1
|
Chen CX, Yang SS, Pang JW, He L, Zang YN, Ding L, Ren NQ, Ding J. Anthraquinones-based photocatalysis: A comprehensive review. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100449. [PMID: 39104553 PMCID: PMC11298862 DOI: 10.1016/j.ese.2024.100449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024]
Abstract
In recent years, there has been significant interest in photocatalytic technologies utilizing semiconductors and photosensitizers responsive to solar light, owing to their potential for energy and environmental applications. Current efforts are focused on enhancing existing photocatalysts and developing new ones tailored for environmental uses. Anthraquinones (AQs) serve as redox-active electron transfer mediators and photochemically active organic photosensitizers, effectively addressing common issues such as low light utilization and carrier separation efficiency found in conventional semiconductors. AQs offer advantages such as abundant raw materials, controlled preparation, excellent electron transfer capabilities, and photosensitivity, with applications spanning the energy, medical, and environmental sectors. Despite their utility, comprehensive reviews on AQs-based photocatalytic systems in environmental contexts are lacking. In this review, we thoroughly describe the photochemical properties of AQs and their potential applications in photocatalysis, particularly in addressing key environmental challenges like clean energy production, antibacterial action, and pollutant degradation. However, AQs face limitations in practical photocatalytic applications due to their low electrical conductivity and solubility-related secondary contamination. To mitigate these issues, the design and synthesis of graphene-immobilized AQs are highlighted as a solution to enhance practical photocatalytic applications. Additionally, future research directions are proposed to deepen the understanding of AQs' theoretical mechanisms and to provide practical applications for wastewater treatment. This review aims to facilitate mechanistic studies and practical applications of AQs-based photocatalytic technologies and to improve understanding of these technologies.
Collapse
Affiliation(s)
- Cheng-Xin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Talroad Technology Co., Ltd., Beijing, 100096, China
| | - Lei He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ya-Ni Zang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lan Ding
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
2
|
Lu H, Zhou Y, Fu Z, Wang X, Zhou J, Guo W. Mutual interaction between the secreted flavins and immobilized quinone in anaerobic removal of high-polarity aromatic compounds containing nitrogen by Shewanella sp. RQs-106. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128595. [PMID: 35247734 DOI: 10.1016/j.jhazmat.2022.128595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
The immobilized anthraquinone-2-sulfonate (iAQS) could significantly promote anaerobic biotransformation of the contaminants. During this process, the role of flavins secreted by bacteria remains unclear. In the present study, mutual interaction between extracellular flavins and AQS-modified polyurethane foam (AQS-PUF) during the reduction of azo dye Acid Red 18 and 3-nitrobenzenesulfonate (3-NBS) was investigated. Results showed that the amount of extracellular flavins secreted by Shewanella sp. RQs-106 was positively correlated with the concentration of iAQS ranging from 10 to 100 μM. The presence of iAQS resulted in the increased concentration of extracellular and intracellular flavins, implying that iAQS could induce the synthesis and secretion of flavins. The deletion of gene bfe encoding the flavin adenine dinucleotide exporter resulted in approximately 63.8% decrease in the amount of extracellular flavins. Further analysis showed that the decreased amount of extracellular flavins could contribute to around 50.8% reduction of iAQS. Moreover, around 23.2% and 34.0% decreases were observed in AQS-PUF-mediated removal rates of AR 18 and 3-NBS by mutant lacking bfe gene, respectively, compared with that by wild type strain RQs-106. These results indicated that the secreted flavins played an important role in the bio-reduction of AQS-PUF, resulting in their contribution to AQS-PUF-mediated removals of high-polarity aromatic compounds containing nitrogen.
Collapse
Affiliation(s)
- Hong Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yang Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ze Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaolei Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
3
|
Silva AR, Alves MM, Pereira L. Progress and prospects of applying carbon-based materials (and nanomaterials) to accelerate anaerobic bioprocesses for the removal of micropollutants. Microb Biotechnol 2022; 15:1073-1100. [PMID: 34586713 PMCID: PMC8966012 DOI: 10.1111/1751-7915.13822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 11/28/2022] Open
Abstract
Carbon-based materials (CBM), including activated carbon (AC), activated fibres (ACF), biochar (BC), nanotubes (CNT), carbon xenogels (CX) and graphene nanosheets (GNS), possess unique properties such as high surface area, sorption and catalytic characteristics, making them very versatile for many applications in environmental remediation. They are powerful redox mediators (RM) in anaerobic processes, accelerating the rates and extending the level of the reduction of pollutants and, consequently, affecting positively the global efficiency of their partial or total removal. The extraordinary conductive properties of CBM, and the possibility of tailoring their surface to address specific pollutants, make them promising as catalysts in the treatment of effluents containing diverse pollutants. CBM can be combined with magnetic nanoparticles (MNM) assembling catalytic and magnetic properties in a single composite (C@MNM), allowing their recovery and reuse after the treatment process. Furthermore, these composites have demonstrated extraordinary catalytic properties. Evaluation of the toxicological and environmental impact of direct and indirect exposure to nanomaterials is an important issue that must be considered when nanomaterials are applied. Though the chemical composition, size and physical characteristics may contribute to toxicological effects, the potential toxic impact of using CBM is not completely clear and is not always assessed. This review gives an overview of the current research on the application of CBM and C@MNM in bioremediation and on the possible environmental impact and toxicity.
Collapse
Affiliation(s)
- Ana Rita Silva
- CEB –Centre of Biological EngineeringUniversity of MinhoCampus de GualtarBraga4710‐057Portugal
| | - Maria Madalena Alves
- CEB –Centre of Biological EngineeringUniversity of MinhoCampus de GualtarBraga4710‐057Portugal
| | - Luciana Pereira
- CEB –Centre of Biological EngineeringUniversity of MinhoCampus de GualtarBraga4710‐057Portugal
| |
Collapse
|
4
|
Insoluble carbonaceous materials as electron shuttles enhance the anaerobic/anoxic bioremediation of redox pollutants: Recent advances. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Wang ZY, Ju CJ, Zhang R, Hua JQ, Chen RP, Liu GX, Yin K, Yu L. Acceleration of the bio-reduction of methyl orange by a magnetic and extracellular polymeric substance nanocomposite. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126576. [PMID: 34252658 DOI: 10.1016/j.jhazmat.2021.126576] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Extracellular electron transfer (EET) plays an important role in bio-reduction of environmental pollutants. Extracellular polymeric substances (EPS), a kind of biogenic macromolecule, contain functional groups responsible for acceleration of EET. In this study, azo dye-methyl orange (MO) was chosen as a model pollutant, and a Fe3O4 and EPS nanocomposite (Fe3O4@EPS) was prepared to evaluate its promotion on the bio-reduction of MO. The flower-like core-shell configuration of Fe3O4@EPS with a 12 nm of light layer of EPS was confirmed by TEM. The redox ability of EPS was well reserved on Fe3O4@EPS by FTIR and electrochemical test. The application of Fe3O4@EPS on sustained acceleration of MO decolorization were confirmed by batch experiments and anaerobic sequenced batch reactors. Due to biocompatibility of the biogenic shell, the as-prepared Fe3O4@EPS exhibited low toxic to microorganisms by the Live/dead cell test. Moreover, negligible leaching of EPS under high concentration of various anions and less than 10% of EPS was released under extreme acidic and basic pH condition. The results of study provided a new preparation method of biological intimate and environmentally friendly redox mediators and suggested a feasible way for its use on bio-reduction of pollutants.
