1
|
Long Y, Huang J, Xu W, Zhu Y, Ou J, Wang H, Cai Y, Lv Y, Yang M. Mechanistic and kinetic insights into the thermal degradation of decabromodiphenyl ethane. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124539. [PMID: 39019309 DOI: 10.1016/j.envpol.2024.124539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Decabromodiphenyl ethane (DBDPE), as one of the important new brominated flame retardants, is widely utilized in a variety of plastic products. However, the pyrolysis mechanism of DBDPE remains uncertain. In this article, the evolution behavior of the main products during the thermal decomposition of DBDPE is investigated using density functional theory at the theoretical level of M06-2X/6-311++G(2df,p)//M06-2X/6-311+G(d). The results show that the initial reaction starts with the cleavage of the ethane bridge bond, with an absorbed heat value of 298 kJ/mol, and the cleavage of the Caromatic-Br bond generates bromine radical, which is the main competitive reaction, with a heat absorption of 317 kJ/mol. The initial degradation of DBDPE generates a large number of pentabromobenzyl radicals and bromine radicals, which facilitate the secondary pyrolysis of DBDPE to a certain extent, resulting in the formation of possible products such as pentabromobenzyl bromide, pentabromobenzene, pentabromotoluene, hexabromobenzene, pentabromostyrene, and hydrogen bromide. In the pyrolysis system of DBDPE with hydrogen radicals, the reactions are classified into two types: extraction reaction and addition reaction. It can be known that the addition reaction plays a dominant role in the degradation process, with a branching ratio of 89.8% at 1600 K. The degradation of DBDPE with hydrogen radicals is mainly characterized by debromination, and the main products are hydrogen bromide, low-brominated diphenyl ethanes, brominated phenanthrenes, and brominated monoaromatic compounds. In addition, the lowest reaction energy barrier (18 kJ/mol) is required for the addition of hydrogen radical to the ipso-C site of DBDPE. DBDPE is dangerous for the environment and humans since its fate includes bioaccumulation, biomagnification, and toxicity via hormones and endocrine disruptors.
Collapse
Affiliation(s)
- Yang Long
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Jinbao Huang
- Engineering Training Center, Guizhou Minzu University, Guiyang, 550025, China.
| | - Weifeng Xu
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Yan Zhu
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Jiankai Ou
- Engineering Training Center, Guizhou Minzu University, Guiyang, 550025, China
| | - Hong Wang
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Yaqing Cai
- Engineering Training Center, Guizhou Minzu University, Guiyang, 550025, China
| | - Yu Lv
- Engineering Training Center, Guizhou Minzu University, Guiyang, 550025, China
| | - Min Yang
- Engineering Training Center, Guizhou Minzu University, Guiyang, 550025, China
| |
Collapse
|
2
|
Pozo K, Ahrendt C, Gómez V, Jacobsen C, Torres M, Recabarren T, Oyanedel-Craver V, Audy O, Přibylová P, Klánová J. Novel flame retardants detected in marine plastic litter in coastal areas in Central Chile. MARINE POLLUTION BULLETIN 2024; 201:116194. [PMID: 38432180 DOI: 10.1016/j.marpolbul.2024.116194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Flame retardants (FRs) are released throughout the plastic life cycle, potentially impacting the environment, biodiversity, and human health. This study analyzed novel flame retardants (NFR) in marine plastic litter (MPL) from six coastal areas in central Chile in November 2017. Target chemicals (n = 19) were analyzed using ultrasonic extraction with hexane, gas chromatography, and mass spectrometry (GC-MS). From all nineteen NFRs analyzed, only ten (53 %) were routinely detected. BTBPE (1,2-bis(2,4,6-tribromophenoxy) ethane) showed the highest concentrations at the Bellavista site (618 to 424,000 pg g-1), and HBB (Hexabromobiphenyl), banned since 1970, was detected in Coliumo (2630 to 13,700 pg g-1). These results show emerging transport patterns and underscore the critical need for enhanced waste management practices for MPL in coastal regions to prevent adverse impacts on marine biodiversity.
Collapse
Affiliation(s)
- Karla Pozo
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic; Universidad San Sebastián, Facultad de Ingeniería, Arquitectura y Diseño, Lientur 1457, Concepción, Chile.
| | | | - Victoria Gómez
- GEMA, Center for Genomics, Ecology & Environment, Universidad Mayor, Camino la Pirámide 5750, Huechuraba, Santiago, Chile
| | - Camila Jacobsen
- Universidad San Sebastián, Facultad de Ingeniería, Arquitectura y Diseño, Lientur 1457, Concepción, Chile
| | - Mariett Torres
- Universidad San Sebastián, Facultad de Ingeniería, Arquitectura y Diseño, Lientur 1457, Concepción, Chile
| | - Tatiana Recabarren
- Universidad San Sebastián, Facultad de Ingeniería, Arquitectura y Diseño, Lientur 1457, Concepción, Chile
| | - Vinka Oyanedel-Craver
- University of Rhode Island, Department of Civil and Environmental Engineering, 2 East Alumni Ave, Kingston, RI, USA
| | - Ondřej Audy
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| | - Petra Přibylová
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| | - Jana Klánová
- Masaryk University, Faculty of Science, RECETOX, Brno, Czech Republic
| |
Collapse
|
3
|
Liu B, Ding L, Lv L, Yu Y, Dong W. Organophosphate esters (OPEs) and novel brominated flame retardants (NBFRs) in indoor dust: A systematic review on concentration, spatial distribution, sources, and human exposure. CHEMOSPHERE 2023; 345:140560. [PMID: 37898464 DOI: 10.1016/j.chemosphere.2023.140560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/14/2023] [Accepted: 10/26/2023] [Indexed: 10/30/2023]
Abstract
In recent years, the indoor exposure of organophosphate esters (OPEs) and novel brominated flame retardants (NBFRs) has received widespread attention worldwide. Using published data on 6 OPEs in 23 countries (n = 1437) and 2 NBFRs in 18 countries (n = 826) in indoor dust, this study systematically reviewed the concentrations, spatial distribution, sources and exposure risk of 8 flame retardants (FRs) worldwide. Tris(chloroisopropyl)phosphate (TCIPP) is the predominant FR with a median concentration of 1050 ng g-1 ΣCl-OPEs are significantly higher than Σnon-Cl-OPEs (p < 0.05). ΣOPEs in indoor dust from industrially-developed countries are higher than those from the countries lacking industrial development. Household appliances, electronics and plastic products are the main sources of non-Cl-OPEs and NBFRs, while interior decorations and materials contribute abundant Cl-OPEs in indoor dust. The mean hazard index (HI) of TCIPP for children is greater than 1, possibly posing non-cancer risk for children in some countries. The median ILCRs for 3 carcinogenic OPEs are all less than 10-6, suggesting no cancer risk induced by these compounds for both adults and children. This review helps to understand the composition, spatial pattern and human exposure risk of OPEs and NBFRs in indoor dust worldwide.
Collapse
Affiliation(s)
- Baolin Liu
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Lingjie Ding
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Linyang Lv
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Weihua Dong
- College of Geographical Sciences, Changchun Normal University, Changchun, 130032, China.
| |
Collapse
|
4
|
Zhang Q, Wang Z, Xiao Q, Ge J, Wang X, Jiang W, Yuan Y, Zhuang Y, Meng Q, Jiang J, Hao W, Wei X. The effects and mechanisms of the new brominated flame retardant BTBPE on thyroid toxicity. Food Chem Toxicol 2023; 180:114027. [PMID: 37696466 DOI: 10.1016/j.fct.2023.114027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
As an alternative to octabromodiphenyl ether (octa-BDE), 1, 2-bis (2,4, 6-tribromophenoxy) ethane (BTBPE) has been widely used in a variety of combustible materials, such as plastics, textiles and furniture. Previous studies have demonstrated the thyroid toxicity of traditional brominated flame retardants for example octa-BDE clearly. Nevertheless, little is known about the thyroid toxicity of alternative novel brominated flame retardants BTBPE. In this study, it was demonstrated that BTBPE in vivo exposure induced FT4 reduction in 2.5, 25 and 250 mg/kg bw treated group and TT4 reduction in 25 mg/kg bw treated group. TG, TPO and NIS are key proteins of thyroid hormone synthesis. The results of Western blot and RT-PCR from thyroid tissue showed decreased protein levels and gene expression levels of TG, TPO and NIS as well as regulatory proteins PAX8 and TTF2. To investigate whether the effect also occurred in humans, anthropogenic Nthy-ori 3-1 cells were selected. Similar results were seen in vitro condition. 2.5 mg/L BTBPE reduced the protein levels of PAX8, TTF1 and TTF2, which in turn inhibited the protein levels of TG and NIS. The results in vitro experiment were consistent with that in vivo, suggesting possible thyrotoxic effects of BTBPE on humans. It was indicated that BTBPE had the potential interference of T4 generation and the study provided more evidence of the effects on endocrine disorders.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Zhenyu Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Jianhong Ge
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Xiaoyun Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Wanyu Jiang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Yuese Yuan
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Yimeng Zhuang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Qinghe Meng
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Jianjun Jiang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China.
