1
|
Zhou Y, Zhang Z, Jing J, Bao F, Wu L, Du Y, Zhang H. Integrating environmental carry capacity based on pesticide risk assessment in soil management: A case study for China. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132341. [PMID: 37659236 DOI: 10.1016/j.jhazmat.2023.132341] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 09/04/2023]
Abstract
Pesticides are widely used in agriculture and can pose risks to soil health and environmental quality. This study assessed the occurrence, distribution, ecological risk, and environmental carrying capacity of 56 currently used pesticides and three metabolites in agricultural soils of Horqin Left Middle Banner, a typical Northeast China agricultural area. 29 pesticides were detected, with atrazine, clothianidin, and propiconazole the most common. Clothianidin and difenoconazole were high-risk to non-target organisms according to risk-toxicity exposure ratio and risk quotient approaches. This study provides a comprehensive and improvement framework for pesticide soil environmental carrying capacity (SECC) assessment and soil quality protection early warning. The SECC model showed no pesticides surpassed the soil carrying capacity threshold under the current application pattern. Five pesticides (clothianidin, difenoconazole, propiconazole, atrazine, and imidacloprid) may reach the threshold within 10 years, requiring pesticide reduction and soil quality monitoring. An early warning system based on SECC values and cumulative amounts of pesticides predicted that clothianidin may exceed the threshold within 0.1 years. These pesticides should be prioritized for management and regulation to prevent soil environmental degradation. The findings can help inform policymakers and stakeholders on pesticide management and sustainable agricultural development in Horqin Left Middle Banner and similar regions.
Collapse
Affiliation(s)
- Yang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Zhengyu Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Jing Jing
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Feifei Bao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Lanxin Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Yuhan Du
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Hongyan Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
2
|
Khayyat AIA, Zargar S, Wani TA, Rehman MU, Khan AA. Association Mechanism and Conformational Changes in Trypsin on Its Interaction with Atrazine: A Multi- Spectroscopic and Biochemical Study with Computational Approach. Int J Mol Sci 2022; 23:ijms23105636. [PMID: 35628445 PMCID: PMC9146720 DOI: 10.3390/ijms23105636] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
Atrazine (ATR) is a herbicide globally used to eliminate undesired weeds. Herbicide usage leads to various adverse effects on human health and the environment. The primary source of herbicides in humans is the food laced with the herbicides. The ATR binding to trypsin (TYP) was investigated in this study to explore its binding potential and toxicity. In vitro interaction of ATR with TYP was studied using multi-spectroscopic methods, molecular docking, and enzyme kinetics to explore the mechanism of binding for the TYP-ATR system. The TYP-ATR complex revealed binding constants (103 M-1), suggesting a moderate binding. The free energy for the TYP-ATR complexes was negative, suggesting a spontaneous interaction. Thermodynamic parameters enthalpy (ΔH) and entropy (ΔS) obtained positive values for the TYP-ATR system suggesting hydrophobic interactions in the binding process. Micro-environmental and conformational changes in TYP molecules were induced on interaction with ATR. Reduced catalytic activity of TYP was observed after interaction with ATR owing to the changes in the secondary structure of the TYP.
Collapse
Affiliation(s)
- Arwa Ishaq A. Khayyat
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
- Correspondence: (S.Z.); (T.A.W.)
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Correspondence: (S.Z.); (T.A.W.)
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Azmat Ali Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
3
|
Endocrine-Disrupting Chemicals and Their Adverse Effects on the Endoplasmic Reticulum. Int J Mol Sci 2022; 23:ijms23031581. [PMID: 35163501 PMCID: PMC8836273 DOI: 10.3390/ijms23031581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
There is growing concern regarding the health and safety issues of endocrine-disrupting chemicals (EDCs). Long-term exposure to EDCs has serious adverse health effects through both hormone-direct and hormone-indirect ways. Accordingly, some EDCs can be a pathogen and an inducer to the susceptibility of disease, even if they have a very low affinity on the estrogen receptor, or no estrogenic effect. Endoplasmic reticulum (ER) stress recently attracted attention in this research area. Because ER and ER stress could be key regulators of the EDC’s adverse effects, such as the malfunction of the organ, as well as the death, apoptosis, and proliferation of a cell. In this review, we focused on finding evidence which shows that EDCs could be a trigger for ER stress and provide specific examples of EDCs, which are known to cause ER stress currently.
