1
|
Ali S, Gill RA, Ulhassan Z, Zhang N, Hussain S, Zhang K, Huang Q, Sagir M, Tahir MB, Gill MB, Mwamba TM, Ali B, Zhou W. Exogenously applied melatonin enhanced the tolerance of Brassica napus against cobalt toxicity by modulating antioxidant defense, osmotic adjustment, and expression of stress response genes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114624. [PMID: 36758507 DOI: 10.1016/j.ecoenv.2023.114624] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/20/2022] [Revised: 01/06/2023] [Accepted: 02/05/2023] [Indexed: 05/26/2023]
Abstract
The excessive accumulation of cobalt (Co) in plant tissues severely impairs plant growth that ultimately reduces the yield. However, melatonin (MT) has been known to mediate the abiotic stress tolerance in plants. The present study aimed at investigating the protective mechanisms of exogenously applied MT (0, 50 and 100 μM) under Co (0, 100, 200 and 300 μM) stress by focusing on morpho-physiological, biochemical and cellular characterizations of Brassica napus plants. Cobalt (300 μM) alone treatment drastically inhibited the stomatal conductance, plant height (45%), leaf area (30%), free amino acid (139%), relative electrolyte leakage (109%), and total soluble sugars (71%), compared with the control. However, the exogenous supply of MT notably minimized the oxidative damage, lipid peroxidation and maintained the membrane integrity under Co-toxicity by restricting the overproduction of ROS (H2O2 and O2•), and MDA in leaves and roots. Melatonin significantly enhanced the activities of ROS-scavenging antioxidant enzymes, secondary metabolism-related phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), stress-responsive genes (heat shock protein as HSP-90, methyl transferase as MT) and regulated the Co-transporters, especially in roots. These findings indicated that an exogenous supply of MT improve the plant morphology, photosynthetic apparatus, osmotic adjustments, and antioxidant defense systems by enhancing the Co-detoxification in B. napus plants.
Collapse
Affiliation(s)
- Skhawat Ali
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Rafaqat A Gill
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Zaid Ulhassan
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Na Zhang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Kangni Zhang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Qian Huang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Sagir
- Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan, Pakistan
| | - Muhammad Bilal Tahir
- Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan, Pakistan
| | - Muhammad B Gill
- School of Land and Food, University of Tasmania, Hobart, TAS, Australia
| | - Theodore M Mwamba
- Department of Crop Science, University of Lubumbashi, Lubumbashi 1825, Democratic Republic of Congo
| | - Basharat Ali
- Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan, Pakistan.
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Hu X, Wei X, Ling J, Chen J. Cobalt: An Essential Micronutrient for Plant Growth? FRONTIERS IN PLANT SCIENCE 2021; 12:768523. [PMID: 34868165 PMCID: PMC8635114 DOI: 10.3389/fpls.2021.768523] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/31/2021] [Accepted: 09/29/2021] [Indexed: 05/19/2023]
Abstract
Cobalt is a transition metal located in the fourth row of the periodic table and is a neighbor of iron and nickel. It has been considered an essential element for prokaryotes, human beings, and other mammals, but its essentiality for plants remains obscure. In this article, we proposed that cobalt (Co) is a potentially essential micronutrient of plants. Co is essential for the growth of many lower plants, such as marine algal species including diatoms, chrysophytes, and dinoflagellates, as well as for higher plants in the family Fabaceae or Leguminosae. The essentiality to leguminous plants is attributed to its role in nitrogen (N) fixation by symbiotic microbes, primarily rhizobia. Co is an integral component of cobalamin or vitamin B12, which is required by several enzymes involved in N2 fixation. In addition to symbiosis, a group of N2 fixing bacteria known as diazotrophs is able to situate in plant tissue as endophytes or closely associated with roots of plants including economically important crops, such as barley, corn, rice, sugarcane, and wheat. Their action in N2 fixation provides crops with the macronutrient of N. Co is a component of several enzymes and proteins, participating in plant metabolism. Plants may exhibit Co deficiency if there is a severe limitation in Co supply. Conversely, Co is toxic to plants at higher concentrations. High levels of Co result in pale-colored leaves, discolored veins, and the loss of leaves and can also cause iron deficiency in plants. It is anticipated that with the advance of omics, Co as a constitute of enzymes and proteins and its specific role in plant metabolism will be exclusively revealed. The confirmation of Co as an essential micronutrient will enrich our understanding of plant mineral nutrition and improve our practice in crop production.
