1
|
Liu N, Li L, Qin X, Li X, Xie Y, Chen X, Gao J. Theoretical Insights into the Generation Mechanism of the Tyr 122 Radical Catalyzed by Intermediate X in Class Ia Ribonucleotide Reductase. Inorg Chem 2023; 62:19498-19506. [PMID: 37987809 DOI: 10.1021/acs.inorgchem.3c02505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Ribonucleotide reductase (RNR) catalyzes the reduction of ribonucleotides to deoxyribonucleotides in all organisms. There is an ∼35 Å long-range electron-hole transfer pathway during the catalytic process of class Ia RNR, which can be described as Tyr122β ↔ [Trp48β]? ↔ Tyr356β ↔ Tyr731α ↔ Tyr730α ↔ Cys439α. The formation of the Y122• radical initiates this long-range radical transfer process. However, the generation mechanism of Y122• is not yet clear due to confusion over the intermediate X structures. Based on the two reported X structures, we examined the possible mechanisms of Y122• generation by density functional theory (DFT) calculations. Our examinations revealed that the generation of the Y122• radical from the two different core structures of X was via a similar two-step reaction, with the first step of proton transfer for the formation of the proton receptor of Y122 and the second step of a proton-coupled long-range electron transfer reaction with the proton transfer from the Y122 hydroxyl group to the terminal hydroxide ligand of Fe1III and simultaneously electron transfer from the side chain of Y122 to Fe2IV. These findings provide an insight into the formation mechanism of Y122• catalyzed by the double-iron center of the β subunit of class Ia RNR.
Collapse
Affiliation(s)
- Nian Liu
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Li Li
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Xin Qin
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Xin Li
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Yuxin Xie
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Xiaohua Chen
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Jiali Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Cao YC, Liao RZ. QM Calculations Revealed that Outer-Sphere Electron Transfer Boosted O-O Bond Cleavage in the Multiheme-Dependent Cytochrome bd Oxygen Reductase. Inorg Chem 2023; 62:4066-4075. [PMID: 36857027 DOI: 10.1021/acs.inorgchem.2c03742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The cytochrome bd oxygen reductase catalyzes the four-electron reduction of dioxygen to two water molecules. The structure of this enzyme reveals three heme molecules in the active site, which differs from that of heme-copper cytochrome c oxidase. The quantum chemical cluster approach was used to uncover the reaction mechanism of this intriguing metalloenzyme. The calculations suggested that a proton-coupled electron transfer reduction occurs first to generate a ferrous heme b595. This is followed by the dioxygen binding at the heme d center coupled with an outer-sphere electron transfer from the ferrous heme b595 to the dioxygen moiety, affording a ferric ion superoxide intermediate. A second proton-coupled electron transfer produces a heme d ferric hydroperoxide, which undergoes efficient O-O bond cleavage facilitated by an outer-sphere electron transfer from the ferrous heme b595 to the O-O σ* orbital and an inner-sphere proton transfer from the heme d hydroxyl group to the leaving hydroxide. The synergistic benefits of the two types of hemes rationalize the highly efficient oxygen reduction repertoire for the multi-heme-dependent cytochrome bd oxygen reductase family.
Collapse
Affiliation(s)
- Yu-Chen Cao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| |
Collapse
|
3
|
Du WGH, Götz AW, Noodleman L. Mössbauer Property Calculations on Fea33+∙∙∙H2O∙∙∙CuB2+ Dinuclear Center Models of the Resting Oxidized as-Isolated Cytochrome c Oxidase. Chemphyschem 2022; 23:e202100831. [PMID: 35142420 PMCID: PMC9054037 DOI: 10.1002/cphc.202100831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/03/2022] [Indexed: 11/24/2022]
Abstract
Mössbauer isomer shift and quadrupole splitting properties have been calculated using the OLYP‐D3(BJ) density functional method on previously obtained (W.‐G. Han Du, et al., Inorg Chem. 2020, 59, 8906–8915) geometry optimized Fea33+−H2O−CuB2+ dinuclear center (DNC) clusters of the resting oxidized (O state) “as‐isolated” cytochrome c oxidase (CcO). The calculated results are highly consistent with the available experimental observations. The calculations have also shown that the structural heterogeneities of the O state DNCs implicated by the Mössbauer experiments are likely consequences of various factors, particularly the variable positions of the central H2O molecule between the Fea33+ and CuB2+ sites in different DNCs, whether or not this central H2O molecule has H‐bonding interaction with another H2O molecule, the different spin states having similar energies for the Fea33+ sites, and whether the Fea33+ and CuB2+ sites are ferromagnetically or antiferromagnetically spin‐coupled.