Collapse
Affiliation(s)
- Zi-Yang Wang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; School of Environmental Science, Nanjing XiaoZhuang University, Nanjing 211171, China
| | - Cheng-Jia Ju
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Rui Zhang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jing-Qiu Hua
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Rong-Ping Chen
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Guang-Xiang Liu
- School of Environmental Science, Nanjing XiaoZhuang University, Nanjing 211171, China
| | - Ke Yin
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Yu
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; School of Environmental Science, Nanjing XiaoZhuang University, Nanjing 211171, China.
| |
Collapse
|
6
|
Zhou W, Chen X, Ismail M, Wei L, Hu B. Simulating the synergy of electron donors and different redox mediators on the anaerobic decolorization of azo dyes: Can AQDS-chitosan globules replace the traditional redox mediators? CHEMOSPHERE 2021; 275:130025. [PMID: 33677275 DOI: 10.1016/j.chemosphere.2021.130025] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/25/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
During anaerobic treatment of azo dye wastewater, the decolorization efficiency is low and dissolved redox mediators (RMs) added to the system are easy lost. In order to solve these issues, immobilized RMs have been a hot area of research. In this study a novel immobilized RM material, disodium anthraquinone-2,6-disulfonate (AQDS)-chitosan globules, which is natural, highly efficient and environmentally friendly, was prepared. Compared with natural immobilized RMs (activated carbon) and dissolved RMs (AQDS), it can be considered that it has a significant strengthening effect on the anaerobic biological degradation and decolorization of azo dye wastewater. An electron donor (ED, glucose) or RM (AQDS solution) was dosed into an anaerobic reactor to determine the enhancing effect and appropriate concentration for the decolorization treatment. The results indicate that a certain concentration of ED or RM [300 mg/L (1.667 mmol/L) glucose or 200 μmol/L AQDS solution] can improve effectively the anaerobic biological degradation and decolorization effect of azo dye wastewater. While by adding both 300 mg/L (1.667 mmol/L) glucose and 300 μmol/L AQDS (the concentrations were the initial reactive concentrations) together the decolorization efficiency was improved further. At the same time, the synergy of ED (glucose) and RM (AQDS solution) on the anaerobic decolorization of azo dye was simulated by the central combination design. A mathematical model for the decolorization efficiency has been established. According to this model, the hydraulic retention time of the best decolorization speed and efficiency has been obtained.
Collapse
Affiliation(s)
- Weizhu Zhou
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaoguang Chen
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China; School of Mechanical Engineering, Sichuan University of Science & Engineering, Sichuan Provincial Key Lab of Process Equipment and Control, Zigong, 643000, China.
| | - Muhammad Ismail
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Liang Wei
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Baolan Hu
- Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Lu H, Wang J, Huang L, Wang X, Zhou J, Wang J. Effect of immobilized anthraquinone-2-sulfonate on antibiotic resistance genes and microbial community in biofilms of anaerobic reactors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 282:111967. [PMID: 33454531 DOI: 10.1016/j.jenvman.2021.111967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Quinone compounds could significantly accelerate anaerobic biotransformation of refractory pollutants. However, the effect of quinone compounds application on the propagation of antibiotic resistance genes (ARGs) in the bio-treatment of these pollutants-containing wastewater is not available. In this study, the catalytic performance of anthraquinone-2-sulfonate immobilized on polyurethane foam (AQS-PUF), changes of ARGs, mobile gene elements (MGEs) and microbial community structure attached on AQS-PUF and PUF in the up-flow anaerobic bioreactors were investigated. The results showed that AQS-PUF could significantly accelerate the decolorization of azo dye RR X-3B. Meanwhile, metagenomics analysis showed that the total absolute abundance of ARGs increased in the presence of the immobilized AQS. Among ARGs, the number of the efflux pump-encoding ARGs in the biofilm of AQS-PUF accounted for 35.7% of the total ARGs, which was slightly higher than that of PUF (32.1%) due to the presence of the immobilized AQS. The relative abundances of ARGs conferring resistance to MLS (macrolide, lincosamide and streptogramin), tetracycline and sulfonamide, which were deeply concerned, reduced 10%, 21.7% and 7.3% in the presence of the immobilized AQS, respectively. Moreover, the immobilized AQS resulted in the decreased relative abundance of plasmids, transposons and class I integrons. Among the detected 31 ARG subtypes located in MGEs, the relative abundances of only lnuF, msrE and mphD in the biofilm of AQS-PUF were over 2-fold higher compared with those in the biofilm of PUF. However, the three ARGs and their host Gammaproteobacteria was not dominant in microbial community. The relative abundances of more ARGs including MLS (lnuB and EreA), tetracycline (tetH) resistance genes located in MGEs decreased, which was attributed to the decreased relative abundance of their hosts. These studies showed that the addition of the immobilized AQS (around 0.25 mM) had a beneficial effect on reducing the spread of ARGs during dyeing wastewater bio-treatment.
Collapse
Affiliation(s)
- Hong Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Jiaojiao Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Liping Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xiaolei Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
8
|
Song YH, Xu QT, He T, Wang ZY, Yu L. Efficient Biodegradation of Azo Dyes Catalyzed by the Anthraquinone-2-sulfonate and Reduced Graphene Oxide Nanocomposite. ACS OMEGA 2020; 5:21137-21144. [PMID: 32875250 PMCID: PMC7450617 DOI: 10.1021/acsomega.0c02837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/27/2020] [Indexed: 05/09/2023]
Abstract
An anthraquinone-2-sulfonate and reduced graphene oxide nanocomposite (AQS@rGO) was prepared and the improvement on the biotic reduction of a pollutant, i.e., azo dye, was demonstrated. Electron paramagnetic resonance signal of the semi-quinone radical in the well-dispersed solid AQS@rGO solution was detected. Although the as-prepared AQS@rGO has a negligible adsorption capacity toward methyl orange (MO) dye, the decolorization efficiencies in both flask experiments and sequencing operation reactors in the presence of AQS@rGO were increased by more than 1.5 times as compared to that with graphene oxide, and an efficient and continuable catalytic effect on the decolorization of azo dyes in seven operation periods was maintained. The catalytic effect on reduction was caused by the formation of a space-charge layer, which facilitates the efficient e- transfer from the conductive rGO sheets to the C=O of the AQS molecule. The results suggested that the AQS@rGO may act as an efficient insoluble redox mediator, which is important for the pollution control by accelerating the extracellular electron transfer.
Collapse
Affiliation(s)
- Yu-hang Song
- Department of Environmental
Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Qing-tao Xu
- Department of Environmental
Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Tao He
- Department of Environmental
Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zi-yang Wang
- Department of Environmental
Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Yu
- Department of Environmental
Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
9
|
Castañon D, Alvarez LH, Peña K, García-Reyes RB, Martinez CM, Pat-Espadas A. Azo dye biotransformation mediated by AQS immobilized on activated carbon cloth in the presence of microbial inhibitors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1163-1169. [PMID: 31252114 DOI: 10.1016/j.envpol.2019.06.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
In this work, anthraquinone-2-sulfonate (AQS) was covalently immobilized onto activated carbon cloth (ACC), to be used as redox mediator for the reductive decolorization of reactive red 2 (RR2) by an anaerobic consortium. The immobilization of AQS improved the capacity of ACC to transfer electrons, evidenced by an increment of 3.29-fold in the extent of RR2 decolorization in absence of inhibitors, compared to incubations lacking AQS. Experiments conducted in the presence of vancomycin, an inhibitor of acidogenic bacteria, and with 2-bromoethane sulfonic acid (BES), an inhibitor of methanogenic archaea, revealed that acidogenic bacteria are the main responsible for RR2 biotransformation mediated by immobilized AQS. Nonetheless, the results also suggest that some methanogens are able to maintain their capacity to use immobilized AQS as an electron acceptor to sustain the decolorization process, even in the presence of BES.
