1
|
Lopez-Odriozola L, Shaw S, Abrahamsen-Mills L, Waters C, Natrajan LS. Identification and Quantification of Multiphase U(VI) Speciation on Gibbsite with pH Using TRLFS and PARAFAC of Excitation Emission Matrices. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17916-17925. [PMID: 39315992 PMCID: PMC11466309 DOI: 10.1021/acs.est.4c06133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
The significant abundance of uranium in radioactive waste inventories worldwide necessitates a thorough understanding of its behavior. In this work, the speciation of uranyl(VI), (UO22+) in a gibbsite system under ambient conditions has been determined as a function of pH by deconvolution and analysis of luminescence spectroscopic data. Uniquely, a combined experimental and statistical approach utilizing time-resolved luminescence spectroscopy and parallel factor analysis (PARAFAC) of excitation emission matrices has been successfully utilized to identify four separate luminescent U(VI) species in the uranyl-gibbsite system for the first time. The speciation of all luminescent U(VI) species in an environmentally relevant system over a pH range of 6-11 is discerned through the analysis of emission fingerprints at low temperature (20 K). Comparison of the deconvoluted luminescence spectra with mineral standards and geochemical models of the system allows the assignment of the luminescent chemical species as metaschoepite, Na-compreignacite, surface adsorbed ≡AlO2-UO2(OH) and ≡AlO2-UO2(CO3)24- complexes, with assignments supported by fitting of extended X-ray absorption fine structure data. The combined spectroscopic techniques in this study show that assignment and quantification of uranyl(VI) species in a sorption system over a large pH range can be accurately achieved using PARAFAC to deconvolute a three way emission spectroscopic data set.
Collapse
Affiliation(s)
- Laura Lopez-Odriozola
- Centre
for Radiochemistry Research, Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K.
| | - Samuel Shaw
- Research
Centre for Radwaste Disposal and Williamson Research Centre for Molecular
Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, U.K.
| | | | - Charlotte Waters
- Research
Centre for Radwaste Disposal and Williamson Research Centre for Molecular
Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, U.K.
| | - Louise S. Natrajan
- Centre
for Radiochemistry Research, Department of Chemistry, The University of Manchester, Manchester M13 9PL, U.K.
| |
Collapse
|
2
|
He Y, Lu JB, Zhang YY, Hu HS, Li J. Structures of Th 4+ aqueous solutions: insights from AIMD and metadynamics simulations. Phys Chem Chem Phys 2024; 26:24447-24454. [PMID: 39263704 DOI: 10.1039/d4cp02512a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Solution chemistry of actinide ions is critical to understanding the solvation behaviors and hydrolysis process. Using tetravalent thorium ion Th4+ as a representative example, we investigate the local structures and dynamic behaviors of hydrated Th4+ ions by ab initio molecular dynamics (AIMD) simulations using the recently developed norm-conserving pseudopotentials and basis sets optimized for actinides (J.-B. Lu et al., J. Chem. Theory Comput. 2021, 17, 3360-3371). AIMD simulations reveal two distinct solvation shells, with the first shell comprising 9 water molecules at approximately rTh-O = 2.50 Å and exhibiting a tricapped trigonal prism geometry. These conclusions are confirmed through metadynamics simulations and further structural analysis. AIMD simulations also show the slight effect of temperature and counterions on the structure of the solution. The structured solvation shells of the highly charged Th4+ ion with the specific geometry, distinct from the structure of liquid water, lead to corresponding structural changes in the hydrogen bond network in water. Additionally, beyond the solvent-shared ion pair (SIP) state observed in the unbiased AIMD simulations, the metadynamics simulations reconstruct a two-dimensional free energy surface that clearly indicates the potential stability of the contact ion pair (CIP) state in the system with Cl- as a counterion. The findings in this work provide insights into the solution chemistry of actinides and serve as a reference for studying other actinide solution systems.
Collapse
Affiliation(s)
- Yang He
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China.
| | - Jun-Bo Lu
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Fundamental Science Center of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Yang-Yang Zhang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Han-Shi Hu
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China.
| | - Jun Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China.
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Fundamental Science Center of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| |
Collapse
|
3
|
Sobczyk M, Rossberg A, Santhana Krishna Kumar A, Marzec M, Cwanek A, Łokas E, Nguyen Dinh C, Bajda T. Highly efficient uranium uptake by the eco-designed cocamidopropyl betaine-decorated Na-P1 coal fly-ash zeolite. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135230. [PMID: 39038376 DOI: 10.1016/j.jhazmat.2024.135230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
In some locations around the globe, the U concentrations may exceed WHO standards by 2-folds therefore, effective yet environmentally wise solutions to purify radioactive waters are of significant importance. Here, the optimized and fully controlled coal-fly-ash based Na-P1 zeolite functionalization by employing novel, biodegradable biosurfactant molecule - cocamidopropyl betaine (CAPB) is showcased. The zeolite's surface decoration renders three composites with varying amounts of introduced CAPB molecule (Na-P1 @ CAPB), with 0.44, 0.88, and 1.59-times External Cation Exchange Capacity (ECEC). Wet-chemistry experiments revealed extremely high U adsorption capacity (qmax = 137.1 mg U/g) unveiling preferential interactions of uranyl dimers with CAPB molecules coupled with ion-exchange between Na+ ions. Multimodal spectroscopic analyses, including Fourier-Transformed Infra-Red (FT-IR), X-ray Photoelectron (XPS), and X-ray Absorption Fine Structure (XAFS), showed the hexavalent oxidation state of U, and no secondary release of the CAPB molecule from the composite. The EXAFS signals fingerprint changes in the interatomic distances of adsorbed U, showing the impact of the O and N, heteroatoms present in the CAPB molecule on U binding mechanism. The presented research outcomes showcase the easy, scalable, optimized, and environmentally friendly synthesis of biofunctional zeolite effectively purifying the real-life U-bearing wastewaters from the vicinity of the Pribram deposit (Czech Republic).