| |
Collapse
|
5
|
Wang Y, Huang J, Wang H, Lan L, Mu X, Xu W, Lv S, Li X. Theoretical study on pyrolysis mechanism of decabromodiphenyl ether (BDE-209) using DFT method. CHEMOSPHERE 2023; 310:136904. [PMID: 36265714 DOI: 10.1016/j.chemosphere.2022.136904] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Decabromodiphenyl ether (BDE-209), as a brominated flame retardant (BFR), is widely applied to various consumer products due to its superior performance and affordable pricing to improve the flame resistance of materials. To better comprehend the pyrolysis behavior of BDE-209 and the evolution process of main pyrolysis products, the thermal degradation mechanism of BDE-209 was studied using density functional theory (DFT) method at the theoretical level of M06/cc-pVDZ, and thermodynamic parameters were calculated in this paper. Unimolecular degradation was dominated by cleavage of the ether linkage, which results in a high yield of hexabromobenzene, and fission of the ortho-position C-Br bond is the main competitive reaction channel. In the system of BDE-209 + H, the pyrolysis reaction is majorly characterized by debromination, leading to the formation of considerable HBr and low-brominated diphenyl ethers. Additionally, the hydrogen-derived splitting of the ether bond acts as a mainly competitive channel, which is the source of polybromophenols and polybromobenzenes. The formation of polybrominated dibenzofuran (PBDF) derives from the cyclization reaction of ortho-phenyl-type radicals, which are readily generated through the ortho-position Br atom abstraction by H radical. The formation of polybrominated dibenzo-p-dioxin (PBDD) involves the ortho-C-O coupling reaction of polybromophenoxy radicals, debromination reaction, and cyclization reaction. And the total yield of PBDD/Fs was significantly increased when H was involved. Results presented in this work will provide the helpful information for the treatment and reuse of BDE-209-containing waste plastics through using pyrolysis technology.
Collapse
Affiliation(s)
- Yao Wang
- School of Mechatronics Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Jinbao Huang
- School of Mechatronics Engineering, Guizhou Minzu University, Guiyang, 550025, China.
| | - Hong Wang
- School of Mechatronics Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Lin Lan
- School of Mechatronics Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Xin Mu
- School of Mechatronics Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Weiwei Xu
- School of Mechatronics Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Shanjin Lv
- School of Mechatronics Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Xinsheng Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
6
|
Rani M, Sillanpää M, Shanker U. An updated review on environmental occurrence, scientific assessment and removal of brominated flame retardants by engineered nanomaterials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115998. [PMID: 36001915 DOI: 10.1016/j.jenvman.2022.115998] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/18/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Due to the extensive manufacturing and use of brominated flame retardants (BFRs), they are known to be hazardous, bioaccumulative, and recalcitrant pollutants in various environmental matrices. BFRs make flame-resistant items for industrial purposes (textiles, electronics, and plastics equipment) that are disposed of in massive amounts and leak off in various environmental matrices. The consumption of plastic items has expanded tremendously during the COVID-19 pandemic which has resulted into the increasing load of solid waste on land and water. Some BFRs, such as polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDs), are no longer utilized or manufactured owing to their negative impacts, which promotes the utilization of new BFRs as alternatives. BFRs have been discovered worldwide in soil, sludge, water, and other contamination sources. Various approaches such as photocatalysis-based oxidation/reduction, adsorption, and heat treatment have been found to eradicate BFRs from the environment. Nanomaterials with unique properties are one of the most successful methodologies for removing BFRs via photocatalysis. These methods have been praised for being low-cost, quick, and highly efficient. Engineered nanoparticles degraded BFRs when exposed to light and either convert them into safer metabolites or completely mineralize. Scientific assessment of research taking place in this area during the past five years has been discussed. This review offers comprehensive details on environmental occurrence, toxicity, and removal of BFRs from various sources. Degradation pathways and different removal strategies related to data have also been presented. An attempt has also been made to highlight the research gaps prevailing in the current research area.
Collapse
Affiliation(s)
- Manviri Rani
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India.
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, 2028, South Africa
| | - Uma Shanker
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, 144011, India.
| |
Collapse
|
7
|
Fu L, Lide F, Ding Y, Wang C, Jiang J, Huang J. Mechanism insights into activation of hydroxylamines for generation of multiple reactive species in photochemical degradation of bromophenols. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Cao Y, Gao Y, Hu X, Zeng Y, Luo X, Li G, An T, Mai B. Insight into phototransformation mechanism and toxicity evolution of novel and legacy brominated flame retardants in water: A comparative analysis. WATER RESEARCH 2022; 211:118041. [PMID: 35030361 DOI: 10.1016/j.watres.2022.118041] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
The novel brominated flame retardants (NBFRs) have become widespread as a consequence of the prohibition on the use of polybrominated diphenyl ethers (PBDEs). However, the transformation mechanism and potential environmental risk are largely unclear. In this study, we have explored the phototransformation behavior of the most abundant NBFRs, 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) in water under ultraviolet (UV) irradiation. Meanwhile, the legacy 2,2',4,4',6,6'-hexabromodiphenyl ether (BDE155) with similar structure was investigated contrastively. Results show that novel BTBPE is more persistent than legacy BDE155, with nearly four times slower photodegradation rate constants (0.0120 min-1and 0.0447 min-1, respectively). 18 products are identified in the phototransformation of BTBPE. Different from the only debrominated products formed in legacy BDE155 transformation, the ether bond cleavage photoproducts (e.g. bromophenols) are also identified in novel BTBPE transformation. Compound-specific stable isotope analysis (CSIA) confirms the phototransformation mechanism is mainly via debromination accompanying with the breaking of ether bond. Computational toxicity assessment implies that transformation products of BTBPE still have the high kidney risks. Especially the bromophenols formed via the ether bond cleavage could significantly increase the health effects on skin irritation. This study emphasizes the importance of understanding the photolytic behavior and potential risks of novel NBFRs and other structurally similar analogues.
Collapse
Affiliation(s)
- Ya Cao
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanpeng Gao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xinyi Hu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
9
|
Altarawneh M, Almatarneh MH, Dlugogorski BZ. Thermal decomposition of perfluorinated carboxylic acids: Kinetic model and theoretical requirements for PFAS incineration. CHEMOSPHERE 2022; 286:131685. [PMID: 34388878 DOI: 10.1016/j.chemosphere.2021.131685] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 05/27/2023]
Abstract
Thermal decomposition of high-fluorine content PFAS streams for the disposal of old generations of concentrates of firefighting foams, exhausted ion-exchanged resins and granular activated carbon, constitutes the preferred method for destruction of these materials. This contribution studies the thermal transformation of perfluoropentanoic acid (C4F9C(O)OH, PFPA), as a model PFAS species, in gas-phase reactions over broad ranges of temperature and residence time, which characterise incinerators and cement kilns. Our focus is only on gas-phase reactions, to formulate a gas-phase submodel that, in future, could be used in comprehensive simulation of thermal destruction of PFAS; such comprehensive models will need to comprise fluorine mineralisation on flyash and in clinker material. Our submodel consists of 56 reactions and 45 species, and includes new pathways that cover the initial decomposition channels of PFPA, including those that lead to the formation of the n-C4F9 radical, the abstraction of hydroxyl H by O/H radicals, the fragmentation of the n-C4F9 radical, reactions between HF and perfluoropentanoic acid, as well as between HF and heptafluorobutanoyl fluoride (C3F7COF), and the cyclisation reactions. The model illustrates the formation of a wide spectrum of small CnFm and CnHFm compounds in the temperature window of 800-1500 K, 2 and 25 s residence time in a plug flow reactor, providing theoretical estimates for the operating conditions of PFAS thermal destruction systems. The initiation reactions involve the loss of HF and formation of the transition α-lactone species that converts to C3F7COF, with C4F9C(O)OH completely decomposed at 1020 K for 2 s residence time. At 1500 K, we predict the emission of ꞉CF2 (biradical difluorocarbene), HF, CO2, CO, CF4, C2F6, and C2F4, but at < 1400 K, we note the formation of 1H-nonafluorobutane (C4HF9), phosgene (COF2), and heptafluorobutanoyl fluoride (C3F7COF), with 1-C4F8, 2-C4F8 and C3HF7 persisting to 1500 K. We demonstrate that, the gas-phase pyrolysis processes by themselves convert PFAS to HF and short-chain fluorocarbons, with similar product distribution for short (2 s) and long (25 s) residence times, as long as the treatment temperature exceeds 1500 K. These residence times reflect those encountered in incinerators and cement kilns, respectively. Thermokinetic and mechanistic insights revealed herein shall assist to innovate PFAS thermal disposal technologies, and, from a fundamental perspective, to accelerate research progress in modelling of gas/solid reactions that mineralise PFAS-derived fluorine.
Collapse
Affiliation(s)
- Mohammednoor Altarawneh
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Al-Ain, 15551, United Arab Emirates.
| | | | - Bogdan Z Dlugogorski
- Charles Darwin University, Energy and Resources Institute, Darwin, NT, 0909, Australia.
| |
Collapse
|
10
|
Huang J, Mu X, Luo X, Meng H, Wang H, Jin L, Li X, Lai B. DFT studies on pyrolysis mechanisms of tetrabromobisphenol A (TBBPA). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68817-68833. [PMID: 34282544 DOI: 10.1007/s11356-021-15426-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is the most widely used brominated flame retardant. In order to better understand the decomposition process of TBBPA and clarify the evolution process of the main pyrolysis products, the density functional theory (DFT) method PBE0/6-311G(d) has been used to investigate the pyrolysis mechanisms of TBBPA in this study. Seven possible pyrolysis reaction paths were proposed, and the kinetic parameters in all pyrolysis paths were calculated. The calculation results indicate that in initial degradation of TBBPA without the involvement of hydrogen radical, the demethylation reaction is the main pyrolysis reaction channel, and the keto-enol tautomerization reaction is the main competitive pyrolysis reaction channel. The brominated cyclohexadienone formed through the keto-enol tautomerization is prone to further debromination to generate Br radical. The involvement of hydrogen radical significantly lowers the energy barrier of TBBPA decomposition. When a hydrogen radical is involved in the pyrolysis process, the debromination reaction becomes the major pyrolysis reaction channel, and the homolytic cleavage of Caromatic-C bond becomes the major competitive pyrolysis reaction channel.
