | | - Svetlana N. Sushkova
- Southern
Federal University, Prosp. Stachki, 194/1, Rostov-on-Don 344090, Russia
| | - Vladimir A. Sukovatov
- Institute
of Fertility of Soils of South Russia, Krivoshlykova Street, 2, Persianovka, Oktyabr’skii district, Rostov Region 346493, Russia
| | - Ljudmila P. Il’ina
- Southern
Scientific Center RAS, Prosp. Chekhova, 41, Rostov-on-Don 344006, Russia
| | - Dmitry A. Makarenkov
- Institute
of Chemical Reagents and High Purity Chemical Substances of National
Research Centre Kurchatov Institute, Bogorodsky Rampart, 3, Moscow 107076, Russia
| |
Collapse
|
46
|
Li H, Yang Z, Dai M, Diao X, Dai S, Fang T, Dong X. Input of Cd from agriculture phosphate fertilizer application in China during 2006-2016. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134149. [PMID: 31783450 DOI: 10.1016/j.scitotenv.2019.134149] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Phosphate fertilizer applications are an important source of soil Cd in China. However, the input of Cd from phosphate fertilizer has always been neglected in China because of its low content. In this paper, we calculated the Cd input from phosphate fertilizer in China during 2006-2016. According to the data, the total phosphate fertilizer consumption and agriculture application rate tended to decrease after 2014. In 2016, the phosphate fertilizer application rate ranged from 12.14 to 99.38 kg/ha with a mean value of 42.70 kg/ha, and excessive fertilizer application occurred in Xinjiang, Henan, and Hubei Provinces. The Cd content in phosphate fertilizer was 0.75 mg/kg based on 1222 samples. The national Cd input from phosphate fertilizer was estimated to be 10.52 tons in 2016, with DAP/MAP being the largest contributor, accounting for 83.31% of the total input. These findings demonstrate the necessity of performing assessments to regulate the utilization of phosphate fertilizer in China, especially in Henan and Xinjiang Provinces.
Collapse
Affiliation(s)
- Hui Li
- School of Resources and Environment, Anhui Agricultural University, Hefei 230026, Anhui, China.
| | - Zhiliang Yang
- College of Engineering, Anhui Agricultural University, Hefei 230026, Anhui, China
| | - Mingwei Dai
- School of Resources and Environment, Anhui Agricultural University, Hefei 230026, Anhui, China
| | - Xinyue Diao
- School of Resources and Environment, Anhui Agricultural University, Hefei 230026, Anhui, China
| | - Shunli Dai
- College of Engineering, Anhui Agricultural University, Hefei 230026, Anhui, China
| | - Ting Fang
- Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui, China
| | - Xinju Dong
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
47
|
Min KJ, Kim D, Lee J, Lee K, Park KY. Characteristics of vegetable crop cultivation and nutrient releasing with struvite as a slow-release fertilizer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34332-34344. [PMID: 31175569 DOI: 10.1007/s11356-019-05522-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Struvite precipitation is an effective method to remove and recover ammonia and phosphate from livestock wastewater. Struvite has properties similar to those of the traditional ammonium-phosphate fertilizer, which does not burn the roots owing to its slow-release characteristics. Struvite is an effective fertilizer as its nutrient-releasing rate is very slow. But the release rate of ammonia and phosphate in soil depends on the size of crystals. In this study, the nutrient-releasing pattern of three types of struvite crystals and liquid fertilizer was compared using soil column. X-Ray fluorescence spectrometry was conducted to investigate the potential use of struvite as a fertilizer. Various struvite crystalline fertilizers were evaluated for their fertilizer performance by cultivating potted vegetable crops. The nitrogen removal efficiency of zeolite-seeded struvite was higher than that of no seed struvite. The ammonia nitrogen removal efficiency was more than 99% irrespective of the kind of zeolite. The soil column test revealed that nutrient releasing from liquid fertilizer and zeolite-seeded struvite recovered from livestock wastewater was 11 and 63 days, respectively. Struvite recovered from livestock wastewater contained more than 20% (w/w) potassium oxide; however, the concentration of heavy metals, such as copper and zinc, was very low. Therefore, we considered that the synthesized struvite using livestock wastewater has high value as fertilizer. The recovered struvite was effective under appropriate concentrations to cultivate all the applied vegetable crops in this study.
Collapse
Affiliation(s)
- Kyung Jin Min
- Department of Civil and Environmental Engineering, Konkuk University, Neungdong-ro 120, Gwangjin-Gu, Seoul, Republic of Korea
| | - Daegi Kim
- Department of Environmental Engineering, Daegu University, Daegudae-ro 201, Jillyang-eup, Gyeongsan-si, Gyeongsangbuk-do, Republic of Korea
| | - Jongkeun Lee
- Department of Civil and Environmental Engineering, Konkuk University, Neungdong-ro 120, Gwangjin-Gu, Seoul, Republic of Korea
| | - Kwanyong Lee
- Department of Environment and Health, Jangan University, 1182 Samcheonbyeongma-ro Bongdam-eup, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Ki Young Park
- Department of Civil and Environmental Engineering, Konkuk University, Neungdong-ro 120, Gwangjin-Gu, Seoul, Republic of Korea.