Collapse
Affiliation(s)
- M Sobczyk
- AGH University of Krakow, Faculty of Geology, Geophysics and Environmental Protection, al. A. Mickiewicza 30, 30-059 Krakow, Poland.
| | - A Rossberg
- The Rossendorf Beamline at ESRF - The European Synchrotron, CS40220, 38043 Cedex 9 Grenoble, France; Helmholtz Zentrum Dresden-Rossendorf (HZDR), Institute of Resource Ecology, PO Box 510119, 01314 Dresden, Germany
| | - A Santhana Krishna Kumar
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung 80424, Taiwan
| | - M Marzec
- AGH University of Krakow, Academic Centre for Materials and Nanotechnology (ACMiN), al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - A Cwanek
- The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Department of Mass Spectrometry, ul. Radzikowskiego 152, 31-342 Kraków, Poland
| | - E Łokas
- The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Department of Mass Spectrometry, ul. Radzikowskiego 152, 31-342 Kraków, Poland
| | - C Nguyen Dinh
- AGH University of Krakow, Faculty of Geology, Geophysics and Environmental Protection, al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - T Bajda
- AGH University of Krakow, Faculty of Geology, Geophysics and Environmental Protection, al. A. Mickiewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
4
|
Woods JJ, Wacker JN, Peterson A, Abergel RJ, Ung G. Improved Energy Transfer in the Sensitization of Americium Enables Observation of Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2024:e202412535. [PMID: 39212324 DOI: 10.1002/anie.202412535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
The first example of circularly polarized luminescence (CPL) from a molecular americium (Am) complex is reported. Coordination of Am(III) by a combination of thenoyltrifluoroacetonate and a chiral diphosphine oxide ligand yielded a complex with strong sensitized metal-centered luminescence. The energy transfer process for sensitization appears to occur via a unique resonant pathway, which results in the removal of the overlap between ligand phosphorescence and sensitized Am luminescence that has often been observed. Owing to this feature, and despite the limited amount of material that could be used due to the radioactivity of 241Am, CPL could be measured. The collected luminescence and CPL spectra provide insight into the crystal field splitting of the 5D1→7F1 transition. These results pave the way for future studies of Am(III) luminescence to investigate electronic structure effects in this and other 5 f elements.
Collapse
Affiliation(s)
- Joshua J Woods
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Jennifer N Wacker
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Appie Peterson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- Department of Nuclear Engineering and Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Gaël Ung
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, United States
| |
Collapse
|
5
|
Wittmann L, Gordiy I, Friede M, Helmich-Paris B, Grimme S, Hansen A, Bursch M. Extension of the D3 and D4 London dispersion corrections to the full actinides series. Phys Chem Chem Phys 2024; 26:21379-21394. [PMID: 39092890 DOI: 10.1039/d4cp01514b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Efficient dispersion corrections are an indispensable component of modern density functional theory, semi-empirical quantum mechanical, and even force field methods. In this work, we extend the well established D3 and D4 London dispersion corrections to the full actinides series, francium, and radium. To keep consistency with the existing versions, the original parameterization strategy of the D4 model was only slightly modified. This includes improved reference Hirshfeld atomic partial charges at the ωB97M-V/ma-def-TZVP level to fit the required electronegativity equilibration charge (EEQ) model. In this context, we developed a new actinide data set called AcQM, which covers the most common molecular actinide compound space. Furthermore, the efficient calculation of dynamic polarizabilities that are needed to construct CAB6 dispersion coefficients was implemented into the ORCA program package. The extended models are assessed for the computation of dissociation curves of actinide atoms and ions, geometry optimizations of crystal structure cutouts, gas-phase structures of small uranium compounds, and an example extracted from a small actinide complex protein assembly. We found that the novel parameterizations perform on par with the computationally more demanding density-dependent VV10 dispersion correction. With the presented extension, the excellent cost-accuracy ratio of the D3 and D4 models can now be utilized in various fields of computational actinide chemistry and, e.g., in efficient composite DFT methods such as r2SCAN-3c. They are implemented in our freely available standalone codes (dftd4, s-dftd3) and the D4 version will be also available in the upcoming ORCA 6.0 program package.
Collapse
Affiliation(s)
- Lukas Wittmann
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Igor Gordiy
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Marvin Friede
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Benjamin Helmich-Paris
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Markus Bursch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
- FACCTs GmbH, 50677, Köln, Germany
| |
Collapse
|
6
|
Baumer T, Zavarin M, Pearce CI, Emerson HP, Kersting AB. Subsurface Transport of Plutonium in Organic and Aqueous Acidic Processing Wastes at the Hanford Site, USA. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8909-8918. [PMID: 38728532 PMCID: PMC11112729 DOI: 10.1021/acs.est.3c10082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
Over 4 million liters of mixed acidic (∼pH 2.5), high ionic strength (∼5 M nitrate) plutonium (Pu) processing waste were released into the 216-Z-9 (Z-9) trench at the Hanford Site, USA, and trace Pu has migrated 37 m below the trench. In this study, we used flowthrough columns to investigate Pu transport in simplified processing waste through uncontaminated Hanford sediments to determine the conditions that led to Pu migration. In low pH aqueous fluids, some Pu breakthrough is observed at pH < 4, and increased Pu transport (14% total Pu breakthrough) is observed at pH < 2. However, Pu migrates in organic processing solvents through low pH sediments virtually uninhibited with approximately 94 and 86% total Pu breakthrough observed at pH 1 and pH 3, respectively. This study demonstrates that Pu migration can occur both with and without organic solvents at pH < 4, but significantly more Pu can be transported when partitioned into organic processing solvents. Our data suggest that under acidic conditions (pH < 4) in the vadose zone beneath the Z-9 trench, Pu present in organic processing solvents moved relatively unhindered and may explain the historical downward migration of Pu tens of meters below the Z-9 trench.
Collapse
Affiliation(s)
- Teresa Baumer
- Glenn
T. Seaborg Institute, Physical & Life Sciences Directorate, Lawrence Livermore National Laboratory, L-231, P.O. Box 808, Livermore, California 94550, United States
| | - Mavrik Zavarin
- Glenn
T. Seaborg Institute, Physical & Life Sciences Directorate, Lawrence Livermore National Laboratory, L-231, P.O. Box 808, Livermore, California 94550, United States
| | - Carolyn I. Pearce
- Energy
and Environment Directorate, Pacific Northwest
National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Hilary P. Emerson
- Energy
and Environment Directorate, Pacific Northwest
National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Annie B. Kersting
- Glenn
T. Seaborg Institute, Physical & Life Sciences Directorate, Lawrence Livermore National Laboratory, L-231, P.O. Box 808, Livermore, California 94550, United States
| |
Collapse
|
7
|
Srivastava A, Ali SM, Dumpala RMR, Kumar S, Kumar P, Rawat N, Mohapatra PK. Unusual redox stability of pentavalent uranium with hetero-bifunctional phosphonocarboxylate: insight into aqueous speciation. Dalton Trans 2024; 53:7321-7339. [PMID: 38591248 DOI: 10.1039/d4dt00173g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The +5 state is an unusual oxidation state of uranium due to its instability in the aqueous phase. As a result, gaining information about its aqueous speciation is extremely difficult. The present work is an attempt in that direction and it provides insight into the existence of a new pentavalent species in the presence of hetero-bifunctional phosphonocarboxylate (PC) chelators, other than the carbonate ion, in the aqueous medium. The aqueous chemistry of pentavalent uranium species with three environmentally relevant PCs was probed using electrochemical and DFT methods to understand the redox energy and kinetics of conversion of the U(VI)/U(V) couple, stability, structure, stoichiometry, binding modes, etc. Interestingly, pentavalent uranium complexes with PCs are quite persistent over a wide range of pH starting from acidic to alkaline conditions. The PC chelators block the cation-cation interaction (CCI) of U(V) through strong hetero-bidentate chelation and intermolecular hydrogen bonding (IMHB) interactions which stabilize the pentavalent metal ion against disproportionation. For uranyl species in the presence of PCs, acting as chelators, CV plots were obtained at varying pH values from 2 to 8. The obtained results indicate an irreversible single redox peak involving U(VI) to U(V) conversion and association of a coupled chemical reaction with the electron transfer step. ESI-MS studies were performed to understand the speciation effect on the U(VI)/U(V) redox couple with varying pH. Speciation modelling of U(V) with the PC ligands was carried out, which indicated that the U(V) is redox stable in nearly 47% of the pH region in the presence of the PCs as compared to the carboxylate-based chelators. The free energy and reduction potential of the U(V) complexes and the reduction free energy and disproportionation free energy for the U(VI)/U(V) couple were determined by DFT computations in the presence of the PCs. In situ spectroelectrochemical spectra were recorded to provide evidence for the existence of U(V) species with PCs in the aqueous medium and to acquire its absorption spectra. The present study is highly significant for understanding the coordination chemistry of pentavalent uranium species, accurate modelling of uranium, and isolation of U(V).