Collapse
Affiliation(s)
- Wen-Ge Han Du
- The Scripps Research Institute, Integrative Structural and Computational Biology, UNITED STATES
| | | | - Louis Noodleman
- The Scripps Research Institute, Department of Integrative Structural and Computational Biology, Hz112, 10550 North Torrey Pines Road, 92037, La Jolla, UNITED STATES
| |
Collapse
|
4
|
Tupec M, Culka M, Machara A, Macháček S, Bím D, Svatoš A, Rulíšek L, Pichová I. Understanding desaturation/hydroxylation activity of castor stearoyl Δ9-Desaturase through rational mutagenesis. Comput Struct Biotechnol J 2022; 20:1378-1388. [PMID: 35386101 PMCID: PMC8940945 DOI: 10.1016/j.csbj.2022.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 01/17/2023] Open
Abstract
Rationally designed mutations in the Δ9 desaturase promoted hydroxylation activity. Proton and electron transfer to the active site is crucial for the Δ9D to desaturate Detailed analysis of all enzymatic products of the Δ9D was carried out Insight into the chemo-, and stereoselectivity of non-heme diiron enzymes was obtained
A recently proposed reaction mechanism of soluble Δ9 desaturase (Δ9D) allowed us to identify auxiliary residues His203, Asp101, Thr206 and Cys222 localized near the di-iron active site that are supposedly involved in the proton transfer (PT) to and from the active site. The PT, along with the electron transfer (ET), seems to be crucial for efficient desaturation. Thus, perturbing the major PT chains is expected to impair the native reaction and (potentially) amplify minor reaction channels, such as the substrate hydroxylation. To verify this hypothesis, we mutated the four residues mentioned above into their counterparts present in a soluble methane monooxygenase (sMMO), and determined the reaction products of mutants. We found that the mutations significantly promote residual monohydroxylation activities on stearoyl-CoA, often at the expense of native desaturation activity. The favored hydroxylation positions are C9, followed by C10 and C11. Reactions with unsaturated substrate, oleoyl-CoA, yield erythro-9,10-diol, cis-9,10-epoxide and a mixture of allylic alcohols. Additionally, using 9- and 11-hydroxystearoyl-CoA, we showed that the desaturation reaction can proceed only with the hydroxyl group at position C11, whereas the hydroxylation reaction is possible in both cases, i.e. with hydroxyl at position C9 or C11. Despite the fact that the overall outcome of hydroxylation is rather modest and that it is mostly the desaturation/hydroxylation ratio that is affected, our results broaden understanding of the origin of chemo- and stereoselectivity of the Δ9D and provide further insight into the catalytic action of the NHFe2 enzymes.
Collapse
Affiliation(s)
- Michal Tupec
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
| | - Martin Culka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
| | - Aleš Machara
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
| | - Stanislav Macháček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
| | - Daniel Bím
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
| | - Aleš Svatoš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
- Max-Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena 07745, Germany
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
- Corresponding authors.
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, Prague 16610, Czech Republic
- Corresponding authors.
| |
Collapse
|
5
|
Bím D, Chalupský J, Culka M, Solomon EI, Rulíšek L, Srnec M. Proton-Electron Transfer to the Active Site Is Essential for the Reaction Mechanism of Soluble Δ 9-Desaturase. J Am Chem Soc 2020; 142:10412-10423. [PMID: 32406236 DOI: 10.1021/jacs.0c01786] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A full understanding of the catalytic action of non-heme iron (NHFe) and non-heme diiron (NHFe2) enzymes is still beyond the grasp of contemporary computational and experimental techniques. Many of these enzymes exhibit fascinating chemo-, regio-, and stereoselectivity, in spite of employing highly reactive intermediates which are necessary for activations of most stable chemical bonds. Herein, we study in detail one intriguing representative of the NHFe2 family of enzymes: soluble Δ9 desaturase (Δ9D), which desaturates rather than performing the thermodynamically favorable hydroxylation of substrate. Its catalytic mechanism has been explored in great detail by using QM(DFT)/MM and multireference wave function methods. Starting from the spectroscopically observed 1,2-μ-peroxo diferric P intermediate, the proton-electron uptake by P is the favored mechanism for catalytic activation, since it allows a significant reduction of the barrier of the initial (and rate-determining) H-atom abstraction from the stearoyl substrate as compared to the "proton-only activated" pathway. Also, we ruled out that a Q-like intermediate (high-valent diamond-core bis-μ-oxo-[FeIV]2 unit) is involved in the reaction mechanism. Our mechanistic picture is consistent with the experimental data available for Δ9D and satisfies fairly stringent conditions required by Nature: the chemo-, stereo-, and regioselectivity of the desaturation of stearic acid. Finally, the mechanisms evaluated are placed into a broader context of NHFe2 chemistry, provided by an amino acid sequence analysis through the families of the NHFe2 enzymes. Our study thus represents an important contribution toward understanding the catalytic action of the NHFe2 enzymes and may inspire further work in NHFe(2) biomimetic chemistry.
Collapse
Affiliation(s)
- Daniel Bím
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, Prague 8 182 23, Czech Republic.,Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 166 10, Czech Republic
| | - Jakub Chalupský
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 166 10, Czech Republic
| | - Martin Culka
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 166 10, Czech Republic
| | - Edward I Solomon
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305-5080, United States
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 166 10, Czech Republic
| | - Martin Srnec
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, Prague 8 182 23, Czech Republic
| |
Collapse
|
6
|
Structure and electronic spectra of neutral and protonated forms of anticonvulsant drug lamotrigine. J Mol Model 2020; 26:53. [PMID: 32036441 DOI: 10.1007/s00894-019-4266-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/20/2019] [Indexed: 01/02/2023]
Abstract
In this work, the geometry, acid-base properties, pKa, electronic spectra, and fluorescence spectrum of anticonvulsant drug lamotrigine (LTG) are investigated with the DFT/TD-DFT method and PCM solvent model. Calculated transition with the B3LYP functional at 295 nm corresponds to experimental absorption transition at 306 nm in water. In acidic conditions, the computed maximum transition occurs at 249 nm, comparing with experimental one at 270 nm. The dependence of calculated transitions on density functional used and different solvents in PCM model was studied. The computed transition of fluorescence is at 435 nm, while experimental occurs at 370 nm. Maps of electrostatic potential (MEPs) for S0 and S1 reveal that the ground state of LTG is more polar than the first excited state. Structurally, in the excited state of LTG, the triazine ring is noticeably distorted. Graphical Abstract Molecular elecrostatic potentials for S0 and S1 states of the lamotrigine molecule.
