1
|
Jeena MT, Link J, Zhang J, Harley I, Turunen P, Graf R, Wagner M, Baptista LA, Jonker HRA, Cui L, Lieberwirth I, Landfester K, Rao J, Ng DYW, Weil T. Chaperone-Derived Copper(I)-Binding Peptide Nanofibers Disrupt Copper Homeostasis in Cancer Cells. Angew Chem Int Ed Engl 2024; 63:e202412477. [PMID: 39446574 PMCID: PMC11627128 DOI: 10.1002/anie.202412477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Copper (Cu) is a transition metal that plays crucial roles in cellular metabolism. Cu+ homeostasis is upregulated in many cancers and contributes to tumorigenesis. However, therapeutic strategies to target Cu+ homeostasis in cancer cells are rarely explored because small molecule Cu+ chelators have poor binding affinity in comparison to the intracellular Cu+ chaperones, enzymes, or ligands. To address this challenge, we introduce a Cu+ chaperone-inspired supramolecular approach to disrupt Cu+ homeostasis in cancer cells that induces programmed cell death. The Nap-FFMTCGGCR peptide self-assembles into nanofibers inside cancer cells with high binding affinity and selectivity for Cu+ due to the presence of the unique MTCGGC motif, which is conserved in intracellular Cu+ chaperones. Nap-FFMTCGGCR exhibits cytotoxicity towards triple negative breast cancer cells (MDA-MB-231), impairs the activity of Cu+ dependent co-chaperone super oxide dismutase1 (SOD1), and induces oxidative stress. In contrast, Nap-FFMTCGGCR has minimal impact on normal HEK 293T cells. Control peptides show that the self-assembly and Cu+ binding must work in synergy to successfully disrupt Cu+ homeostasis. We show that assembly-enhanced affinity for metal ions opens new therapeutic strategies to address disease-relevant metal ion homeostasis.
Collapse
Affiliation(s)
- M. T. Jeena
- Max-Planck-Institut für PolymerforschungAckermannweg 1055128MainzGermany
| | - Julian Link
- Max-Planck-Institut für PolymerforschungAckermannweg 1055128MainzGermany
| | - Jian Zhang
- Max-Planck-Institut für PolymerforschungAckermannweg 1055128MainzGermany
| | - Iain Harley
- Max-Planck-Institut für PolymerforschungAckermannweg 1055128MainzGermany
| | - Petri Turunen
- Zentrale Einrichtung für MikroskopieInstitut für Molekulare Biologie (IMB)Johannes Gutenberg-UniversitätAckermannweg 455128MainzGermany
| | - Robert Graf
- Max-Planck-Institut für PolymerforschungAckermannweg 1055128MainzGermany
| | - Manfred Wagner
- Max-Planck-Institut für PolymerforschungAckermannweg 1055128MainzGermany
| | | | - Hendrik R. A. Jonker
- Institut für Organische Chemie und Chemische BiologieBiomolekulares Magnetresonanz Zentrum (BMRZ)Goethe Universität Frankfurt60438Frankfurt am MainGermany
| | - Liyang Cui
- Department of RadiologyMolecular Imaging Program at StanfordSchool of MedicineStanford UniversityStanfordCA94305USA
| | - Ingo Lieberwirth
- Max-Planck-Institut für PolymerforschungAckermannweg 1055128MainzGermany
| | | | - Jianghong Rao
- Department of RadiologyMolecular Imaging Program at StanfordSchool of MedicineStanford UniversityStanfordCA94305USA
| | - David Y. W. Ng
- Max-Planck-Institut für PolymerforschungAckermannweg 1055128MainzGermany
| | - Tanja Weil
- Max-Planck-Institut für PolymerforschungAckermannweg 1055128MainzGermany
| |
Collapse
|
2
|
Brunetti LS, Scalise M, Scanga R, Console L, Galluccio M, La Russa MF, Pochini L, Indiveri C. OCTN1 (SLC22A4) as a Target of Heavy Metals: Its Possible Role in Microplastic Threats. Int J Mol Sci 2024; 25:13218. [PMID: 39684927 DOI: 10.3390/ijms252313218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Microplastics represent a threat due to their ability to enter the food chain, with harmful consequences for living organisms. The riskiness of these particles is also linked to the release of other contaminants, such as heavy metals. Solute Carriers (SLCs) represent eminent examples of first-level targets of heavy metals due to their localization on the cell surface. Putative targets of heavy metals are the organic cation transporters that form a sub-clade of the SLC22 family. Besides the physiological role in the absorption/release of endogenous organic cations, these transporters are crucial in drug disposition and their interaction with xenobiotics. In this work, the human SLC22A4, commonly known as OCTN1, was used as a benchmark to test interactions with heavy metals released by microplastics, exploiting the proteoliposome tool. The potency of metals to interfere with the OCTN1 function has been evaluated by measuring IC50 values calculated in the micromolar range. The molecular mechanism of interaction has been defined using site-directed mutagenesis and computational analyses. Finally, some chemical and physiological thiol-reacting compounds show the capacity to rescue the metal-inhibited OCTN1 function. The conclusions drawn on OCTN1 can be extended to other members of the SLC22 family and orthologous transporters in fish.
Collapse
Affiliation(s)
- Luana S Brunetti
- Department DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Via Bucci 4C, 12B, 87036 Rende, Italy
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Via Bucci 4C, 12B, 87036 Rende, Italy
| | - Raffaella Scanga
- Department DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Via Bucci 4C, 12B, 87036 Rende, Italy
| | - Lara Console
- Department DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Via Bucci 4C, 12B, 87036 Rende, Italy
| | - Michele Galluccio
- Department DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Via Bucci 4C, 12B, 87036 Rende, Italy
| | - Mauro F La Russa
- Department DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Via Bucci 4C, 12B, 87036 Rende, Italy
| | - Lorena Pochini
- Department DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Via Bucci 4C, 12B, 87036 Rende, Italy
- National Research Council (CNR), Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Via Bucci 4C, 12B, 87036 Rende, Italy
- National Research Council (CNR), Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
3
|
Tóth A, Sajdik K, Gyurcsik B, Nafaee ZH, Wéber E, Kele Z, Christensen NJ, Schell J, Correia JG, Sigfridsson Clauss KGV, Pittkowski RK, Thulstrup PW, Hemmingsen L, Jancsó A. As III Selectively Induces a Disorder-to-Order Transition in the Metalloid Binding Region of the AfArsR Protein. J Am Chem Soc 2024; 146:17009-17022. [PMID: 38820242 PMCID: PMC11212059 DOI: 10.1021/jacs.3c11665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
Arsenic is highly toxic and a significant threat to human health, but certain bacteria have developed defense mechanisms initiated by AsIII binding to AsIII-sensing proteins of the ArsR family. The transcriptional regulator AfArsR responds to AsIII and SbIII by coordinating the metalloids with three cysteines, located in a short sequence of the same monomer chain. Here, we characterize the binding of AsIII and HgII to a model peptide encompassing this fragment of the protein via solution equilibrium and spectroscopic/spectrometric techniques (pH potentiometry, UV, CD, NMR, PAC, EXAFS, and ESI-MS) combined with DFT calculations and MD simulations. Coordination of AsIII changes the peptide structure from a random-coil to a well-defined structure of the complex. A trigonal pyramidal AsS3 binding site is formed with almost exactly the same structure as observed in the crystal structure of the native protein, implying that the peptide possesses all of the features required to mimic the AsIII recognition and response selectivity of AfArsR. Contrary to this, binding of HgII to the peptide does not lead to a well-defined structure of the peptide, and the atoms near the metal binding site are displaced and reoriented in the HgII model. Our model study suggests that structural organization of the metal site by the inducer ion is a key element in the mechanism of the metalloid-selective recognition of this protein.
Collapse
Affiliation(s)
- Annamária Tóth
- Department
of Molecular and Analytical Chemistry, University
of Szeged, Dóm
tér 7-8, H-6720 Szeged, Hungary
| | - Kadosa Sajdik
- Department
of Molecular and Analytical Chemistry, University
of Szeged, Dóm
tér 7-8, H-6720 Szeged, Hungary
| | - Béla Gyurcsik
- Department
of Molecular and Analytical Chemistry, University
of Szeged, Dóm
tér 7-8, H-6720 Szeged, Hungary
| | - Zeyad H. Nafaee
- Department
of Molecular and Analytical Chemistry, University
of Szeged, Dóm
tér 7-8, H-6720 Szeged, Hungary
| | - Edit Wéber
- Department
of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
- HUN-REN-SZTE
Biomimetic Systems Research Group, Dóm tér 8, H-6720 Szeged, Hungary
| | - Zoltan Kele
- Department
of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Niels Johan Christensen
- Department
of Chemistry, Faculty of Science, University
of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Juliana Schell
- Institute
for Materials Science and Center for Nanointegration Duisburg-Essen
(CENIDE), University of Duisburg-Essen, 45141 Essen, Germany
- European
Organization for Nuclear Research (CERN), CH-1211 Geneva, Switzerland
| | - Joao Guilherme Correia
- Centro de
Cięncias e Tecnologias Nucleares, Departamento de Engenharia
e Cięncias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
- European
Organization for Nuclear Research (CERN), CH-1211 Geneva, Switzerland
| | | | - Rebecca K. Pittkowski
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Kobenhavn Ø, Denmark
| | - Peter Waaben Thulstrup
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Kobenhavn Ø, Denmark
| | - Lars Hemmingsen
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Kobenhavn Ø, Denmark
| | - Attila Jancsó
- Department
of Molecular and Analytical Chemistry, University
of Szeged, Dóm
tér 7-8, H-6720 Szeged, Hungary
| |
Collapse
|
4
|
Luther P, Boyle AL. Differences in heavy metal binding to cysteine-containing coiled-coil peptides. J Pept Sci 2024; 30:e3549. [PMID: 37828738 DOI: 10.1002/psc.3549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/14/2023]
Abstract
One third of all structurally characterised proteins contain a metal; however, the interplay between metal-binding and peptide/protein folding has yet to be fully elucidated. To better understand how metal binding affects peptide folding, a range of metals should be studied within a specific scaffold. To this end, we modified a histidine-containing coiled-coil peptide to create a cysteine-containing scaffold, named CX3C, which was designed to bind heavy metal ions. In addition, we generated a peptide named CX2C, which contains a binding site more commonly found in natural proteins. Using a combination of analytical techniques including circular dichroism (CD) spectroscopy, UV-Vis spectroscopy and size-exclusion chromatography coupled to multi-angle light scattering (SEC-MALS), we examined the differences in the metal-binding properties of the two peptides. Both peptides are largely unfolded in the apo state due to the disruption of the hydrophobic core by inclusion of the polar cysteine residues. However, this unfolding is overcome by the addition of Cd(II), Pb(II) and Hg(II), and helical assemblies are formed. Both peptides have differing affinities for these metal ions, a fact likely attributed to the differing sizes of the ions. We also show that the oligomerisation state of the peptide complexes and the coordination geometries of the metal ions differ between the two peptide scaffolds. These findings highlight that subtle changes in the primary structure of a peptide can have considerable implications for metal binding.