Collapse
Affiliation(s)
- Xiu Hu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xiangying Wei
- Institute of Oceanography, Minjiang University, Fuzhou, China
- Xiangying Wei
| | - Jie Ling
- He Xiangning College of Art and Design, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jianjun Chen
- Department of Environmental Horticulture and Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
- *Correspondence: Jianjun Chen
| |
Collapse
|
3
|
Rizvi A, Zaidi A, Ameen F, Ahmed B, AlKahtani MDF, Khan MS. Heavy metal induced stress on wheat: phytotoxicity and microbiological management. RSC Adv 2020; 10:38379-38403. [PMID: 35693041 PMCID: PMC9121104 DOI: 10.1039/d0ra05610c] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/27/2020] [Accepted: 09/17/2020] [Indexed: 11/21/2022] Open
Abstract
Among many soil problems, heavy metal accumulation is one of the major agronomic challenges that has seriously threatened food safety. Due to these problems, soil biologists/agronomists in recent times have also raised concerns over heavy metal pollution, which indeed are unpleasantly affecting agro-ecosystems and crop production. The toxic heavy metals once deposited beyond certain permissible limits, obnoxiously affect the density, composition and physiological activities of microbiota, dynamics and fertility of soil leading eventually to reduction in wheat production and via food chain, human and animal health. Therefore, the metal induced phytotoxicity problems warrant urgent and immediate attention so that the physiological activities of microbes, nutrient pool of soils and concurrently the production of wheat are preserved and maintained in a constantly deteriorating environment. To mitigate the magnitude of metal induced changes, certain microorganisms have been identified, especially those belonging to the plant growth promoting rhizobacteria (PGPR) group endowed with the distinctive property of heavy metal tolerance and exhibiting unique plant growth promoting potentials. When applied, such metal-tolerant PGPR have shown variable positive impact on wheat production, even in soils contaminated with metals, by supplying macro and micro nutrients and secreting active biomolecules like EPS, melanins and metallothionein (MTs). Despite some reports here and there, the phytotoxicity of metals to wheat and how wheat production in metal-stressed soil can be enhanced is poorly explained. Thus, an attempt is made in this review to better understand the mechanistic basis of metal toxicity to wheat, and how such phytotoxicity can be mitigated by incorporating microbiological remediation strategies in wheat cultivation practices. The information provided here is likely to benefit wheat growers and consequently optimize wheat production inexpensively under stressed soils. Among many soil problems, heavy metal accumulation is one of the major agronomic challenges that has seriously threatened food safety.![]()
Collapse
Affiliation(s)
- Asfa Rizvi
- Department of Agricultural Microbiology
- Faculty of Agricultural Sciences
- Aligarh Muslim University
- Aligarh
- India
| | - Almas Zaidi
- Department of Agricultural Microbiology
- Faculty of Agricultural Sciences
- Aligarh Muslim University
- Aligarh
- India
| | - Fuad Ameen
- Department of Botany and Microbiology
- College of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - Bilal Ahmed
- Department of Agricultural Microbiology
- Faculty of Agricultural Sciences
- Aligarh Muslim University
- Aligarh
- India
| | - Muneera D. F. AlKahtani
- Department of Biology
- College of Science
- Princess Nourah Bint Abdulrahman University
- Riyadh
- Saudi Arabia
| | - Mohd. Saghir Khan
- Department of Agricultural Microbiology
- Faculty of Agricultural Sciences
- Aligarh Muslim University
- Aligarh
- India
| |
Collapse
|
4
|