Collapse
|
7
|
Sitek P, Chmielowska A, Jaworska M, Lodowski P, Szczepańska M. Theoretical study of cobalt and nickel complexes involved in methyl transfer reactions: structures, redox potentials and methyl binding energies. Struct Chem 2019. [DOI: 10.1007/s11224-019-01384-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Han Du WG, Noodleman L. Broken Symmetry DFT Calculations/Analysis for Oxidized and Reduced Dinuclear Center in Cytochrome c Oxidase: Relating Structures, Protonation States, Energies, and Mössbauer Properties in ba3 Thermus thermophilus. Inorg Chem 2015; 54:7272-90. [PMID: 26192749 PMCID: PMC4525772 DOI: 10.1021/acs.inorgchem.5b00700] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Indexed: 12/22/2022]
Abstract
The Fea3(3+)···CuB(2+) dinuclear center (DNC) structure of the as-isolated oxidized ba3 cytochrome c oxidase (CcO) from Thermus thermophilus (Tt) is still not fully understood. When the proteins are initially crystallized in the oxidized state, they typically become radiolyticly reduced through X-ray irradiation. Several X-ray crystal structures of reduced ba3 CcO from Tt are available. However, depending on whether the crystals were prepared in a lipidic cubic phase environment or in detergent micelles, and whether the CcO's were chemically or radiolyticly reduced, the X-ray diffraction analysis of the crystals showed different Fea3(2+)···CuB(+) DNC structures. On the other hand, Mössbauer spectroscopic experiments on reduced and oxidized ba3 CcOs from Tt (Zimmermann et al., Proc. Natl. Acad. Sci. USA 1988, 85, 5779-5783) revealed multiple (57)Fea3(2+) and (57)Fea3(3+) components. Moreover, one of the (57)Fea3(3+) components observed at 4.2 K transformed from a proposed "low-spin" state to a different high-spin species when the temperature was increased above 190 K, whereas the other high-spin (57)Fea3(3+) component remained unchanged. In the current Article, in order to understand the heterogeneities of the DNC in both Mössbauer spectra and X-ray crystal structures, the spin crossover of one of the (57)Fea3(3+) components, and how the coordination and spin states of the Fea3(3+/2+) and Cu(2+/1+) sites relate to the heterogeneity of the DNC structures, we have applied density functional OLYP calculations to the DNC clusters established based on the different X-ray crystal structures of ba3 CcO from Tt. As a result, specific oxidized and reduced DNC structures related to the observed Mössbauer spectra and to spectral changes with temperature have been proposed. Our calculations also show that, in certain intermediate states, the His233 and His283 ligand side chains may dissociate from the CuB(+) site, and they may become potential proton loading sites during the catalytic cycle.
Collapse
Affiliation(s)
- Wen-Ge Han Du
- Department of Integrative Structural and Computational
Biology, CB213, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Louis Noodleman
- Department of Integrative Structural and Computational
Biology, CB213, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
9
|
Blachly PG, Sandala GM, Giammona DA, Bashford D, McCammon JA, Noodleman L. Broken-Symmetry DFT Computations for the Reaction Pathway of IspH, an Iron-Sulfur Enzyme in Pathogenic Bacteria. Inorg Chem 2015; 54:6439-61. [PMID: 26098647 PMCID: PMC4568833 DOI: 10.1021/acs.inorgchem.5b00751] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The recently discovered methylerythritol phosphate (MEP) pathway provides new targets for the development of antibacterial and antimalarial drugs. In the final step of the MEP pathway, the [4Fe-4S] IspH protein catalyzes the 2e(-)/2H(+) reductive dehydroxylation of (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP) to afford the isoprenoid precursors isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). Recent experiments have attempted to elucidate the IspH catalytic mechanism to drive inhibitor development. Two competing mechanisms have recently emerged, differentiated by their proposed HMBPP binding modes upon 1e(-) reduction of the [4Fe-4S] cluster: (1) a Birch reduction mechanism, in which HMBPP remains bound to the [4Fe-4S] cluster through its terminal C4-OH group (ROH-bound) until the -OH is cleaved as water; and (2) an organometallic mechanism, in which the C4-OH group rotates away from the [4Fe-4S] cluster, allowing the HMBPP olefin group to form a metallacycle complex with the apical iron (η(2)-bound). We perform broken-symmetry density functional theory computations to assess the energies and reduction potentials associated with the ROH- and η(2)-bound states implicated by these competing mechanisms. Reduction potentials obtained for ROH-bound states are more negative (-1.4 to -1.0 V) than what is typically expected of [4Fe-4S] ferredoxin proteins. Instead, we find that η(2)-bound states are lower in energy than ROH-bound states when the [4Fe-4S] cluster is 1e(-) reduced. Furthermore, η(2)-bound states can already be generated in the oxidized state, yielding reduction potentials of ca. -700 mV when electron addition occurs after rotation of the HMBPP C4-OH group. We demonstrate that such η(2)-bound states are kinetically accessible both when the IspH [4Fe-4S] cluster is oxidized and 1e(-) reduced. The energetically preferred pathway gives 1e(-) reduction of the cluster after substrate conformational change, generating the 1e(-) reduced intermediate proposed in the organometallic mechanism.