Collapse
Affiliation(s)
- Jinbao Huang
- School of Mechatronics Engineering, Guizhou Minzu University, Guiyang, 550025, China.
| | - Xin Mu
- School of Mechatronics Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Xiaosong Luo
- School of Mechatronics Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Hanxian Meng
- School of Mechatronics Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Hong Wang
- School of Mechatronics Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Li Jin
- School of Mechatronics Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Xinsheng Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China.
| | - Baosheng Lai
- Ningbo Shuanglin Mould Auto Parts Co. Ltd., Ningbo, 315613, China.
| |
Collapse
|
11
|
Altarawneh M, Dlugogorski BZ. Low-temperature oxidation of monobromobenzene: Bromine transformation and yields of phenolic species. CHEMOSPHERE 2021; 280:130621. [PMID: 33964746 DOI: 10.1016/j.chemosphere.2021.130621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Brominated benzenes and phenols constitute direct precursors in the formation of bromine-bearing pollutants; most notably PBDD/Fs and other dioxin-type compounds. Elucidating accurate mechanisms and constructing robust kinetic models for the oxidative transformation of bromobenzenes and bromophenols into notorious Br-toxicants entail a comprehensive understanding of their initial oxidation steps. However, pertinent mechanistic studies, based on quantum chemical calculations, have only focused on secondary condensation reactions into PBDD/Fs and PBDEs. Literature provide kinetic parameters for these significant reactions, nonetheless, without attempting to compile the acquired Arrhenius coefficients into kinetic models. To fill in this gap, this study sets out to illustrate primary chemical phenomena underpinning the low-temperature combustion of a monobromobenzene molecule (MBZ) based on a detail chemical kinetic model. The main aim is to map out temperature-dependent profiles for major intermediates and products. The constructed kinetic model encompasses several sub-mechanisms (i.e, HBr and benzene oxidation, bromination of phenoxy radicals, and initial reaction of oxygen molecules with MBZ). In light of germane experimental observations, the formulated kinetic model herein offers an insight into bromine speciation, conversion profile of MBZ, and formation of higher brominated congeners of benzene and phenol. For instance, the model satisfactorily accounts for the yields of dibromophenols from oxidation of a 2-bromophenol (2-MBP) molecule, in reference to analogous experimental measurements. From an environmental perspective, the model reflects the accumulation of appreciable loads of 2-bromophenoxy radicals at intermediate temperatures (i.e., a bromine-containing environmental persistent free radical, EPFR) from combustion of MBZ and 2-MBP molecules. Acquired mechanistic/kinetic parameters shall be useful in comprehending the complex bromine transformation chemistry in real scenarios, most notably those prevailing in thermal recycling of brominated flame retardants (BFRs).
Collapse
Affiliation(s)
- Mohammednoor Altarawneh
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain, 15551, United Arab Emirates.
| | - Bogdan Z Dlugogorski
- Charles Darwin University, Office of Deputy Vice-Chancellor and Vice-President, Research & Innovation, Darwin, NT, 0909, Australia
| |
Collapse
|
12
|
Altarawneh M. A chemical kinetic model for the decomposition of perfluorinated sulfonic acids. CHEMOSPHERE 2021; 263:128256. [PMID: 33297201 DOI: 10.1016/j.chemosphere.2020.128256] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 06/12/2023]
Abstract
Perfluorinated sulfonic acids (such as perfluorooctanesulfonic, PFOS, and short-chain analogues) are notorious halogenated pollutants that exhibit severe toxicity, even at minute levels. Limited number of experimental studies addressed their thermal decomposition at elevated temperatures. Such scenarios are particularly relevant to open fires and incineration of materials laden with perfluoroalkyl compounds (PFCs). Herein, we construct a detail kinetic model that illustrates major chemical reactions underpinning initial degradation of 1-butanesulfonic acid (CF3(CF2)3SO2OH), as a model compound of PFOS, and perfluorinated sulfonic acids in general. Reaction rate parameters were estimated based on an accurate density functional theory (DFT) formalism. The kinetic model incorporates four sets of reactions, namely, unimolecular decomposition channels, hydrofluorination, hydrolysis, and fragmentation of the alkyl chain. Results are discussed considering recent experimental measurements. Temperature-dependent profiles for a large array of perfluoroalkyl acyl fluorides, short perfluorinated cuts, and perfluorinated cyclic compounds, are presented. SO2 emerges as the main sulfur carrier, with a minor contribution from SO3. HF addition to double carbon bonds in alkenes, and to carbonyl bonds in aldehydic structures signifies a major sink pathway for hydrogen fluoride. Addition of moisture was shown to expedite the destruction of relatively large perfluoroalkyl acyl fluorides into C1 species. Construction of this model could aid in a better understanding of the fate and chemical transformation of PFCs under a pyrolytic environment pertinent to waste incineration and fluorine mineralization.
Collapse
Affiliation(s)
- Mohammednoor Altarawneh
- Department of Chemical and Petroleum Engineering, United Arab Emirates University, Sheikh Khalifa Bin Zayed Street, Al-Ain, 15551, United Arab Emirates.
| |
Collapse
|
13
|
Altarawneh M, Saeed A, Siddique K, Jansson S, Dlugogorski BZ. Formation of polybrominated dibenzofurans (PBDFs) and polybrominated diphenyl ethers (PBDEs) from oxidation of brominated flame retardants (BFRs). JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123166. [PMID: 32574882 DOI: 10.1016/j.jhazmat.2020.123166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/22/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Brominated aromatic rings constitute main structural entities in virtually all commercially deployed brominated flame retardants (BFRs). Oxidative decomposition of BFRs liberates appreciable quantities of bromobenzenes (BBzs). This contribution reports experimental measurements for the generation of notorious polybrominated dibenzofurans (PBDFs) and polybrominated diphenyl ethers (PBDEs) from oxidation of monobromobenzene (MBBz). In the light of developed product profiles, we map out reaction pathways and report kinetic parameters for PBDFs and PBDEs formation from coupling reactions of MBBz molecule and its derived ortho-bromophenoxy (o-BPhxy) radical using quantum chemical calculations. The identification and quantitation of product species involve the use of gas chromatograph - triple quadrupole mass spectrometer (GC-QQQMS) operating in the multiple reaction monitoring (MRM) mode. Bimolecular reactions of MBBz and o-BPhxy result in the generation of twelve pre-PBDF intermediates, of which four can also serve as building blocks for the synthesis of PBDEs. These four intermediates are denoted as pre-PBDE/pre-PBDF, with the remaining eight symbolised as pre-PBDF. The resonance-stabilised structure of the o-BPhxy radical accumulates more spin density character on its phenoxy O atom (30.9 %) in reference to ortho-C and para-C sites. Thus, the formation of the pre-PBDE/pre-PBDF structures via O/o-C couplings advances faster as it requires lower activation enthalpies (79.2 - 84.9 kJ mol-1) than the pre-PBDF moieties, which arise via pairing reactions involving o-C(H or Br)/o-C(H or Br) sites (97.2 - 180.2 kJ mol-1). Kinetic analysis indicates that, the O/o-C pre-PBDE/pre-PBDF adducts self-eject the out-of-plane H atoms to produce PBDEs, rather than undergo a three-step mechanism forming PBDFs. However, experimental measurements demonstrate PBDEs appearing in lower yields as compared to those of PBDFs; presumably due to H- and Br-induced conversion of the PBDEs into PBDFs following a simple ring-closure reaction. High reaction temperatures facilitate loss of ortho Br atom from PBDEs, followed by cyclisation step to generate PBDFs. PBDFs are observed in a narrow temperature range of 700-850 °C, whereas PBDEs form between 550-850 °C. Since formation mechanisms of PBDFs and polybrominated dibenzo-p-dioxins (PBDDs) are typically only sensitive to the bromination at ortho positions, the results reported herein apply also to higher brominated isomers of BBzs.