Collapse
|
4
|
Hvězdová M, Kosubová P, Košíková M, Scherr KE, Šimek Z, Brodský L, Šudoma M, Škulcová L, Sáňka M, Svobodová M, Krkošková L, Vašíčková J, Neuwirthová N, Bielská L, Hofman J. Currently and recently used pesticides in Central European arable soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 613-614:361-370. [PMID: 28917175 DOI: 10.1016/j.scitotenv.2017.09.049] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/03/2017] [Accepted: 09/06/2017] [Indexed: 05/21/2023]
Abstract
Although large amounts of pesticides are used annually and a majority enters the soil to form short- or long-term residues, extensive soil surveys for currently used pesticides (CUPs) are scarce. To determine the status of CUPs' occurrence in arable land in Central Europe, 51 CUPs and 9 transformation products (TPs) were analysed in 75 arable soils in the Czech Republic (CR) several months after the last pesticide application. Moreover, two banned triazines (simazine and atrazine) and their TPs were analysed because of their frequent detection in CR waters. Multi-residue pesticide analysis on LC-MS/MS after soil QuEChERS extraction was used. The soils contained multiple pesticide residues frequently (e.g. 51% soils with ≥5 pesticides). The levels were also noticeable (e.g. 36% soils with ≥3 pesticides exceeding the threshold of 0.01mg/kg). After triazine herbicides (89% soils), conazole fungicides showed the second most frequent occurrence (73% soils) and also high levels (53% soils with total conazoles above 0.01mg/kg). Frequent occurrence was found also for chloroacetanilide TPs (25% of soils), fenpropidin (20%) and diflufenican (17%). With the exception of triazines' negative correlation to soil pH, no clear relationships were found between pesticide occurrence and soil properties. Association of simazine TPs with terbuthylazine and its target crops proved the frequent residues of this banned compound originate from terbuthylazine impurities. In contrast, frequent atrazine-2-hydroxy residue is probably a legacy of high atrazine usage in the past. The occurrence and levels of compounds were closely associated with their solubility, hydrophobicity and half-life. The results showed links to CR water-monitoring findings. This study represents the first extensive survey of multiple pesticide residues in Central European arable soils, including an insight into their relationships to site and pesticide properties.
Collapse
Affiliation(s)
- Martina Hvězdová
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - Petra Kosubová
- Central Institute for Supervising and Testing in Agriculture, Hroznová 2, Brno 656 06, Czech Republic
| | | | - Kerstin E Scherr
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic; Institute for Environmental Biotechnology, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences (BOKU), Konrad-Lorenz-Strasse 20, A-3430 Tulln, Austria
| | - Zdeněk Šimek
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - Lukáš Brodský
- Department of Applied Geoinformatics and Cartography, Faculty of Science, Charles University in Prague, Albertov 6, Praha 2, 128 43, Czech Republic
| | - Marek Šudoma
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - Lucia Škulcová
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - Milan Sáňka
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - Markéta Svobodová
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - Lucia Krkošková
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - Jana Vašíčková
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - Natália Neuwirthová
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - Lucie Bielská
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - Jakub Hofman
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic.
| |
Collapse
|
5
|
Zhang XF, Zhang CH, Zheng J, Li LX, Geng TQ, Zhang Y. Potential biomarkers for monitoring the toxicity of long-term exposure to atrazine in rat by metabonomic analysis. Xenobiotica 2017; 48:241-249. [PMID: 28322061 DOI: 10.1080/00498254.2017.1303221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
1. Herbicide atrazine (ATR) poses harmful effects on human health. The purpose of this study is to study potential biomarkers used for monitoring the toxic effects after chronic exposure to ATR by studying urine metabolites. 2. Rats were assigned into clinical chemistry and metabonomics arms, and each arm was divided into low-dose, high-dose and control groups. ATR was administered to rats along with their feed. At the end of 16, 20 and 24 weeks, clinical parameters and histopathologic changes was assessed to monitor the toxic effects. Twenty-four hour urine samples was analyzed by UPLC-MS, to find the significant alterations in metabolic profiling. 3. The body weight of rats in ATR group was lower than that of control starting from 12th week; abnormal levels of serum biochemistry and histopathologic alterations of organs were found initially from 16th and 20th week, respectively. Five exogenous and five endogenous metabolites were found which showed significant differences between ATR groups and control group at above-mentioned time points. 4. These metabolites may be used as potential indicators to monitor ATR toxicity, and also may provide some clues for understanding the mechanism of toxicity of ATR. The exact relationship between endogenous metabolites and ATR toxicity needs further investigation.