Collapse
Affiliation(s)
- Prianka Luther
- Macromolecular Biochemistry Group, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Aimee L Boyle
- Macromolecular Biochemistry Group, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| |
Collapse
|
5
|
Luo F, Zhu D, Sun H, Zou R, Duan W, Liu J, Yan Y. Wheat Selenium-binding protein TaSBP-A enhances cadmium tolerance by decreasing free Cd 2+ and alleviating the oxidative damage and photosynthesis impairment. FRONTIERS IN PLANT SCIENCE 2023; 14:1103241. [PMID: 36824198 PMCID: PMC9941557 DOI: 10.3389/fpls.2023.1103241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Cadmium, one of the toxic heavy metals, robustly impact crop growth and development and food safety. In this study, the mechanisms of wheat (Triticum aestivum L.) selenium-binding protein-A (TaSBP-A) involved in response to Cd stress was fully investigated by overexpression in Arabidopsis and wheat. As a cytoplasm protein, TaSBP-A showed a high expression in plant roots and its expression levels were highly induced by Cd treatment. The overexpression of TaSBP-A enhanced Cd-toleration in yeast, Arabidopsis and wheat. Meanwhile, transgenic Arabidopsis under Cd stress showed a lower H2O2 and malondialdehyde content and a higher photochemical efficiency in the leaf and a reduction of free Cd2+ in the root. Transgenic wheat seedlings of TaSBP exhibited an increment of Cd content in the root, and a reduction Cd content in the leaf under Cd2+ stress. Cd2+ binding assay combined with a thermodynamics survey and secondary structure analysis indicated that the unique CXXC motif in TaSBP was a major Cd-binding site participating in the Cd detoxification. These results suggested that TaSBP-A can enhance the sequestration of free Cd2+ in root and inhibit the Cd transfer from root to leaf, ultimately conferring plant Cd-tolerance via alleviating the oxidative stress and photosynthesis impairment triggered by Cd stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yueming Yan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Science, Capital Normal University, Beijing, China
| |
Collapse
|
6
|
Interactions of an Artificial Zinc Finger Protein with Cd(II) and Hg(II): Competition and Metal and DNA Binding. INORGANICS 2023. [DOI: 10.3390/inorganics11020064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cys2His2 zinc finger proteins are important for living organisms, as they—among other functions—specifically recognise DNA when Zn(II) is coordinated to the proteins, stabilising their ββα secondary structure. Therefore, competition with other metal ions may alter their original function. Toxic metal ions such as Cd(II) or Hg(II) might be especially dangerous because of their similar chemical properties to Zn(II). Most competition studies carried out so far have involved small zinc finger peptides. Therefore, we have investigated the interactions of toxic metal ions with a zinc finger proteins consisting of three finger units and the consequences on the DNA binding properties of the protein. Binding of one Cd(II) per finger subunit of the protein was shown by circular dichroism spectroscopy, fluorimetry and electrospray ionisation mass spectrometry. Cd(II) stabilised a similar secondary structure to that of the Zn(II)-bound protein but with a slightly lower affinity. In contrast, Hg(II) could displace Zn(II) quantitatively (logβ′ ≥ 16.7), demolishing the secondary structure, and further Hg(II) binding was also observed. Based on electrophoretic gel mobility shift assays, the Cd(II)-bound zinc finger protein could recognise the specific DNA target sequence similarly to the Zn(II)-loaded form but with a ~0.6 log units lower stability constant, while Hg(II) could destroy DNA binding completely.
Collapse
|
7
|
Sauser L, Kalvoda T, Kavas A, Rulíšek L, Shoshan MS. Cyclic Octapeptides Composed of Two Glutathione Units Outperform the Monomer in Lead Detoxification. ChemMedChem 2022; 17:e202200152. [PMID: 35560783 PMCID: PMC9544108 DOI: 10.1002/cmdc.202200152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/11/2022] [Indexed: 11/06/2022]
Abstract
A rationally-designed scaffold of cyclic octapeptides composed of two units of the natural tripeptide glutathione (GSH) was optimized to strongly and selectively capture toxic lead ions (Pb(II)). Using state-of-the-art computational tools, a list of eleven plausible peptides was shortened to five analogs based on their calculated affinity to Pb(II) ions. We then synthesized and investigated them for their abilities to recover Pb-poisoned human cells. A clear pattern was observed from the in vitro detoxification results, indicating the importance of cavity size and polar moieties to enhance metal capturing. These, together with the apparent benefit of cyclizing the peptides, improved the detoxification of the two lead peptides by approximately two folds compared to GSH and the benchmark chelating agents against Pb poisoning. Moreover, the two peptides did not show any toxicity and, therefore, were thoroughly investigated to determine their potential as next-generation remedies for Pb poisoning.
Collapse
Affiliation(s)
- Luca Sauser
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Tadeáš Kalvoda
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo náměstí 216610Praha 6Czech Republic
| | - Ayça Kavas
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo náměstí 216610Praha 6Czech Republic
| | - Michal S. Shoshan
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| |
Collapse
|
8
|
Grenács Á, Bodnár N, Pálinkás DC, Lihi N, Várnagy K. The effect of side chains on the complex formation processes of N-terminally free hexapeptides containing C-terminal cysteinyl functions. NEW J CHEM 2022. [DOI: 10.1039/d1nj05383c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ratio of isomers of 1 to 1 nickel-ligand complexes formed in equimolar systems at pH 11 (left) and pH 7 (right) showing the influence of an internal coordinating side chain.
Collapse
Affiliation(s)
- Ágnes Grenács
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - Nikolett Bodnár
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - Dóra Csilla Pálinkás
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - Norbert Lihi
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
- MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research Group, University of Debrecen, H-4032 Debrecen, Egyetem tér 1., Hungary
| | - Katalin Várnagy
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
9
|
Springfield E, Willis A, Merle J, Mazlo J, Ngu-Schwemlein M. Spectroscopic and Theoretical Studies of Hg(II) Complexation with Some Dicysteinyl Tetrapeptides. Bioinorg Chem Appl 2021; 2021:9911474. [PMID: 34349795 PMCID: PMC8328728 DOI: 10.1155/2021/9911474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/10/2021] [Indexed: 11/17/2022] Open
Abstract
Tetrapeptides containing a Cys-Gly-Cys motif and a propensity to adopt a reverse-turn structure were synthesized to evaluate how O-, N-, H-, and aromatic π donor groups might contribute to mercury(II) complex formation. Tetrapeptides Xaa-Cys-Gly-Cys, where Xaa is glycine, glutamate, histidine, or tryptophan, were prepared and reacted with mercury(II) chloride. Their complexation with mercury(II) was studied by spectroscopic methods and computational modeling. UV-vis studies confirmed that mercury(II) binds to the cysteinyl thiolates as indicated by characteristic ligand-to-metal-charge-transfer transitions for bisthiolated S-Hg-S complexes, which correspond to 1 : 1 mercury-peptide complex formation. ESI-MS data also showed dominant 1 : 1 mercury-peptide adducts that are consistent with double deprotonations from the cysteinyl thiols to form thiolates. These complexes exhibited a strong positive circular dichroism band at 210 nm and a negative band at 193 nm, indicating that these peptides adopted a β-turn structure after binding mercury(II). Theoretical studies confirmed that optimized 1 : 1 mercury-peptide complexes adopt β-turns stabilized by intramolecular hydrogen bonds. These optimized structures also illustrate how specific N-terminal side-chain donor groups can assume intramolecular interactions and contribute to complex stability. Fluorescence quenching results provided supporting data that the indole donor group could interact with the coordinated mercury. The results from this study indicate that N-terminal side-chain residues containing carboxylate, imidazole, or indole groups can participate in stabilizing dithiolated mercury(II) complexes. These structural insights on peripheral mercury-peptide interactions provide additional understanding of the chemistry of mercury(II) with side-chain donor groups in peptides.