Collapse
Affiliation(s)
- Mohammednoor Altarawneh
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Al-Ain, 15551, United Arab Emirates; Murdoch University, College of Science, Health, Engineering and Education (SHEE), WA, 6150, Australia.
| | - Anam Saeed
- Murdoch University, College of Science, Health, Engineering and Education (SHEE), WA, 6150, Australia; University of Engineering and Technology Lahore, Chemical Engineering Department, 54890, Pakistan
| | - Kamal Siddique
- Murdoch University, College of Science, Health, Engineering and Education (SHEE), WA, 6150, Australia
| | - Stina Jansson
- Umeå University Department of Chemistry, SE-901 87, Umeå, Sweden
| | - Bogdan Z Dlugogorski
- Charles Darwin University, Energy and Resources Institute, Darwin, NT, 0909, Australia.
| |
Collapse
|
14
|
Altarawneh M, Ahmed OH, Al-Harahsheh M, Jiang ZT, Huang NM, Lim HN, Dlugogorski BZ. Co-pyrolysis of polyethylene with products from thermal decomposition of brominated flame retardants. CHEMOSPHERE 2020; 254:126766. [PMID: 32957264 DOI: 10.1016/j.chemosphere.2020.126766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/28/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Co-pyrolysis of brominated flame retardants (BFRs) with polymeric materials prevails in scenarios pertinent to thermal recycling of bromine-laden objects; most notably the non-metallic fraction in e-waste. Hydro-dehalogenation of aromatic compounds in a hydrogen-donating medium constitutes a key step in refining pyrolysis oil of BFRs. Chemical reactions underpinning this process are poorly understood. Herein, we utilize accurate density functional theory (DFT) calculations to report thermo-kinetic parameters for the reaction of solid polyethylene, PE, (as a surrogate model for aliphatic polymers) with prime products sourced from thermal decomposition of BFRs, namely, HBr, bromophenols; benzene, and phenyl radical. Facile abstraction of an ethylenic H by Br atoms is expected to contribute to the formation of abundant HBr concentrations in practical systems. Likewise, a relatively low energy barrier for aromatic Br atom abstraction from a 2-bromophenol molecule by an alkyl radical site, concurs with the reported noticeable hydro-debromination capacity of PE. Pathways entailing a PE-induced bromination of a phenoxy radical should be hindered in view of high energy barrier for a Br transfer into the para position of the phenoxy radical. Adsorption of a phenoxy radical onto a Cu(Br) site substituted at the PE chain affords the commonly discussed PBDD/Fs precursor of a surface-bounded bromophenolate adduct. Such scenario arises due to the heterogeneous integration of metals into the bromine-rich carbon matrix in primitive recycling of e-waste and their open burning.
Collapse
Affiliation(s)
- Mohammednoor Altarawneh
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa Bin Zayed Street, Al-Ain, 15551, United Arab Emirates.
| | - Oday H Ahmed
- Murdoch University, Discipline of Chemistry and Physics, WA, 6150, Australia; Department of Physics, College of Education, Al- Iraqia University, Baghdad, Iraq
| | - Mohammad Al-Harahsheh
- Department of Chemical Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Zhong-Tao Jiang
- Murdoch University, Discipline of Chemistry and Physics, WA, 6150, Australia
| | - Nay Ming Huang
- School of Energy and Chemical Engineering, Xiamen University of Malaysia, Selangor Darul Ehsan, Malaysia & College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hong Ngee Lim
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor Darul Ehsan, 43400, Malaysia
| | - Bogdan Z Dlugogorski
- Charles Darwin University, Office of Deputy Vice-Chancellor and Vice-President, Research & Innovation, Darwin, NT, 0909, Australia
| |
Collapse
|
15
|
Jandric A, Part F, Fink N, Cocco V, Mouillard F, Huber-Humer M, Salhofer S, Zafiu C. Investigation of the heterogeneity of bromine in plastic components as an indicator for brominated flame retardants in waste electrical and electronic equipment with regard to recyclability. JOURNAL OF HAZARDOUS MATERIALS 2020; 390:121899. [PMID: 31879115 DOI: 10.1016/j.jhazmat.2019.121899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 11/22/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Waste electrical and electronic equipment (WEEE) can contain brominated flame retardants (BFRs) that pose a threat to human health and the environment. In addition, Br-containing plastics reduce the recycling potential of WEEE. In order to gain a better insight into the distribution of Br in plastics from WEEE, the total concentration of Br was measured on the level of device types and plastic components using handheld X-ray fluorescence (hXRF). In 35 % of the sample size (882 components from 369 different devices, which originate from 6 device types) Br was detected, 5 % exceeded the RoHS limit. Only few and older devices contained high Br concentrations, while the majority were below the RoHS limit and could be recycled. In addition, 18 different plastic types were identified by infrared spectroscopy, with acrylonitrile butadiene styrene being the most abundant (44 % of all samples). Manual dismantling of devices into individual plastic components enabled us to examine Br hotspots and the variety of plastic types in WEEE. Based on this analytical procedure, WEEE recyclers could exclude certain equipment or plastic components (e.g. power supplies or PC housings) directly on-site prior to WEEE recycling and shredding in order to produce high-quality recycled products and avoid cross-contamination.
Collapse
Affiliation(s)
- A Jandric
- Department of Water-Atmosphere-Environment, Institute of Waste Management, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna, Austria
| | - F Part
- Department of Water-Atmosphere-Environment, Institute of Waste Management, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna, Austria; Department of Nanobiotechnology, Institute for Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, Muthgasse 11/II, 1190 Vienna, Austria.
| | - N Fink
- Department of Water-Atmosphere-Environment, Institute of Waste Management, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna, Austria
| | - V Cocco
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - F Mouillard
- Department of Water-Atmosphere-Environment, Institute of Waste Management, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna, Austria
| | - M Huber-Humer
- Department of Water-Atmosphere-Environment, Institute of Waste Management, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna, Austria
| | - S Salhofer
- Department of Water-Atmosphere-Environment, Institute of Waste Management, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna, Austria
| | - C Zafiu
- Department of Water-Atmosphere-Environment, Institute of Waste Management, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna, Austria
| |
Collapse
|
16
|
Chang J, Pan W, Liu X, Xue Q, Fu J, Zhang A. The formation of PBDFs from the ortho-disubstituted phenol precursors: A comprehensive theoretical study on the PBDD/Fs formation from 2,4,6-tribromophenol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136657. [PMID: 31958733 DOI: 10.1016/j.scitotenv.2020.136657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Bromophenols are known as direct precursors of the notorious polybrominated dibenzo-p-dioxin/dibenzofurans (PBDD/Fs). There is a long-held viewpoint that only the more toxic dioxin-type products could be formed from the ortho-disubstituted phenols, totally contrary to the experimental observations that both PBDDs and PBDFs are generated. To tackle the issue, the gaseous formation mechanism of PBDD/Fs from 2,4,6-tribromophenol (TBP), a typical ortho-disubstituted phenol, was investigated in this study. Firstly, the reactions between TBP and the active H radical produce three key radical species including the bromophenoxyl radical, the substituted phenyl radical and phenoxyl diradical. The self- and cross-combinations of these radical species and TBP yield not only the dioxin-type products 1,3,6,8-TeBDD and 1,3,7,9-TeBDD, but also the brominated dibenzofurans 1,3,6,8-TeBDF and 2,4,6,8-TeBDF. Notably, the reactions involving the phenyl C sites in the substituted phenyl and phenoxyl diradicals are demonstrated to be both thermodynamically and kinetically more favorable than those involving the bromophenoxyl radical and the TBP molecule. Most importantly, the findings of the present work are of great importance as it provides feasible pathways to form less toxic dibenzofuran-type products from the ortho-disubstituted phenols. These results will improve the understanding of the PBDD/Fs formation mechanism from phenol precursors.
Collapse
Affiliation(s)
- Jiamin Chang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Wenxiao Pan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Qiao Xue
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, PR China; Institute of Environment and Health, Jianghan University, Wuhan 430056, PR China.
| |
Collapse
|
17
|
Saeed A, Altarawneh M, Siddique K, Conesa JA, Ortuño N, Dlugogorski BZ. Photodecomposition properties of brominated flame retardants (BFRs). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110272. [PMID: 32061989 DOI: 10.1016/j.ecoenv.2020.110272] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/25/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
This study investigates the geometric and electronic properties of selected BFRs in their ground (S0) and first singlet excited (S1) states deploying methods of the density functional theory (DFT) and the time-dependent density functional theory (TDDFT). We estimate the effect of the S0→ S1 transition on the elongations of the C-Br bond, identify the frontier molecular orbitals involved in the excitation process and compute partial atomic charges for the most photoreactive bromine atoms. The bromine atom attached to an ortho position in HBB (with regard to C-C bond; 2,2',4,4',6,6'-hexabromobiphenyl), TBBA (with respect to the hydroxyl group; 2,2',6,6'-tetrabromobisphenol A), HBDE and BTBPE (in reference to C-O linkage; 2,2',4,4',6,6'-hexabromodiphenylether and 1,2-bis(2,4,6-tribromophenoxy)ethane, respectively) bears the highest positive atomic charge. This suggests that, these positions undergo reductive debromination reactions to produce lower brominated molecules. Debromination reactions ensue primarily in the aromatic compounds substituted with the highest number of bromine atoms owing to the largest stretching of the C-Br bond in the first excited state. The analysis of the frontier molecular orbitals indicates that, excitations of BFRs proceed via π→π*, or π→σ* or n→σ* electronic transitions. The orbital analysis reveals that, the HOMO-LUMO energy gap (EH-L) for all investigated bromine-substituted aromatic molecules falls lower (1.85-4.91 eV) than for their non-brominated analogues (3.39-8.07 eV), in both aqueous and gaseous media. The excitation energies correlate with the EH-L values. The excitation energies and EH-L values display a linear negative correlation with the number of bromine atoms attached to the molecule. Spectral analysis of the gaseous-phase systems reveals that, the highly brominated aromatics endure lower excitation energies and exhibit red shifts of their absorption bands in comparison to their lower brominated congeners. We attained a satisfactory agreement between the experimentally measured absorption peak (λmax) and the theoretically predicted oscillator strength (λmax) for the UV-Vis spectra. This study further confirms that, halogenated aromatics only absorb light in the UV spectral region and that effective photodegradation of these pollutants requires the presence of photocatalysts.