Collapse
Affiliation(s)
| | - Gregory M Sandala
- ‡Department of Chemistry and Biochemistry, Mount Allison University, 63C York Street, Sackville, New Brunswick E4L 1G8, Canada
| | - Debra Ann Giammona
- §Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Donald Bashford
- §Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | | | - Louis Noodleman
- #Department of Integrative Structural and Computational Biology, CB213, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
10
|
Chalupský J, Rokob TA, Kurashige Y, Yanai T, Solomon EI, Rulíšek L, Srnec M. Reactivity of the binuclear non-heme iron active site of Δ⁹ desaturase studied by large-scale multireference ab initio calculations. J Am Chem Soc 2014; 136:15977-91. [PMID: 25313991 DOI: 10.1021/ja506934k] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The results of density matrix renormalization group complete active space self-consistent field (DMRG-CASSCF) and second-order perturbation theory (DMRG-CASPT2) calculations are presented on various structural alternatives for the O-O and first C-H activating step of the catalytic cycle of the binuclear nonheme iron enzyme Δ(9) desaturase. This enzyme is capable of inserting a double bond into an alkyl chain by double hydrogen (H) atom abstraction using molecular O2. The reaction step studied here is presumably associated with the highest activation barrier along the full pathway; therefore, its quantitative assessment is of key importance to the understanding of the catalysis. The DMRG approach allows unprecedentedly large active spaces for the explicit correlation of electrons in the large part of the chemically important valence space, which is apparently conditio sine qua non for obtaining well-converged reaction energetics. The derived reaction mechanism involves protonation of the previously characterized 1,2-μ peroxy Fe(III)Fe(III) (P) intermediate to a 1,1-μ hydroperoxy species, which abstracts an H atom from the C10 site of the substrate. An Fe(IV)-oxo unit is generated concomitantly, supposedly capable of the second H atom abstraction from C9. In addition, several popular DFT functionals were compared to the computed DMRG-CASPT2 data. Notably, many of these show a preference for heterolytic C-H cleavage, erroneously predicting substrate hydroxylation. This study shows that, despite its limitations, DMRG-CASPT2 is a significant methodological advancement toward the accurate computational treatment of complex bioinorganic systems, such as those with the highly open-shell diiron active sites.
Collapse
Affiliation(s)
- Jakub Chalupský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo náměstí 2, 166 10 Praha 6, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
11
|
Barry BA. Reaction dynamics and proton coupled electron transfer: studies of tyrosine-based charge transfer in natural and biomimetic systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:46-54. [PMID: 25260243 DOI: 10.1016/j.bbabio.2014.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/27/2014] [Accepted: 09/10/2014] [Indexed: 11/25/2022]
Abstract
In bioenergetic reactions, electrons are transferred long distances via a hopping mechanism. In photosynthesis and DNA synthesis, the aromatic amino acid residue, tyrosine, functions as an intermediate that is transiently oxidized and reduced during long distance electron transfer. At physiological pH values, oxidation of tyrosine is associated with a deprotonation of the phenolic oxygen, giving rise to a proton coupled electron transfer (PCET) reaction. Tyrosine-based PCET reactions are important in photosystem II, which carries out the light-induced oxidation of water, and in ribonucleotide reductase, which reduces ribonucleotides to form deoxynucleotides. Photosystem II contains two redox-active tyrosines, YD (Y160 in the D2 polypeptide) and YZ (Y161 in the D1 polypeptide). YD forms a light-induced stable radical, while YZ functions as an essential charge relay, oxidizing the catalytic Mn₄CaO₅ cluster on each of four photo-oxidation reactions. In Escherichia coli class 1a RNR, the β2 subunit contains the radical initiator, Y122O•, which is reversibly reduced and oxidized in long range electron transfer with the α2 subunit. In the isolated E. coli β2 subunit, Y122O• is a stable radical, but Y122O• is activated for rapid PCET in an α2β2 substrate/effector complex. Recent results concerning the structure and function of YD, YZ, and Y122 are reviewed here. Comparison is made to recent results derived from bioengineered proteins and biomimetic compounds, in which tyrosine-based charge transfer mechanisms have been investigated. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
Collapse
Affiliation(s)
- Bridgette A Barry
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
12
|
Noodleman L, Han Du WG, Fee J, Götz AW, Walker RC. Linking chemical electron-proton transfer to proton pumping in cytochrome c oxidase: broken-symmetry DFT exploration of intermediates along the catalytic reaction pathway of the iron-copper dinuclear complex. Inorg Chem 2014; 53:6458-72. [PMID: 24960612 PMCID: PMC4095914 DOI: 10.1021/ic500363h] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Indexed: 12/23/2022]
Abstract
After a summary of the problem of coupling electron and proton transfer to proton pumping in cytochrome c oxidase, we present the results of our earlier and recent density functional theory calculations for the dinuclear Fe-a3-CuB reaction center in this enzyme. A specific catalytic reaction wheel diagram is constructed from the calculations, based on the structures and relative energies of the intermediate states of the reaction cycle. A larger family of tautomers/protonation states is generated compared to our earlier work, and a new lowest-energy pathway is proposed. The entire reaction cycle is calculated for the new smaller model (about 185-190 atoms), and two selected arcs of the wheel are chosen for calculations using a larger model (about 205 atoms). We compare the structural and redox energetics and protonation calculations with available experimental data. The reaction cycle map that we have built is positioned for further improvement and testing against experiment.