Collapse
Affiliation(s)
- Daniel Castañon
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Av. Universidad S/N, Cd. Universitaria, C.P. 66455, San Nicolás de los Garza, Nuevo León, Mexico
| | - Luis H Alvarez
- Instituto Tecnológico de Sonora (ITSON), Departamento de Ciencias Agronómicas y Veterinarias, 5 de Febrero 818 Sur, Centro, C.P. 85000, Cuidad Obregón, Sonora, Mexico.
| | - Karen Peña
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Av. Universidad S/N, Cd. Universitaria, C.P. 66455, San Nicolás de los Garza, Nuevo León, Mexico
| | - Refugio B García-Reyes
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Av. Universidad S/N, Cd. Universitaria, C.P. 66455, San Nicolás de los Garza, Nuevo León, Mexico
| | - Claudia M Martinez
- Universidad Autónoma de San Luis Potosí (UASLP), Facultad de Ciencias, Lateral Av. Salvador Nava Martínez S/N, Zona Universitaria, C.P. 78290, San Luis Potosí, SLP, Mexico
| | - Aurora Pat-Espadas
- Conacyt-UNAM, Instituto de Geología, Estación Regional del Noroeste (ERNO), Luis D. Colosio y Madrid S/N, C.P. 83000, Hermosillo, Sonora, Mexico
| |
Collapse
|
10
|
Yu L, Wang PT, Xu QT, He T, Oduro G, Lu Y. Enhanced decolorization of methyl orange by Bacillus sp. strain with magnetic humic acid nanoparticles under high salt conditions. BIORESOURCE TECHNOLOGY 2019; 288:121535. [PMID: 31152957 DOI: 10.1016/j.biortech.2019.121535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 05/24/2023]
Abstract
In this study, magnetic humic acid (MHA) nanoparticle was prepared and confirmed the enhancement on reduction of azo dyes under high salt concentration. The anaerobic growth of the strain Bacillus sp. on quinones makes the biogenic hydroquinone feasible, and the latter was proven to reduce the azo dyes stoichiometrically. This in-situ reversibly oxidation and reduction of MHA acts as electron shuttle to catalyze the biotic reduction of the azo dyes. The biodegradation efficiencies in batch experiments and sequencing batch reactor with MHA were increased by 1.5-2.5 times as compared to that of control without the catalyzer. Moreover, the negligible leaching of HA under various environmental conditions suggests the robustness of the coating of HA on Fe/O surface. These results indicated that the as-prepared MHA could be used as redox mediator to accelerate the extracellular electron transfer, which is of great environmental significance for the removal of hazardous compounds.
Collapse
Affiliation(s)
- Lei Yu
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Peng-Tao Wang
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Qing-Tao Xu
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tao He
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - George Oduro
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yan Lu
- Institute of Engineering, Architecture & Information Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
11
|
Lu H, Zhang T, Zhou Y, Zhou J, Wang J, Wang X. Enhanced dechlorination and biodegradation of 2-chloroaniline by a 2-aminoanthraquinone-graphene oxide composite under anaerobic conditions. Sci Rep 2019; 9:12376. [PMID: 31451740 PMCID: PMC6710426 DOI: 10.1038/s41598-019-48904-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 08/14/2019] [Indexed: 11/22/2022] Open
Abstract
The effect of a 2-aminoanthraquinone-graphene oxide (AQ-GO) composite on the anaerobic dechlorination and degradation of chloroanilines by an enriched bacterial consortium was investigated. The results showed that the maximal degradation efficiency of 20 mg/L 2-chloroaniline (2-CA) reached 91.4% at a dose of 20 mg/L AQ-GO in 30 d. Moreover, the pseudo-first-order rate constant of 2-CA degradation in the AQ-GO-mediated system was 2.9-fold higher than those in AQ- and GO-mediated systems alone. During this process, a synergetic effect between AQ and GO was observed, which was attributed to the increased intracellular and extracellular electron transfer pathways. GC-MS analysis showed that 2-CA could be degraded to hexanoic acid and ultimately mineralized to CO2. Illumina MiSeq sequencing revealed that additional AQ-GO significantly increased the relative abundance of Firmicutes. Further analysis showed that the populations of the genera Oscillospira, unclassified Lactobacillales, unclassified Veillonellaceae and Ruminococcus exhibited positive correlations with the rate constant of 2-CA degradation and the dehydrogenase activity of bacterial consortium. These findings indicated that AQ-GO promoted the enrichment of functional bacteria and increased the bacterial activity, resulting in the enhanced dechlorination and degradation of 2-chloroaniline.
Collapse
Affiliation(s)
- Hong Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Tiantian Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yang Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xiaolei Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
12
|
Xiao X, Ma XL, Liu ZY, Li WW, Yuan H, Ma XB, Li LX, Yu HQ. Degradation of rhodamine B in a novel bio-photoelectric reductive system composed of Shewanella oneidensis MR-1 and Ag 3PO 4. ENVIRONMENT INTERNATIONAL 2019; 126:560-567. [PMID: 30852443 DOI: 10.1016/j.envint.2019.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Photocatalytic catalysis is widely used for pollutant degradation. Since some pollutants with oxidative nature are readily reduced rather than oxidized and reductive reaction caused by photogenerated electrons is limited in the presence of oxygen, photocatalytic reduction process is more applicable for the degradation of pollutants with oxidative nature than oxidation. In this work, a novel bio-photoelectric reductive degradation system (BPRDS), composed of an electrochemically active bacterium Shewanella oneidensis MR-1 and a visible-light photocatalyst Ag3PO4, was established under anaerobic conditions and its photodegradation performance was evaluated through degrading rhodamine B (RhB), a typical organic pollutant. The as-synthesized Ag3PO4 nanoparticles exhibited absorption in the entire visible spectral range of 400-800 nm. RhB could be degraded in BPRDS with visible light irradiation under anaerobic conditions, but not be decomposed in the absence of Shewanella cells. Block of Mtr respiratory pathway, a transmembrane electron transport chain, resulted in a reduction in degradation rate of RHB in BPRDS. Dose of riboflavin also substantially decreased the RhB degradation. These results suggest that the electrons released by Shewanella were involved in the RhB photodegradation, which was achieved via a stepwise N-deethylation process. In BPRDS, RhB was degraded by photoreduction, rather than photooxidation. This work is useful to develop integrated physico-chemical-microbial systems for pollutant degradation, facilitate better understanding about the biophotoelectric reductive degradation mechanisms and beneficial to their applications for environmental remediation.
Collapse
Affiliation(s)
- Xiang Xiao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiao-Lin Ma
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhao-Ying Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Hang Yuan
- Key Laboratory of Ion Beam Bioengineering, Institute of Technical Biology & Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031, China
| | - Xiao-Bo Ma
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li-Xia Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei 230026, China.
| |
Collapse
|
13
|
Rodriguez SY, Cantú ME, Garcia-Reyes B, Garza-Gonzalez MT, Meza-Escalante ER, Serrano D, Alvarez LH. Biotransformation of 4-nitrophenol by co-immobilized Geobacter sulfurreducens and anthraquinone-2-sulfonate in barium alginate beads. CHEMOSPHERE 2019; 221:219-225. [PMID: 30640004 DOI: 10.1016/j.chemosphere.2019.01.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 12/13/2018] [Accepted: 01/06/2019] [Indexed: 05/17/2023]
Abstract
Geobacter sulfurreducens and anthraquinone-2-sulfonate (AQS) were used suspended and immobilized in barium alginate during the biotransformation of 4-nitrophenol (4-NP). The assays were conducted at different concentrations of 4-NP (50-400 mg/L) and AQS, either in suspended (0-400 μM) or immobilized form (0 or 760 μM), and under different pH values (5-9). G. sulfurreducens showed low capacity to reduce 4-NP in absence of AQS, especially at the highest concentrations of the contaminant. AQS improved the reduction rates from 0.0086 h-1, without AQS, to 0.149 h-1 at 400 μM AQS, which represent an increment of 17.3-fold. The co-immobilization of AQS and G. sulfurreducens in barium alginate beads (AQSi-Gi) increased the reduction rates up to 4.8- and 7.2-fold, compared to incubations with G. sulfurreducens in suspended and immobilized form, but in absence of AQS. AQSi-Gi provides to G. sulfurreducens a barrier against the possibly inhibiting effects of 4-NP.