Kasowska D, Gediga K, Spiak Z. Heavy metal and nutrient uptake in plants colonizing post-flotation copper tailings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:824-835. [PMID: 29063407 PMCID: PMC5756550 DOI: 10.1007/s11356-017-0451-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/12/2017] [Accepted: 10/09/2017] [Indexed: 05/30/2023]
Abstract
Copper ore mining and processing release hazardous post-flotation wastes that are difficult for remediation. The studied tailings were extremely rich in Cu (1800 mg kg-1) and contaminated with Co and Mn, and contained very little available forms of P, Fe, and Zn. The plants growing in tailings were distinctly enriched in Cu, Cd, Co, Ni, and Pb, and the concentration of copper achived the critical toxicity level in shoots of Cerastium arvense and Polygonum aviculare. The redundancy analysis demonstrated significant relationship between the concentration of available forms of studied elements in substrate and the chemical composition of plant shoots. Results of the principal component analysis enabled to distinguish groups of plants which significantly differed in the pattern of element accumulation. The grass species Agrostis stolonifera and Calamagrostis epigejos growing in the tailings accumulated significantly lower amounts of Cu, but they also had the lowest levels of P, Fe, and Zn in comparison to dicotyledonous. A. stolonifera occurred to be the most suitable species for phytostabilization of the tailings with regard to its low shoot Cu content and more efficient acquisition of limiting nutrients in relation to C. epigejos. The amendments improving texture, phosphorus fertilization, and the introduction of native leguminous species were recommended for application in the phytoremediation process of the tailings.
Collapse
Affiliation(s)
- Dorota Kasowska
- Department of Botany and Plant Ecology, Wrocław University of Environmental and Life Sciences, Grunwaldzki Square 24A, 50-363 Wrocław, Poland
| | - Krzysztof Gediga
- Department of Plant Nutrition, Wrocław University of Environmental and Life Sciences, Grunwaldzka Street 53, 50-357 Wrocław, Poland
| | - Zofia Spiak
- Department of Plant Nutrition, Wrocław University of Environmental and Life Sciences, Grunwaldzka Street 53, 50-357 Wrocław, Poland
| |
Collapse
|
5
|
Kopittke PM, Wang P, Lombi E, Donner E. Synchrotron-based X-Ray Approaches for Examining Toxic Trace Metal(loid)s in Soil-Plant Systems. JOURNAL OF ENVIRONMENTAL QUALITY 2017; 46:1175-1189. [PMID: 29293828 DOI: 10.2134/jeq2016.09.0361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/15/2023]
Abstract
Elevated levels of trace metal(loid)s reduce plant growth, both in soils contaminated by industrial activities and in acid agricultural soils. Although the adverse effects of trace metal(loid)s have long been recognized, there remains much unknown both about their behavior in soils, their toxicity to plants, and the mechanisms that plants use to tolerate elevated concentrations. Synchrotron-based approaches are being utilized increasingly in soil-plant systems to examine toxic metal(loid)s. In the present review, brief consideration is given to the theory of synchrotron radiation. Thereafter, we review the use of synchrotron-based approaches for the examination of various trace metal(loid)s in soil-plant systems, including aluminum, chromium, manganese, cobalt, nickel, copper, zinc, arsenic, selenium, and cadmium. Within the context of this review, X-ray absorption spectroscopy (XAS) and X-ray fluorescence microscopy (μ-XRF) are of particular interest. These techniques can provide in situ analyses of the distribution and speciation of metal(loid)s in soil-plant systems. The information presented here serves not only to understand the behavior of trace metals in soil-plant systems, but also to provide examples of the potential applications of synchrotron radiation that can be used to advantage in other studies.