Collapse
Affiliation(s)
- Louis Noodleman
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, TPC15, La Jolla, California 92037, United States
| | - Wen-Ge Han Du
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, TPC15, La Jolla, California 92037, United States
| | - James
A. Fee
- Department
of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, TPC15, La Jolla, California 92037, United States
| | - Andreas W. Götz
- San Diego Supercomputer
Center and Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, MC0505, La Jolla, California 92093, United States
| | - Ross C. Walker
- San Diego Supercomputer
Center and Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, MC0505, La Jolla, California 92093, United States
| |
Collapse
|
13
|
Marenich AV, Ho J, Coote ML, Cramer CJ, Truhlar DG. Computational electrochemistry: prediction of liquid-phase reduction potentials. Phys Chem Chem Phys 2014; 16:15068-106. [PMID: 24958074 DOI: 10.1039/c4cp01572j] [Citation(s) in RCA: 322] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This article reviews recent developments and applications in the area of computational electrochemistry. Our focus is on predicting the reduction potentials of electron transfer and other electrochemical reactions and half-reactions in both aqueous and nonaqueous solutions. Topics covered include various computational protocols that combine quantum mechanical electronic structure methods (such as density functional theory) with implicit-solvent models, explicit-solvent protocols that employ Monte Carlo or molecular dynamics simulations (for example, Car-Parrinello molecular dynamics using the grand canonical ensemble formalism), and the Marcus theory of electronic charge transfer. We also review computational approaches based on empirical relationships between molecular and electronic structure and electron transfer reactivity. The scope of the implicit-solvent protocols is emphasized, and the present status of the theory and future directions are outlined.
Collapse
Affiliation(s)
- Aleksandr V Marenich
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, MN 55455-0431, USA.
| | | | | | | | | |
Collapse
|
14
|
Migliore A, Polizzi NF, Therien M, Beratan DN. Biochemistry and theory of proton-coupled electron transfer. Chem Rev 2014; 114:3381-465. [PMID: 24684625 PMCID: PMC4317057 DOI: 10.1021/cr4006654] [Citation(s) in RCA: 358] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Indexed: 02/01/2023]
Affiliation(s)
- Agostino Migliore
- Department
of Chemistry, Department of Biochemistry, and Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Nicholas F. Polizzi
- Department
of Chemistry, Department of Biochemistry, and Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Michael
J. Therien
- Department
of Chemistry, Department of Biochemistry, and Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - David N. Beratan
- Department
of Chemistry, Department of Biochemistry, and Department of Physics, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
15
|
Offenbacher AR, Watson RA, Pagba CV, Barry BA. Redox-dependent structural coupling between the α2 and β2 subunits in E. coli ribonucleotide reductase. J Phys Chem B 2014; 118:2993-3004. [PMID: 24606240 DOI: 10.1021/jp501121d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ribonucleotide reductase (RNR) catalyzes the production of deoxyribonucleotides in all cells. In E. coli class Ia RNR, a transient α2β2 complex forms when a ribonucleotide substrate, such as CDP, binds to the α2 subunit. A tyrosyl radical (Y122O•)-diferric cofactor in β2 initiates substrate reduction in α2 via a long-distance, proton-coupled electron transfer (PCET) process. Here, we use reaction-induced FT-IR spectroscopy to describe the α2β2 structural landscapes, which are associated with dATP and hydroxyurea (HU) inhibition. Spectra were acquired after mixing E. coli α2 and β2 with a substrate, CDP, and the allosteric effector, ATP. Isotopic chimeras, (13)Cα2β2 and α2(13)Cβ2, were used to define subunit-specific structural changes. Mixing of α2 and β2 under turnover conditions yielded amide I (C═O) and II (CN/NH) bands, derived from each subunit. The addition of the inhibitor, dATP, resulted in a decreased contribution from amide I bands, attributable to β strands and disordered structures. Significantly, HU-mediated reduction of Y122O• was associated with structural changes in α2, as well as β2. To define the spectral contributions of Y122O•/Y122OH in the quaternary complex, (2)H4 labeling of β2 tyrosines and HU editing were performed. The bands of Y122O•, Y122OH, and D84, a unidentate ligand to the diferric cluster, previously identified in isolated β2, were observed in the α2β2 complex. These spectra also provide evidence for a conformational rearrangement at an additional β2 tyrosine(s), Yx, in the α2β2/CDP/ATP complex. This study illustrates the utility of reaction-induced FT-IR spectroscopy in the study of complex enzymes.