Collapse
Affiliation(s)
- Xiao-Feng Zhang
- a Department of Toxicology, Public Health School , Harbin Medical University , Harbin , P.R. China
| | - Chong-Hua Zhang
- b Department of Toxicology , Harbin Centre for Disease Control and Prevention , Harbin , P.R. China , and
| | - Jing Zheng
- c Department of Public Health Monitoring , Heilongjiang Provincial Centre for Disease Control and Prevention , Harbin , P.R. China
| | - Long-Xue Li
- a Department of Toxicology, Public Health School , Harbin Medical University , Harbin , P.R. China
| | - Tian-Qi Geng
- a Department of Toxicology, Public Health School , Harbin Medical University , Harbin , P.R. China
| | - Yang Zhang
- a Department of Toxicology, Public Health School , Harbin Medical University , Harbin , P.R. China
| |
Collapse
|
6
|
Oral Exposure to Atrazine Induces Oxidative Stress and Calcium Homeostasis Disruption in Spleen of Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7978219. [PMID: 27957240 PMCID: PMC5121465 DOI: 10.1155/2016/7978219] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 08/24/2016] [Accepted: 08/29/2016] [Indexed: 01/02/2023]
Abstract
The widely used herbicide atrazine (ATR) can cause many adverse effects including immunotoxicity, but the underlying mechanisms are not fully understood. The current study investigated the role of oxidative stress and calcium homeostasis in ATR-induced immunotoxicity in mice. ATR at doses of 0, 100, 200, or 400 mg/kg body weight was administered to Balb/c mice daily for 21 days by oral gavage. The studies performed 24 hr after the final exposure showed that ATR could induce the generation of reactive oxygen species in the spleen of the mice, increase the level of advanced oxidation protein product (AOPP) in the host serum, and cause the depletion of reduced glutathione in the serum, each in a dose-related manner. In addition, DNA damage was observed in isolated splenocytes as evidenced by increase in DNA comet tail formation. ATR exposure also caused increases in intracellular Ca2+ within splenocytes. Moreover, ATR treatment led to increased expression of genes for some antioxidant enzymes, such as HO-1 and Gpx1, as well as increased expression of NF-κB and Ref-1 proteins in the spleen. In conclusion, it appears that oxidative stress and disruptions in calcium homeostasis might play an important role in the induction of immunotoxicity in mice by ATR.
Collapse
|
7
|
Lee EJ, Jang Y, Kang K, Song DH, Kim R, Chang HW, Lee DE, Song CKE, Choi B, Kang MJ, Chang EJ. Atrazine induces endoplasmic reticulum stress-mediated apoptosis of T lymphocytes via the caspase-8-dependent pathway. ENVIRONMENTAL TOXICOLOGY 2016; 31:998-1008. [PMID: 25640594 DOI: 10.1002/tox.22109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/15/2014] [Accepted: 12/21/2014] [Indexed: 06/04/2023]
Abstract
Atrazine (ATR) is one of the most commonly applied broad-spectrum herbicides. Although ATR is well known to be a biologically hazardous molecule with potential toxicity in the immune system, the molecular mechanisms responsible for ATR-induced immunotoxicity remain unclear. In this study, we found that the immunotoxic properties of ATR were mediated through the induction of apoptotic changes in T lymphocytes. Mice exposed to ATR for 4 weeks exhibited a significant decrease in the number of spleen CD3(+) T lymphocytes, while CD19(+) B lymphocytes and nonlymphoid cells were unaffected. ATR exposure also led to inhibition of cell growth and induction of apoptosis in human Jurkat T-cells. Importantly, ATR triggered the activation of caspase-3 and the cleavage of caspase-8 and PARP, whereas it did not affect the release of cytochrome c from the mitochondria in Jurkat T-cells. In addition, ATR activated the unfolded protein response signaling pathway, as indicated by eIF2α phosphorylation and CHOP induction. Our results demonstrate that ATR elicited an immunotoxic effect by inducing ER stress-induced apoptosis in T-cells, therefore providing evidence for the molecular mechanism by which ATR induces dysregulation of the immune system. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 998-1008, 2016.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Youngsaeng Jang
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Kwonyoon Kang
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Da-Hyun Song
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Rihyun Kim
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Hee-Won Chang
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Dong Eil Lee
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Claire Ka-Eun Song
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Bongkun Choi
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Min-Ji Kang
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| | - Eun-Ju Chang
- Department of Biomedical Sciences, Cell Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 138-736, Republic of Korea
| |
Collapse
|
8
|
Chan-Cupul W, Heredia-Abarca G, Rodríguez-Vázquez R. Atrazine degradation by fungal co-culture enzyme extracts under different soil conditions. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2016; 51:298-308. [PMID: 26830051 DOI: 10.1080/03601234.2015.1128742] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This investigation was undertaken to determine the atrazine degradation by fungal enzyme extracts (FEEs) in a clay-loam soil microcosm contaminated at field application rate (5 μg g(-1)) and to study the influence of different soil microcosm conditions, including the effect of soil sterilization, water holding capacity, soil pH and type of FEEs used in atrazine degradation through a 2(4) factorial experimental design. The Trametes maxima-Paecilomyces carneus co-culture extract contained more laccase activity and hydrogen peroxide (H2O2) content (laccase = 18956.0 U mg protein(-1), H2O2 = 6.2 mg L(-1)) than the T. maxima monoculture extract (laccase = 12866.7 U mg protein(-1), H2O2 = 4.0 mg L(-1)). Both extracts were able to degrade atrazine at 100%; however, the T. maxima monoculture extract (0.32 h) achieved a lower half-degradation time than its co-culture with P. carneus (1.2 h). The FEE type (p = 0.03) and soil pH (p = 0.01) significantly affected atrazine degradation. The best degradation rate was achieved by the T. maxima monoculture extract in an acid soil (pH = 4.86). This study demonstrated that both the monoculture extracts of the native strain T. maxima and its co-culture with P. carneus can efficiently and quickly degrade atrazine in clay-loam soils.