Collapse
|
6
|
Rosenfeld CE, Chaney RL, Tappero RV, Martínez CE. Microscale Investigations of Soil Heterogeneity: Impacts on Zinc Retention and Uptake in Zinc-Contaminated Soils. JOURNAL OF ENVIRONMENTAL QUALITY 2017; 46:373-383. [PMID: 28380570 DOI: 10.2134/jeq2016.05.0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/07/2023]
Abstract
Metal contaminants in soils can persist for millennia, causing lasting negative impacts on local ecosystems. Long-term contaminant bioavailability is related to soil pH and to the strength and stability of solid-phase associations. We combined physical density separation with synchrotron-based microspectroscopy to reduce solid-phase complexity and to study Zn speciation in field-contaminated soils. We also investigated Zn uptake in two Zn-hyperaccumulating ecotypes of (Ganges and Prayon). Soils were either moderately contaminated (500-800 mg Zn kg via contaminated biosolids application) or grossly enriched (26,000 mg Zn kg via geogenic enrichment). Soils were separated using sodium polytungstate into three fractions: light fraction (LF) (<1.6 g cm), medium fraction (MF) (1.6-2.8 g cm), and heavy fraction (HF) (>2.8 g cm). Approximately 45% of the total Zn was associated with MF in biosolids-contaminated soils. From these data, we infer redistribution to the MF after biosolids application because Zn in biosolids is principally associated with HF and LF. Our results suggest that increasing proportions of HF-associated Zn in soils may be related to greater relative Zn removal by Zn hyperaccumulating plants. Using density fractions enabled assessment of Zn speciation on a microscale despite incomplete fractionation. Analyzing both density fractions and whole soils revealed certain phases (e.g., ZnS, Zn coprecipitated with Fe oxides) that were not obvious in all analyses, indicating multiple views of the same soils enable a more complete understanding of Zn speciation.
Collapse
|
7
|
Gao W, Nan T, Tan G, Zhao H, Tan W, Meng F, Li Z, Li QX, Wang B. Cellular and Subcellular Immunohistochemical Localization and Quantification of Cadmium Ions in Wheat (Triticum aestivum). PLoS One 2015; 10:e0123779. [PMID: 25941807 PMCID: PMC4420502 DOI: 10.1371/journal.pone.0123779] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/24/2014] [Accepted: 02/28/2015] [Indexed: 11/19/2022] Open
Abstract
The distribution of metallic ions in plant tissues is associated with their toxicity and is important for understanding mechanisms of toxicity tolerance. A quantitative histochemical method can help advance knowledge of cellular and subcellular localization and distribution of heavy metals in plant tissues. An immunohistochemical (IHC) imaging method for cadmium ions (Cd2+) was developed for the first time for the wheat Triticum aestivum grown in Cd2+-fortified soils. Also, 1-(4-Isothiocyanobenzyl)-ethylenediamine-N,N,N,N-tetraacetic acid (ITCB-EDTA) was used to chelate the mobile Cd2+. The ITCB-EDTA/Cd2+ complex was fixed with proteins in situ via the isothiocyano group. A new Cd2+-EDTA specific monoclonal antibody, 4F3B6D9A1, was used to locate the Cd2+-EDTA protein complex. After staining, the fluorescence intensities of sections of Cd2+-positive roots were compared with those of Cd2+-negative roots under a laser confocal scanning microscope, and the location of colloidal gold particles was determined with a transmission electron microscope. The results enable quantification of the Cd2+ content in plant tissues and illustrate Cd2+ translocation and cellular and subcellular responses of T. aestivum to Cd2+ stress. Compared to the conventional metal-S coprecipitation histochemical method, this new IHC method is quantitative, more specific and has less background interference. The subcellular location of Cd2+ was also confirmed with energy-dispersive X-ray microanalysis. The IHC method is suitable for locating and quantifying Cd2+ in plant tissues and can be extended to other heavy metallic ions.