Collapse
Affiliation(s)
- Ashutosh Srivastava
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, India-400085.
| | - Sk Musharaf Ali
- Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai, India-400085
| | | | - Sumit Kumar
- Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India-400085
| | - Pranaw Kumar
- Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India-400085
| | - Neetika Rawat
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, India-400085.
| | - P K Mohapatra
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, India-400085.
| |
Collapse
|
8
|
Li C, Adeniyi EO, Zarzycki P. Machine learning surrogates for surface complexation model of uranium sorption to oxides. Sci Rep 2024; 14:6603. [PMID: 38503807 PMCID: PMC10951217 DOI: 10.1038/s41598-024-57026-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 03/13/2024] [Indexed: 03/21/2024] Open
Abstract
The safety assessments of the geological storage of spent nuclear fuel require understanding the underground radionuclide mobility in case of a leakage from multi-barrier canisters. Uranium, the most common radionuclide in non-reprocessed spent nuclear fuels, is immobile in reduced form (U(IV) and highly mobile in an oxidized state (U(VI)). The latter form is considered one of the most dangerous environmental threats in the safety assessments of spent nuclear fuel repositories. The sorption of uranium to mineral surfaces surrounding the repository limits their mobility. We quantify uranium sorption using surface complexation models (SCMs). Unfortunately, numerical SCM solvers often encounter convergence problems due to the complex nature of convoluted equations and correlations between model parameters. This study explored two machine learning surrogates for the 2-pK Triple Layer Model of uranium retention by oxide surfaces if released as U(IV) in the oxidizing conditions: random forest regressor and deep neural networks. Our surrogate models, particularly DNN, accurately reproduce SCM model predictions at a fraction of the computational cost without any convergence issues. The safety assessment of spent fuel repositories, specifically the migration of leaked radioactive waste, will benefit from having ultrafast AI/ML surrogates for the computationally expensive sorption models that can be easily incorporated into larger-scale contaminant migration models. One such model is presented here.
Collapse
Affiliation(s)
- Chunhui Li
- Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Elijah O Adeniyi
- Department of Earth Sciences, Montana State University, Bozeman, MT, USA.
| | - Piotr Zarzycki
- Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
9
|
Sobczyk M, Cwanek A, Łokas E, Nguyen Dinh C, Marzec M, Wróbel P, Bajda T. Elucidating uranium interactions with synthetic Na-P1 zeolite/Ca 2+-substituted alginate composite granules through batch and spectroscopic studies: Emphasizing the significance of ion exchange and complexation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123184. [PMID: 38142030 DOI: 10.1016/j.envpol.2023.123184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/03/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Uranium, a key member of the actinides series, is radioactive and may cause severe environmental hazards once discharged into the water due to high toxicity. Removal of uranium via adsorption by applying tailored, functional adsorbents is at the forefront of tackling such pollution. Here, we report the optimized functionalization of the powder coal fly-ash (CFA) derived Na-P1 synthetic zeolite to the form of granules by employing the biodegradable polymer-calcium alginate (CA) and their application to remove aqueous U. The optimized synthesis showed that granules are formed at the CA concentration equals to 0.5 % wt., and that application of 1% wt. solution renders the most effective U scavengers. The maximum U adsorption capacity (qmax) increases significantly after CA modification from 44.48 mgU/g for native, powder Na-P1 zeolite to 62.53 mg U/g and 76.70 mg U/g for 0.5 % wt. and 1 % wt. CA respectively. The U adsorption follows the Radlich-Peterson isotherm model, being the highest at acidic pH (pHeq∼4). The U adsorption kinetics reveals swift U uptake, reaching equilibrium after 2h for 1 % ZACB and 3 h for 0.5 % wt. ZACB following the pseudo-second-order (PSO) kinetic model. SEM-EDXS investigation elucidates that adsorbed U occurs onto materials as an inhomogenous, well-dispersed, and micrometer-scale aggregate. Further, XPS and μ-XRF spectroscopies complementarily confirmed the hexavalent oxidation state of adsorbed U and its altered distribution on ZACBs with varying CA concentrations. U distribution was probed "in-situ" onto materials while correlations between the major elements (Al, Si, Ca, U) contributing to U scavenging were calculated and compared. Finally, a real-life coal mine wastewater (CMW) polluted by 238U and 228,226Ra was successfully purified, satisfying WHO guidelines after treatment using ZACBs. These findings offer new insights on successful yet optimized Na-P1 zeolite modification using biodegradable polymer (Ca2+-exchanged alginate) aimed at efficient U removal, displaying a near-zero environmental impact.
Collapse
Affiliation(s)
- M Sobczyk
- AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. A. Mickiewicza 30, 30-059, Krakow, Poland.
| | - A Cwanek
- The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342, Krakow, Poland
| | - E Łokas
- The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342, Krakow, Poland
| | - C Nguyen Dinh
- AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. A. Mickiewicza 30, 30-059, Krakow, Poland
| | - M Marzec
- Academic Centre for Materials and Nanotechnology (ACMiN), al. A. Mickiewicza 30, 30-059, Krakow, Poland
| | - P Wróbel
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. A. Mickiewicza 30, 30-059, Krakow, Poland
| | - T Bajda
- AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. A. Mickiewicza 30, 30-059, Krakow, Poland
| |
Collapse
|
10
|
Zheleznova AO, Sun J, Zhu SD, Kuzmenkova NV, Rozhkova AK, Petrov VG, Xing S, Shi K, Hou X, Kalmykov SN. Sorption behaviour of neptunium in marine and fresh water bottom sediments in Far East area of Russia (Lake Khanka and Amur Bay). JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2024; 272:107334. [PMID: 38008046 DOI: 10.1016/j.jenvrad.2023.107334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023]
Abstract
The concentration and sorption behavior of 237Np on the bottom sediments of water bodies in the Far East region of Russia (Lake Khanka and Peter the Great Bay) were studied for the first time. The 237Np concentrations vary from 1.06 × 10-6 to 4.43 × 10-5 mBq g-1 in the bottom sediments of Lake Khanka and from 1.05 × 10-4 to 2.52 × 10-3 mBq g-1 for Amur Bay. The experiment on the adsorption of Np on marine and lake sediment showed that it is sorbed through complexation with silicates (albite, leucite). The Np sorption isotherm on marine sediments is described by the Langmuir equation; the distribution coefficients (Kd) of Np vary from 57 to 588 mL g-1. For lake sediments, the isotherm is described by the Henry equation; the Kd value reaches 935 mL g-1.