Collapse
Affiliation(s)
- Wilberth Chan-Cupul
- a Biological Control and Applied Mycology Laboratory, Faculty of Biological and Agro-livestock Sciences, University of Colima , Tecoman , Colima , Mexico
| | | | - Refugio Rodríguez-Vázquez
- c Department of technology and Bioengineering, Center for Research and Advanced Studies of the National Polytechnic Institute , Mexico City , Mexico
| |
Collapse
|
9
|
Ma K, Wu HY, Zhang B, He X, Li BX. Neurotoxicity effects of atrazine-induced SH-SY5Y human dopaminergic neuroblastoma cells via microglial activation. MOLECULAR BIOSYSTEMS 2015; 11:2915-24. [DOI: 10.1039/c5mb00432b] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Atrazine (2-chloro-4-ethytlamino-6-isopropylamine-1,3,5-triazine; ATR) is a broad-spectrum herbicide with a wide range of applications worldwide.
Collapse
Affiliation(s)
- Kun Ma
- Department of Hygienic Toxicology
- Public Health College
- Harbin Medical University
- Harbin
- P. R. China
| | - Hao-Yu Wu
- Department of Hygienic Toxicology
- Public Health College
- Harbin Medical University
- Harbin
- P. R. China
| | - Bo Zhang
- Department of Hygienic Toxicology
- Public Health College
- Harbin Medical University
- Harbin
- P. R. China
| | - Xi He
- Department of Hygienic Toxicology
- Public Health College
- Harbin Medical University
- Harbin
- P. R. China
| | - Bai-Xiang Li
- Department of Hygienic Toxicology
- Public Health College
- Harbin Medical University
- Harbin
- P. R. China
| |
Collapse
|
10
|
Zhang B, Ma K, Li B. Inflammatory reaction regulated by microglia plays a role in atrazine-induced dopaminergic neuron degeneration in the substantia nigra. J Toxicol Sci 2015; 40:437-50. [DOI: 10.2131/jts.40.437] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Bo Zhang
- Department of Toxicology, School of Public Health, Harbin Medical University, China
| | - Kun Ma
- Department of Toxicology, School of Public Health, Harbin Medical University, China
| | - Baixiang Li
- Department of Toxicology, School of Public Health, Harbin Medical University, China
| |
Collapse
|
11
|
Repeated exposure to the herbicide atrazine alters locomotor activity and the nigrostriatal dopaminergic system of the albino rat. Neurotoxicology 2012; 34:82-94. [PMID: 23123945 DOI: 10.1016/j.neuro.2012.10.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 10/23/2012] [Accepted: 10/24/2012] [Indexed: 11/23/2022]
Abstract
Atrazine (ATR) is used as a pre- and post-emergent herbicide; although banned in several countries of the European Community, it is still used extensively around the world. A recent study in rats has shown that chronic, daily exposure to 10 mg ATR/kg BW causes hyperactivity, disrupts motor coordination and learning of behavioral tasks, and decreases dopamine levels in the brain. In order to evaluate the short-term effect of ATR exposure on locomotor activity, monoamine markers, and antioxidants, adult male Sprague-Dawley rats received six IP injections of 100 mg ATR/kg BW or vehicle over two weeks. After every ATR injection we found hypoactivity that lasted up to five days, and it was accompanied by reductions in levels of striatal DA, DOPAC, and HVA without any alteration in the striatal expression of the mRNAs for Mn-SOD, Trx-1, DAR-D(1), or DAR-D(2). In contrast, in the nucleus accumbens no changes in monoamine markers were observed, and a down-regulation of Trx-1 expression was detected shortly after the ATR treatment. Moreover, in the ventral midbrain, we found that ATR induced a down-regulation of mRNA for Th and DAT, but it increased VMAT2 mRNA expression. Decreases of monoamine levels and of locomotor activity disappeared three months after ATR treatment; however, an amphetamine challenge (1 mg/kg) given two months after the ATR treatment resulted in a significant stimulation in the exposed group, revealing hidden effects of ATR on dopaminergic systems. These results indicate that ATR exposure differentially modifies the dopaminergic systems, and these modifications may underlie the behavioral changes observed.