Collapse
Affiliation(s)
- Wei Gao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, China
| | - Tiegui Nan
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Guiyu Tan
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Hongwei Zhao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Weiming Tan
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Fanyun Meng
- Institute of Natural Medicine and Chinese Medicine Resources, Beijing Normal University, Beijing, China
| | - Zhaohu Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Qing X. Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- * E-mail: (BW); (QXL)
| | - Baomin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- * E-mail: (BW); (QXL)
| |
Collapse
|
8
|
Schultz C, Powell K, Crossley A, Jurkschat K, Kille P, Morgan AJ, Read D, Tyne W, Lahive E, Svendsen C, Spurgeon DJ. Analytical approaches to support current understanding of exposure, uptake and distributions of engineered nanoparticles by aquatic and terrestrial organisms. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:239-261. [PMID: 25516483 DOI: 10.1007/s10646-014-1387-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Accepted: 11/18/2014] [Indexed: 06/04/2023]
Abstract
Initiatives to support the sustainable development of the nanotechnology sector have led to rapid growth in research on the environmental fate, hazards and risk of engineered nanoparticles (ENP). As the field has matured over the last 10 years, a detailed picture of the best methods to track potential forms of exposure, their uptake routes and best methods to identify and track internal fate and distributions following assimilation into organisms has begun to emerge. Here we summarise the current state of the field, focussing particularly on metal and metal oxide ENPs. Studies to date have shown that ENPs undergo a range of physical and chemical transformations in the environment to the extent that exposures to pristine well dispersed materials will occur only rarely in nature. Methods to track assimilation and internal distributions must, therefore, be capable of detecting these modified forms. The uptake mechanisms involved in ENP assimilation may include a range of trans-cellular trafficking and distribution pathways, which can be followed by passage to intracellular compartments. To trace toxicokinetics and distributions, analytical and imaging approaches are available to determine rates, states and forms. When used hierarchically, these tools can map ENP distributions to specific target organs, cell types and organelles, such as endosomes, caveolae and lysosomes and assess speciation states. The first decade of ENP ecotoxicology research, thus, points to an emerging paradigm where exposure is to transformed materials transported into tissues and cells via passive and active pathways within which they can be assimilated and therein identified using a tiered analytical and imaging approach.
Collapse
Affiliation(s)
- Carolin Schultz
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford, Oxfordshire, OX10 8BB, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gräfe M, Donner E, Collins RN, Lombi E. Speciation of metal(loid)s in environmental samples by X-ray absorption spectroscopy: a critical review. Anal Chim Acta 2014; 822:1-22. [PMID: 24725743 DOI: 10.1016/j.aca.2014.02.044] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/22/2013] [Revised: 02/12/2014] [Accepted: 02/27/2014] [Indexed: 10/25/2022]
Abstract
Element specificity is one of the key factors underlying the widespread use and acceptance of X-ray absorption spectroscopy (XAS) as a research tool in the environmental and geo-sciences. Independent of physical state (solid, liquid, gas), XAS analyses of metal(loid)s in complex environmental matrices over the past two decades have provided important information about speciation at environmentally relevant interfaces (e.g. solid-liquid) as well as in different media: plant tissues, rhizosphere, soils, sediments, ores, mineral process tailings, etc. Limited sample preparation requirements, the concomitant ability to preserve original physical and chemical states, and independence from crystallinity add to the advantages of using XAS in environmental investigations. Interpretations of XAS data are founded on sound physical and statistical models that can be applied to spectra of reference materials and mixed phases, respectively. For spectra collected directly from environmental matrices, abstract factor analysis and linear combination fitting provide the means to ascertain chemical, bonding, and crystalline states, and to extract quantitative information about their distribution within the data set. Through advances in optics, detectors, and data processing, X-ray fluorescence microprobes capable of focusing X-rays to micro- and nano-meter size have become competitive research venues for resolving the complexity of environmental samples at their inherent scale. The application of μ-XANES imaging, a new combinatorial approach of X-ray fluorescence spectrometry and XANES spectroscopy at the micron scale, is one of the latest technological advances allowing for lateral resolution of chemical states over wide areas due to vastly improved data processing and detector technology.
Collapse
Affiliation(s)
- Markus Gräfe
- Division of Process Science and Engineering, Commonwealth Scientific Industrial Research Organisation, Australian Minerals Research Centre, 7 Conlon Street, Waterford, WA 6152, Australia.