Collapse
Affiliation(s)
- Sujei Y Rodriguez
- Universidad Autonoma de Nuevo Leon (UANL), Facultad de Ciencias Quimicas, Av. Universidad S/N, Cd. Universitaria, San Nicolas de los Garza, 66455, Nuevo Leon, Mexico
| | - Maria E Cantú
- Universidad Autonoma de Nuevo Leon (UANL), Facultad de Ciencias Quimicas, Av. Universidad S/N, Cd. Universitaria, San Nicolas de los Garza, 66455, Nuevo Leon, Mexico
| | - Bernardo Garcia-Reyes
- Universidad Autonoma de Nuevo Leon (UANL), Facultad de Ciencias Quimicas, Av. Universidad S/N, Cd. Universitaria, San Nicolas de los Garza, 66455, Nuevo Leon, Mexico
| | - Maria T Garza-Gonzalez
- Universidad Autonoma de Nuevo Leon (UANL), Facultad de Ciencias Quimicas, Av. Universidad S/N, Cd. Universitaria, San Nicolas de los Garza, 66455, Nuevo Leon, Mexico
| | - Edna R Meza-Escalante
- Instituto Tecnologico de Sonora (ITSON), Departamento de Ciencias del Agua y Medio Ambiente, 5 de Febrero 818 Sur, C.P. 85000, Cuidad Obregon, Sonora, Mexico
| | - Denisse Serrano
- Instituto Tecnologico de Sonora (ITSON), Departamento de Ciencias del Agua y Medio Ambiente, 5 de Febrero 818 Sur, C.P. 85000, Cuidad Obregon, Sonora, Mexico
| | - Luis H Alvarez
- Universidad Autonoma de Nuevo Leon (UANL), Facultad de Ciencias Quimicas, Av. Universidad S/N, Cd. Universitaria, San Nicolas de los Garza, 66455, Nuevo Leon, Mexico; Instituto Tecnologico de Sonora (ITSON), Departamento de Ciencias Agronomicas y Veterinarias, 5 de Febrero 818 Sur, C.P. 85000, Cuidad Obregon, Sonora, Mexico.
| |
Collapse
|
14
|
Wang PT, Song YH, Fan HC, Yu L. Bioreduction of azo dyes was enhanced by in-situ biogenic palladium nanoparticles. BIORESOURCE TECHNOLOGY 2018; 266:176-180. [PMID: 29966927 DOI: 10.1016/j.biortech.2018.06.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/20/2018] [Accepted: 06/23/2018] [Indexed: 05/24/2023]
Abstract
Biogenic nanoparticles are promising materials for their green synthesis method and good performance in stimulation on reduction of environmental contaminants. In this study, Pd(0) nanoparticles (bio-Pd) were generated by Klebsiella oxytoca GS-4-08 in fermentative condition and in-situ improved the azo dye reduction. The bio-Pd was mainly located on cell membrane with a size range of 5-20 nm by TEM and XRD data analyses. Anthraquinone-2-disulfonate (AQS) greatly increased the reduction rate of Pd(II) with a reduction efficiency as high as 96.54 ± 0.23% in 24 h. The quinone respiration theory, glucose metabolism and the biohydrogen pathway were used to explain the enhancement mechanism of the in-situ generated bio-Pd on azo dye reduction. These results indicate that the in-situ generated bio-Pd by K. oxytoca strain is efficient for azo dye reduction without complex preparation processes, which is of great significance for the removal and subsequent safe disposal of hazardous environmental compounds.
Collapse
Affiliation(s)
- Peng-Tao Wang
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yu-Hang Song
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hong-Cheng Fan
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Yu
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing 210037, China; Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
15
|
Zhou Y, Lu H, Wang J, Zhou J, Leng X, Liu G. Catalytic performance of quinone and graphene-modified polyurethane foam on the decolorization of azo dye Acid Red 18 by Shewanella sp. RQs-106. JOURNAL OF HAZARDOUS MATERIALS 2018; 356:82-90. [PMID: 29843113 DOI: 10.1016/j.jhazmat.2018.05.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/10/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
Quinone-modified graphene powder is not reusable in bio-treatment systems, and the roles of quinone and graphene during extracellular electron-transfer processes remain unclear. In this study, we prepared anthraquinone-2-sulfonate and reduced graphene-oxide-modified polyurethane foam (AQS-rGO-PUF) and found that AQS-rGO-PUF exhibited higher catalytic performance on Acid Red 18 (AR 18) bio-decolorization compared with AQS-PUF and rGO-PUF. We observed a significant synergistic effect between AQS and rGO in AQS-rGO-PUF-mediated system in the presence of 50 μM AQS and 1.63 mg/L rGO. The synergistic effect was mainly attributed to electron transfer from AQS to rGO either directly or via flavins secreted by strain RQs-106, and ultimately to AR 18, accounting for ∼33.47% of AR 18 removal during AQS-rGO-PUF-mediated decolorization. Additionally, AQS-rGO-PUF exhibited good mechanical properties and maintained its macroporous structure. Furthermore, after eight rounds of experiments using AQS-rGO-PUF, the bio-decolorization efficiency of AR 18 retained >98.18% of its original value. These results indicate that the combination of AQS-rGO-PUF and Shewanella strains show potential efficacy for enhancing the treatment of azo-dye-containing wastewater.
Collapse
Affiliation(s)
- Yang Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Hong Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xueying Leng
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Guangfei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
16
|
Mishra S, Maiti A. The efficacy of bacterial species to decolourise reactive azo, anthroquinone and triphenylmethane dyes from wastewater: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8286-8314. [PMID: 29383646 DOI: 10.1007/s11356-018-1273-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
The industrial dye-contaminated wastewater has been considered as the most complex and hazardous in terms of nature and composition of toxicants that can cause severe biotic risk. Reactive azo, anthroquinone and triphenylmethane dyes are mostly used in dyeing industries; thus, the unfixed hydrolysed molecules of these dyes are commonly found in wastewater. In this regard, bacterial species have been proved to be highly effective to treat wastewater containing reactive dyes and heavy metals. The bio-decolourisation of dye occurs either by adsorption or through degradation in bacterial metabolic pathways under optimised environmental conditions. The bacterial dye decolourisation rates vary with the type of bacteria, reactivity of dye and operational parameters such as temperature, pH, co-substrate, electron donor and dissolved oxygen concentration. The present paper reviews the efficiency of bacterial species (individual and consortia) to decolourise wastewater containing reactive azo, anthroquinone and triphenylmethane dyes either individually or mixed or with metal ions. It has been observed that bacteria Pseudomonas spp. are comparatively more effective to treat reactive dyes and metal-contaminated wastewater. In recent studies, either immobilised cell or isolated enzymes are being used to decolourise dye at a large scale of operations. However, it is required to investigate more potent bacterial species or consortia that could be used to treat wastewater containing mixed reactive dyes and heavy metals like chromium ions.
Collapse
Affiliation(s)
- Saurabh Mishra
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, Uttar Pradesh, 247001, India
| | - Abhijit Maiti
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, Uttar Pradesh, 247001, India.
| |
Collapse
|
17
|
Martinez CM, Zhu X, Logan BE. AQDS immobilized solid-phase redox mediators and their role during bioelectricity generation and RR2 decolorization in air-cathode single-chamber microbial fuel cells. Bioelectrochemistry 2017; 118:123-130. [DOI: 10.1016/j.bioelechem.2017.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/02/2017] [Accepted: 07/21/2017] [Indexed: 12/13/2022]
|
18
|
Alvarez LH, Arvizu IC, García-Reyes RB, Martinez CM, Olivo-Alanis D, Del Angel YA. Quinone-functionalized activated carbon improves the reduction of congo red coupled to the removal of p-cresol in a UASB reactor. JOURNAL OF HAZARDOUS MATERIALS 2017; 338:233-240. [PMID: 28570877 DOI: 10.1016/j.jhazmat.2017.05.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/01/2017] [Accepted: 05/17/2017] [Indexed: 06/07/2023]
Abstract
In this research was immobilized anthraquinone-2-sulfonate (AQS) on granular activated carbon (GAC) to evaluate its capacity to reduce congo red (CR) in batch reactor and continuous UASB reactors. The removal of p-cresol coupled to the reduction of CR was also evaluated. Results show that the immobilization of AQS on GAC (GAC-AQS) achieved 0.469mmol/g, improving 2.85-times the electron-transferring capacity compared to unmodified GAC. In batch, incubations with GAC-AQS achieved a rate of decolorization of 2.64-fold higher than the observed with GAC. Decolorization efficiencies in UASB reactor with GAC-AQS were 83.9, 82, and 79.9% for periods I, II, and III; these values were 14.9-22.8% higher than the obtained by reactor with unmodified GAC using glucose as energy source. In the fourth period, glucose and p-cresol were simultaneously fed, increasing the decolorization efficiency to 87% for GAC-AQS and 72% for GAC. Finally, reactors efficiency decreased when p-cresol was the only energy source, but systems gradually recovered the decolorization efficiency up to 84% (GAC-AQS) and 71% (GAC) after 250 d. This study demonstrates the longest and efficient continuous UASB reactor operation for the reduction of electron-accepting contaminant in presence of quinone-functionalized GAC, but also using a recalcitrant pollutant as electron donor.