Collapse
Affiliation(s)
- Adam R Offenbacher
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | | | | | | |
Collapse
|
16
|
Luber S, Leung S, Herrmann C, Du WH, Noodleman L, Batista VS. EXAFS simulation refinement based on broken-symmetry DFT geometries for the Mn(IV)-Fe(III) center of class I RNR from Chlamydia trachomatis. Dalton Trans 2014; 43:576-83. [PMID: 24129440 PMCID: PMC3855085 DOI: 10.1039/c3dt51563j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides into deoxyribonucleotides necessary for DNA biosynthesis. Unlike the conventional class Ia RNRs which use a diiron cofactor in their subunit R2, the active site of the RNR-R2 from Chlamydia trachomatis (Ct) contains a Mn/Fe cofactor. The detailed structure of the Mn/Fe core has yet to be established. In this paper we evaluate six different structural models of the Ct RNR active site in the Mn(iv)/Fe(iii) state by using Mössbauer parameter calculations and simulations of Mn/Fe extended X-ray absorption fine structure (EXAFS) spectroscopy, and we identify a structure similar to a previously proposed DFT-optimized model that shows quantitative agreement with both EXAFS and Mössbauer spectroscopic data.
Collapse
Affiliation(s)
- Sandra Luber
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, USA
| | - Sophie Leung
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, USA
| | - Carmen Herrmann
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, USA
| | - Wenge Han Du
- Department of Integrative Structural and Computational Biology, TPC15, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Louis Noodleman
- Department of Integrative Structural and Computational Biology, TPC15, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Victor S. Batista
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, USA
| |
Collapse
|
17
|
Du WGH, Noodleman L. Density functional study for the bridged dinuclear center based on a high-resolution X-ray crystal structure of ba3 cytochrome c oxidase from Thermus thermophilus. Inorg Chem 2013; 52:14072-88. [PMID: 24262070 DOI: 10.1021/ic401858s] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Strong electron density for a peroxide type dioxygen species bridging the Fea3 and CuB dinuclear center (DNC) was observed in the high-resolution (1.8 Å) X-ray crystal structures (PDB entries 3S8G and 3S8F) of ba3 cytochrome c oxidase (CcO) from Thermus thermophilus. The crystals represent the as-isolated X-ray photoreduced CcO structures. The bridging peroxide was proposed to arise from the recombination of two radiation-produced HO(•) radicals formed either very near to or even in the space between the two metals of the DNC. It is unclear whether this peroxide species is in the O2(2-), O2(•)(-), HO2(-), or the H2O2 form and what is the detailed electronic structure and binding geometry including the DNC. In order to answer what form of this dioxygen species was observed in the DNC of the 1.8 Å X-ray CcO crystal structure (3S8G), we have applied broken-symmetry density functional theory (BS-DFT) geometric and energetic calculations (using OLYP potential) on large DNC cluster models with different Fea3-CuB oxidation and spin states and with O2(2-), O2(•)(-), HO2(-), or H2O2 in the bridging position. By comparing the DFT optimized geometries with the X-ray crystal structure (3S8G), we propose that the bridging peroxide is HO2(-). The X-ray crystal structure is likely to represent the superposition of the Fea3(2+)-(HO2(-))-CuB(+) DNC's in different states (Fe(2+) in low spin (LS), intermediate spin (IS), or high spin (HS)) with the majority species having the proton of the HO2(-) residing on the oxygen atom (O1) which is closer to the Fea3(2+) site in the Fea3(2+)-(HO-O)(-)-CuB(+) conformation. Our calculations show that the side chain of Tyr237 is likely trapped in the deprotonated Tyr237(-) anion form in the 3S8G X-ray crystal structure.
Collapse
Affiliation(s)
- Wen-Ge Han Du
- Department of Integrative Structural and Computational Biology, TPC15, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | |
Collapse
|
18
|
Pápai M, Vankó G. On Predicting Mössbauer Parameters of Iron-Containing Molecules with Density-Functional Theory. J Chem Theory Comput 2013; 9:5004-5020. [PMID: 25821417 PMCID: PMC4358633 DOI: 10.1021/ct4007585] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Indexed: 01/19/2023]
Abstract
The performance of six frequently used density functional theory (DFT) methods (RPBE, OLYP, TPSS, B3LYP, B3LYP*, and TPSSh) in the prediction of Mössbauer isomer shifts(δ) and quadrupole splittings (ΔEQ) is studied for an extended and diverse set of Fe complexes. In addition to the influence of the applied density functional and the type of the basis set, the effect of the environment of the molecule, approximated with the conducting-like screening solvation model (COSMO) on the computed Mössbauer parameters, is also investigated. For the isomer shifts the COSMO-B3LYP method is found to provide accurate δ values for all 66 investigated complexes, with a mean absolute error (MAE) of 0.05 mm s-1 and a maximum deviation of 0.12 mm s-1. Obtaining accurate ΔEQ values presents a bigger challenge; however, with the selection of an appropriate DFT method, a reasonable agreement can be achieved between experiment and theory. Identifying the various chemical classes of compounds that need different treatment allowed us to construct a recipe for ΔEQ calculations; the application of this approach yields a MAE of 0.12 mm s-1 (7% error) and a maximum deviation of 0.55 mm s-1 (17% error). This accuracy should be sufficient for most chemical problems that concern Fe complexes. Furthermore, the reliability of the DFT approach is verified by extending the investigation to chemically relevant case studies which include geometric isomerism, phase transitions induced by variations of the electronic structure (e.g., spin crossover and inversion of the orbital ground state), and the description of electronically degenerate triplet and quintet states. Finally, the immense and often unexploited potential of utilizing the sign of the ΔEQ in characterizing distortions or in identifying the appropriate electronic state at the assignment of the spectral lines is also shown.