Collapse
Affiliation(s)
- A O Zheleznova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1 Bld.3, Moscow, Russia, 119991.
| | - J Sun
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - S D Zhu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - N V Kuzmenkova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1 Bld.3, Moscow, Russia, 119991; Institute of Geography, RAS, Staromonetny Per. 29, Bld. 4, Moscow, Russia
| | - A K Rozhkova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1 Bld.3, Moscow, Russia, 119991; Vernadsky Institute of Geochemistry and Analytical Chemistry, RAS, St. Kosygin 19, Moscow, Russia, 119991
| | - V G Petrov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1 Bld.3, Moscow, Russia, 119991
| | - S Xing
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - K Shi
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - X Hou
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - S N Kalmykov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1 Bld.3, Moscow, Russia, 119991
| |
Collapse
|
11
|
Gao P, Jin Q, Chen Z, Wang D, Tournassat C, Guo Z. Structures of multinuclear U(VI) species on the hydroxylated α-SiO 2(001) surface: insights from DFT calculations. Phys Chem Chem Phys 2024; 26:4125-4134. [PMID: 38226632 DOI: 10.1039/d3cp04941h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Multinuclear U(VI) species may be dominant in aqueous solutions under environmental conditions, while the structures of the multinuclear U(VI) species on mineral surfaces remain unclear. This work reports the structural and bonding properties of the possible surface complexes of three aqueous multinuclear U(VI) species, i.e., (UO2)2(OH)3+, (UO2)2(OH)22+ and (UO2)3(O)(OH)3+, on the hydroxylated α-SiO2(001) surface based on density functional theory (DFT) calculations. The results show that (UO2)2(OH)22+ and (UO2)3(O)(OH)3+ tend to form end-on structures at SiO(H)SiO(H) sites, whereas (UO2)2(OH)3+ prefers a side-on structure at SiO(H)O(H)-SiO(H)O(H) sites. The main driving forces for the formation of the multinuclear U(VI) surface complexes are electrostatic interactions and partially covalent chemical bonds. The Os-2p orbital hybridizes strongly with U-5f and U-6d orbitals, with a decreasing binding strength in the sequence of (UO2)2(OH)3+ > (UO2)2(OH)22+ > (UO2)3(O)(OH)3+ for the adsorption at the same type of surface sites. For the adsorption of the same multinuclear U(VI) species, the binding energy increases with the deprotonation extent of the identical sites. In addition, hydrogen bonds between surface hydroxyls and coordination waters as well as the acyl oxygen of uranyl moieties contribute to the formation of the multinuclear U(VI) surface complexes. The U-5f electron delocalization of far-side U atoms in the end-on structures of (UO2)2(OH)22+ and (UO2)3(O)(OH)3+ surface complexes also contributes slightly to the overall binding energy. Overall, this study provides insights into the adsorption behavior of multinuclear U(VI) on silica.
Collapse
Affiliation(s)
- Pengyuan Gao
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, 730000 Lanzhou, China.
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 730000 Lanzhou, China
- Institut des Sciences de la Terre d'Orléans, Université d'Orléans-CNRS-BRGM, Orléans 45071, France
| | - Qiang Jin
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, 730000 Lanzhou, China.
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 730000 Lanzhou, China
| | - Zongyuan Chen
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, 730000 Lanzhou, China.
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 730000 Lanzhou, China
| | - Dongqi Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Christophe Tournassat
- Institut des Sciences de la Terre d'Orléans, Université d'Orléans-CNRS-BRGM, Orléans 45071, France
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Zhijun Guo
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, 730000 Lanzhou, China.
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 730000 Lanzhou, China
| |
Collapse
|
12
|
Jessat I, Foerstendorf H, Rossberg A, Scheinost AC, Lützenkirchen J, Heim K, Stumpf T, Jordan N. Unraveling the Np(V) sorption on ZrO 2: A batch, spectroscopic and modeling combined approach. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132168. [PMID: 37742379 DOI: 10.1016/j.jhazmat.2023.132168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 09/26/2023]
Abstract
The interactions of the long-lived actinide neptunium with the corrosion product zirconia (ZrO2) have to be considered in the safety assessment of a repository for radioactive waste. The sorption of Np(V) on ZrO2 was investigated in the absence of carbonate at the macroscopic and molecular scale. At the macroscopic level, the Np(V) uptake was independent of ionic strength and the isoelectric point of the pristine zirconia was increased, both suggesting the presence of inner-sphere Np(V) surface complexes. The Np(V) sorption isotherms indicated the presence of strong and weak sorption sites. Molecular level information were derived from in situ attenuated total reflection Fourier-transform infrared spectroscopy and extended X-ray absorption fine structure spectroscopy (EXAFS), which confirmed the presence of Np(V) inner-sphere complexes. EXAFS experiments revealed the formation of a bidentate inner-sphere surface complex in the weak sorption site regime. The derived information at the macroscopic and molecular levels were used to parametrize a charge distribution multi-site complexation (CD-MUSIC) model. The derived thermodynamic constants can help to better predict the environmental fate of Np(V) in the context of nuclear waste repository assessments and can also support the appraisal of safety-relevant scenarios for the extended interim storage of spent nuclear fuel.
Collapse
Affiliation(s)
- Isabelle Jessat
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Harald Foerstendorf
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - André Rossberg
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany; The Rossendorf Beamline (BM20), European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Andreas C Scheinost
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany; The Rossendorf Beamline (BM20), European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Johannes Lützenkirchen
- Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Karsten Heim
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Norbert Jordan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| |
Collapse
|
13
|
Deblonde GJP, Morrison K, Mattocks JA, Cotruvo JA, Zavarin M, Kersting AB. Impact of a Biological Chelator, Lanmodulin, on Minor Actinide Aqueous Speciation and Transport in the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20830-20843. [PMID: 37897703 DOI: 10.1021/acs.est.3c06033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Minor actinides are major contributors to the long-term radiotoxicity of nuclear fuels and other radioactive wastes. In this context, understanding their interactions with natural chelators and minerals is key to evaluating their transport behavior in the environment. The lanmodulin family of metalloproteins is produced by ubiquitous bacteria and Methylorubrum extorquens lanmodulin (LanM) was recently identified as one of nature's most selective chelators for trivalent f-elements. Herein, we investigated the behavior of neptunium, americium, and curium in the presence of LanM, carbonate ions, and common minerals (calcite, montmorillonite, quartz, and kaolinite). We show that LanM's aqueous complexes with Am(III) and Cm(III) remain stable in carbonate-bicarbonate solutions. Furthermore, the sorption of Am(III) to these minerals is strongly impacted by LanM, while Np(V) sorption is not. With calcite, even a submicromolar concentration of LanM leads to a significant reduction in the Am(III) distribution coefficient (Kd, from >104 to ∼102 mL/g at pH 8.5), rendering it even more mobile than Np(V). Thus, LanM-type chelators can potentially increase the mobility of trivalent actinides and lanthanide fission products under environmentally relevant conditions. Monitoring biological chelators, including metalloproteins, and their biogenerators should therefore be considered during the evaluation of radioactive waste repository sites and the risk assessment of contaminated sites.