Collapse
Affiliation(s)
- Luis H Alvarez
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico.
| | - Iris C Arvizu
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Biológicas, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - Refugio Bernardo García-Reyes
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - Claudia M Martinez
- Department of Civil and Environmental Engineering, Pennsylvania State University, University Park, PA 16802, United States
| | - Daniel Olivo-Alanis
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - Yair A Del Angel
- Universidad Autónoma de Nuevo León (UANL), Facultad de Ciencias Químicas, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico
| |
Collapse
|
19
|
Bhatt CS, Nagaraj B, Suresh AK. Nanoparticles-shape influenced high-efficient degradation of dyes: Comparative evaluation of nano-cubes vs nano-rods vs nano-spheres. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.07.101] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Nellaiappan S, Kumar AS. Reductive cleavage of methyl orange under formation of a redox-active hydroquinone/polyaniline nanocomposite on an electrode modified with MWCNTs, and its application to flow injection analysis of ascorbic acid at low potential and neutral pH value. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2339-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
An efficient method for decoloration of polysaccharides from the sprouts of Toona sinensis (A. Juss.) Roem by anion exchange macroporous resins. Food Chem 2017; 217:461-468. [DOI: 10.1016/j.foodchem.2016.08.079] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 03/09/2016] [Accepted: 08/23/2016] [Indexed: 11/20/2022]
|
22
|
Fabrication of Unique Magnetic Bionanocomposite for Highly Efficient Removal of Hexavalent Chromium from Water. Sci Rep 2016; 6:31090. [PMID: 27502074 PMCID: PMC4977471 DOI: 10.1038/srep31090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/13/2016] [Indexed: 11/08/2022] Open
Abstract
Biotreatment of hexavalent chromium has attracted widespread interest due to its cost effective and environmental friendliness. However, the difficult separation of biomass from aqueous solution and the slow hexavalent chromium bioreduction rate are bottlenecks for biotechnology application. In this approach, a core-shell structured functional polymer coated magnetic nanocomposite was prepared for enriching the hexavalent chromium. Then the nanocomposite was connected to the bacteria via amines on bacterial (Bacillus subtilis ATCC-6633) surface. Under optimal conditions, a series of experiments were launched to degrade hexavalent chromium from the aqueous solution using the as-prepared bionanocomposite. Results showed that B. subtilis@Fe3O4@mSiO2@MANHE (BFSM) can degrade hexavalent chromium from the water more effectively (a respectable degradation efficiency of about 94%) when compared with pristine B. subtilis and Fe3O4@mSiO2@MANHE (FSM). Moreover, the BFSM could be separated from the wastewater by magnetic separation technology conveniently due to the Fe3O4 core of FSM. These results indicate that the application of BFSM is a promising strategy for effective treating wastewater containing hexavalent chromium.
Collapse
|
23
|
Huang J, Wu M, Chen J, Liu X, Chen T, Wen Y, Tang J, Xie Z. Enhanced azo dye removal in a continuously operated up-flow anaerobic filter packed with henna plant biomass. JOURNAL OF HAZARDOUS MATERIALS 2015; 299:158-164. [PMID: 26101969 DOI: 10.1016/j.jhazmat.2015.05.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/12/2015] [Accepted: 05/26/2015] [Indexed: 06/04/2023]
Abstract
Effects of henna plant biomass (stem) packed in an up-flow anaerobic bio-filter (UAF) on an azo dye (AO7) removal were investigated. AO7 removal, sulfanilic acid (SA) formation, and pseudo first-order kinetic constants for these reactions (kAO7 and kSA) were higher in the henna-added UAF (R2) than in the control UAF without henna (R1). The maximum kAO7 in R1 and R2 were 0.0345 and 0.2024 cm(-1), respectively, on day 18; the corresponding molar ratios of SA formation to AO7 removal were 0.582 and 0.990. Adsorption and endogenous bio-reduction were the main AO7 removal pathways in R1, while in R2 bio-reduction was the dominant. Organics in henna could be released and fermented to volatile fatty acids, acting as effective electron donors for AO7 reduction, which was accelerated by soluble and/or fixed lawsone. Afterwards, the removal process weakened over time, indicating the demand of electron donation and lawsone-releasing during the long-term operation of UAF.
Collapse
Affiliation(s)
- Jingang Huang
- Institute of Environmental Science and Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Mengke Wu
- Institute of Environmental Science and Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Jianjun Chen
- Institute of Environmental Science and Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Xiuyan Liu
- Institute of Environmental Science and Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Tingting Chen
- Institute of Environmental Science and Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Yue Wen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Junhong Tang
- Institute of Environmental Science and Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Zhengmiao Xie
- Institute of Environmental Science and Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| |
Collapse
|
24
|
Wang J, Zhang H, Wang D, Lu H, Zhou J. Effect of bioreduced graphene oxide on anaerobic biotransformation of nitrobenzene in an anaerobic reactor. ENVIRONMENTAL TECHNOLOGY 2015; 37:39-45. [PMID: 26114402 DOI: 10.1080/09593330.2015.1059492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Bioreduced graphene oxide (BRGO) has been proven to be capable of accelerating nitrobenzene (NB) biotransformation by anaerobic sludge (AS). To realize its application, in the present study, two continuous anaerobic reactors (R1 with BRGO/AS composite; R2 with AS) were employed to treat NB-containing wastewater during a long-term run. Compared with R2, the start-up time of R1 was shortened from 70 to 45 d and R1 exhibited better removal efficiency (87% of R1 and 74% of R2 with an influent NB concentration of 200 mg L(-1) at hydraulic retention time = 24 h, NaCl = 3%). Moreover, R1 exhibited better stability with over 81% NB removal efficiency within 90 d. Further study demonstrated that the presence of BRGO facilitated microorganisms to secrete extracellular polymeric substances, resulting in the higher electrochemical and dehydrogenase activities of R1 compared with those of R2.