| | - Erica Donner
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Building X, Mawson Lakes, SA 5095, Australia; CRC-CARE, P.O. Box 486, Salisbury, SA 5106, Australia
| | - Richard N Collins
- UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Enzo Lombi
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Building X, Mawson Lakes, SA 5095, Australia
| |
Collapse
|
10
|
Wang YM, Kinraide TB, Wang P, Zhou DM, Hao XZ. Modeling rhizotoxicity and uptake of Zn and Co singly and in binary mixture in wheat in terms of the cell membrane surface electrical potential. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:2831-2838. [PMID: 23405885 DOI: 10.1021/es3022107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/01/2023]
Abstract
The usually negative, but variable electrical potential (ψ0) at the cell membrane (CM) surface influences the surface activities of free ions and the electrical driving force for the transport of ions across the CM. The rhizotoxic effects and uptake of Zn(2+) and Co(2+) singly and in binary mixture in wheat ( Triticum aestivum L.) at three pH values (4.5, 5.5, or 6.1) were examined in terms of the free ion activities of Zn(2+), Co(2+), and H(+) at the CM surface (these ions are denoted {M(n+)}(0)). Toxicity and uptake of Zn(2+) or Co(2+) singly to roots were better correlated with {M(2+)}(0) than with their bulk-phase activities. Studies of toxicant interactions using the electrostatic approach and a response-multiplication model for toxicant mixtures indicated that {Co(2+)}(0) significantly enhanced the toxicity of {Zn(2+)}(0), but {Zn(2+)}(0) did not significantly affect the toxicity of {Co(2+)}(0). {H(+)}(0) substantially enhanced the toxicity of both metal ions. Taking ψo into account improved the correspondence (denoted r(2)) between observed and predicted uptake of both Zn(2+) and Co(2+), and each inhibited the uptake of the other. Results showed that r(2) increased from 0.776 to 0.936 for Zn uptake and improved from 0.805 to 0.951 for Co uptake. Thus electrostatic models for metal toxicity and uptake proved superior to models incorporating only bulk-phase activities of ions.
Collapse
Affiliation(s)
- Yi-Min Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing 210008, China
| | | | | | | | | |
Collapse
|
11
|
Nair S, Joshi-Saha A, Singh S, Ramachandran V, Singh S, Thorat V, Kaushik CP, Eapen S, D'Souza SF. Evaluation of transgenic tobacco plants expressing a bacterial Co-Ni transporter for acquisition of cobalt. J Biotechnol 2012; 161:422-8. [PMID: 22898176 DOI: 10.1016/j.jbiotec.2012.07.191] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/28/2012] [Revised: 06/23/2012] [Accepted: 07/15/2012] [Indexed: 11/21/2022]
Abstract
Phytoremediation is a viable strategy for management of toxic wastes in a large area/volume with low concentrations of toxic elemental pollutants. With increased industrial use of cobalt and its alloys, it has become a major metal contaminant in soils and water bodies surrounding these industries and mining sites with adverse effects on the biota. A bacterial Co-Ni permease was cloned from Rhodopseudomonas palustris and introduced into Nicotiana tabacum to explore its potential for phytoremediation and was found to be specific for cobalt and nickel. The transgenic plants accumulated more cobalt and nickel as compared to control, whereas no significant difference in accumulation of other divalent ions was observed. The transgenic plants were evaluated for cobalt content and showed increased acquisition of cobalt (up to 5 times) as compared to control. The plants were also assessed for accumulation of nickel and found to accumulate up to 2 times more nickel than control. At the same initial concentration of cobalt and nickel, transgenic plant preferentially accumulated cobalt as compared to nickel. The present study is perhaps the first attempt to develop transgenic plants expressing heterologous Co transporter with an improved capacity to uptake cobalt.
Collapse
Affiliation(s)
- Smitha Nair
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank AM, Brisset F, Carriere M. Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 431:197-208. [PMID: 22684121 DOI: 10.1016/j.scitotenv.2012.04.073] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/26/2012] [Revised: 04/30/2012] [Accepted: 04/30/2012] [Indexed: 05/20/2023]
Abstract
Intensive production of TiO(2) nanoparticles (TiO(2)-NPs) would lead to their release in the environment. Their ecotoxicological impact is still poorly documented, while their use in commercial goods is constantly increasing. In this study we compare root accumulation and root-to-shoot translocation in wheat of anatase and rutile TiO(2)-NPs with diameters ranging from 14 nm to 655 nm, prepared in water. NP distribution in plant tissues was mapped by synchrotron-radiation micro-X-ray fluorescence, observed by transmission electron microscopy and quantified in the different compartments of plant roots by micro-particle-induced X-ray emission. Our results provide evidence that the smallest TiO(2)-NPs accumulate in roots and distribute through whole plant tissues without dissolution or crystal phase modification. We suggest a threshold diameter, 140 nm, above which NPs are no longer accumulated in wheat roots, as well as a threshold diameter, 36 nm, above which NPs are accumulated in wheat root parenchyma but do not reach the stele and consequently do not translocate to the shoot. This accumulation does not impact wheat seed germination, biomass and transpiration. It does not induce any modification of photosynthesis nor induce oxidative stress. However exposure of wheat plantlets to the smallest NPs during the first stages of development causes an increase of root elongation. Collectively, these data suggest that only the smallest TiO(2)-NPs may be accumulated in wheat plants, although in limited amounts and that their impact is moderate.