Collapse
Affiliation(s)
- Gauthier J-P Deblonde
- Physical and Life Sciences Directorate, Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Keith Morrison
- Physical and Life Sciences Directorate, Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Joseph A Mattocks
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joseph A Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mavrik Zavarin
- Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Annie B Kersting
- Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
14
|
Rani L, Srivastav AL, Kaushal J, Shukla DP, Pham TD, van Hullebusch ED. Significance of MOF adsorbents in uranium remediation from water. ENVIRONMENTAL RESEARCH 2023; 236:116795. [PMID: 37541412 DOI: 10.1016/j.envres.2023.116795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
Uranium is considered as one of the most perilous radioactive contaminants in the aqueous environment. It has shown detrimental effects on both flora and fauna and because of its toxicities on human beings, therefore its exclusion from the aqueous environment is very essential. The utilization of metal-organic frameworks (MOFs) as an adsorbent for the removal of uranium from the aqueous environment could be a good approach. MOFs possess unique properties like high surface area, high porosity, adjustable pore size, etc. This makes them promising adsorbents for the removal of uranium from contaminated water. In this paper, sources of uranium in the water environment, human health disorders, and application of the different types of MOFs as well as the mechanisms of uranium removal have been discussed meticulously.
Collapse
Affiliation(s)
- Lata Rani
- Centre for Water Sciences, Chitkara University Institute of Engineering & Technology, Chitkara University, Punjab, India; Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Himachal Pradesh, India.
| | - Jyotsna Kaushal
- Centre for Water Sciences, Chitkara University Institute of Engineering & Technology, Chitkara University, Punjab, India
| | - Dericks P Shukla
- Department of Civil Engineering, Indian Institute of Technology, Mandi, Himachal Pradesh, India
| | - Tien Duc Pham
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi-19 Le Thanh Tong, Hoan Kiem, Hanoi, 100000, Viet Nam
| | - Eric D van Hullebusch
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, F-75005, Paris, France
| |
Collapse
|
15
|
Margate J, Virot M, Dumas T, Jégou C, Chave T, Cot-Auriol M, Alves A, Nikitenko SI. Micrometric drilling of (meta-)studtite square platelets formed by pseudomorphic conversion of UO 2 under high-frequency ultrasound. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132059. [PMID: 37478590 DOI: 10.1016/j.jhazmat.2023.132059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/01/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Pseudomorphic transformations are related to chemical conversions of materials while conserving their shape and structural features. Structuring ceramic shapes this way can be used to tailor the physico-chemical properties of materials that can benefit particular applications. In the context of spent nuclear fuel storage interacting with radiolysis products, the sonochemical behavior of powdered UO2 was investigated in dilute aqueous solutions saturated with Ar/(20 %)O2 (20 °C). Optimized parameter settings enabled the complete conversion of UO2 micrometric platelets into uranyl peroxide precipitates, referred to as (meta-)studtite [(UO2(O2)(H2O)2)xH2O] with x = 2 or 4. While the most acidic conditions yielded elongated crystal shapes in agreement with a dissolution/reprecipitation mechanism, softer conditions allowed the pseudomorphic transformation of the platelet shape oxide suggesting a complex formation mechanism. For specific conditions, this unprecedented morphology was accompanied with the formation of a hole in the platelet center. Investigations revealed that the formation of the drilled polymorphs is related to a perfect blend of H+, in-situ generation of H2O2 and high-frequency ultrasound, and is most probably related to the sono-capillary effect. These insights pave the way for new sonochemical approaches dedicated to the preparation of material polymorphs tailoring specific structural properties.
Collapse
Affiliation(s)
- Julien Margate
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Marcoule, France
| | - Matthieu Virot
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Marcoule, France.
| | - Thomas Dumas
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, France
| | | | - Tony Chave
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Marcoule, France
| | | | - Ange Alves
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Marcoule, France
| | | |
Collapse
|
16
|
Guo Y, Liu H, Cao H, Dong X, Wang Z, Chen J, Xu C. Complexation of uranyl with benzoic acid in aqueous solution at variable temperatures: potentiometry, spectrophotometry and DFT calculations. Dalton Trans 2023; 52:11265-11271. [PMID: 37526577 DOI: 10.1039/d3dt01896b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Investigation of the fundamental coordination chemistry between U(VI) and simple organic ligands is important to understand the chemical behavior of U(VI) in the natural environment and separation processes. In this work, the complexation of U(VI) with a common carboxylic acid, benzoic acid, has been systematically investigated through potentiometry, spectrometry and DFT calculations. Three successive complexes (UO2L+, UO2L2 and UO2L3-, L = benzoate ion) between U(VI) and benzoic acid are successfully identified in aqueous solution and their corresponding thermodynamic parameters (stability constant, enthalpy and entropy) are determined. Notably, this is the first time that the previously missing 1 : 2 and 1 : 3 (U to L) complexes in aqueous solution and their complexation thermodynamics have been reported, which would aid in more accurate prediction of the chemical behavior of U(VI) in the presence of benzoic acid. Moreover, the structures of the complexes are elucidated using DFT calculations, which show that benzoic acid coordinates to U(VI) in a bidentate form in all the complexes.
Collapse
Affiliation(s)
- Yuxiao Guo
- Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China.
| | - Haiwang Liu
- Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China.
| | - Hong Cao
- Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China.
| | - Xue Dong
- Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China.
| | - Zhipeng Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China.
| | - Jing Chen
- Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China.
| | - Chao Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
17
|
Bales C, Kinsela AS, Miller C, Wang Y, Zhu Y, Lian B, Waite TD. Removal of Trace Uranium from Groundwaters Using Membrane Capacitive Deionization Desalination for Potable Supply in Remote Communities: Bench, Pilot, and Field Scale Investigations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37464745 DOI: 10.1021/acs.est.3c03477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The performance of membrane capacitive deionization (MCDI) desalination was investigated at bench, pilot, and field scales for the removal of uranium from groundwater. It was found that up to 98.9% of the uranium can be removed using MCDI from a groundwater source containing 50 μg/L uranium, with the majority (94.5%) being retained on the anode. Uranium was found to physiochemically adsorb to the electrode without the application of a potential by displacing chloride ions, with 16.6% uranium removal at the bench scale via this non-electrochemical process. This displacement of chloride did not occur during the MCDI adsorption phase with the adsorption of all ions remaining constant during a time series analysis on the pilot unit. For the scenarios tested on the pilot unit, the flowrate of the product water ranged from 0.15 to 0.23 m3/h, electrode energy consumption from 0.28 to 0.51 kW h/m3, and water recovery from 69 to 86%. A portion (13-53% on the pilot unit) of the uranium was found to remain on the electrodes after the brine discharge phase with conventional cleaning techniques unable to release this retained uranium. MCDI was found to be a suitable means to remove uranium from groundwater systems though with the need to manage the accumulation of uranium on the electrodes over time.