Collapse
Affiliation(s)
- Anam Saeed
- School of Engineering and Information Technology, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Mohammednoor Altarawneh
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain, 15551, United Arab Emirates.
| | - Kamal Siddique
- School of Engineering and Information Technology, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Juan A Conesa
- Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de Alicante Apartado 99, 03080, Alicante, Spain
| | - Nuria Ortuño
- Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de Alicante Apartado 99, 03080, Alicante, Spain
| | - Bogdan Z Dlugogorski
- Charles Darwin University, Office of Deputy Vice-Chancellor, Research & Innovation, Darwin, Northern Territory, 0909, Australia
| |
Collapse
|
18
|
Chen T, Huang M, Li J, Li J, Shi Z. Polybrominated diphenyl ethers and novel brominated flame retardants in human milk from the general population in Beijing, China: Occurrence, temporal trends, nursing infants' exposure and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:278-286. [PMID: 31276995 DOI: 10.1016/j.scitotenv.2019.06.442] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 05/06/2023]
Abstract
The levels of eight polybrominated diphenyl ether (PBDE) congeners, and six novel brominated flame retardants (NBFRs) were determined in human milk collected from Beijing, China in 2014. The tested 111 samples were collected from 37 mothers, and each donor provided one milk sample per month for 3 months after childbirth. Levels of ∑PBDEs (total tri- to deca-BDEs) were in the range of 0.288 to 22.2 ng g-1 lw (lipid weight). BDE-209, with a median level of 2.2 ng g-1 lw, was the predominant congener. Decabromodiphenyl ethane (DBDPE), as an NBFR and a substitute for deca-BDE, was found to be the most abundant BFR in all tested human milk (median:5.96 ng g-1 lw). This result might suggest that the predominantly consumed BFRs in China have changed from PBDEs to PBDE substitutes. Additionally, a comparison to our previous studies conducted in 2005 and 2011 revealed that levels of tri- to hepta-BDEs showed significant reduction from 2005 to 2014, whereas levels of BDE-209 showed no significant variation from 2011 to 2014. Temporal trends of BFR levels over the three months of lactation were also investigated, and no significant changes were found in concentration with time over the three months lactation. For nursing infants up to 6 months old, the median lower bound of daily BFR intakes via human milk ingestion ranged from zero for 2,3-dibromopropyl-2,4,6-tribromophenyl ether (DPTE) and 1,2-bis(2,4,6-tribromophenoxy)-ethane (BTBPE) to 18.7 ng kg-1 bodyweight day-1 for DBDPE. Although the daily dietary BFR intake for nursing infants was found to be much higher than that for adults, the risk assessment evaluated by the margin of exposure (MOE) approach revealed that dietary BFR intake for nursing infants was unlikely to pose significant health risks.
Collapse
Affiliation(s)
- Tian Chen
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Morong Huang
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jian Li
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Dongcheng District Administration Center of Community Health Service, Beijing 100010, China
| | - Jingguang Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Zhixiong Shi
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
19
|
Sun J, Chen Y, Xiang Y, Ling L, Fang J, Shang C. Oxidative debromination of 2,2-bis(bromomethyl)-1,3-propanediol by UV/persulfate process and corresponding formation of brominated by-products. CHEMOSPHERE 2019; 228:735-743. [PMID: 31071560 DOI: 10.1016/j.chemosphere.2019.04.168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/12/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the oxidative debromination of 2,2-bis(bromomethyl)-1,3-propanediol (BBMP), a widely used brominated flame retardant, and the corresponding formation of brominated by-products by the UV/persulfate process. The debromination of BBMP by the UV/persulfate process was primarily driven by sulfate radicals (SO4-) at pHs 4.0-6.0 and hydroxyl radicals (HO) at pHs 9.0-12.0. The debromination rate increased with increasing pH from 4.0 to 9.0 and remained the same at pHs 9.0 and 12.0. Bromate was formed through the oxidation of bromide released from BBMP mainly by SO4-, with free bromine as a key intermediate. Bromate formation increased with increasing pH from 4.0 to 6.0, while it remarkably decreased with increasing pH from 6.0 to 12.0. This was mainly due to the transformation of SO4- to HO and also the quenching of bromine atoms that were the key intermediate for the formation of free bromine, by hydroxyl ions at the alkaline pH. In addition, the oxidative debromination of BBMP resulted in a significant decrease in the concentrations of total organic bromine, but the formation of brominated acetic acids and unknown brominated organic by-products. The concentrations of brominated organic by-products firstly increased and then decreased with prolonged reaction time. Also, the formation of brominated organic by-products and genotoxicity at pH 9.0 were much lower than that at pH 6.0. In this study, we propose that the UV/persulfate process under mildly alkaline conditions not only debrominates BBMP efficiently but also eliminates the formation of bromate and brominated organic by-products and genotoxicity.
Collapse
Affiliation(s)
- Jianliang Sun
- School of Chemistry & Environment, South China Normal University, Guangzhou, China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yu Chen
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yingying Xiang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Li Ling
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China.
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
20
|
Dang J, Tian S, Zhang Q. Mechanism and kinetics studies of the atmospheric oxidation of p,p'-Dicofol by OH and NO 3 radicals. CHEMOSPHERE 2019; 219:645-654. [PMID: 30557720 DOI: 10.1016/j.chemosphere.2018.12.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
As an effective organochlorine pesticide, Dicofol has been extensively applied in more than 30 countries for protecting over 60 different crops. Considering its large consumption and potential adverse effect on human health (endocrine disrupting and carcinogenicity), the fate of Dicofol sprayed into the air is of public concern. In this study, we conducted a comprehensive study on the reaction mechanisms of p,p'-Dicofol with OH and NO3 radicals using DFT method. Comparing the abstrations by OH and NO3 radical, OH and NO3 radical addition reactions are predominant due to the lower potential barriers and stronger heat release. The phenolic substances (P1P5), epoxides (P11 and P15), dialdehyde (P13) and other species (P8, P9, P10 and P14) are generated by OH additions and their subsequent reactions while OH abstraction reactions produce DCBP, P7 and chlorphenyl radical. Particularly, NO3 additions and their subsequent reactions yield dialdehydes (P16 and P17) and 2,8-DCDD, which is the first report of the generation of dioxin from atmospheric oxidation of p,p'-Dicofol. Additionally, based on the structure optimization and energy calculation, rate constants and Arrhenius formulas of the elementary reactions of p,p'-Dicofol with OH and NO3 radicals were obtained over the temperature range of 280-380 K and at 1 atm. The rate constants for the reactions of p,p'-Dicofol with OH and NO3 radicals are 1.51 × 10-12 and 8.88 × 10-14 cm3 molecule-1 s-1, respectively. The lifetime (τTotal) of p,p'-Dicofol determined by the reactions of OH and NO3 radical is 5.86 h, indicating a potential long-range transport in the atmosphere.
Collapse
Affiliation(s)
- Juan Dang
- Key Laboratory of Western China's Environmental Systems of the Ministry of Education, Key Laboratory of Environmental Pollution Prediction and Control of Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China; Environment Research Institute, Shandong University, Jinan, 250100, China.
| | - Shuai Tian
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong, 250061, China.
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Jinan, 250100, China
| |
Collapse
|
21
|
A Thermochemical Parameters and Theoretical Study of the Chlorinated Compounds of Thiophene. HETEROATOM CHEMISTRY 2019. [DOI: 10.1155/2019/7680264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This contribution sets out to compute thermochemical and geometrical parameters of the complete series of chlorinated isomers of thiophene based on the accurate chemistry model of CBS-QB3. Herein, we compute standard entropies, standard enthalpies of formation, standard Gibbs free energies of formation, and heat capacities. Our calculated enthalpy values agree with available limited experimental values. The DFT-based reactivity descriptors were used to elucidate the site selectivity for the chlorination sequence of thiophene. The relative preference for chlorination was found to be in accord with the thermodynamic stability trends inferred based on the H scale. Calculated Fukui indices predict a chlorination sequence to ensue as follows: 2-chloro → 2,5-dichloro → 2,3,5-trichloro → 2,3,4,5-tetrachlorothiophene.
Collapse
|
22
|
Feng H, Qiu Y, Qian L, Chen Y, Xu B, Xin F. Flame Inhibition and Charring Effect of Aromatic Polyimide and Aluminum Diethylphosphinate in Polyamide 6. Polymers (Basel) 2019; 11:E74. [PMID: 30960058 PMCID: PMC6402001 DOI: 10.3390/polym11010074] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 12/30/2018] [Accepted: 12/31/2018] [Indexed: 11/16/2022] Open
Abstract
An aromatic macromolecular polyimide (API) was synthesized and characterized, and used as a synergistic charring flame retardant in glass fiber reinforced polyamide 6 (GF/PA6). API and aluminum diethylphosphinate (ADP) exhibited better flame inhibition behavior and synergistic charring flame retardant behavior compared with ADP alone. The 5%API/7%ADP/GF/PA6 sample achieved the lower peak value of the heat release rate (pk-HRR) at 497 kW/m² and produced higher residue yields of 36.1 wt.%, verifying that API and ADP have an outstanding synergistic effect on the barrier effect. The API/ADP system facilitated the formation of a carbonaceous, phosphorus and aluminum-containing compact char layer with increased barrier effect. FTIR spectra of the residue and real-time TGA-FTIR analysis on the evolved gases from PA6 composites revealed that API interacted with ADP/PA6 and locked in more P⁻O⁻C and P⁻O⁻Ar content, which is the main mechanism for improving flame inhibition and charring ability. In addition, the API/ADP system improved the mechanical properties and corrosion resistance of GF/PA6 composites compared to ADP alone.
Collapse
Affiliation(s)
- Haisheng Feng
- School of Materials Science and Mechanical Engineering, Beijing Technology and Business University, Beijing 100048, China.
- Engineering Laboratory of non-Halogen Flame Retardants for Polymers, Beijing 100048, China.
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing 100048, China.