Collapse
Affiliation(s)
- Elliot Springfield
- Chemistry Department, Winston Salem State University, Winston-Salem, NC 27110, USA
| | - Alana Willis
- Chemistry Department, Winston Salem State University, Winston-Salem, NC 27110, USA
| | - John Merle
- Chemistry Department, Winston Salem State University, Winston-Salem, NC 27110, USA
| | - Johanna Mazlo
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Maria Ngu-Schwemlein
- Chemistry Department, Winston Salem State University, Winston-Salem, NC 27110, USA
| |
Collapse
|
10
|
Tripodal scaffolds with three appended imidazole thiones for Cu(I) chelation and protection from Cu-mediated oxidative stress. J Inorg Biochem 2021; 222:111518. [PMID: 34182264 DOI: 10.1016/j.jinorgbio.2021.111518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/02/2021] [Accepted: 06/12/2021] [Indexed: 11/21/2022]
Abstract
Imidazole thiones appear as interesting building blocks for Cu(I) chelation and protection against Cu-mediated oxidative stress. Therefore, a series of tripodal molecules derived from nitrilotriacetic acid appended with three imidazole thiones belonging either to histamine-like or histidine-like moieties were synthesized. These tripods demonstrate intermediate affinity between that previously measured for tripodal analogues bearing three thiol moieties such as cysteine and those grafted with three thioethers, like methionines, consistently with the thione group in the imidazole thione moiety existing as a tautomer between a thiol and a thione. The two non-alkylated tripods derived from thioimidazole, TH and TH* demonstrated three orders of magnitude larger affinity for Cu(I) (logKpH 7.4 = 14.3) than their analogues derived from N,N'-dialkylated thioimidazole TMe and TEt (logKpH 7.4 = 11-11.6). Their efficiency to inhibit Cu-mediated oxidative stress is demonstrated by several assays involving ascorbate consumption or biomolecule damages and correlates with their ability to chelate Cu(I), related to their conditional complexation constants at pH 7.4. The two non-alkylated tripods derived from thioimidazole, TH and TH* are significantly more powerful in reducing Cu-mediated oxidative stress than their analogues derived from N,N'-dialkylated thioimidazole TMe and TEt.
Collapse
|
11
|
Mohammed TA, Meier CM, Kalvoda T, Kalt M, Rulíšek L, Shoshan MS. Potent Cyclic Tetrapeptide for Lead Detoxification. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tagwa A. Mohammed
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Christoph M. Meier
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Tadeáš Kalvoda
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo náměstí 2 16610 Praha 6 Czech Republic
| | - Martina Kalt
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo náměstí 2 16610 Praha 6 Czech Republic
| | - Michal S. Shoshan
- Department of Chemistry University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
12
|
Mohammed TA, Meier CM, Kalvoda T, Kalt M, Rulíšek L, Shoshan MS. Potent Cyclic Tetrapeptide for Lead Detoxification. Angew Chem Int Ed Engl 2021; 60:12381-12385. [PMID: 33759306 DOI: 10.1002/anie.202103217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 11/05/2022]
Abstract
Lead (Pb) is a ubiquitous poisonous metal, affecting the health of vast populations worldwide. Medications to treat Pb poisoning suffer from various limitations and are often toxic owing to insufficient metal selectivity. Here, we report a cyclic tetrapeptide that selectively binds Pb and eradicates its toxic effect on the cellular level, with superior potency than state-of-the-art drugs. The Pb-peptide complex is remarkably strong and was characterized experimentally and computationally. Accompanied by the lack of toxicity and enhanced stability of this peptide, these qualities indicate its merit as a potential remedy for Pb poisoning.
Collapse
Affiliation(s)
- Tagwa A Mohammed
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Christoph M Meier
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Tadeáš Kalvoda
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Praha 6, Czech Republic
| | - Martina Kalt
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Praha 6, Czech Republic
| | - Michal S Shoshan
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
13
|
Lukács M, Csilla Pálinkás D, Szunyog G, Várnagy K. Metal Binding Ability of Small Peptides Containing Cysteine Residues. ChemistryOpen 2021; 10:451-463. [PMID: 33830669 PMCID: PMC8028610 DOI: 10.1002/open.202000304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 02/02/2021] [Indexed: 11/10/2022] Open
Abstract
The Cd(II)-, Pb(II)-, Ni(II)- and Zn(II)-complexes of small terminally protected peptides containing CXXX, XXXC, XCCX, CXn C (n=1-3) sequences have been studied with potentiometric, UV/Vis and CD spectroscopic techniques. The cysteine thiolate group is the primary binding site for all studied metal ions, but the presence of a histidyl or aspartyl side chain in the molecule contributes to the stability of the complexes. For two-cysteine containing peptides the (S- ,S- ) coordinated species are formed in the physiological pH range and the stability increases in the Ni(II)
Collapse
Affiliation(s)
- Márton Lukács
- Department of Inorganic and Analytical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Dóra Csilla Pálinkás
- Department of Inorganic and Analytical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Györgyi Szunyog
- Department of Inorganic and Analytical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Katalin Várnagy
- Department of Inorganic and Analytical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| |
Collapse
|
14
|
Manceau A, Nagy KL, Glatzel P, Bourdineaud JP. Acute Toxicity of Divalent Mercury to Bacteria Explained by the Formation of Dicysteinate and Tetracysteinate Complexes Bound to Proteins in Escherichia coli and Bacillus subtilis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3612-3623. [PMID: 33629845 DOI: 10.1021/acs.est.0c05202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bacteria are the most abundant organisms on Earth and also the major life form affected by mercury (Hg) poisoning in aquatic and terrestrial food webs. In this study, we applied high energy-resolution X-ray absorption near edge structure (HR-XANES) spectroscopy to bacteria with intracellular concentrations of Hg as low as 0.7 ng/mg (ppm) for identifying the intracellular molecular forms and trafficking pathways of Hg in bacteria at environmentally relevant concentrations. Gram-positive Bacillus subtilis and Gram-negative Escherichia coli were exposed to three Hg species: HgCl2, Hg-dicysteinate (Hg(Cys)2), and Hg-dithioglycolate (Hg(TGA)2). In all cases, Hg was transformed into new two- and four-coordinate cysteinate complexes, interpreted to be bound, respectively, to the consensus metal-binding CXXC motif and zinc finger domains of proteins, with glutathione acting as a transfer ligand. Replacement of zinc cofactors essential to gene regulatory proteins with Hg would inhibit vital functions such as DNA transcription and repair and is suggested to be a main cause of Hg genotoxicity.
Collapse
Affiliation(s)
- Alain Manceau
- Université Grenoble Alpes, CNRS, ISTerre, CS 40700, 38058 Grenoble, France
| | - Kathryn L Nagy
- Department of Earth and Environmental Sciences, University of Illinois at Chicago, MC-186, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Pieter Glatzel
- European Synchrotron Radiation Facility (ESRF), 71 Rue des Martyrs, 38000 Grenoble, France
| | - Jean-Paul Bourdineaud
- Institut Européen de Chimie et Biologie, Université de Bordeaux, CNRS, UMR 5234, 2 rue Escarpit, 33607 Pessac, France
| |
Collapse
|
15
|
Sauser L, Shoshan MS. Harnessing Peptides against lead pollution and poisoning: Achievements and prospects. J Inorg Biochem 2020; 212:111251. [PMID: 32920433 DOI: 10.1016/j.jinorgbio.2020.111251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/16/2020] [Accepted: 08/30/2020] [Indexed: 11/24/2022]
Abstract
Among the broad applicability of peptides in numerous aspects of life and technologies, their interactions with lead (Pb), one of the most harmful substances to the environment and health, are constantly explored. So far, peptides were developed for environmental remediation of Pb-contaminations by various strategies such as hydrogelation and surface display. They were also designed for Pb detection and sensing by electrochemical and fluorescent methods and for modeling natural proteins that involve in mechanisms by which Pb is toxic. This review aims at summarizing selected examples of these applications, manifesting the enormous potential of peptides in the combat against Pb pollution. Nevertheless, the absence of new medicinal treatments against Pb poisoning that are based on peptides is noticeable. An overview of previous achievements utilizing Pb-peptide interactions towards various goals is presented and can be therefore leveraged to construct a useful toolbox for the design of smart peptides as next-generation therapeutics against Pb.
Collapse
Affiliation(s)
- Luca Sauser
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Michal S Shoshan
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
16
|
Nunes P, Correia I, Marques F, Matos AP, Dos Santos MMC, Azevedo CG, Capelo JL, Santos HM, Gama S, Pinheiro T, Cavaco I, Pessoa JC. Copper Complexes with 1,10-Phenanthroline Derivatives: Underlying Factors Affecting Their Cytotoxicity. Inorg Chem 2020; 59:9116-9134. [PMID: 32578983 DOI: 10.1021/acs.inorgchem.0c00925] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The interpretation of in vitro cytotoxicity data of Cu(II)-1,10-phenanthroline (phen) complexes normally does not take into account the speciation that complexes undergo in cell incubation media and its implications in cellular uptake and mechanisms of action. We synthesize and test the activity of several distinct Cu(II)-phen compounds; up to 24 h of incubation, the cytotoxic activity differs for the Cu complexes and the corresponding free ligands, but for longer incubation times (e.g., 72 h), all compounds display similar activity. Combining the use of several spectroscopic, spectrometric, and electrochemical techniques, the speciation of Cu-phen compounds in cell incubation media is evaluated, indicating that the originally added complex almost totally decomposed and that Cu(II) and phen are mainly bound to bovine serum albumin. Several methods are used to disclose relationships between structure, activity, speciation in incubation media, cellular uptake, distribution of Cu in cells, and cytotoxicity. Contrary to what is reported in most studies, we conclude that interaction with cell components and cell death involves the separate action of Cu ions and phen molecules, not [Cu(phen)n] species. This conclusion should similarly apply to many other Cu-ligand systems reported to date.