Collapse
Affiliation(s)
- Clare Bales
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Andrew S Kinsela
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Christopher Miller
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yuan Wang
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu 214206, PR China
| | - Yunyi Zhu
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu 214206, PR China
| | - Boyue Lian
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - T David Waite
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu 214206, PR China
| |
Collapse
|
18
|
Bañuelos JL, Borguet E, Brown GE, Cygan RT, DeYoreo JJ, Dove PM, Gaigeot MP, Geiger FM, Gibbs JM, Grassian VH, Ilgen AG, Jun YS, Kabengi N, Katz L, Kubicki JD, Lützenkirchen J, Putnis CV, Remsing RC, Rosso KM, Rother G, Sulpizi M, Villalobos M, Zhang H. Oxide- and Silicate-Water Interfaces and Their Roles in Technology and the Environment. Chem Rev 2023; 123:6413-6544. [PMID: 37186959 DOI: 10.1021/acs.chemrev.2c00130] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Interfacial reactions drive all elemental cycling on Earth and play pivotal roles in human activities such as agriculture, water purification, energy production and storage, environmental contaminant remediation, and nuclear waste repository management. The onset of the 21st century marked the beginning of a more detailed understanding of mineral aqueous interfaces enabled by advances in techniques that use tunable high-flux focused ultrafast laser and X-ray sources to provide near-atomic measurement resolution, as well as by nanofabrication approaches that enable transmission electron microscopy in a liquid cell. This leap into atomic- and nanometer-scale measurements has uncovered scale-dependent phenomena whose reaction thermodynamics, kinetics, and pathways deviate from previous observations made on larger systems. A second key advance is new experimental evidence for what scientists hypothesized but could not test previously, namely, interfacial chemical reactions are frequently driven by "anomalies" or "non-idealities" such as defects, nanoconfinement, and other nontypical chemical structures. Third, progress in computational chemistry has yielded new insights that allow a move beyond simple schematics, leading to a molecular model of these complex interfaces. In combination with surface-sensitive measurements, we have gained knowledge of the interfacial structure and dynamics, including the underlying solid surface and the immediately adjacent water and aqueous ions, enabling a better definition of what constitutes the oxide- and silicate-water interfaces. This critical review discusses how science progresses from understanding ideal solid-water interfaces to more realistic systems, focusing on accomplishments in the last 20 years and identifying challenges and future opportunities for the community to address. We anticipate that the next 20 years will focus on understanding and predicting dynamic transient and reactive structures over greater spatial and temporal ranges as well as systems of greater structural and chemical complexity. Closer collaborations of theoretical and experimental experts across disciplines will continue to be critical to achieving this great aspiration.
Collapse
Affiliation(s)
- José Leobardo Bañuelos
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Eric Borguet
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Gordon E Brown
- Department of Earth and Planetary Sciences, The Stanford Doerr School of Sustainability, Stanford University, Stanford, California 94305, United States
| | - Randall T Cygan
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - James J DeYoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Patricia M Dove
- Department of Geosciences, Department of Chemistry, Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Marie-Pierre Gaigeot
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE UMR8587, 91025 Evry-Courcouronnes, France
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Julianne M Gibbs
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2Canada
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Anastasia G Ilgen
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Young-Shin Jun
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Nadine Kabengi
- Department of Geosciences, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lynn Katz
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Kubicki
- Department of Earth, Environmental & Resource Sciences, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Johannes Lützenkirchen
- Karlsruher Institut für Technologie (KIT), Institut für Nukleare Entsorgung─INE, Eggenstein-Leopoldshafen 76344, Germany
| | - Christine V Putnis
- Institute for Mineralogy, University of Münster, Münster D-48149, Germany
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Kevin M Rosso
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Gernot Rother
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Marialore Sulpizi
- Department of Physics, Ruhr Universität Bochum, NB6, 65, 44780, Bochum, Germany
| | - Mario Villalobos
- Departamento de Ciencias Ambientales y del Suelo, LANGEM, Instituto De Geología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
19
|
Weck PF, Jové-Colón CF, Kim E. Polymorphism and phase transitions in Na 2U 2O 7 from density functional perturbation theory. Phys Chem Chem Phys 2023. [PMID: 37161538 DOI: 10.1039/d3cp01222k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Polymorphism and phase transitions in sodium diuranate, Na2U2O7, are investigated with density functional perturbation theory (DFPT). Thermal properties of crystalline α-, β- and γ-Na2U2O7 polymorphs are predicted from DFPT phonon calculations, i.e., the first time for the high-temperature γ-Na2U2O7 phase (R3̄m symmetry). The standard molar isochoric heat capacities predicted within the quasi-harmonic approximation are for P21/a α-Na2U2O7 and C2/m β-Na2U2O7, respectively. Gibbs free energy calculations reveal that α-Na2U2O7 (P21/a) and β-Na2U2O7 (C2/m) are almost energetically degenerate at low temperature, with β-Na2U2O7 becoming slightly more stable than α-Na2U2O7 as temperature increases. These findings are consistent with XRD data showing a mixture of α and β phases after cooling of γ-Na2U2O7 to room temperature and the observation of a sluggish α → β phase transition above ca. 600 K. A recently observed α-Na2U2O7 structure with P21 symmetry is also shown to be metastable at low temperature. Based on Gibbs free energy, no direct β → γ solid-solid phase transition is predicted at high temperature, although some experiments reported the existence of such phase transition around 1348 K. This, along with recent experiments, suggests the occurrence of a multi-step process consisting of initial β-phase decomposition, followed by recrystallization into γ-phase as temperature increases.