Collapse
|
12
|
Basini G, Bianchi F, Bussolati S, Baioni L, Ramoni R, Grolli S, Conti V, Bianchi F, Grasselli F. Atrazine disrupts steroidogenesis, VEGF and NO production in swine granulosa cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 85:59-63. [PMID: 22999709 DOI: 10.1016/j.ecoenv.2012.08.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 08/08/2012] [Accepted: 08/29/2012] [Indexed: 06/01/2023]
Abstract
Atrazine is one of the most widely employed herbicides. Due to its environmental persistence, it can be detected in ground and water thus becoming the subject of a serious concern because of its potential endocrine disrupting activity. In particular, several in vitro and in vivo studies point out adverse effects on reproduction. However, these data were mainly collected in the male, while studies on females are lacking. Present work was therefore set up on swine ovarian granulosa cells to investigate the effect of atrazine on steroidogenesis and proliferation. Moreover, since vessel growth is fundamental for reproductive function, we evaluated the herbicide's effect on two of the main angiogenesis signaling molecules, VEGF and NO. Our data show that atrazine markedly interferes with steroidogenesis while it does not modify cell proliferation; in addition, the herbicide has also been found to affect the production of the examined angiogenesis molecules. Collectively, these results indicate for the first time a potential negative effect of atrazine on ovarian functions in the swine species.
Collapse
Affiliation(s)
- Giuseppina Basini
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Atrazine accumulation, oxidative stress, and defense response in maize seedlings exposed to extraneous atrazine were studied. Accumulation of atrazine in maize increased with increasing exposure concentration. The abscisic acid (ABA) content was positively correlated with the atrazine concentrations in maize roots and shoots (p < 0.05). Hydroxyl radical (*OH) in maize was determined in vivo with electron paramagnetic resonance spectroscopy. Its intensity was positively correlated with atrazine concentration in roots and shoots (p < 0.05), and higher level of *OH generated in roots than in shoots corresponded to the major accumulation of atrazine in roots. Superoxide dismutase, peroxidase and catalase in roots were up-regulated by atrazine exposure at 1 mg/L compared to the control and malondialdehyde content in roots was enhanced when atrazine exposure concentration reached 10 mg/L. These results suggested the exposure and accumulation of atrazine caused oxidative toxicity and antioxidant response in maize.
Collapse
Affiliation(s)
- Xiuying Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | | | | | | |
Collapse
|
14
|
Abstract
BACKGROUND Atrazine (2-chloro-4-ethytlamino-6-isopropylamine-1,3,5-triazine; ATR), is the most commonly applied broad-spectrum herbicide in the world. Unintentional overspray of ATR poses an immune function health hazard. The biomolecular mechanisms responsible for ATR-induced immunotoxicity, however, are little understood. This study presents on our investigation into the apoptosis of splenocytes in mice exposed to ATR as we explore possible immunotoxic mechanisms. METHODS Oral doses of ATR were administered to BALB/C mice for 21 days. The histopathology, lymphocyte apoptosis and the expression of apoptosis-related proteins from the Fas/Fas ligand (FasL) apoptotic pathway were examined from spleen samples. RESULTS Mice administered ATR exhibited a significant decrease in spleen and thymus weight. Electron microscope histology of ultrathin sections of spleen revealed degenerative micromorphology indicative of apoptosis of splenocytes. Flow cytometry revealed that the percentage of apoptotic lymphocytes increased in a dose-dependent manner after ATR treatment. Western blots identified increased expression of Fas, FasL and active caspase-3 proteins in the treatment groups. CONCLUSIONS ATR is capable of inducing splenocytic apoptosis mediated by the Fas/FasL pathway in mice, which could be the potential mechanism underlying the immunotoxicity of ATR.
Collapse
|
15
|
|
16
|
Hosmer AJ. Response from Syngenta: the need for objective, science-based advocacy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:7595. [PMID: 19921861 DOI: 10.1021/es902241t] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|