- Fire Protection Engineering Department, China People's Police University, Hebei 065000, China.
| | - Yong Qiu
- School of Materials Science and Mechanical Engineering, Beijing Technology and Business University, Beijing 100048, China.
- Engineering Laboratory of non-Halogen Flame Retardants for Polymers, Beijing 100048, China.
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing 100048, China.
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Lijun Qian
- School of Materials Science and Mechanical Engineering, Beijing Technology and Business University, Beijing 100048, China.
- Engineering Laboratory of non-Halogen Flame Retardants for Polymers, Beijing 100048, China.
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing 100048, China.
| | - Yajun Chen
- School of Materials Science and Mechanical Engineering, Beijing Technology and Business University, Beijing 100048, China.
- Engineering Laboratory of non-Halogen Flame Retardants for Polymers, Beijing 100048, China.
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing 100048, China.
| | - Bo Xu
- School of Materials Science and Mechanical Engineering, Beijing Technology and Business University, Beijing 100048, China.
- Engineering Laboratory of non-Halogen Flame Retardants for Polymers, Beijing 100048, China.
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing 100048, China.
| | - Fei Xin
- School of Materials Science and Mechanical Engineering, Beijing Technology and Business University, Beijing 100048, China.
- Engineering Laboratory of non-Halogen Flame Retardants for Polymers, Beijing 100048, China.
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing 100048, China.
| |
Collapse
|
23
|
Zhan F, Zhang H, Cao R, Fan Y, Xu P, Chen J. Release and Transformation of BTBPE During the Thermal Treatment of Flame Retardant ABS Plastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:185-193. [PMID: 30516371 DOI: 10.1021/acs.est.8b05483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Thermal scenarios inevitably occur during the lifecycle of engineering plastics laden with brominated flame retardants (BFRs). However, little information on the fate of embedded BFRs during the thermal processes is available. In this study, we measured the release and transformation of a typical BFR, 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), during the thermal treatment of acrylonitrile butadiene styrene (ABS) plastics. The possible thermal scenarios were simulated by varying the heating temperature and atmosphere. The maximum release rate of BTBPE was observed at 350 °C. A release kinetic model was developed to explore the mechanism of BTBPE release while heating ABS. Material-phase diffusion was found to be the rate-determining step during release. According to the developed release model, it was estimated that 0.04-0.17% of embedded BTBPE could be released to air during the industrial processing of ABS plastics. When the heating temperature was ≥350 °C, approximately 15-56% of embedded BTBPE decomposed to bromophenols (BPs) and 1,3,5-tribromo-2-(vinyloxy) benzene (TBVOB), and the decomposition followed a first-order kinetics at 350 °C. Polybrominated dibenzo- p-dioxins and dibenzofurans (PBDD/Fs) were also significantly formed at ≥350 °C from BPs and TBVOB via a precursor mechanism. A higher temperature (≥450 °C) was favorable for the formation of PBDFs.
Collapse
Affiliation(s)
- Faqiang Zhan
- Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics , Chinese Academy of Sciences, Dalian , 116023 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Haijun Zhang
- Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics , Chinese Academy of Sciences, Dalian , 116023 , China
| | - Rong Cao
- Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics , Chinese Academy of Sciences, Dalian , 116023 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yun Fan
- Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics , Chinese Academy of Sciences, Dalian , 116023 , China
| | - Pengjun Xu
- National Research Center for Environmental Analysis and Measurement , Beijing 100029 , China
| | - Jiping Chen
- Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics , Chinese Academy of Sciences, Dalian , 116023 , China
| |
Collapse
|
24
|
|
25
|
Fu Z, Chen J, Wang Y, Hong H, Xie H. Quantum chemical simulations revealed the toxicokinetic mechanisms of organic phosphorus flame retardants catalyzed by P450 enzymes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2018; 36:272-291. [PMID: 30457030 DOI: 10.1080/10590501.2018.1537564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The metabolic fate and toxicokinetics of organic phosphorus flame retardants catalyzed by cytochrome P450 enzymes (CYPs) are here investigated by in silico simulations, leveraging an active center model to mimic the CYPs, triphenyl phosphate (TPHP), tris(2-butoxyethyl) phosphate and tris(1,3-dichloro-2-propyl) phosphate as substrates. Our calculations elucidated key main pathways and predicted products, which were corroborated by current in vitro data. Results showed that alkyl OPFRs are eliminated faster than aryl and halogenated alkyl-substituted OPFRs. In addition, we discovered a proton shuttle pathway for aryl hydroxylation of TPHP and P = O bond-assisted H-transfer mechanisms (rather than nonenzymatic hydrolysis) that lead to O-dealkylation/dearylation of phosphotriesters.
Collapse
Affiliation(s)
- Zhiqiang Fu
- a Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology , Dalian University of Technology , Dalian , China
| | - Jingwen Chen
- a Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology , Dalian University of Technology , Dalian , China
| | - Yong Wang
- b State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP) , Chinese Academy of Sciences , Lanzhou , China
| | - Huixiao Hong
- c National Center for Toxicological Research , U.S. Food and Drug Administration , Jefferson , Arkansas , USA
| | - Hongbin Xie
- a Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology , Dalian University of Technology , Dalian , China
| |
Collapse
|
26
|
Zhang YN, Wang J, Chen J, Zhou C, Xie Q. Phototransformation of 2,3-Dibromopropyl-2,4,6-tribromophenyl ether (DPTE) in Natural Waters: Important Roles of Dissolved Organic Matter and Chloride Ion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10490-10499. [PMID: 30141914 DOI: 10.1021/acs.est.8b03258] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Novel brominated flame retardants (NBFRs) have become ubiquitous emerging organic pollutants. However, little is known about their transformation in natural waters. In this study, aquatic photochemical behavior of a representative NBFR, 2,3-dibromopropyl-2,4,6-tribromophenyl ether (DPTE), was investigated by simulated sunlight irradiation experiment. Results show that DPTE can undergo direct photolysis (apparent quantum yield 0.008 ± 0.001) and hydroxyl radical (·OH) initiated oxidation (second order reaction rate constant 2.4 × 109 M-1·s-1). Dissolved organic matter (DOM) promotes the photodegradation due to generation of excited triplet DOM and ·OH. Two chlorinated intermediates were identified in the photodegradation of DPTE in seawaters. Density functional theory calculation showed that ·Cl or ·Cl2- addition reactions on C-Br sites of the phenyl group and H-abstraction reactions from the propyl group are main reaction pathways of DPTE with the chlorine radicals. The ·Cl or ·Cl2- addition proceeds via a replacement mechanism to form chlorinated intermediates. Environmental half-lives of DPTE relevant with photodegradation are estimated to be 6.5-1153.9 days in waters of the Yellow River estuarine region. This study provides valuable insights into the phototransformation behavior of DPTE in natural waters, which is helpful for persistence assessment of the NBFRs.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment , Northeast Normal University , Changchun 130117 , China
| | - Jieqiong Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Chengzhi Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Qing Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| |
Collapse
|
27
|
Wang N, Zhang M, Kang P, Zhang J, Fang Q, Li W. Synergistic Effect of Graphene Oxide and Mesoporous Structure on Flame Retardancy of Nature Rubber/IFR Composites. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1005. [PMID: 29899305 PMCID: PMC6025052 DOI: 10.3390/ma11061005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/02/2018] [Accepted: 06/07/2018] [Indexed: 01/31/2023]
Abstract
Aiming to improve the flame retardancy performance of natural rubber (NR), we developed a novel flame retardant synergistic agent through grafting of MCM-41 to graphene oxide (GO), named as GO-NH-MCM-41, as an assistant to intumescent flame retardants (IFR). The flame retardancy of NR/IFR/GO-NH-MCM-41 composites was evaluated by limited oxygen index (LOI), UL-94, and cone calorimeter test. The LOI value of NR/IFR/GO-NH-MCM-41 reached 26.3%; the UL-94 ratings improved to a V-0 rating. Moreover, the addition of GO-NH-MCM-41 decreased the peak heat release rate (PHRR) and the total heat release (THR) of the natural rubber composites. Furthermore, the addition of GO-NH-MCM-41 increased the thickness of char residue. The images of SEM indicated the char residue was more compact and continuous. The degradation of GO-NH-MCM-41-based NR composites was completed with a mass loss of 35.57% at 600 °C. The tensile strength and the elongation at break of the NR/IFR/GO-NH-MCM-41 composites were 13.9 MPa and 496.7%, respectively. The results of the rubber process analyzer (RPA) reached the maximum value, probably due to a better network of fillers in the matrix.
Collapse
Affiliation(s)
- Na Wang
- Sino-Spanish Advanced Materials Institute, Shenyang University of Chemical Technology, Shenyang 110142, China.
- Liaoning Provincial Key Laboratory of Rubber & Elastomer, Shenyang 110142, China.
| | - Miao Zhang
- Sino-Spanish Advanced Materials Institute, Shenyang University of Chemical Technology, Shenyang 110142, China.