Collapse
Affiliation(s)
| | | | - Eunja Kim
- Department of Physics, The University of Texas at El Paso, El Paso, TX 79902, USA
| |
Collapse
|
20
|
Rathod AM, Verpaele S, Kelvin M, Sullivan KV, Leybourne MI. Uranium: an overview of physicochemical properties, exposure assessment methodologies, and health effects of environmental and occupational exposure. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1183-1200. [PMID: 35711076 DOI: 10.1007/s10653-022-01293-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
Uranium is chemo- and radiotoxic element which can cause multifactorial health hazards. Natural and anthropogenic uranium contamination raises concerns about potential public health problems. Natural contamination plays a significant role with regard to uranium exposure in the general population, whereas anthropogenic contamination leads to occupational uranium exposure, particularly in nuclear industry workers. In this review, we present a state-of-the-art status concerning uranium-induced health risks with a focus on epidemiological findings of uranium processing and enrichment plant workers. We provide a general overview of physicochemical properties of uranium and analytical methods for measuring or monitoring uranium, describe environmental and occupational exposure scenarios, and discuss the challenges for objectively investigating risks from uranium exposure.
Collapse
Affiliation(s)
- Abhisha M Rathod
- Department of Geoscience and Geological Engineering, Queen's University, 99 University Avenue, Kingston, ON, K7L 3N6, Canada
- Arthur B. McDonald Canadian Astroparticle Physics Research Institute, Queen's University, 64 Bader Lane, Kingston, ON, K7L 3N6, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Steven Verpaele
- Nickel Institute, Health and Environment Public Policy, Brussels, Belgium
| | - Michelle Kelvin
- Department of Geoscience and Geological Engineering, Queen's University, 99 University Avenue, Kingston, ON, K7L 3N6, Canada
| | - Kaj V Sullivan
- Department of Geoscience and Geological Engineering, Queen's University, 99 University Avenue, Kingston, ON, K7L 3N6, Canada
| | - Matthew I Leybourne
- Department of Geoscience and Geological Engineering, Queen's University, 99 University Avenue, Kingston, ON, K7L 3N6, Canada.
- Arthur B. McDonald Canadian Astroparticle Physics Research Institute, Queen's University, 64 Bader Lane, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
21
|
Liu Z, Li C, Tan K, Li Y, Tan W, Li X, Zhang C, Meng S, Liu L. Study of natural attenuation after acid in situ leaching of uranium mines using isotope fractionation and geochemical data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161033. [PMID: 36574851 DOI: 10.1016/j.scitotenv.2022.161033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Acid in situ leaching (AISL) is a subsurface mining approach suitable for low-grade ores which does not generate tailings, and has been adopted widely in uranium mining. However, this technique causes an extremely high concentration of contaminants at post-mining sites and in the surroundings soon after the mining ceases. As a potential AISL remediation strategy, natural attenuation has not been studied in detail. To address this problem, groundwater collected from 26 wells located within, adjacent, upgradient, and downgradient of a post-mining site were chosen to analyze the fate of U(VI), SO42-, δ34S, and δ238U, to reveal the main mechanisms governing the migration and attenuation of the dominant contaminants and the spatio-temporal evolutions of contaminants in the confined aquifer of the post-mining site. The δ238U values vary from -0.07 ‰ to 0.09 ‰ in the post-mining site and from -1.43 ‰ to 0.03 ‰ around the post-mining site. The δ34S values were found to vary from 3.3 ‰ to 6.2 ‰ in the post-mining site and from 6.0 ‰ to 11.0 ‰ around the post-mining site. Detailed analysis suggests that there are large differences between the range of isotopic composition variation and the range of pollutants concentration distribution, and the estimated Rayleigh isotope fractionation factor is 0.9994-0.9997 for uranium and 1.0032-1.0061 for sulfur. The isotope ratio of uranium and sulfur can be used to deduce the migration history of the contaminants and the irreversibility of the natural attenuation process in the anoxic confined aquifer. Combining the isotopic fractionation data for U and S with the concentrations of uranium and sulfate improved the accuracy of understanding of reducing conditions along the flow path. The study also indicated that as long as the geological conditions are favorable for redox reactions, natural attenuation could be used as a cost-effective remediation scheme.
Collapse
Affiliation(s)
- Zhenzhong Liu
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Chunguang Li
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China; China Institute of Atomic Energy, Beiing 102413, PR China; R&D Center of Radioactive Waste Treatment, Disposal and Modeling, University of South China, Hengyang 421001, PR China.
| | - Kaixuan Tan
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Yongmei Li
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Wanyu Tan
- Hunan City University, Yiyang 413000, PR China
| | - Xiqi Li
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Chong Zhang
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China; Beijing Research Institute of Chemical Engineering Metallurgy, Beijing 101149, PR China
| | - Shuo Meng
- R&D Center of Radioactive Waste Treatment, Disposal and Modeling, University of South China, Hengyang 421001, PR China
| | - Longcheng Liu
- China Institute of Atomic Energy, Beiing 102413, PR China; R&D Center of Radioactive Waste Treatment, Disposal and Modeling, University of South China, Hengyang 421001, PR China; Department of Chemical Engineering, Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
22
|
Wang JY, Mei L, Liu Y, Jin QY, Hu KQ, Yu JP, Jiao CS, Zhang M, Shi WQ. Unveiling Structural Diversity of Uranyl Compounds of Aprotic 4,4'-Bipyridine N, N'-Dioxide Bearing O-Donors. ACS OMEGA 2023; 8:8894-8909. [PMID: 36910938 PMCID: PMC9996810 DOI: 10.1021/acsomega.3c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
As an aprotic O-donor ligand, 4,4'-bipyridine N,N'-dioxide (DPO) shows good potential for the preparation of uranyl coordination compounds. In this work, by regulating reactant compositions and synthesis conditions, diverse coordination assembly between uranyl and DPO under different reaction conditions was achieved in the presence of other coexisting O-donors. A total of ten uranyl-DPO compounds, U-DPO-1 to U-DPO-10, have been synthesized by evaporation or hydro/solvothermal treatment, and the possible competition and cooperation of DPO with other O-donors for the formation of these uranyl-DPO compounds are discussed. Starting with an aqueous solution of uranyl nitrate, it is found that an anionic nitrate or hydroxyl group is involved in the coordination sphere of uranyl in U-DPO-1 ((UO2)(NO3)2(H2O)2·(DPO)), U-DPO-2 ((UO2)(NO3)2(DPO)), and U-DPO-3 ((UO2)(DPO)(μ2-OH)2), where DPO takes three different kinds of coordination modes, i.e. uncoordinated, monodentate, and biconnected. The utilization of UO2(CF3SO3)2 in acetonitrile, instead of an aqueous solution of uranyl nitrate, precludes the participation of nitrate and hydroxyl, and ensures the engagement of DPO ligands (4-5 DPO ligands for each uranyl) in a uranyl coordination sphere of U-DPO-4 ([(UO2)(CF3SO3)(DPO)2](CF3SO3)), U-DPO-5 ([UO2(H2O)(DPO)2](CF3SO3)2) and U-DPO-6 ([(UO2)(DPO)2.5](CF3SO3)2). Moreover, when combined with anionic carboxylate ligands, terephthalic acid (H2TPA), isophthalic acid (H2IPA), and succinic acid (H2SA), DPO works well with them to produce four mixed-ligand uranyl compounds with similar structures of two-dimensional (2D) networks or three-dimensional (3D) frameworks, U-DPO-7 ((UO2)(TPA)(DPO)), U-DPO-8 ((UO2)2(DPO)(IPA)2·0.5H2O), U-DPO-9 ((UO2)(SA)(DPO)·H2O), and U-DPO-10 ((UO2)2(μ2-OH)(SA)1.5(DPO)). Density functional theory (DFT) calculations conducted to probe the bonding features between uranyl ions and different O-donor ligands show that the bonding ability of DPO is better than that of anionic CF3SO3 -, nitrate, and a neutral H2O molecule and comparable to that of an anionic carboxylate group. Characterization of physicochemical properties of U-DPO-7 and U-DPO-10 with high phase purity including infrared (IR) spectroscopy, thermogravimetric analysis (TGA), and luminescence properties is also provided.