| |
Collapse
|
48
|
Vaccari DA, Powers SM, Liu X. Demand-Driven Model for Global Phosphate Rock Suggests Paths for Phosphorus Sustainability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10417-10425. [PMID: 31393113 DOI: 10.1021/acs.est.9b02464] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phosphorus is required as a fertilizer for producing food, and there is no substitute. Losses between mine production and diet result in significant environmental harm. We used a demand-driven substance flow model to explore the sensitivity of global phosphorus production to interventions of the food system including: reduction in animal fraction in the diet (AFD); manure use efficiency (MUE); animal food yield (YA); phosphorus use efficiency (PUE); the fraction of food that is wasted (FWF); the fraction of food waste recycled (FRE); and the fraction of human waste recycled (WRE). The model indicated that AFD and YA are the most influential interventions, and they interact with PUE and MUE. Furthermore, there is a minimum in AFD and YA below which it becomes necessary to increase mining. Another result is that reducing food waste is about 80 times more effective than recycling food waste in reducing P demand. Finally, the model was used to explore the global carrying capacity for humans on the basis of P sources other than mining. These sources may satisfy P requirements for as many as 2.5 billion people. If significant improvements were made in all of the considered interventions simultaneously, as many as 14.7 billion people could be sustained.
Collapse
Affiliation(s)
- David A Vaccari
- Stevens Institute of Technology , Hoboken 07030 , New Jersey , United States
| | - Stephen M Powers
- Washington State University , Pullman , Washington 99164-6610 , United States
| | - Xin Liu
- School of the Environment , Nanjing University Lishui Institute of Ecology and Environment, Nanjing University , Nanjing 212200 , China
| |
Collapse
|
49
|
Das B, Huth N, Probert M, Condron L, Schmidt S. Soil Phosphorus Modeling for Modern Agriculture Requires Balance of Science and Practicality: A Perspective. JOURNAL OF ENVIRONMENTAL QUALITY 2019; 48:1281-1294. [PMID: 31589725 DOI: 10.2134/jeq2019.05.0201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The use of phosphorus (P) fertilizers in arable crop and pastoral systems is expected to change as modern agriculture is challenged to produce more food with fewer inputs. Agricultural systems models offer a dual purpose to support and integrate recent scientific advances and to identify strategies for farmers to improve nutrient efficiency. However, compared with nitrogen and carbon, advances in P modeling have been less successful. We assessed the potential opportunity of P modeling to increase P efficiency for modern agriculture and identified the current challenges associated with modeling P dynamics at the field scale. Three major constraints were (i) a paucity of detailed field datasets to model strategies aimed at increasing P use efficiency, (ii) a limited ability to predict P cycling and availability under the local effects of climate change, and (iii) a restricted ability to match measured soil P fractions to conceptual and modelable pools in soils with different mineral properties. To improve P modeling success, modelers will need to walk a tightrope to balance the roles of assisting detailed empirical research and providing practical land management solutions. We conclude that a framework for interdisciplinary collaboration is needed to acquire suitable datasets, continually assess the need for model adjustment, and provide flexibility for progression of scientific theory. Such an approach is likely to advance P management for increased P use efficiency.
Collapse
|
50
|
Withers PJA, Vadas PA, Uusitalo R, Forber KJ, Hart M, Foy RH, Delgado A, Dougherty W, Lilja H, Burkitt LL, Rubæk GH, Pote D, Barlow K, Rothwell S, Owens PR. A Global Perspective on Integrated Strategies to Manage Soil Phosphorus Status for Eutrophication Control without Limiting Land Productivity. JOURNAL OF ENVIRONMENTAL QUALITY 2019; 48:1234-1246. [PMID: 31589721 DOI: 10.2134/jeq2019.03.0131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Unnecessary accumulation of phosphorus (P) in agricultural soils continues to degrade water quality and linked ecosystem services. Managing both soil loss and soil P fertility status is therefore crucial for eutrophication control, but the relative environmental benefits of these two mitigation measures, and the timescales over which they occur, remain unclear. To support policies toward reduced P loadings from agricultural soils, we examined the impact of soil conservation and lowering of soil test P (STP) in different regions with intensive farming (Europe, the United States, and Australia). Relationships between STP and soluble reactive P concentrations in land runoff suggested that eutrophication control targets would be more achievable if STP concentrations were kept at or below the current recommended threshold values for fertilizer response. Simulations using the Annual P Loss Estimator (APLE) model in three contrasting catchments predicted total P losses ranging from 0.52 to 0.88 kg ha depending on soil P buffering and erosion vulnerability. Drawing down STP in all catchment soils to the threshold optimum for productivity reduced catchment P loss by between 18 and 40%, but this would take between 30 and 40+ years. In one catchment, STP drawdown was more effective in reducing P loss than erosion control, but combining both strategies was always the most effective and more rapid than erosion control alone. By accounting for both soil P buffering interactions and erosion vulnerability, the APLE model quickly provided reliable information on the magnitude and time frame of P loss reduction that can be realistically expected from soil and STP management. Greater precision in the sampling, analysis, and interpretation of STP, and more technical innovation to lower agronomic optimum STP concentrations on farms, is needed to foster long-term sustainable management of soil P fertility in the future.
Collapse
|