Collapse
Affiliation(s)
- Camille Larue
- UMR3299 CEA-CNRS, Service Interdisciplinaire des Systèmes Moléculaires et Matériaux, Laboratoire Structure et Dynamique par Résonance Magnétique (LSDRM), CEA Saclay, 91191 Gif sur Yvette, France.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Dhir B, Srivastava S. Disposal of metal treated Salvinia biomass in soil and its effect on growth and photosynthetic efficiency of wheat. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2012; 14:24-34. [PMID: 22567692 DOI: 10.1080/15226514.2010.532180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/31/2023]
Abstract
Phytoremediation technologies generate huge quantities of biomass, the disposal of which is a serious concern. Wastewater samples collected from electroplating industries were treated with Salvinia biomass. The effect of application of metal loaded Salvinia plant biomass in soil on growth and physiological indices of 10-day-old seedlings of Triticum aestivum was evaluated. Controls (A) consisted of soil supplemented with untreated plant biomass. Seed germination, seedling height, total chlorophyll, glucose and protein levels, photosynthetic efficiency (Fv/Fm), photochemical quenching (qP), non-photochemical quenching (qn), quantum yield (Y), and electron transport rate (ETR) were not significantly affected in seedlings raised in soils supplemented with metal loaded biomass from most of the samples (B-F) in comparison to control. However, significant decline was noted in total chlorophyll, glucose, and quantum yield in plants grown in soil supplemented with biomass from sample E. Among elemental levels, C(%) remained largely unaffected, N(%) showed slight enhancement but a decrease in H(%) was noted in plants grown in soil supplemented with biomass from sample E. Our results, therefore, suggest that metal accumulated Salvinia biomass obtained after phytoremediation of heavy metal contaminated wastewater can be supplemented in soil. Further studies are required to assess long-term effects of disposal of metal loaded Salvinia plant biomass in soil.
Collapse
Affiliation(s)
- Bhupinder Dhir
- Department of Genetics, University of Delhi South Campus, New Delhi, India.
| | | |
Collapse
|
14
|
|
15
|
Fernando DR, Mizuno T, Woodrow IE, Baker AJM, Collins RN. Characterization of foliar manganese (Mn) in Mn (hyper)accumulators using X-ray absorption spectroscopy. THE NEW PHYTOLOGIST 2010; 188:1014-27. [PMID: 20819177 DOI: 10.1111/j.1469-8137.2010.03431.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/05/2023]
Abstract
Plant hyperaccumulation of the essential nutrient manganese (Mn) is a rare phenomenon most evident in the Western Pacific region, and differs from hyperaccumulation of other elements. Mn hyperaccumulators employ a variety of species-dependent spatial distribution patterns in sequestering excess foliar Mn, including primary sequestration in both nonphotosynthetic and photosynthetic tissues. This investigation employed synchrotron X-ray absorption spectroscopy (XAS) in a comparative study of Mn (hyper)accumulators, to elucidate in situ the chemical form(s) of foliar Mn in seven woody species from Australia, New Caledonia and Japan. Foliar Mn was found to predominate as Mn(II) in all samples, with strong evidence of the role of carboxylic acids, such as malate or citrate, as complexing ligands. Overall, the X-ray absorption near-edge spectroscopy (XANES) and extended X-ray absorption fine-structure spectroscopy (EXAFS) data appeared weighted against previous observations that oxalate binds excess Mn in Mn-(hyper)accumulating species.
Collapse
Affiliation(s)
- D R Fernando
- School of Botany, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|