- Liaoning Provincial Key Laboratory of Rubber & Elastomer, Shenyang 110142, China.
| | - Ping Kang
- Liaoning Provincial Key Laboratory of Rubber & Elastomer, Shenyang 110142, China.
| | - Jing Zhang
- Liaoning Provincial Key Laboratory of Rubber & Elastomer, Shenyang 110142, China.
| | - Qinghong Fang
- Liaoning Provincial Key Laboratory of Rubber & Elastomer, Shenyang 110142, China.
| | - Wenda Li
- IMDEA Materials Institute, C/Eric Kandel 2, Getafe, 28906 Madrid, Spain.
| |
Collapse
|
28
|
Trends in bond dissociation energies of brominated flame retardants from density functional theory. Struct Chem 2018. [DOI: 10.1007/s11224-018-1078-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Wang Z, Fu Z, Yu Q, Chen J. Oxidation reactivity of 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) by Compound I model of cytochrome P450s. J Environ Sci (China) 2017; 62:11-21. [PMID: 29289282 DOI: 10.1016/j.jes.2017.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 06/07/2023]
Abstract
Alternative brominated flame retardants (BFRs) have become prevalent as a consequence of restrictions on the use of polybrominated diphenyl ethers (PBDEs). For risk assessment of these alternatives, knowledge of their metabolism via cytochrome P450 enzymes is needed. We have previously proved that density functional theory (DFT) is able to predict the metabolism of PBDEs by revealing the molecular mechanisms. In the current study, the reactivity of 1,2-bis(2,4,6-tribromophenoxy)ethane and structurally similar chemicals with the Compound I model representing the active site of P450 enzymes was investigated. The DFT calculations delineated reaction pathways which lead to reasonable explanations for products that were detected by wet experiments, meanwhile intermediates which cannot be determined were also proposed. Results showed that alkyl hydrogen abstraction will lead to bis(2,4,6-tribromophenoxy)ethanol, which may undergo hydrolysis yielding 2,4,6-tribromophenol, a neurotoxic compound. In addition, a general pattern of oxidation reactivity regarding the 2,4,6-tribromophenyl moiety was observed among several model compounds. Our study has provided insights for convenient evaluation of the metabolism of other structurally similar BFRs.
Collapse
Affiliation(s)
- Zhongyu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Zhiqiang Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qi Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
30
|
Soler A, Conesa JA, Ortuño N. Emissions of brominated compounds and polycyclic aromatic hydrocarbons during pyrolysis of E-waste debrominated in subcritical water. CHEMOSPHERE 2017; 186:167-176. [PMID: 28778014 DOI: 10.1016/j.chemosphere.2017.07.146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 07/17/2017] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
Degradation of brominated flame retardants present in printed circuit boards (PCBs) was tested using subcritical water in a high pressure reactor. Debromination experiments were carried out in a batch stirred reactor at three different temperatures (225 °C, 250 °C and 275 °C) keeping a solid to liquid (S/L) ratio of PCB:water = 1:5 during 180 min. Results indicated that debromination efficiency was increased with temperature (18.5-63.6% of bromine present in the original PCB was removed). Thermal decomposition of the debrominated materials was studied and compared with that of the original PCB. Thermogravimetric analyses were performed at three different heating rates (5, 10 and 20 K min-1), studying both the pyrolysis (inert atmosphere) and combustion (in air). Pyrolysis runs of the debrominated materials were also performed in a quartz horizontal laboratory furnace at 850 °C, in order to study the emission of pollutants. More than 99% of the bromine was emitted in the form of HBr and Br2. Emissions of polycyclic aromatic hydrocarbons (PAHs) and bromophenols (BrPhs) decreased with the increase in the treatment temperature; naphthalene (10,800-18,300 mg kg-1 original sample) and monobrominated phenols (12.8-16.9 mg kg-1 original sample) were the most abundant compounds.
Collapse
Affiliation(s)
- Aurora Soler
- Department of Chemical Engineering, University of Alicante, P.O. Box 99, E-03080, Alicante, Spain
| | - Juan A Conesa
- Department of Chemical Engineering, University of Alicante, P.O. Box 99, E-03080, Alicante, Spain.
| | - Nuria Ortuño
- Department of Chemical Engineering, University of Alicante, P.O. Box 99, E-03080, Alicante, Spain
| |
Collapse
|
31
|
Li Q, Su G, Zheng M, Wang M, Liu Y, Luo F, Gu Y, Jin R. Thermal Oxidation Degradation of 2,2',4,4'-Tetrabromodiphenyl Ether over Li αTiO x Micro/Nanostructures with Dozens of Oxidative Product Analyses and Reaction Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10059-10071. [PMID: 28780865 DOI: 10.1021/acs.est.7b01959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Flowerlike LiαTiOx micro/nanostructures were successfully synthesized to degrade 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) at 250-350 °C. The pseudo-first-order kinetics rate constant of the reaction at 300 °C was in the range of 0.034-0.055 min-1. The activation energy was as low as 39.9-48.1 kJ/mol. The excellent performance attained over LiαTiOx was attributed to Li dopant having the electron-donating effect, which enhanced the oxygen species mobility. The oxidative reaction was believed to be the dominant degradation pathway following the Mars-van Krevelen mechanism, being accompanied by the weak hydrodebromination occurrence generating the trace mono- to tri-BDEs. More than 70 types of oxidation products containing diphenyl ether backbone, single-benzene rings, and ring-opened products were detected by GC-MS with derivatization, ESI-FT-ICR-MS, and ion chromatography. An increase in the number of ring-cracked oxidative products under prolonged reaction was observed by ESI-FT-ICR-MS analysis according to the van Krevelen diagram. In the oxidative reaction, a series of oxidative products, such as OH-tri-BDEs and OH-tetra-BDEs, first formed via the nucleophilic O2- attack and subsequently transformed into dibromophenol, tribromophenol, and benzenedicarboxylic and benzoic acids, etc. They could be further attacked by electrophilic O2- and O- and completely cracked to small molecules such as formic, acetic, propionic, and butyric acids.
Collapse
Affiliation(s)
- Qianqian Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guijin Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengjing Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Civil and Environmental Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639789, Singapore
| | - Yalu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangyang Gu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Miran HA, Altarawneh M, Jiang ZT, Oskierski H, Almatarneh M, Dlugogorski BZ. Decomposition of selected chlorinated volatile organic compounds by ceria (CeO2). Catal Sci Technol 2017. [DOI: 10.1039/c7cy01096f] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Guided by recent experimental measurements, this study theoretically investigates the initial steps operating in the interactions of ceria surface CeO2(111) with three CVOC model compounds, namely chloroethene (CE), chloroethane (CA) and chlorobenzene (CB).
Collapse
Affiliation(s)
- Hussein A. Miran
- School of Engineering and Information Technology
- Murdoch University
- Murdoch
- Australia
- Department of Physics
| | | | - Zhong-Tao Jiang
- School of Engineering and Information Technology
- Murdoch University
- Murdoch
- Australia
| | - Hans Oskierski
- School of Engineering and Information Technology
- Murdoch University
- Murdoch
- Australia
| | | | | |
Collapse
|
33
|
Yu Q, Xie HB, Li T, Ma F, Fu Z, Wang Z, Li C, Fu Z, Xia D, Chen J. Atmospheric chemical reaction mechanism and kinetics of 1,2-bis(2,4,6-tribromophenoxy)ethane initiated by OH radical: a computational study. RSC Adv 2017. [DOI: 10.1039/c6ra26700a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mechanism and kinetics of OH-initiated oxidation of BTBPE, an alternative of PBDEs, were investigated.
Collapse
|
34
|
Sun B, Hu Y, Cheng H, Tao S. Kinetics of Brominated Flame Retardant (BFR) Releases from Granules of Waste Plastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:13419-13427. [PMID: 27993048 DOI: 10.1021/acs.est.6b04297] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Plastic components of e-waste contain high levels of brominated flame retardants (BFRs), whose releases cause environmental and human health concerns. This study characterized the release kinetics of polybrominated diphenyl ethers (PBDEs) from millimeter-sized granules processed from the plastic exteriors of two scrap computer displays at environmentally relevant temperatures. The release rate of a substitute of PBDEs, 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), from the waste plastics, was reported for the first time. Deca-BDE was the most abundant PBDE congeners in both materials (87-89%), while BTBPE was also present at relatively high contents. The release kinetics of BFRs could be modeled as one-dimensional diffusion, while the temperature dependence of diffusion coefficients was well described by the Arrhenius equation. The diffusion coefficients of BFRs (at 30 °C) in the plastic matrices were estimated to be in the range of 10-27.16 to 10-19.96 m2·s-1, with apparent activation energies between 88.4 and 154.2 kJ·mol-1. The half-lives of BFR releases (i.e., 50% depletion) from the plastic granules ranged from thousands to tens of billions of years at ambient temperatures. These findings suggest that BFRs are released very slowly from the matrices of waste plastics through molecular diffusion, while their emissions can be significantly enhanced with wear-and-tear and pulverization.
Collapse
Affiliation(s)
- Bingbing Sun
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yuanan Hu
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing) , Beijing 100083, China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing 100871, China
| | - Shu Tao
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing 100871, China
| |
Collapse
|
35
|
Dong C, Wirasaputra A, Luo Q, Liu S, Yuan Y, Zhao J, Fu Y. Intrinsic Flame-Retardant and Thermally Stable Epoxy Endowed by a Highly Efficient, Multifunctional Curing Agent. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E1008. [PMID: 28774127 PMCID: PMC5456980 DOI: 10.3390/ma9121008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 01/25/2023]
Abstract
It is difficult to realize flame retardancy of epoxy without suffering much detriment in thermal stability. To solve the problem, a super-efficient phosphorus-nitrogen-containing reactive-type flame retardant, 10-(hydroxy(4-hydroxyphenyl)methyl)-5,10-dihydrophenophosphazinine-10-oxide (HB-DPPA) is synthesized and characterized. When it is used as a co-curing agent of 4,4'-methylenedianiline (DDM) for curing diglycidyl ether of bisphenol A (DGEBA), the cured epoxy achieves UL-94 V-0 rating with the limiting oxygen index of 29.3%. In this case, the phosphorus content in the system is exceptionally low (0.18 wt %). To the best of our knowledge, it currently has the highest efficiency among similar epoxy systems. Such excellent flame retardancy originates from the exclusive chemical structure of the phenophosphazine moiety, in which the phosphorus element is stabilized by the two adjacent aromatic rings. The action in the condensed phase is enhanced and followed by pressurization of the pyrolytic gases that induces the blowing-out effect during combustion. The cone calorimeter result reveals the formation of a unique intumescent char structure with five discernible layers. Owing to the super-efficient flame retardancy and the rigid molecular structure of HB-DPPA, the flame-retardant epoxy acquires high thermal stability and its initial decomposition temperature only decreases by 4.6 °C as compared with the unmodified one.