Collapse
Affiliation(s)
- Patrique Nunes
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Isabel Correia
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares and Departamento de Ciências e Engenharia Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - António Pedro Matos
- Centro de Investigação Interdisciplinar Egas Moniz, Campus Universitário, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| | - Margarida M C Dos Santos
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Cristina G Azevedo
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - José-Luis Capelo
- LAVQ, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.,PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-152 Caparica, Portugal
| | - Hugo M Santos
- LAVQ, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.,PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-152 Caparica, Portugal
| | - Sofia Gama
- Department of Analytical Chemistry, Faculty of Chemistry, University of Białystok, ul. Ciołkowskiego 1K, 15-245 Białystok, Poland
| | - Teresa Pinheiro
- Institute for Bioengineering and Biosciences and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Isabel Cavaco
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal.,Departamento de Química e Farmácia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - João Costa Pessoa
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
17
|
Evaluating the involvement of tryptophan on thiolated peptide-mercury(II) complexes: Cation-pi interactions. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
18
|
Garai A, Delangle P. Recent advances in uranyl binding in proteins thanks to biomimetic peptides. J Inorg Biochem 2019; 203:110936. [PMID: 31864150 DOI: 10.1016/j.jinorgbio.2019.110936] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/05/2019] [Accepted: 11/17/2019] [Indexed: 12/29/2022]
Abstract
Uranium is an element belonging to the actinide series. It is ubiquitous in rock, soil, and water. Uranium is found in the ecosystem due to mining and milling industrial activities and processing to nuclear fuel, but also to the extensive use of phosphate fertilizers. Understanding uranium binding in vivo is critical, first to deepen our knowledge of molecular events leading to chemical toxicity, but also to provide new mechanistic information useful for the development of efficient decorporation treatments to be applied in case of intoxication. The most stable form in physiological conditions is the uranyl cation (UO22+), in which uranium oxidation state is +VI. This short review presents uranyl coordination properties and chelation, and what is currently known about uranium binding to proteins. Although several target proteins have been identified, the UO22+ binding sites have barely been identified. Biomimetic approaches using model peptides are good options to shed light on high affinity uranyl binding sites in proteins. A strategy based on constrained cyclodecapeptides allowed recently to propose a tetraphosphate binding site for uranyl that provides an affinity similar to the one measured with the phosphoprotein osteopontin.
Collapse
Affiliation(s)
- Aditya Garai
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000 Grenoble, France
| | - Pascale Delangle
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000 Grenoble, France.
| |
Collapse
|
19
|
Szekeres LI, Bálint S, Galbács G, Kálomista I, Kiss T, Larsen FH, Hemmingsen L, Jancsó A. Hg 2+ and Cd 2+ binding of a bioinspired hexapeptide with two cysteine units constructed as a minimalistic metal ion sensing fluorescent probe. Dalton Trans 2019; 48:8327-8339. [PMID: 31111849 DOI: 10.1039/c9dt01141b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hg2+ and Cd2+ complexation of a short hexapeptide, Ac-DCSSCY-NH2 (DY), was studied by pH-potentiometry, UV and NMR spectroscopy and fluorimetry in aqueous solutions and the Hg2+-binding ability of the ligand was also described in an immobilized form, where the peptides were anchored to a hydrophilic resin. Hg2+ was demonstrated to form a 1 : 1 complex with the ligand even at pH = 2.0 while Cd2+ coordination by the peptide takes place only above pH ∼ 3.5. Both metal ions form bis-ligand complexes by the coordination of four Cys-thiolates at ligand excess above pH ∼ 5.5 (Cd2+) and 7.0 (Hg2+). Fluorescence studies demonstrated a Hg2+ induced concentration-dependent quenching of the Tyr fluorescence until a 1 : 1 Hg2+ : DY ratio. The fluorescence emission intensity decreases linearly with the increasing Hg2+ concentration in a range of over two orders of magnitude. The fact that this occurs even in the presence of 1.0 eq. of Cd2+ per ligand reflects a complete displacement of the latter metal ion by Hg2+ from its peptide-bound form. The immobilized peptide was also shown to bind Hg2+ very efficiently even from samples at pH = 2.0. However, the existence of lower affinity binding sites was also demonstrated by binding of more than 1.0 eq. of Hg2+ per immobilized DY molecule under Hg2+-excess conditions. Experiments performed with a mixture of four metal ions, Hg2+, Cd2+, Zn2+ and Ni2+, indicate that this molecular probe may potentially be used in Hg2+-sensing systems under acidic conditions for the measurement of μM range concentrations.
Collapse
Affiliation(s)
- Levente I Szekeres
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged, H-6720, Hungary.
| | - Sára Bálint
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged, H-6720, Hungary.
| | - Gábor Galbács
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged, H-6720, Hungary.
| | - Ildikó Kálomista
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged, H-6720, Hungary.
| | - Tamás Kiss
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged, H-6720, Hungary.
| | - Flemming H Larsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg C, Denmark
| | - Lars Hemmingsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Attila Jancsó
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged, H-6720, Hungary.
| |
Collapse
|
20
|
Laporte FA, Lebrun C, Vidaud C, Delangle P. Phosphate-Rich Biomimetic Peptides Shed Light on High-Affinity Hyperphosphorylated Uranyl Binding Sites in Phosphoproteins. Chemistry 2019; 25:8570-8578. [PMID: 30908736 DOI: 10.1002/chem.201900646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Indexed: 12/31/2022]
Abstract
Some phosphoproteins such as osteopontin (OPN) have been identified as high-affinity uranyl targets. However, the binding sites required for interaction with uranyl and therefore involved in its toxicity have not been identified in the whole protein. The biomimetic approach proposed here aimed to decipher the nature of these sites and should help to understand the role of the multiple phosphorylations in UO2 2+ binding. Two hyperphosphorylated cyclic peptides, pS168 and pS1368 containing up to four phosphoserine (pSer) residues over the ten amino acids present in the sequences, were synthesized with all reactions performed in the solid phase, including post-phosphorylation. These β-sheet-structured peptides present four coordinating residues from four amino acid side chains pointing to the metal ion, either three pSer and one glutamate in pS168 or four pSer in pS1368 . Significantly, increasing the number of pSer residues up to four in the cyclodecapeptide scaffolds produced molecules with an affinity constant for UO2 2+ that is as large as that reported for osteopontin at physiological pH. The phosphate-rich pS1368 can thus be considered a relevant model of UO2 2+ coordination in this intrinsically disordered protein, which wraps around the metal ion to gather four phosphate groups in the UO2 2+ coordination sphere. These model hyperphosphorylated peptides are highly selective for UO2 2+ with respect to endogenous Ca2+ , which makes them good starting structures for selective UO2 2+ complexation.
Collapse
Affiliation(s)
- Fanny A Laporte
- INAC SyMMES, Université Grenoble Alpes, CEA, CNRS, 38000, Grenoble, France
| | - Colette Lebrun
- INAC SyMMES, Université Grenoble Alpes, CEA, CNRS, 38000, Grenoble, France
| | - Claude Vidaud
- CEA, Fundamental Research Division, Biosciences and Biotechnologies Institute of Aix-Marseille, 30207, Bagnols sur Céze, France
| | - Pascale Delangle
- INAC SyMMES, Université Grenoble Alpes, CEA, CNRS, 38000, Grenoble, France
| |
Collapse
|
21
|
Karri R, Chalana A, Das R, Rai RK, Roy G. Cytoprotective effects of imidazole-based [S 1] and [S 2]-donor ligands against mercury toxicity: a bioinorganic approach. Metallomics 2019; 11:213-225. [PMID: 30488926 DOI: 10.1039/c8mt00237a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report the coordination behaviour of an imidazole-based [S1]-donor ligand, 1,3-dimethyl-imidazole-2(3H)-thione (L1), and [S2]-donor ligand, 3,3'-methylenebis(1-methyl-imidazole-2(3H)-thione) (L2) or 4,4'-(3,3'-methylenebis-(2-thioxo-2,3-dihydro-imidazole-3,1-diyl))dibutanoic acid (L3), with HgX2 (X = Cl, Br or I) in solution and the solid state. NMR, UV-Vis spectroscopic, and single crystal X-ray studies demonstrated that L1 or L2 coordinated rapidly and reversibly to the mercury center of HgX2 through the thione moiety. Treatment of L2 with HgCl2 or HgBr2 afforded 16-membered metallacycle k1-(L2)2Hg2Cl4 or k1-(L2)2Hg2Br4 where two Cl or Br atoms are located inside the ring. In contrast, treatment of L2 with HgI2 afforded a chain-like structure of k1-[L2Hgl2]n, possibly due to the large size of the iodine atom. Interestingly, [S1] and [S2]-donor ligands (L1, L2, and L3) showed an excellent efficacy to protect liver cells against HgCl2 induced toxicity and the strength of their efficacy is in the order of L3 > L2 > L1. 30% decrease of ROS production was observed when liver cells were co-treated with HgCl2 and L1 in comparison to those cells treated with HgCl2 only. In contrast, 45% and 60% decrease of ROS production was observed in the case of cells co-treated with HgCl2 and thiones L2 and L3, respectively, indicating that [S2]-donor ligands L2 and L3 have better cytoprotective effects against oxidative stress induced by HgCl2 than [S1]-donor ligand L1. Water-soluble ligand L3 with N-(CH2)3CO2H substituents showed a better cytoprotective effect against HgCl2 toxicity than L2 in liver cells.