Collapse
Affiliation(s)
- Jing Wang
- a Key Laboratory of Industrial Ecology and Environmental Engineering (China Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Linggong Road 2, Dalian 116024 , People's Republic of China
| | - Haikun Zhang
- a Key Laboratory of Industrial Ecology and Environmental Engineering (China Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Linggong Road 2, Dalian 116024 , People's Republic of China
| | - Di Wang
- a Key Laboratory of Industrial Ecology and Environmental Engineering (China Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Linggong Road 2, Dalian 116024 , People's Republic of China
| | - Hong Lu
- a Key Laboratory of Industrial Ecology and Environmental Engineering (China Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Linggong Road 2, Dalian 116024 , People's Republic of China
| | - Jiti Zhou
- a Key Laboratory of Industrial Ecology and Environmental Engineering (China Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Linggong Road 2, Dalian 116024 , People's Republic of China
| |
Collapse
|
25
|
Qian Y, Yang B, Li Z, Lei L, Zhang X. Improving the biodecolorization of reactive blue 13 by sodium anthraquinone-2-sulfonate immobilized on modified polyvinyl alcohol beads. Chin J Chem Eng 2015. [DOI: 10.1016/j.cjche.2015.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Rajesh R, Sujanthi E, Senthil Kumar S, Venkatesan R. Designing versatile heterogeneous catalysts based on Ag and Au nanoparticles decorated on chitosan functionalized graphene oxide. Phys Chem Chem Phys 2015; 17:11329-40. [PMID: 25845989 DOI: 10.1039/c5cp00682a] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Herein we report the covalent grafting of chitosan on graphene oxide (GO) followed by a simple approach for anchoring silver (AgNPs) and gold (AuNPs) nanoparticles onto a chitosan grafted graphene oxide surface by a NaBH4 reduction method. Catalytic activity of prepared heterogeneous GO grafted chitosan stabilized silver and gold nanocatalysts (GO-Chit-Ag/AuNPs) was explored for the reduction of aromatic nitroarenes and degradation of hazardous azo dyes in the presence of NaBH4. Both catalysts were found to exhibit excellent catalytic activity towards the reduction of aromatic nitroarenes and azo dyes degradation. Furthermore, the nanocatalysts were found to be selective towards the reduction of nitro groups in halonitroarenes without any dehalogenation under mild conditions.
Collapse
Affiliation(s)
- Rajendiran Rajesh
- Department of Chemistry, Pondicherry University, Puducherry-605014, India.
| | | | | | | |
Collapse
|
27
|
Guo J, Lian J, Guo Y, Liu X, Zhang C, Yue L, Wang Y. Redox activity and accelerating capacity of model redox mediators during biodenitrification. BIOTECHNOL BIOTEC EQ 2015. [DOI: 10.1080/13102818.2015.1027504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
28
|
Xu Q, Guo J, Niu C, Lian J, Hou Z, Guo Y, Li S. The denitrification characteristics of novel functional biocarriers immobilised by non-dissolved redox mediators. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2014.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Wang Z, Zhai S, Lv J, Qi H, Zheng W, Zhai B, An Q. Versatile hierarchical Cu/Fe3O4 nanocatalysts for efficient degradation of organic dyes prepared by a facile, controllable hydrothermal method. RSC Adv 2015. [DOI: 10.1039/c5ra16027h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A novel monodispersed hierarchical nanocomposite catalyst, Cu/Fe3O4, aimed at efficient degradation of traditional dyes, was successfully synthesized through a short-time, facile, eco-friendly hydrothermal method.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Faculty of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Shangru Zhai
- Faculty of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Jialing Lv
- Faculty of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Haixin Qi
- Faculty of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Wei Zheng
- Faculty of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Bin Zhai
- Faculty of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Qingda An
- Faculty of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| |
Collapse
|
30
|
Influence of Azo Dye Concentration on Activated Sludge Bacterial Community in the Presence of Functionalized Polyurethane Foam. Appl Biochem Biotechnol 2014; 175:2574-88. [DOI: 10.1007/s12010-014-1452-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 12/14/2014] [Indexed: 10/24/2022]
|
31
|
Zhang HK, Lu H, Wang J, Zhou JT, Sui M. Cr(VI) reduction and Cr(III) immobilization by Acinetobacter sp. HK-1 with the assistance of a novel quinone/graphene oxide composite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:12876-85. [PMID: 25296002 DOI: 10.1021/es5039084] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Cr(VI) biotreatment has attracted a substantial amount of interest due to its cost effectiveness and environmental friendliness. However, the slow Cr(VI) bioreduction rate and the formed organo-Cr(III) in solution are bottlenecks for biotechnology application. In this study, a novel strain, Acinetobacter sp. HK-1, capable of reducing Cr(VI) and immobilizing Cr(III) was isolated. Under optimal conditions, the Cr(VI) reduction rate could reach 3.82 mg h(-1) g cell(-1). To improve the Cr(VI) reduction rate, two quinone/graphene oxide composites (Q-GOs) were first prepared via a one-step covalent chemical reaction. The results showed that 2-amino-3-chloro-1,4-naphthoquinone-GO (NQ-GO) exhibited a better catalytic performance in Cr(VI) reduction compared to 2-aminoanthraquinone-GO. Specifically, in the presence of 50 mg L(-1) NQ-GO, a Cr(VI) removal rate of 190 mg h(-1) g cell(-1), which was the highest rate obtained, was achieved. The increased Cr(VI) reduction rate is mainly the result of NQ-GO significantly increasing the Cr(VI) reduction activity of cell membrane proteins containing dominant Cr(VI) reductases. X-ray photoelectron spectroscopy analysis found that Cr(VI) was reduced to insoluble Cr(III), which was immobilized by glycolipids secreted by strain HK-1. These findings indicate that the application of strain HK-1 and NQ-GO is a promising strategy for enhancing the treatment of Cr(VI)-containing wastewater.
Collapse
Affiliation(s)
- Hai-Kun Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (China Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology , # 2 Linggong Road, Dalian 116024, People's Republic of China
| | | | | | | | | |
Collapse
|
32
|
A novel modification of poly(ethylene terephthalate) fiber using anthraquinone-2-sulfonate for accelerating azo dyes and nitroaromatics removal. Sep Purif Technol 2014. [DOI: 10.1016/j.seppur.2014.05.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Zhang D, Zhang C, Li Z, Suzuki D, Komatsu DD, Tsunogai U, Katayama A. Electrochemical stimulation of microbial reductive dechlorination of pentachlorophenol using solid-state redox mediator (humin) immobilization. BIORESOURCE TECHNOLOGY 2014; 164:232-240. [PMID: 24859215 DOI: 10.1016/j.biortech.2014.04.071] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/13/2014] [Accepted: 04/21/2014] [Indexed: 06/03/2023]
Abstract
Immobilized solid-phase humin on a graphite electrode set at -500 mV (vs. standard hydrogen electrode) significantly enhanced the microbial reductive dechlorination of pentachlorophenol as a stable solid-phase redox mediator in bioelectrochemical systems (BESs). Compared with the suspended system, the immobilized system dechlorinated PCP at a much higher efficiency, achieving 116 μmol Cl(-)g(-1) humin d(-1). Fluorescence microscopy showed a conspicuous growth of bacteria on the negatively poised immobilized humin. Electron balance analyses suggested that the electrons required for microbial dechlorination were supplied primarily from the humin-immobilized electrode. Microbial community analyses based on 16S rRNA genes showed that Dehalobacter and Desulfovibrio grew on the immobilized humin as potential dechlorinators. These findings extend the potential of BESs using immobilized solid-phase humin as the redox mediator for in situ bioremediation, given the wide distribution of humin and its efficiency and stability as a mediator.
Collapse
Affiliation(s)
- Dongdong Zhang
- Department of Civil Engineering, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan
| | - Chunfang Zhang
- EcoTopia Science Institute, Nagoya University, Chikusa, Nagoya 464-8603, Japan
| | - Zhiling Li
- EcoTopia Science Institute, Nagoya University, Chikusa, Nagoya 464-8603, Japan
| | - Daisuke Suzuki
- EcoTopia Science Institute, Nagoya University, Chikusa, Nagoya 464-8603, Japan
| | - Daisuke D Komatsu
- Graduate School of Environmental Studies, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Urumu Tsunogai
- Graduate School of Environmental Studies, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Arata Katayama
- Department of Civil Engineering, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan; EcoTopia Science Institute, Nagoya University, Chikusa, Nagoya 464-8603, Japan.
| |
Collapse
|
34
|
Rajesh R, Kumar SS, Venkatesan R. Efficient degradation of azo dyes using Ag and Au nanoparticles stabilized on graphene oxide functionalized with PAMAM dendrimers. NEW J CHEM 2014. [DOI: 10.1039/c3nj01050c] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Martinez CM, Alvarez LH, Celis LB, Cervantes FJ. Humus-reducing microorganisms and their valuable contribution in environmental processes. Appl Microbiol Biotechnol 2013; 97:10293-308. [PMID: 24220793 DOI: 10.1007/s00253-013-5350-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/17/2013] [Accepted: 10/19/2013] [Indexed: 02/08/2023]
Abstract
Humus constitutes a very abundant class of organic compounds that are chemically heterogeneous and widely distributed in terrestrial and aquatic environments. Evidence accumulated during the last decades indicating that humic substances play relevant roles on the transport, fate, and redox conversion of organic and inorganic compounds both in chemically and microbially driven reactions. The present review underlines the contribution of humus-reducing microorganisms in relevant environmental processes such as biodegradation of recalcitrant pollutants and mitigation of greenhouse gases emission in anoxic ecosystems, redox conversion of industrial contaminants in anaerobic wastewater treatment systems, and on the microbial production of nanocatalysts and alternative energy sources.