Collapse
Affiliation(s)
- Chunlei Dong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Alvianto Wirasaputra
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Qinqin Luo
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, China.
| | - Shumei Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yanchao Yuan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jianqing Zhao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yi Fu
- Silverage Engineering Plastics (Dongguan) Co., Ltd., Dongguan 523187, China.
| |
Collapse
|
36
|
Flame Retardance and Smoke Suppression of CFA/APP/LDHs/EVA Composite. APPLIED SCIENCES-BASEL 2016. [DOI: 10.3390/app6090255] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
37
|
Altarawneh M, Ahmed OH, Jiang ZT, Dlugogorski BZ. Thermal Recycling of Brominated Flame Retardants with Fe2O3. J Phys Chem A 2016; 120:6039-47. [DOI: 10.1021/acs.jpca.6b04910] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mohammednoor Altarawneh
- School of Engineering & Information Technology, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Oday H. Ahmed
- School of Engineering & Information Technology, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Zhong-Tao Jiang
- School of Engineering & Information Technology, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Bogdan Z. Dlugogorski
- School of Engineering & Information Technology, Murdoch University, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
38
|
Liu WJ, Tian K, Jiang H, Yu HQ. Lab-scale thermal analysis of electronic waste plastics. JOURNAL OF HAZARDOUS MATERIALS 2016; 310:217-225. [PMID: 26937868 DOI: 10.1016/j.jhazmat.2016.02.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/20/2016] [Accepted: 02/20/2016] [Indexed: 06/05/2023]
Abstract
In this work, we experimentally revealed the thermochemical decomposition pathway of Decabromodiphenyl ethane (DBDPE) and tetrabromobisphenol A (TBBPA) containing electronic waste plastics using an online thermogravimetric-fourier transform infrared-mass spectroscopy (TG-FTIR-MS) system, a high resolution gas chromatography/high resolution mass (HRGC-MS) spectroscopy, and a fixed-bed reactor. We found the distribution and species of produced bromides can be easily controlled by adjusting pyrolytic temperature, which is particularly crucial to their recycle. From the analysis of the liquid and solid phase obtained from the fixed-bed reactor, we proposed that the Br radicals formed during the pyrolysis process may be captured by organic species derived from the depolymerization of plastics to form brominated compounds or by the inorganic species in the plastics, and that these species remained in the char residue after pyrolysis. Our work for the first time demonstrates intramolecular oxygen atoms play a pivotal role in the formation of PBDD/Fs that pyrolysis of oxygen-free BFRs is PBDD/Fs-free, whereas pyrolysis of oxygen-containing BFRs is PBDD/Fs-reduced.
Collapse
Affiliation(s)
- Wu-Jun Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ke Tian
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Hong Jiang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
39
|
de Boer J, Ballesteros-Gómez A, Leslie HA, Brandsma SH, Leonards PEG. Flame retardants: Dust - And not food - Might be the risk. CHEMOSPHERE 2016; 150:461-464. [PMID: 26765313 DOI: 10.1016/j.chemosphere.2015.12.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/27/2015] [Accepted: 12/29/2015] [Indexed: 05/02/2023]
Abstract
Flame retardants (FRs) are used to delay ignition of materials such as furniture and electric and electronic instruments. Many FRs are persistent and end up in the environment. Environmental studies on flame retardants (FRs) took off in the late 1990s. Polybrominated diphenylethers (PBDEs) appeared to be bioaccumulative and were found in many organisms all over the world. When PBDEs were banned or their production voluntarily terminated, alternatives appeared on the market that often had similar properties or were of more concern due to their toxicity such as halogenated phosphorus-based FRs. Here we show that in spite of the ban on PBDEs more brominated FRs are being produced, an increasing number of other FRs is being applied and FR levels in our homes are much higher than in the outdoor environment. While nowadays we live in better isolated houses and sit in front of the computer or television, on flame retarded upholstery, we are at risk due to the toxic effects of a suite of FRs. The high exposure to these substances indoors calls for better risk assessments that include mixture effects.
Collapse
Affiliation(s)
- J de Boer
- Institute for Environmental Studies (IVM), VU University, de Boelelaan 1087, 1081 HV Amsterdam, The Netherlands.
| | - A Ballesteros-Gómez
- Institute for Environmental Studies (IVM), VU University, de Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - H A Leslie
- Institute for Environmental Studies (IVM), VU University, de Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - S H Brandsma
- Institute for Environmental Studies (IVM), VU University, de Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - P E G Leonards
- Institute for Environmental Studies (IVM), VU University, de Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
40
|
Zhang YN, Chen J, Xie Q, Li Y, Zhou C. Photochemical transformation of five novel brominated flame retardants: Kinetics and photoproducts. CHEMOSPHERE 2016; 150:453-460. [PMID: 26796587 DOI: 10.1016/j.chemosphere.2015.12.125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/27/2015] [Accepted: 12/29/2015] [Indexed: 06/05/2023]
Abstract
Many novel brominated flame retardants (NBFRs) are used as substitutes of polybrominated diphenyl ethers (PBDEs) in recent years. However, little is known about their phototransformation behavior, which may influence the environmental fate of these chemicals. In this study, photochemical behavior of five NBFRs, allyl-2,4,6-tribromophenyl ether (ATE), 2-bromoallyl-2,4,6-tribromophenyl ether (BATE), 2,3-dibromopropyl-2,4,6-tribromophenyl ether (DPTE), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), and 2,4,6-tris(2,4,6-tribromophenoxy)-1,3,5-triazine (TTBP-TAZ) was investigated. Results show all the five NBFRs can undergo photochemical transformation under simulated sunlight irradiation. Quantum yields (Φ) of the five NBFRs varied from 0.012 of TTBP-TAZ in hexane to 0.091 of BTBPE in methanol. Half-lives (t1/2) relevant with solar irradiation of these NBFRs were estimated using the determined Φ, and the values are 1.5-12.0 d in summer and 17.1-165.0 d in winter. Debrominated and ether bond cleavage products were identified in the phototransformation of DPTE and BTBPE. Debromination on the phenyl is a main phototransformation pathway for DPTE, and both debromination and ether bond cleavage are main phototransformation pathways for BTBPE. This study is helpful to better understand the phototransformation behavior of the NBFRs.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Qing Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yingjie Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Chengzhi Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
41
|
Fujimori T, Itai T, Goto A, Asante KA, Otsuka M, Takahashi S, Tanabe S. Interplay of metals and bromine with dioxin-related compounds concentrated in e-waste open burning soil from Agbogbloshie in Accra, Ghana. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 209:155-63. [PMID: 26686056 DOI: 10.1016/j.envpol.2015.11.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 11/12/2015] [Accepted: 11/19/2015] [Indexed: 05/25/2023]
Abstract
Open burning of electronic waste (e-waste) releases various metals and organohalogen compounds in the environment. Here we investigated the interplay of metals (Cu, Pb, Zn, Fe, Co, and Sr) and bromine (Br) in the formation of dioxin-related compounds (DRCs), including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs), as well as non-regulated DRCs such as polybrominated dibenzo-p-dioxins/furans (PBDD/Fs) and their monobrominated PCDD/Fs in soils sampled from open burning e-waste sites at Agbogbloshie in Accra, Ghana. The predominant DRCs were PBDFs, PCDFs, PCDDs, and DL-PCBs. Statistical analyzes, X-ray absorption spectroscopy, and the PCDF/PCDD ratio suggested possible formation paths of PCDD/Fs and DL-PCBs by catalytic behaviors of copper chlorides (CuCl, CuCl2, and Cu2(OH)3Cl) and thermal breakdown of polyvinyl chloride. Predominant formation of brominated furans may be derived from electron transfer from intermediates of PBDE to copper, Cu(II) → Cu(I). Lead chloride also contributed to generate DRCs and may become highly bioaccessible through the open burning of e-waste. The main zinc species (ZnCl2 and ZnS) suggested a possible relationship to generate DRCs and specific zinc source such as tire burning. Cu, Pb, Zn, and Br contained in various e-wastes, wires/cables, plastics, and tires strongly influenced generation of many DRCs.
Collapse
Affiliation(s)
- Takashi Fujimori
- Department of Global Ecology, Graduate School of Global Environmental Studies, Kyoto University, Katsura, Nisikyo-ku, Kyoto, 615-8540, Japan; Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nisikyo-ku, Kyoto, 615-8540, Japan
| | - Takaaki Itai
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan.
| | - Akitoshi Goto
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Kwadwo A Asante
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan; CSIR Water Research Institute, PO Box AH 38, Achimota, Accra, Ghana
| | - Masanari Otsuka
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan; Ehime Prefectural Institute of Public Health and Environmental Science, 8-234 Sanban-cho, Matsuyama 790-0003, Japan
| | - Shin Takahashi
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan; Department of Environmental Conservation, Ehime University, Matsuyama 790-8577, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|