Collapse
Affiliation(s)
- Ramesh Karri
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, NH91, Dadri, Gautam Buddha Nagar, UP 201314, India.
| | | | | | | | | |
Collapse
|
22
|
Manceau A, Bustamante P, Haouz A, Bourdineaud JP, Gonzalez‐Rey M, Lemouchi C, Gautier‐Luneau I, Geertsen V, Barruet E, Rovezzi M, Glatzel P, Pin S. Mercury(II) Binding to Metallothionein in Mytilus edulis revealed by High Energy-Resolution XANES Spectroscopy. Chemistry 2019; 25:997-1009. [PMID: 30426580 PMCID: PMC6582439 DOI: 10.1002/chem.201804209] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Indexed: 11/26/2022]
Abstract
Of all divalent metals, mercury (HgII ) has the highest affinity for metallothioneins. HgII is considered to be enclosed in the α and β domains as tetrahedral α-type Hg4 Cys11-12 and β-type Hg3 Cys9 clusters similar to CdII and ZnII . However, neither the four-fold coordination of Hg nor the existence of Hg-Hg atomic pairs have ever been demonstrated, and the HgII partitioning among the two protein domains is unknown. Using high energy-resolution XANES spectroscopy, MP2 geometry optimization, and biochemical analysis, evidence for the coexistence of two-coordinate Hg-thiolate complex and four-coordinate Hg-thiolate cluster with a metacinnabar-type (β-HgS) structure in the α domain of separate metallothionein molecules from blue mussel under in vivo exposure is provided. The findings suggest that the CXXC claw setting of thiolate donors, which only exists in the α domain, acts as a nucleation center for the polynuclear complex and that the five CXC motifs from this domain serve as the cluster-forming motifs. Oligomerization is driven by metallophilic Hg⋅⋅⋅Hg interactions. Our results provide clues as to why Hg has higher affinity for the α than the β domain. More generally, this work provides a foundation for understanding how metallothioneins mediate mercury detoxification in the cell under in vivo conditions.
Collapse
Affiliation(s)
- Alain Manceau
- ISTerreUniv. Grenoble Alpes, CNRS38000GrenobleFrance
| | - Paco Bustamante
- Littoral Environnement et Sociétés, LIENSs, Univ. La RochelleCNRS17000La RochelleFrance
| | - Ahmed Haouz
- Institut Pasteur, Plate-forme de CristallographieCNRS,375724ParisFrance
| | | | | | | | | | - Valérie Geertsen
- NIMBE, Univ. Paris-SaclayCNRS, CEA Saclay91191Gif-sur-YvetteFrance
| | - Elodie Barruet
- NIMBE, Univ. Paris-SaclayCNRS, CEA Saclay91191Gif-sur-YvetteFrance
| | - Mauro Rovezzi
- European Synchrotron Radiation FacilityESRF38000GrenobleFrance
| | - Pieter Glatzel
- European Synchrotron Radiation FacilityESRF38000GrenobleFrance
| | - Serge Pin
- NIMBE, Univ. Paris-SaclayCNRS, CEA Saclay91191Gif-sur-YvetteFrance
| |
Collapse
|
23
|
|
24
|
Marchioni M, Jouneau PH, Chevallet M, Michaud-Soret I, Deniaud A. Silver nanoparticle fate in mammals: Bridging in vitro and in vivo studies. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.03.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
Mesterházy E, Boff B, Lebrun C, Delangle P, Jancsó A. Oligopeptide models of the metal binding loop of the bacterial copper efflux regulator protein CueR as potential Cu(I) chelators. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.06.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Sénèque O, Rousselot-Pailley P, Pujol A, Boturyn D, Crouzy S, Proux O, Manceau A, Lebrun C, Delangle P. Mercury Trithiolate Binding (HgS 3) to a de Novo Designed Cyclic Decapeptide with Three Preoriented Cysteine Side Chains. Inorg Chem 2018; 57:2705-2713. [PMID: 29443519 DOI: 10.1021/acs.inorgchem.7b03103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mercury(II) is an unphysiological soft ion with high binding affinity for thiolate ligands. Its toxicity lies in the interactions with low molecular weight thiols including glutathione and cysteine-containing proteins that disrupt the thiol balance and alter vital functions. However, mercury can also be detoxified via interactions with Hg(II)-responsive regulatory proteins such as MerR, which coordinates Hg(II) with three cysteine residues in a trigonal planar fashion (HgS3 coordination). The model cyclodecapeptide P3C, c(GCTCSGCSRP) was designed to promote Hg(II) chelation in a HgS3 coordination environment through the parallel orientation of three cysteine side chains. The binding motif is derived from the dicysteine P2C cyclodecapeptide validated previously as a model for d10 metal transporters containing the binding sequence CxxC. The formation of the mononuclear HgP3C complex with a HgS3 coordination is demonstrated using electrospray ionization mass spectrometry, UV absorption, and 199Hg NMR. Hg LIII-edge extended X-ray absorption fine structure (EXAFS) spectroscopy indicates that the Hg(II) coordination environment is T-shaped with two short Hg-S distances at 2.45 Å and one longer distance at 2.60 Å. The solution structure of the HgP3C complex was refined based on 1H-1H NMR constraints and EXAFS results. The cyclic peptide scaffold has a rectangular shape with the three binding cysteine side chains pointing toward Hg(II). The HgP3CH complex has a p Ka of 4.3, indicating that the HgS3 coordination mode is stable over a large range of pH. This low p Ka value suggests that the preorientation of the three cysteine groups is particularly well-achieved for Hg(II) trithiolate coordination in P3C.
Collapse
Affiliation(s)
- Olivier Sénèque
- INAC-SyMMES , Univ. Grenoble Alpes, CEA, CNRS , 38000 Grenoble , France.,Univ. Grenoble Alpes, CNRS, CEA, BIG, LCBM (UMR 5249) , 38000 Grenoble , France
| | | | - Anaïs Pujol
- INAC-SyMMES , Univ. Grenoble Alpes, CEA, CNRS , 38000 Grenoble , France
| | - Didier Boturyn
- DCM UMR 5250, Université Grenoble Alpes-CNRS , 38041 Grenoble cedex 9 , France
| | - Serge Crouzy
- Univ. Grenoble Alpes, CNRS, CEA, BIG, LCBM (UMR 5249) , 38000 Grenoble , France
| | - Olivier Proux
- BM30B/FAME beamline , ESRF , 38043 Grenoble cedex 9 , France
| | - Alain Manceau
- ISTerre , Univ. Grenoble Alpes, CNRS , CS 40700 , 38058 Grenoble , France
| | - Colette Lebrun
- INAC-SyMMES , Univ. Grenoble Alpes, CEA, CNRS , 38000 Grenoble , France
| | - Pascale Delangle
- INAC-SyMMES , Univ. Grenoble Alpes, CEA, CNRS , 38000 Grenoble , France
| |
Collapse
|
27
|
Mesterházy E, Lebrun C, Jancsó A, Delangle P. A Constrained Tetrapeptide as a Model of Cu(I) Binding Sites Involving Cu4S6 Clusters in Proteins. Inorg Chem 2018; 57:5723-5731. [DOI: 10.1021/acs.inorgchem.7b02735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Edit Mesterházy
- INAC, SYMMES, Université Grenoble Alpes, CEA, CNRS, F-38000 Grenoble, France
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary
| | - Colette Lebrun
- INAC, SYMMES, Université Grenoble Alpes, CEA, CNRS, F-38000 Grenoble, France
| | - Attila Jancsó
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary
| | - Pascale Delangle
- INAC, SYMMES, Université Grenoble Alpes, CEA, CNRS, F-38000 Grenoble, France
| |
Collapse
|
28
|
Mesterházy E, Lebrun C, Crouzy S, Jancsó A, Delangle P. Short oligopeptides with three cysteine residues as models of sulphur-rich Cu(i)- and Hg(ii)-binding sites in proteins. Metallomics 2018; 10:1232-1244. [DOI: 10.1039/c8mt00113h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peptides mimicking sulphur-rich fragments found in metallothioneins display unexpectedly different behaviours with the two metal ions Hg(ii) and Cu(i).
Collapse
Affiliation(s)
- Edit Mesterházy
- INAC/SYMMES/Université Grenoble Alpes
- CEA
- CNRS
- 38000 Grenoble
- France
| | - Colette Lebrun
- Department of Inorganic and Analytical Chemistry
- University of Szeged
- Szeged H-6720
- Hungary
| | - Serge Crouzy
- BIG/LCBM/Université Grenoble Alpes
- CEA
- CNRS
- (UMR 5249)
- 38000 Grenoble
| | - Attila Jancsó
- Department of Inorganic and Analytical Chemistry
- University of Szeged
- Szeged H-6720
- Hungary
| | - Pascale Delangle
- INAC/SYMMES/Université Grenoble Alpes
- CEA
- CNRS
- 38000 Grenoble
- France
| |
Collapse
|
29
|
Starck M, Laporte FA, Oros S, Sisommay N, Gathu V, Solari PL, Creff G, Roques J, Den Auwer C, Lebrun C, Delangle P. Cyclic Phosphopeptides to Rationalize the Role of Phosphoamino Acids in Uranyl Binding to Biological Targets. Chemistry 2017; 23:5281-5290. [PMID: 28164389 DOI: 10.1002/chem.201605481] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Indexed: 12/24/2022]
Abstract
The specific molecular interactions responsible for uranium toxicity are not yet understood. The uranyl binding sites in high-affinity target proteins have not been identified yet and the involvement of phosphoamino acids is still an important question. Short cyclic peptide sequences, with three glutamic acids and one phosphoamino acid, are used as simple models to mimic metal binding sites in phosphoproteins and to help understand the mechanisms involved in uranium toxicity. A combination of peptide design and synthesis, analytical chemistry, extended X-ray absorption fine structure (EXAFS) spectroscopy, and DFT calculations demonstrates the involvement of the phosphate group in the uranyl coordination sphere together with the three carboxylates of the glutamate moieties. The affinity constants measured with a reliable analytical competitive approach at physiological pH are significantly enhanced owing to the presence of the phosphorous moiety. These findings corroborate the importance of phosphoamino acids in uranyl binding in proteins and the relevance of considering phosphoproteins as potential uranyl targets in vivo.