Collapse
Affiliation(s)
- Claudia M Martinez
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP, 78216, Mexico
| | | | | | | |
Collapse
|
36
|
Martínez CM, Celis LB, Cervantes FJ. Immobilized humic substances as redox mediator for the simultaneous removal of phenol and Reactive Red 2 in a UASB reactor. Appl Microbiol Biotechnol 2013; 97:9897-905. [DOI: 10.1007/s00253-013-5190-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/07/2013] [Accepted: 08/11/2013] [Indexed: 11/27/2022]
|
37
|
Millerick K, Drew SR, Finneran KT. Electron shuttle-mediated biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine adsorbed to granular activated carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:8743-8750. [PMID: 23837558 DOI: 10.1021/es401641s] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Granular activated carbon (GAC) effectively removes hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) from groundwater but generates RDX-laden GAC that must be disposed of or regenerated. Batch reactors containing GAC to which RDX was preadsorbed were used in experiments to test the potential for adsorbed RDX reduction and daughter product formation using (i) chemically reduced anthrahydroquinone-2,6-disulfonate (AH2QDS), (ii) resting Geobacter metallireducens strain GS-15, and (iii) a combined system containing AQDS and GS-15. Approximately 97.0% of the adsorbed RDX was transformed in each of these experimental systems by 90 h. Chemically reduced AQDS (AH2QDS) transformed 99.2% of adsorbed RDX; formaldehyde was produced rapidly and was stoichiometric (3 mol HCHO per mol RDX). Geobacter metallireducens also reduced RDX with and without AQDS present. This is the first study to demonstrate biological transformation of RDX adsorbed to GAC. Formaldehyde increased and then decreased in biological systems, suggesting a previously unreported capacity for G. metallireducens to oxidize formaldehyde, which was confirmed with resting cell suspensions. These data suggest the masses of GAC waste currently produced by activated carbon at RDX remediation sites can be minimized, decreasing the carbon footprint of the treatment technology. Alternatively, this strategy may be used to develop a Bio-GAC system for ex situ RDX treatment.
Collapse
Affiliation(s)
- Kayleigh Millerick
- Environmental Engineering and Earth Sciences, Clemson University , 168 Rich Laboratory, Anderson, South Carolina 29625, United States
| | | | | |
Collapse
|
38
|
Global transcriptome analysis of Escherichia coli exposed to immobilized anthraquinone-2-sulfonate and azo dye under anaerobic conditions. Appl Microbiol Biotechnol 2013; 97:6895-905. [PMID: 23820558 DOI: 10.1007/s00253-013-5066-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/04/2013] [Accepted: 06/16/2013] [Indexed: 10/26/2022]
Abstract
The immobilization of quinone compounds is regarded as a promising strategy to accelerate anaerobic decolorization of xenobiotic compounds azo dyes in the presence of quinone-reducing microorganisms. However, little is known about the basic response of these microorganisms to immobilized quinones in the presence of azo dyes. In the present study, whole-genome DNA microarrays were used to investigate a quinone-reducing bacterium Escherichia coli K-12 transcription response to immobilized anthraquinone-2-sulfonate (AQSim) reduction and azo dye acid red 18 (AR 18) decolorization. Transcriptome analysis showed that AQSim was more accessible for the cells of E. coli K-12 than AR 18. Despite there being some differences between AQSim and soluble AQS mediated decolorization of AR 18, AQSim reduction and AR 18 decolorization, more similarity could be observed in the four processes. Among over 60 % shared genes, several groups of genes exhibited high expression levels, including those genes encoding terminal reductases, menaquinone biosynthesis, formate dehydrogenases and outer membrane proteins. Especially, nrfABCD, frdBCD and dsmABC encoding terminal reductases were significantly upregulated. Further gene deletion experiments demonstrated that the above three groups of genes were involved in AQSim-mediated AR 18 decolorization. In addition, significant upregulation of stress response genes was observed, which indicated the adaptation of E. coli K-12 to AQSim and AR 18 exposures.
Collapse
|
39
|
Wang J, Lu H, Zhou Y, Song Y, Liu G, Feng Y. Enhanced biotransformation of nitrobenzene by the synergies of Shewanella species and mediator-functionalized polyurethane foam. JOURNAL OF HAZARDOUS MATERIALS 2013; 252-253:227-232. [PMID: 23542318 DOI: 10.1016/j.jhazmat.2013.02.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/11/2013] [Accepted: 02/24/2013] [Indexed: 06/02/2023]
Abstract
The performance and mechanism of anaerobic treatment of nitrobenzene using the combination of Shewanella species and anthraquinone-2-sulfonate-modified polyurethane foam (Shewanella/AQS-PUF) were investigated. The results showed that Shewanella/AQS-PUF significantly accelerated nitrobenzene bio-reduction (95.6%) and aniline formation (94.3%) with nitrobenzene removal rate up to 0.13 mM h(-1). Moreover, there were synergistic effects between Shewanella species and AQS-PUF on promoting nitrobenzene biotransformation with 5-fold increase in first-order rate constant compared to that without AQS-PUF. During this process, AQS-PUF could induce Shewanella species to secrete more flavins (0.335 μM) as redox mediator for nitrobenzene bio-reduction. Meanwhile, it was also found that the bound EPS of Shewanella species could act as biocatalyst for nitrobenzene reduction and the addition of flavins enhanced its catalytic activity. This indicated that the EPS of Shewanella species was not only involved in direct bio-reduction of nitrobenzene, but also interacted with secreted flavins to mediate nitrobenzene bio-reduction.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | | | | | | | | | | |
Collapse
|
40
|
Cardenas-Robles A, Martinez E, Rendon-Alcantar I, Frontana C, Gonzalez-Gutierrez L. Development of an activated carbon-packed microbial bioelectrochemical system for azo dye degradation. BIORESOURCE TECHNOLOGY 2013; 127:37-43. [PMID: 23128299 DOI: 10.1016/j.biortech.2012.09.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 08/04/2012] [Accepted: 09/20/2012] [Indexed: 06/01/2023]
Abstract
A microbial bioelectrochemical reactor (BER) was employed for the degradation of azo dyes without the use of an external electron donor, using activated carbon (GAC) as a redox mediator. Contribution of pH values, open circuit potential (OCP), dye concentration and applied current were individually studied. A batch system and an upflow fixed bed bioreactor were built for analyzing the effect of the applied current on biodegradation of the azo dye Reactive Red 272. The presence of GAC (20% w/v) regulated both pH and OCP values in solution and led to a removal efficiency of 98%. Cyclic voltammetry results indicate a dependence of the electron transfer mechanism with the concentration of the azo compound. With these results, a continuous flow reactor operating with J=0.045 mA cm(-2), led to removal rates of 95% (± 3.5%) in a half-residence time of 1 hour.