Collapse
Affiliation(s)
- Mátyás Pápai
- Wigner
Research Centre for
Physics, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 49, Hungary
| | - György Vankó
- Wigner
Research Centre for
Physics, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 49, Hungary
| |
Collapse
|
19
|
Offenbacher AR, Minnihan EC, Stubbe J, Barry BA. Redox-linked changes to the hydrogen-bonding network of ribonucleotide reductase β2. J Am Chem Soc 2013; 135:6380-3. [PMID: 23594029 PMCID: PMC3694779 DOI: 10.1021/ja3032949] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribonucleotide reductase (RNR) catalyzes conversion of nucleoside diphosphates (NDPs) to 2'-deoxynucleotides, a critical step in DNA replication and repair in all organisms. Class-Ia RNRs, found in aerobic bacteria and all eukaryotes, are a complex of two subunits: α2 and β2. The β2 subunit contains an essential diferric-tyrosyl radical (Y122O(•)) cofactor that is needed to initiate reduction of NDPs in the α2 subunit. In this work, we investigated the Y122O(•) reduction mechanism in Escherichia coli β2 by hydroxyurea (HU), a radical scavenger and cancer therapeutic agent. We tested the hypothesis that Y122OH redox reactions cause structural changes in the diferric cluster. Reduction of Y122O(•) was studied using reaction-induced FT-IR spectroscopy and [(13)C]aspartate-labeled β2. These Y122O(•) minus Y122OH difference spectra provide evidence that the Y122OH redox reaction is associated with a frequency change to the asymmetric vibration of D84, a unidentate ligand to the diferric cluster. The results are consistent with a redox-induced shift in H-bonding between Y122OH and D84 that may regulate proton-transfer reactions on the HU-mediated inactivation pathway in isolated β2.
Collapse
Affiliation(s)
- Adam R. Offenbacher
- Department of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ellen C. Minnihan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bridgette A. Barry
- Department of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
20
|
Nuclear resonance vibrational spectroscopic and computational study of high-valent diiron complexes relevant to enzyme intermediates. Proc Natl Acad Sci U S A 2013; 110:6275-80. [PMID: 23576760 DOI: 10.1073/pnas.1304238110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
High-valent intermediates of binuclear nonheme iron enzymes are structurally unknown despite their importance for understanding enzyme reactivity. Nuclear resonance vibrational spectroscopy combined with density functional theory calculations has been applied to structurally well-characterized high-valent mono- and di-oxo bridged binuclear Fe model complexes. Low-frequency vibrational modes of these high-valent diiron complexes involving Fe motion have been observed and assigned. These are independent of Fe oxidation state and show a strong dependence on spin state. It is important to note that they are sensitive to the nature of the Fe2 core bridges and provide the basis for interpreting parallel nuclear resonance vibrational spectroscopy data on the high-valent oxo intermediates in the binuclear nonheme iron enzymes.
Collapse
|
21
|
Sitek P, Jaworska M, Lodowski P, Chmielowska A. Methyl transfer reaction between MeI and Ni(PPh2CH2CH2SEt)2 complex. A DFT study. INORG CHEM COMMUN 2013. [DOI: 10.1016/j.inoche.2012.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Bikas R, Hosseini-Monfared H, Zoppellaro G, Herchel R, Tucek J, Owczarzak AM, Kubicki M, Zboril R. Synthesis, structure, magnetic properties and theoretical calculations of methoxy bridged dinuclear iron(iii) complex with hydrazone based O,N,N-donor ligand. Dalton Trans 2013; 42:2803-12. [DOI: 10.1039/c2dt31751f] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
23
|
Perrin BS, Ichiye T. Characterizing the effects of the protein environment on the reduction potentials of metalloproteins. J Biol Inorg Chem 2013; 18:103-10. [PMID: 23229112 PMCID: PMC3567609 DOI: 10.1007/s00775-012-0955-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/18/2012] [Indexed: 11/26/2022]
Abstract
The reduction potentials of electron transfer proteins are critically determined by the degree of burial of the redox site within the protein and the degree of permanent polarization of the polypeptide around the redox site. Although continuum electrostatics calculations of protein structures can predict the net effect of these factors, quantifying each individual contribution is a difficult task. Here, the burial of the redox site is characterized by a dielectric radius R(p) (a Born-type radius for the protein), the polarization of the polypeptide is characterized by an electret potential ϕ(p) (the average electrostatic potential at the metal atoms), and an electret-dielectric spheres (EDS) model of the entire protein is then defined in terms of R(p) and ϕ(p). The EDS model shows that for a protein with a redox site of charge Q, the dielectric response free energy is a function of Q(2), while the electret energy is a function of Q. In addition, R(p) and ϕ(p) are shown to be characteristics of the fold of a protein and are predictive of the most likely redox couple for redox sites that undergo different redox couples.