Collapse
Affiliation(s)
- Matthieu Starck
- INAC/SyMMES, UMR5819, Université Grenoble Alpes, CEA, CNRS, 38000, Grenoble, France
| | - Fanny A Laporte
- INAC/SyMMES, UMR5819, Université Grenoble Alpes, CEA, CNRS, 38000, Grenoble, France
| | - Stephane Oros
- INAC/SyMMES, UMR5819, Université Grenoble Alpes, CEA, CNRS, 38000, Grenoble, France
| | - Nathalie Sisommay
- INAC/SyMMES, UMR5819, Université Grenoble Alpes, CEA, CNRS, 38000, Grenoble, France
| | - Vicky Gathu
- INAC/SyMMES, UMR5819, Université Grenoble Alpes, CEA, CNRS, 38000, Grenoble, France
| | - Pier Lorenzo Solari
- Synchrotron SOLEIL, L'orme des Merisiers, Saint-Aubin, 91192, Gif-sur-Yvette, France
| | - Gaëlle Creff
- Institut de Chimie de Nice, UMR7272, Université Côte d'Azur, 06108, Nice, France
| | - Jérôme Roques
- Institut de Physique Nucléaire d'Orsay, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, France
| | - Christophe Den Auwer
- Institut de Chimie de Nice, UMR7272, Université Côte d'Azur, 06108, Nice, France
| | - Colette Lebrun
- INAC/SyMMES, UMR5819, Université Grenoble Alpes, CEA, CNRS, 38000, Grenoble, France
| | - Pascale Delangle
- INAC/SyMMES, UMR5819, Université Grenoble Alpes, CEA, CNRS, 38000, Grenoble, France
| |
Collapse
|
30
|
Engineering Short Preorganized Peptide Sequences for Metal Ion Coordination: Copper(II) a Case Study. Methods Enzymol 2016. [PMID: 27586340 DOI: 10.1016/bs.mie.2016.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Peptides are multidentate chiral ligands capable of coordinating different metal ions. Nowadays, they can be obtained with high yield and purity, thanks to the advances on peptide/protein chemistry as well as in equipment (peptide synthesizers). Based on the identity and length of their amino acid sequences, peptides can present different degrees of flexibility and folding. Although short peptide sequences (<20 amino acids) usually lack structure in solution, different levels of structural preorganization can be induced by introducing conformational constraints, such as β-turn/loop template sequences and backbone cyclization. For all these reasons, and the fact that one is not restricted to use proteinogenic amino acids, small peptidic scaffolds constitute a simple and versatile platform for the development of inorganic systems with tailor-made properties and functions. Here we outline a general approach to the design of short preorganized peptide sequences (10-16 amino acids) for metal ion coordination. Based on our experience, we present a general scheme for the design, synthesis, and characterization of these peptidic scaffolds and provide protocols for the study of their metal ion coordination properties.
Collapse
|
31
|
Monestier M, Charbonnier P, Gateau C, Cuillel M, Robert F, Lebrun C, Mintz E, Renaudet O, Delangle P. ASGPR-Mediated Uptake of Multivalent Glycoconjugates for Drug Delivery in Hepatocytes. Chembiochem 2016; 17:590-4. [DOI: 10.1002/cbic.201600023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Marie Monestier
- Université Grenoble Alpes; INAC-SCIB; CEA; INAC-SCIB; 17 rue des martyrs 38054 Grenoble cedex 09 France
- Université Grenoble Alpes; DCM; CNRS; DCM; 570 rue de la chimie 38041 Grenoble cedex 09 France
| | - Peggy Charbonnier
- Université Grenoble Alpes; iRTSV-LCBM; CEA; iRTSV-LCBM; CNRS; iRTSV-LCBM; 17 rue des martyrs 38054 Grenoble cedex 09 France
| | - Christelle Gateau
- Université Grenoble Alpes; INAC-SCIB; CEA; INAC-SCIB; 17 rue des martyrs 38054 Grenoble cedex 09 France
| | - Martine Cuillel
- Université Grenoble Alpes; iRTSV-LCBM; CEA; iRTSV-LCBM; CNRS; iRTSV-LCBM; 17 rue des martyrs 38054 Grenoble cedex 09 France
| | - Faustine Robert
- Université Grenoble Alpes; INAC-SCIB; CEA; INAC-SCIB; 17 rue des martyrs 38054 Grenoble cedex 09 France
| | - Colette Lebrun
- Université Grenoble Alpes; INAC-SCIB; CEA; INAC-SCIB; 17 rue des martyrs 38054 Grenoble cedex 09 France
| | - Elisabeth Mintz
- Université Grenoble Alpes; iRTSV-LCBM; CEA; iRTSV-LCBM; CNRS; iRTSV-LCBM; 17 rue des martyrs 38054 Grenoble cedex 09 France
| | - Olivier Renaudet
- Université Grenoble Alpes; DCM; CNRS; DCM; 570 rue de la chimie 38041 Grenoble cedex 09 France
- Institut Universitaire de France; 103 boulevard Saint-Michel 75005 Paris France
| | - Pascale Delangle
- Université Grenoble Alpes; INAC-SCIB; CEA; INAC-SCIB; 17 rue des martyrs 38054 Grenoble cedex 09 France
| |
Collapse
|
32
|
Neupane LN, Oh ET, Park HJ, Lee KH. Selective and Sensitive Detection of Heavy Metal Ions in 100% Aqueous Solution and Cells with a Fluorescence Chemosensor Based on Peptide Using Aggregation-Induced Emission. Anal Chem 2016; 88:3333-40. [PMID: 26872241 DOI: 10.1021/acs.analchem.5b04892] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A fluorescent peptidyl chemosensor for the detection of heavy metal ions in aqueous solution as well as in cells was synthesized on the basis of the peptide receptor for the metal ions using an aggregation-induced emission fluorophore. The peptidyl chemosensor (1) bearing tetraphenylethylene fluorophore showed an exclusively selective turn-on response to Hg(2+) among 16 metal ions in aqueous buffered solution containing NaCl. The peptidyl chemosensor complexed Hg(2+) ions and then aggregated in aqueous buffered solution, resulting in the significant enhancement (OFF-On) of emissions at around 470 nm. The fluorescent sensor showed a highly sensitive response to Hg(2+), and about 1.0 equiv of Hg(2+) was enough for the saturation of the emission intensity change. The detection limit (5.3 nM, R(2) = 0.99) of 1 for Hg(2+) ions was lower than the maximum allowable level of Hg(2+) in drinking water by EPA. Moreover, the peptidyl chemosensor penetrated live cells and detected intracellular Hg(2+) ions by the turn-on response.
Collapse
Affiliation(s)
- Lok Nath Neupane
- Bioorganic Chemistry Laboratory, Center for Design and Applications of Molecular Catalysts, Department of Chemistry and Chemical Engineering, Inha University , Incheon 402-751, South Korea
| | - Eun-Taex Oh
- Department of Biomedical Sciences, Inha University College of Medicine , Incheon 402-751, South Korea.,Hypoxia-related Disease Research Center, College of Medicine, Inha University , Incheon 402-751, South Korea
| | - Heon Joo Park
- Hypoxia-related Disease Research Center, College of Medicine, Inha University , Incheon 402-751, South Korea.,Department of Microbiology, Inha Research Institute for Medical Science, College of Medicine, Inha University , Incheon 402-751, South Korea
| | - Keun-Hyeung Lee
- Bioorganic Chemistry Laboratory, Center for Design and Applications of Molecular Catalysts, Department of Chemistry and Chemical Engineering, Inha University , Incheon 402-751, South Korea
| |
Collapse
|
33
|
Galbács G, Szokolai H, Kormányos A, Metzinger A, Szekeres L, Marcu C, Peter F, Muntean C, Negrea A, Ciopec M, Jancsó A. Cd(II) Capture Ability of an Immobilized, Fluorescent Hexapeptide. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2016. [DOI: 10.1246/bcsj.20150333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gábor Galbács
- Department of Inorganic and Analytical Chemistry, University of Szeged
| | - Hajnalka Szokolai
- Department of Inorganic and Analytical Chemistry, University of Szeged
| | - Attila Kormányos
- Department of Inorganic and Analytical Chemistry, University of Szeged
| | - Anikó Metzinger
- Department of Inorganic and Analytical Chemistry, University of Szeged
| | - Levente Szekeres
- Department of Inorganic and Analytical Chemistry, University of Szeged
| | - Claudiu Marcu
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timisoara
| | - Francisc Peter
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timisoara
| | - Cornelia Muntean
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timisoara
| | - Adina Negrea
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timisoara
| | - Mihaela Ciopec
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timisoara
| | - Attila Jancsó
- Department of Inorganic and Analytical Chemistry, University of Szeged
| |
Collapse
|
34
|
Shoshan MS, Dekel N, Goch W, Shalev DE, Danieli T, Lebendiker M, Bal W, Tshuva EY. Unbound position II in MXCXXC metallochaperone model peptides impacts metal binding mode and reactivity: Distinct similarities to whole proteins. J Inorg Biochem 2016; 159:29-36. [PMID: 26901629 DOI: 10.1016/j.jinorgbio.2016.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/19/2016] [Accepted: 02/10/2016] [Indexed: 01/17/2023]
Abstract
The effect of position II in the binding sequence of copper metallochaperones, which varies between Thr and His, was investigated through structural analysis and affinity and oxidation kinetic studies of model peptides. A first Cys-Cu(I)-Cys model obtained for the His peptide at acidic and neutral pH, correlated with higher affinity and more rapid oxidation of its complex; in contrast, the Thr peptide with the Cys-Cu(I)-Met coordination under neutral conditions demonstrated weaker and pH dependent binding. Studies with human antioxidant protein 1 (Atox1) and three of its mutants where S residues were replaced with Ala suggested that (a) the binding affinity is influenced more by the binding sequence than by the protein fold (b) pH may play a role in binding reactivity, and (c) mutating the Met impacted the affinity and oxidation rate more drastically than did mutating one of the Cys, supporting its important role in protein function. Position II thus plays a dominant role in metal binding and transport.