Collapse
Affiliation(s)
- Arely Cardenas-Robles
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro Sanfandila, 76703 Sanfandila, Pedro Escobedo, Qro, Mexico
| | | | | | | | | |
Collapse
|
41
|
Waghmode TR, Kurade MB, Kabra AN, Govindwar SP. Biodegradation of Rubine GFL by Galactomyces geotrichum MTCC 1360 and subsequent toxicological analysis by using cytotoxicity, genotoxicity and oxidative stress studies. Microbiology (Reading) 2012; 158:2344-2352. [DOI: 10.1099/mic.0.060467-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
| | - Mayur B. Kurade
- Department of Biotechnology, Shivaji University, Kolhapur 416004, India
| | - Akhil N. Kabra
- Department of Biotechnology, Shivaji University, Kolhapur 416004, India
| | | |
Collapse
|
42
|
Cervantes FJ, Martínez CM, Gonzalez-Estrella J, Márquez A, Arriaga S. Kinetics during the redox biotransformation of pollutants mediated by immobilized and soluble humic acids. Appl Microbiol Biotechnol 2012; 97:2671-9. [PMID: 22565330 DOI: 10.1007/s00253-012-4081-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 04/02/2012] [Indexed: 11/27/2022]
Abstract
The aim of this study was to elucidate the kinetic constraints during the redox biotransformation of the azo dye, Reactive Red 2 (RR2), and carbon tetrachloride (CT) mediated by soluble humic acids (HAs) and immobilized humic acids (HAi), as well as by the quinoid model compounds, anthraquinone-2,6-disulfonate (AQDS) and 1,2-naphthoquinone-4-sulfonate (NQS). The microbial reduction of both HAs and HAi by anaerobic granular sludge (AGS) was the rate-limiting step during decolorization of RR2 since the reduction of RR2 by reduced HAi proceeded at more than three orders of magnitute faster than the electron-transferring rate observed during the microbial reduction of HAi by AGS. Similarly, the reduction of RR2 by reduced AQDS proceeded 1.6- and 1.9-fold faster than the microbial reduction of AQDS by AGS when this redox mediator (RM) was supplied in soluble and immobilized form, respectively. In contrast, the reduction of NQS by AGS occurred 1.6- and 19.2-fold faster than the chemical reduction of RR2 by reduced NQS when this RM was supplied in soluble and immobilized form, respectively. The microbial reduction of HAs and HAi by a humus-reducing consortium proceeded 1,400- and 790-fold faster than the transfer of electrons from reduced HAs and HAi, respectively, to achieve the reductive dechlorination of CT to chloroform. Overall, the present study provides elucidation on the rate-limiting steps involved in the redox biotransformation of priority pollutants mediated by both HAs and HAi and offers technical suggestions to overcome the kinetic restrictions identified in the redox reactions evaluated.
Collapse
Affiliation(s)
- Francisco J Cervantes
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4ª Sección, San Luis Potosí 78216, Mexico.
| | | | | | | | | |
Collapse
|
43
|
Yuan SZ, Lu H, Wang J, Zhou JT, Wang Y, Liu GF. Enhanced bio-decolorization of azo dyes by quinone-functionalized ceramsites under saline conditions. Process Biochem 2012. [DOI: 10.1016/j.procbio.2011.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Bacterial Decolorization and Degradation of Azo Dyes. ENVIRONMENTAL SCIENCE AND ENGINEERING 2012. [DOI: 10.1007/978-3-642-23789-8_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Alvarez LH, Cervantes FJ. Assessing the impact of alumina nanoparticles in an anaerobic consortium: methanogenic and humus reducing activity. Appl Microbiol Biotechnol 2011; 95:1323-31. [DOI: 10.1007/s00253-011-3759-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 11/30/2022]
|
46
|
Liu G, Zhou J, Wang J, Wang X, Jin R, Lv H. Decolorization of azo dyes by Shewanella oneidensis MR-1 in the presence of humic acids. Appl Microbiol Biotechnol 2011; 91:417-24. [DOI: 10.1007/s00253-011-3273-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 03/22/2011] [Accepted: 03/23/2011] [Indexed: 11/29/2022]
|
47
|
Wang X, Cheng X, Sun D. Interaction in anaerobic biodecolorization of mixed azo dyes of Acid Red 1 and Reactive Black 5 under batch and continuous conditions. Colloids Surf A Physicochem Eng Asp 2011. [DOI: 10.1016/j.colsurfa.2010.11.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Cervantes FJ, Gonzalez-Estrella J, Márquez A, Alvarez LH, Arriaga S. Immobilized humic substances on an anion exchange resin and their role on the redox biotransformation of contaminants. BIORESOURCE TECHNOLOGY 2011; 102:2097-100. [PMID: 20801024 DOI: 10.1016/j.biortech.2010.08.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 08/04/2010] [Accepted: 08/05/2010] [Indexed: 05/24/2023]
Abstract
A novel technique to immobilize humic substances (HS) on an anion exchange resin is presented. Immobilized HS were demonstrated as an effective solid-phase redox mediator (RM) during the reductive biotransformation of carbon tetrachloride (CT) and the azo model compound, Reactive Red 2 (RR2). Immobilized HS increased ∼4-fold the extent of CT reduction to chloroform by a humus-reducing consortium in comparison to incubations lacking HS. Immobilized HS also increased 2-fold the second-order rate constant of decolorization of RR2 as compared with sludge incubations lacking HS. To our knowledge, the present study constitutes the first demonstration of immobilized HS serving as an effective solid-phase RM during the reductive biotransformation of priority contaminants. The immobilizing technique developed could be appropriate for enhancing the redox biotransformation of recalcitrant pollutants in anaerobic wastewater treatment systems.
Collapse
Affiliation(s)
- Francisco J Cervantes
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4ª. Sección, San Luis Potosí, SLP 78216, Mexico.
| | | | | | | | | |
Collapse
|
49
|
Alvarez LH, Perez-Cruz MA, Rangel-Mendez JR, Cervantes FJ. Immobilized redox mediator on metal-oxides nanoparticles and its catalytic effect in a reductive decolorization process. JOURNAL OF HAZARDOUS MATERIALS 2010; 184:268-272. [PMID: 20813453 DOI: 10.1016/j.jhazmat.2010.08.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 08/03/2010] [Accepted: 08/09/2010] [Indexed: 05/29/2023]
Abstract
Different metal-oxides nanoparticles (MONP) including α-Al(2)O(3), ZnO and Al(OH)(3), were utilized as adsorbents to immobilize anthraquinone-2,6-disulfonate (AQDS). Immobilized AQDS was subsequently tested as a solid-phase redox mediator (RMs) for the reductive decolorization of the azo dye, reactive red 2 (RR2), by anaerobic sludge. The highest adsorption capacity of AQDS was achieved on Al(OH)(3) nanoparticles, which was ∼0.16 mmol g(-1) at pH 4. Immobilized AQDS increased up to 7.5-fold the rate of decolorization of RR2 by anaerobic sludge as compared with sludge incubations lacking AQDS. Sterile controls including immobilized AQDS did not show significant (<3.5%) RR2 decolorization, suggesting that physical-chemical processes (e.g. adsorption or chemical reduction) were not responsible for the enhanced decolorization achieved. Immobilization of AQDS on MONP was very stable under the applied experimental conditions and spectrophotometric screening did not detect any detachment of AQDS during the reductive decolorization of RR2, confirming that immobilized AQDS served as an effective RMs. The present study constitutes the first demonstration that immobilized quinones on MONP can serve as effective RMs in the reductive decolorization of an azo dye. The immobilizing technique developed could be applied in anaerobic wastewater treatment systems to accelerate the redox biotransformation of recalcitrant pollutants.
Collapse
Affiliation(s)
- L H Alvarez
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a. Sección, 78216 San Luis Potosí, SLP, Mexico
| | - M A Perez-Cruz
- Facultad de Ciencias Químicas, Universidad Autónoma de Puebla, 72571 Puebla, Mexico
| | - J R Rangel-Mendez
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a. Sección, 78216 San Luis Potosí, SLP, Mexico
| | - F J Cervantes
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a. Sección, 78216 San Luis Potosí, SLP, Mexico.
| |
Collapse
|