Collapse
Affiliation(s)
- Bradley Scott Perrin
- Department of Chemistry, Georgetown University, Box 571227, Washington, DC 20057-1227
| | - Toshiko Ichiye
- Department of Chemistry, Georgetown University, Box 571227, Washington, DC 20057-1227
| |
Collapse
|
24
|
Han WG, Sandala GM, Giammona DA, Bashford D, Noodleman L. Mössbauer properties of the diferric cluster and the differential iron(II)-binding affinity of the iron sites in protein R2 of class Ia Escherichia coli ribonucleotide reductase: a DFT/electrostatics study. Dalton Trans 2011; 40:11164-75. [PMID: 21837345 PMCID: PMC3604995 DOI: 10.1039/c1dt10950b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The R2 subunit of class-Ia ribonucleotide reductase (RNR) from Escherichia coli (E. coli) contains a diiron active site. Starting from the apo-protein and Fe(II) in solution at low Fe(II)/apoR2 ratios, mononuclear Fe(II) binding is observed indicating possible different Fe(II) binding affinities for the two alternative sites. Further, based on their Mössbauer spectroscopy and two-iron-isotope reaction experiments, Bollinger et al. (J. Am. Chem. Soc., 1997, 119, 5976-5977) proposed that the site Fe1, which bonds to Asp84, should be associated with the higher observed (57)Fe Mössbauer quadrupole splitting (2.41 mm s(-1)) and lower isomer shift (0.45 mm s(-1)) in the Fe(III)Fe(III) state, site Fe2, which is further from Tyr122, should have a greater affinity for Fe(II) binding than site Fe1, and Fe(IV) in the intermediate X state should reside at site Fe2. In this paper, using density functional theory (DFT) incorporated with the conductor-like screening (COSMO) solvation model and with the finite-difference Poisson-Boltzmann self-consistent reaction field (PB-SCRF) methodologies, we have demonstrated that the observed large quadrupole splitting for the diferric state R2 does come from site Fe1(III) and it is mainly caused by the binding position of the carboxylate group of the Asp84 sidechain. Further, a series of active site clusters with mononuclear Fe(II) binding at either site Fe1 or Fe2 have been studied, which show that with a single dielectric medium outside the active site quantum region, there is no energetic preference for Fe(II) binding at one site over another. However, when including the explicit extended protein environment in the PB-SCRF model, the reaction field favors the Fe(II) binding at site Fe2 rather than at site Fe1 by ~9 kcal mol(-1). Therefore our calculations support the proposal of the previous Mössbauer spectroscopy and two-iron-isotope reaction experiments by Bollinger et al.
Collapse
Affiliation(s)
- Wen-Ge Han
- Department of Molecular Biology, TPC15, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Gregory M. Sandala
- Department of Molecular Biology, TPC15, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Debra Ann Giammona
- Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - Donald Bashford
- Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - Louis Noodleman
- Department of Molecular Biology, TPC15, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
25
|
Bhave DP, Han WG, Pazicni S, Penner-Hahn JE, Carroll KS, Noodleman L. Geometric and electrostatic study of the [4Fe-4S] cluster of adenosine-5'-phosphosulfate reductase from broken symmetry density functional calculations and extended X-ray absorption fine structure spectroscopy. Inorg Chem 2011; 50:6610-25. [PMID: 21678934 DOI: 10.1021/ic200446c] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adenosine-5'-phosphosulfate reductase (APSR) is an iron-sulfur protein that catalyzes the reduction of adenosine-5'-phosphosulfate (APS) to sulfite. APSR coordinates to a [4Fe-4S] cluster via a conserved CC-X(~80)-CXXC motif, and the cluster is essential for catalysis. Despite extensive functional, structural, and spectroscopic studies, the exact role of the iron-sulfur cluster in APS reduction remains unknown. To gain an understanding into the role of the cluster, density functional theory (DFT) analysis and extended X-ray fine structure spectroscopy (EXAFS) have been performed to reveal insights into the coordination, geometry, and electrostatics of the [4Fe-4S] cluster. X-ray absorption near-edge structure (XANES) data confirms that the cluster is in the [4Fe-4S](2+) state in both native and substrate-bound APSR while EXAFS data recorded at ~0.1 Å resolution indicates that there is no significant change in the structure of the [4Fe-4S] cluster between the native and substrate-bound forms of the protein. On the other hand, DFT calculations provide an insight into the subtle differences between the geometry of the cluster in the native and APS-bound forms of APSR. A comparison between models with and without the tandem cysteine pair coordination of the cluster suggests a role for the unique coordination in facilitating a compact geometric structure and "fine-tuning" the electronic structure to prevent reduction of the cluster. Further, calculations using models in which residue Lys144 is mutated to Ala confirm the finding that Lys144 serves as a crucial link in the interactions involving the [4Fe-4S] cluster and APS.
Collapse
Affiliation(s)
- Devayani P Bhave
- Chemical Biology Graduate Program, University of Michigan, Ann Arbor, Michigan 48109-2216, USA
| | | | | | | | | | | |
Collapse
|