Collapse
Affiliation(s)
- Michal S Shoshan
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Noa Dekel
- Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Wojciech Goch
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa 02106, Poland
| | - Deborah E Shalev
- Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Tsafi Danieli
- Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Mario Lebendiker
- Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa 02106, Poland
| | - Edit Y Tshuva
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel.
| |
Collapse
|
35
|
Ouyang CY, Lin YK, Tsai DY, Yeh YC. Secretion of metal-binding proteins by a newly discovered OsmY homolog in Cupriavidus metallidurans for the biogenic synthesis of metal nanoparticles. RSC Adv 2016. [DOI: 10.1039/c5ra21533a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A newly discovered OsmY protein homolog of Cupriavidus metallidurans for use in protein secretion and biogenic synthesis of nanoparticles.
Collapse
Affiliation(s)
- Chun-Yu Ouyang
- Department of Chemistry
- National Taiwan Normal University
- Taipei 11677
- Taiwan
| | - Yu-Kuan Lin
- Department of Chemistry
- National Taiwan Normal University
- Taipei 11677
- Taiwan
| | - Dong-Yu Tsai
- Department of Chemistry
- National Taiwan Normal University
- Taipei 11677
- Taiwan
| | - Yi-Chun Yeh
- Department of Chemistry
- National Taiwan Normal University
- Taipei 11677
- Taiwan
| |
Collapse
|
36
|
Shoshan MS, Lehman Y, Goch W, Bal W, Tshuva EY, Metanis N. Selenocysteine containing analogues of Atx1-based peptides protect cells from copper ion toxicity. Org Biomol Chem 2016; 14:6979-84. [DOI: 10.1039/c6ob00849f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Seleno-substituted model peptides of copper metallochaperone proteins display particularly high Cu(i) affinity andin vitroanti-oxidative reactivity.
Collapse
Affiliation(s)
| | - Yonat Lehman
- The Hebrew University of Jerusalem
- Jerusalem 9190401
- Israel
| | - Wojciech Goch
- Institute of Biochemistry and Biophysics
- Polish Academy of Sciences
- Warszawa 02106
- Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics
- Polish Academy of Sciences
- Warszawa 02106
- Poland
| | - Edit Y. Tshuva
- The Hebrew University of Jerusalem
- Jerusalem 9190401
- Israel
| | - Norman Metanis
- The Hebrew University of Jerusalem
- Jerusalem 9190401
- Israel
| |
Collapse
|
37
|
Veronesi G, Gallon T, Deniaud A, Boff B, Gateau C, Lebrun C, Vidaud C, Rollin-Genetet F, Carrière M, Kieffer I, Mintz E, Delangle P, Michaud-Soret I. XAS Investigation of Silver(I) Coordination in Copper(I) Biological Binding Sites. Inorg Chem 2015; 54:11688-96. [DOI: 10.1021/acs.inorgchem.5b01658] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Giulia Veronesi
- CNRS,
UMR 5249, CNRS-CEA-UJF; CEA;
and University Grenoble Alpes, Laboratoire de Chimie et Biologie des Métaux (LCBM), F-38054 Grenoble, France
- ESRF, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Thomas Gallon
- CNRS,
UMR 5249, CNRS-CEA-UJF; CEA;
and University Grenoble Alpes, Laboratoire de Chimie et Biologie des Métaux (LCBM), F-38054 Grenoble, France
- University
Grenoble Alpes and CEA, INAC-SCIB, F-38000 Grenoble, France
| | - Aurélien Deniaud
- CNRS,
UMR 5249, CNRS-CEA-UJF; CEA;
and University Grenoble Alpes, Laboratoire de Chimie et Biologie des Métaux (LCBM), F-38054 Grenoble, France
| | - Bastien Boff
- University
Grenoble Alpes and CEA, INAC-SCIB, F-38000 Grenoble, France
| | - Christelle Gateau
- University
Grenoble Alpes and CEA, INAC-SCIB, F-38000 Grenoble, France
| | - Colette Lebrun
- University
Grenoble Alpes and CEA, INAC-SCIB, F-38000 Grenoble, France
| | - Claude Vidaud
- CEA/DSV/iBEB/SBTN, BP 17171, 30207 Bagnols sur Cèze, France
| | | | - Marie Carrière
- University
Grenoble Alpes and CEA, INAC-SCIB, F-38000 Grenoble, France
| | - Isabelle Kieffer
- BM30B/FAME
beamline, ESRF, F-38043 Grenoble cedex 9, France
- Observatoire
des Sciences de l’Univers de Grenoble, UMS 832 CNRS, Université Joseph Fourier, F-38041 Grenoble, France
| | - Elisabeth Mintz
- CNRS,
UMR 5249, CNRS-CEA-UJF; CEA;
and University Grenoble Alpes, Laboratoire de Chimie et Biologie des Métaux (LCBM), F-38054 Grenoble, France
| | - Pascale Delangle
- University
Grenoble Alpes and CEA, INAC-SCIB, F-38000 Grenoble, France
| | - Isabelle Michaud-Soret
- CNRS,
UMR 5249, CNRS-CEA-UJF; CEA;
and University Grenoble Alpes, Laboratoire de Chimie et Biologie des Métaux (LCBM), F-38054 Grenoble, France
| |
Collapse
|
38
|
Sisombath NS, Jalilehvand F. Similarities between N-Acetylcysteine and Glutathione in Binding to Lead(II) Ions. Chem Res Toxicol 2015; 28:2313-24. [PMID: 26624959 DOI: 10.1021/acs.chemrestox.5b00323] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
N-Acetylcysteine is a natural thiol-containing antioxidant, a precursor for cysteine and glutathione, and a potential detoxifying agent for heavy metal ions. However, previous accounts of the efficiency of N-acetylcysteine (H2NAC) in excretion of lead are few and contradicting. Here, we report results on the nature of lead(II) complexes formed with N-acetylcysteine in aqueous solution, which were obtained by combining information from several spectroscopic methods, including (207)Pb, (13)C, and (1)H NMR, Pb LIII-edge X-ray absorption, ultraviolet-visible (UV-vis) spectroscopy, and electro-spray ionization mass spectrometry (ESI-MS). Two series of solutions were used containing CPb(II) = 10 and 100 mM, respectively, varying the H2NAC/Pb(II) mole ratios from 2.1 to 10.0 at pH 9.1-9.4. The coordination environments obtained resemble those previously found for the Pb(II) glutathione system: at a ligand-to-lead mole ratio of 2.1, dimeric or oligomeric Pb(II) N-acetylcysteine complexes are formed, while a trithiolate [Pb(NAC)3](4-) complex dominates in solutions with H2NAC/Pb(II) mole ratios >3.0.
Collapse
Affiliation(s)
- Natalie S Sisombath
- Department of Chemistry, University of Calgary , 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Farideh Jalilehvand
- Department of Chemistry, University of Calgary , 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
39
|
Ronca F, Raggi A. Structure-function relationships in mammalian histidine-proline-rich glycoprotein. Biochimie 2015; 118:207-20. [PMID: 26409900 DOI: 10.1016/j.biochi.2015.09.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/22/2015] [Indexed: 02/01/2023]
Abstract
Histidine-proline-rich glycoprotein (HPRG), or histidine-rich glycoprotein (HRG), is a serum protein that is synthesized in the liver and is actively internalised by different cells, including skeletal muscle. The multidomain arrangement of HPRG comprises two modules at the N-terminus that are homologous to cystatin but void of cysteine proteinase inhibitor function, and a second half consisting of a histidine-proline-rich region (HPRR) located between two proline-rich regions (PRR1 and PRR2), and a C-terminus domain. HPRG has been reported to bind various ligands and to modulate angiogenesis via the histidine residues of the HPRR. However, the secondary structure prediction of the HPRR reveals that more than 98% is disordered and the structural basis of the hypothesized functions remains unclear. Comparison of the PRR1 of several mammalian species indicates the presence of a conserved binding site that might coordinate the Zn(2+) ion with an amino acid arrangement compatible with the cysteine-containing site that has been identified experimentally for rabbit HPRG. This observation provides a structural basis to the function of HPRG as an intracellular zinc chaperone which has been suggested by the involvement of the protein in the maintenance of the quaternary structure of skeletal muscle AMP deaminase (AMPD). During Anthropoidea evolution, a change of the primary structure of the PRR1 Zn(2+) binding site took place, giving rise to the sequence M-S-C-S/L-S/R-C that resembles the MxCxxC motif characteristic of metal transporters and metallochaperones.
Collapse
Affiliation(s)
- Francesca Ronca
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Antonio Raggi
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| |
Collapse
|
40
|
Fragoso A, Carvalho T, Rousselot-Pailley P, Correia dos Santos MM, Delgado R, Iranzo O. Effect of the Peptidic Scaffold in Copper(II) Coordination and the Redox Properties of Short Histidine-Containing Peptides. Chemistry 2015; 21:13100-11. [DOI: 10.1002/chem.201501715] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Indexed: 01/07/2023]
|
41
|
Jullien AS, Gateau C, Lebrun C, Delangle P. Mercury Complexes with Tripodal Pseudopeptides Derived fromD-Penicillamine Favour a HgS3Coordination. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
42
|
Szunyogh D, Gyurcsik B, Larsen FH, Stachura M, Thulstrup PW, Hemmingsen L, Jancsó A. Zn(II) and Hg(II) binding to a designed peptide that accommodates different coordination geometries. Dalton Trans 2015; 44:12576-88. [PMID: 26040991 DOI: 10.1039/c5dt00945f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Designed metal ion binding peptides offer a variety of applications in both basic science as model systems of more complex metalloproteins, and in biotechnology, e.g. in bioremediation of toxic metal ions, biomining or as artificial enzymes. In this work a peptide (HS: Ac-SCHGDQGSDCSI-NH2) has been specifically designed for binding of both Zn(II) and Hg(II), i.e. metal ions with different preferences in terms of coordination number, coordination geometry, and to some extent ligand composition. It is demonstrated that HS accommodates both metal ions, and the first coordination sphere, metal ion exchange between peptides, and speciation are characterized as a function of pH using UV-absorption-, synchrotron radiation CD-, (1)H-NMR-, and PAC-spectroscopy as well as potentiometry. Hg(II) binds to the peptide with very high affinity in a {HgS2} coordination geometry, bringing together the two cysteinates close to each end of the peptide in a loop structure. Despite the high affinity, Hg(II) is kinetically labile, exchanging between peptides on the subsecond timescale, as indicated by line broadening in (1)H-NMR. The Zn(II)-HS system displays more complex speciation, involving monomeric species with coordinating cysteinates, histidine, and a solvent water molecule, as well as HS-Zn(II)-HS complexes. In summary, the HS peptide displays conformational flexibility, contains many typical metal ion binding groups, and is able to accommodate metal ions with different structural and ligand preferences with high affinity. As such, the HS peptide may be a scaffold offering binding of a variety of metal ions, and potentially serve for metal ion sequestration in biotechnological applications.
Collapse
Affiliation(s)
- Dániel Szunyogh
- MTA-SZTE Bioinorganic Chemistry Research Group, Dóm tér 7, Szeged, H-6720, Hungary
| | | | | | | | | | | | | |
Collapse
|
43
|
Jullien AS, Gateau C, Lebrun C, Delangle P. Pseudo-peptides Based on Methyl Cysteine or Methionine Inspired from Mets Motifs Found in the Copper Transporter Ctr1. Inorg Chem 2015; 54:2339-44. [DOI: 10.1021/ic502962d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Anne-Solène Jullien
- Univ. Grenoble Alpes, INAC-SCIB, F-38000 Grenoble, France
- CEA, INAC-SCIB,
Reconnaissance Ionique et Chimie de Coordination, F-38000 Grenoble, France
| | - Christelle Gateau
- Univ. Grenoble Alpes, INAC-SCIB, F-38000 Grenoble, France
- CEA, INAC-SCIB,
Reconnaissance Ionique et Chimie de Coordination, F-38000 Grenoble, France
| | - Colette Lebrun
- Univ. Grenoble Alpes, INAC-SCIB, F-38000 Grenoble, France
- CEA, INAC-SCIB,
Reconnaissance Ionique et Chimie de Coordination, F-38000 Grenoble, France
| | - Pascale Delangle
- Univ. Grenoble Alpes, INAC-SCIB, F-38000 Grenoble, France
- CEA, INAC-SCIB,
Reconnaissance Ionique et Chimie de Coordination, F-38000 Grenoble, France
| |
Collapse
|
44
|
Luczkowski M, De Ricco R, Stachura M, Potocki S, Hemmingsen L, Valensin D. Metal ion mediated transition from random coil to β-sheet and aggregation of Bri2-23, a natural inhibitor of Aβ aggregation. Metallomics 2015; 7:478-90. [DOI: 10.1039/c4mt00274a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Soft metal ion binding enforces critical rearrangement of the structure of Bri2-23, a natural inhibitor of Aβ aggregation, thus shifting its solution behavior to a self aggregating system.
Collapse
Affiliation(s)
| | - Riccardo De Ricco
- Department of Biotechnology Chemistry and Pharmacy University of Siena
- 53100 Siena, Italy
| | - Monika Stachura
- Department of Chemistry
- University of Copenhagen
- 2100 Copenhagen, Denmark
| | | | - Lars Hemmingsen
- Department of Chemistry
- University of Copenhagen
- 2100 Copenhagen, Denmark
| | - Daniela Valensin
- Department of Biotechnology Chemistry and Pharmacy University of Siena
- 53100 Siena, Italy
| |
Collapse
|
45
|
Park J, In B, Lee KH. Highly selective colorimetric and fluorescent detection for Hg2+ in aqueous solutions using a dipeptide-based chemosensor. RSC Adv 2015. [DOI: 10.1039/c5ra05842b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A dipeptide-based chemosensor selectively and sensitively detected HgII in aqueous solutions by colorimetric change and fluorescent change.
Collapse
Affiliation(s)
- Jooyoung Park
- Bioorganic Chemistry Lab
- Center for Design and Applications of Molecular Catalysts
- Department of Chemistry and Chemical Engineering
- Inha University
- Incheon
| | - Byunggyu In
- Bioorganic Chemistry Lab
- Center for Design and Applications of Molecular Catalysts
- Department of Chemistry and Chemical Engineering
- Inha University
- Incheon
| | - Keun-Hyeung Lee
- Bioorganic Chemistry Lab
- Center for Design and Applications of Molecular Catalysts
- Department of Chemistry and Chemical Engineering
- Inha University
- Incheon
| |
Collapse
|
46
|
Miller J, Melicher MS, Schepartz A. Positive allostery in metal ion binding by a cooperatively folded β-peptide bundle. J Am Chem Soc 2014; 136:14726-9. [PMID: 25290247 PMCID: PMC4210112 DOI: 10.1021/ja508872q] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Indexed: 01/19/2023]
Abstract
Metal ion binding is exploited by proteins in nature to catalyze reactions, bind molecules, and favor discrete structures, but it has not been demonstrated in β-peptides or their assemblies. Here we report the design, synthesis, and characterization of a β-peptide bundle that uniquely binds two Cd(II) ions in a distinct bicoordinate array. The two Cd(II) ions bind with positive allosteric cooperativity and increase the thermodynamic stability of the bundle by more than 50 °C. This system provides a unique, synthetic context to explore allosteric regulation and should pave the way to sophisticated molecular assemblies with catalytic and substrate-sensing functions that have historically not been available to de novo designed synthetic proteomimetics in water.
Collapse
Affiliation(s)
- Jonathan
P. Miller
- Department
of Chemistry and Department of Molecular, Cellular and Developmental
Biology, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Michael S. Melicher
- Department
of Chemistry and Department of Molecular, Cellular and Developmental
Biology, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Alanna Schepartz
- Department
of Chemistry and Department of Molecular, Cellular and Developmental
Biology, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
47
|
Lebrun C, Starck M, Gathu V, Chenavier Y, Delangle P. Engineering Short Peptide Sequences for Uranyl Binding. Chemistry 2014; 20:16566-73. [DOI: 10.1002/chem.201404546] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Indexed: 01/16/2023]
|
48
|
Jullien AS, Gateau C, Lebrun C, Kieffer I, Testemale D, Delangle P. d-Penicillamine Tripodal Derivatives as Efficient Copper(I) Chelators. Inorg Chem 2014; 53:5229-39. [DOI: 10.1021/ic5004319] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anne-Solène Jullien
- Université Grenoble Alpes, INAC,
SCIB, RICC F-38000 Grenoble, France
- CEA, INAC, SCIB, Laboratoire de Reconnaissance
Ionique et Chimie de Coordination, F-38054 Grenoble, France
| | - Christelle Gateau
- Université Grenoble Alpes, INAC,
SCIB, RICC F-38000 Grenoble, France
- CEA, INAC, SCIB, Laboratoire de Reconnaissance
Ionique et Chimie de Coordination, F-38054 Grenoble, France
| | - Colette Lebrun
- Université Grenoble Alpes, INAC,
SCIB, RICC F-38000 Grenoble, France
- CEA, INAC, SCIB, Laboratoire de Reconnaissance
Ionique et Chimie de Coordination, F-38054 Grenoble, France
| | - Isabelle Kieffer
- BM30B/FAME beamline, ESRF, F-38043 Grenoble cedex 9, France
- Observatoire des Sciences de l’Univers
de Grenoble, UMS 832 CNRS Université Joseph Fourier, F-38041 Grenoble cedex 9, France
| | - Denis Testemale
- BM30B/FAME beamline, ESRF, F-38043 Grenoble cedex 9, France
- Université Grenoble Alpes, Institut
NEEL, F-38042 Grenoble, France
- CNRS, Institut NEEL, F-38042 Grenoble, France
| | - Pascale Delangle
- Université Grenoble Alpes, INAC,
SCIB, RICC F-38000 Grenoble, France
- CEA, INAC, SCIB, Laboratoire de Reconnaissance
Ionique et Chimie de Coordination, F-38054 Grenoble, France
| |
Collapse
|
49
|
Gateau C, Delangle P. Design of intrahepatocyte copper(I) chelators as drug candidates for Wilson's disease. Ann N Y Acad Sci 2014; 1315:30-6. [DOI: 10.1111/nyas.12379] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Christelle Gateau
- Laboratoire Reconnaissance Ionique et Chimie de Coordination; Université Joseph Fourier-Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB; Grenoble France
| | - Pascale Delangle
- Laboratoire Reconnaissance Ionique et Chimie de Coordination; Université Joseph Fourier-Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB; Grenoble France
| |
Collapse
|
50
|
Walsh MJ, Ahner BA. Determination of stability constants of Cu(I), Cd(II) & Zn(II) complexes with thiols using fluorescent probes. J Inorg Biochem 2013; 128:112-23. [DOI: 10.1016/j.jinorgbio.2013.07.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/03/2013] [Accepted: 07/08/2013] [Indexed: 11/28/2022]
|