Collapse
Affiliation(s)
- Jing-yang Wang
- Fundamental
Science on Nuclear Safety and Simulation Technology Laboratory, College
of Nuclear Science and Technology, Harbin
Engineering University, Harbin 150001, China
- Laboratory
of Nuclear Energy Chemistry, Institute of
High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Mei
- Laboratory
of Nuclear Energy Chemistry, Institute of
High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- Laboratory
of Nuclear Energy Chemistry, Institute of
High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qiu-yan Jin
- Laboratory
of Nuclear Energy Chemistry, Institute of
High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Kong-qiu Hu
- Laboratory
of Nuclear Energy Chemistry, Institute of
High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Ji-pan Yu
- Laboratory
of Nuclear Energy Chemistry, Institute of
High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Cai-shan Jiao
- Fundamental
Science on Nuclear Safety and Simulation Technology Laboratory, College
of Nuclear Science and Technology, Harbin
Engineering University, Harbin 150001, China
| | - Meng Zhang
- Fundamental
Science on Nuclear Safety and Simulation Technology Laboratory, College
of Nuclear Science and Technology, Harbin
Engineering University, Harbin 150001, China
| | - Wei-qun Shi
- Laboratory
of Nuclear Energy Chemistry, Institute of
High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Chen XJ, Zhang CR, Liu X, Qi JX, Jiang W, Yi SM, Niu CP, Cai YJ, Liang RP, Qiu JD. Flexible three-dimensional covalent organic frameworks for ultra-fast and selective extraction of uranium via hydrophilic engineering. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130442. [PMID: 36436454 DOI: 10.1016/j.jhazmat.2022.130442] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
It has been considered challenging to develop ideal adsorbents for efficient and lower adsorption time uranium extraction, especially 3D covalent organic frameworks with interpenetrating topologies and tunable porous structures. Here, a "soft" three-dimensional (3D) covalent organic framework (TAM-DHBD) with a fivefold interpenetrating structure is prepared as a novel porous platform for the efficient extraction of radioactive uranium. The resultant TAM-DHBD appears exceptional crystallinity, prominent porosity and excellent chemical stability. Based on the strong mutual coordination between phenolic-hydroxyl/imine-N on the main chain and uranium, TAM-DHBD can effectively avert the competition of other ions, showing high selectivity for uranium extraction. Impressively, the 3D ultra-hydrophilic transport channels and multi-directional uniform pore structure of TAM-DHBD lay the foundation for the ultra-high-speed diffusion of uranium (the adsorption equilibrium can be reached within 60 min under a high-concentration environment). Furthermore, the utilization of lightweight structure not only increases the adsorption site density, but renders the adsorption process flexible, achieving a breakthrough adsorption capacity of 1263.8 mg g-1. This work not only highlights new opportunities for designing microporous 3D COFs, but paves the way for the practical application of 3D COFs for uranium adsorption.
Collapse
Affiliation(s)
- Xiao-Juan Chen
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Cheng-Rong Zhang
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xin Liu
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Jia-Xin Qi
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Wei Jiang
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Shun-Mo Yi
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Cheng-Peng Niu
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Yuan-Jun Cai
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ru-Ping Liang
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Jian-Ding Qiu
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China; State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China.
| |
Collapse
|
24
|
Preparation of porous amidoximated nanofibers with antibacterial properties, and experiments on uranium extraction from seawater. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-023-08806-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
25
|
Oertel J, Sachs S, Flemming K, Obeid MH, Fahmy K. Distinct Effects of Chemical Toxicity and Radioactivity on Metabolic Heat of Cultured Cells Revealed by “Isotope-Editing”. Microorganisms 2023; 11:microorganisms11030584. [PMID: 36985158 PMCID: PMC10056173 DOI: 10.3390/microorganisms11030584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Studying the toxicity of chemical compounds using isothermal microcalorimetry (IMC), which monitors the metabolic heat from living microorganisms, is a rapidly expanding field. The unprecedented sensitivity of IMC is particularly attractive for studies at low levels of stressors, where lethality-based data are inadequate. We have revealed via IMC the effect of low dose rates from radioactive β−-decay on bacterial metabolism. The low dose rate regime (<400 µGyh−1) is typical of radioactively contaminated environmental sites, where chemical toxicity and radioactivity-mediated effects coexist without a predominance or specific characteristic of either of them. We found that IMC allows distinguishing the two sources of metabolic interference on the basis of “isotope-editing” and advanced thermogram analyses. The stable and radioactive europium isotopes 153Eu and 152Eu, respectively, were employed in monitoring Lactococcus lactis cultures via IMC. β−-emission (electrons) was found to increase initial culture growth by increased nutrient uptake efficiency, which compensates for a reduced maximal cell division rate. Direct adsorption of the radionuclide to the biomass, revealed by mass spectrometry, is critical for both the initial stress response and the “dilution” of radioactivity-mediated damage at later culture stages, which are dominated by the chemical toxicity of Eu.
Collapse
Affiliation(s)
- Jana Oertel
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Susanne Sachs
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Katrin Flemming
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Muhammad Hassan Obeid
- Protection and Safety Department, Atomic Energy Commission of Syria, Damascus P.O. Box 6091, Syria
| | - Karim Fahmy
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062 Dresden, Germany
- Correspondence:
| |
Collapse
|
26
|
Cot-Auriol M, Virot M, Dumas T, Diat O, Le Goff X, Moisy P, Nikitenko SI. Ultrasonically controlled synthesis of UO 2+x colloidal nanoparticles. Dalton Trans 2023; 52:2135-2144. [PMID: 36722900 DOI: 10.1039/d2dt03721a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Actinide colloids and nanoparticles (NPs) currently constitute a topic of strong interest due to their potential role in advanced nuclear energetics and the environmental migration of radioactivity. A better understanding of the physico-chemical properties of nanoscale actinide oxides requires robust synthesis approaches. In this work, UO2+x NPs were successfully prepared by sonochemistry from U(IV) solutions previously stabilised in a hydrochloric medium (20 kHz, 65 °C, Ar/(10%)CO). Colloidal suspensions were found to be composed of crystalline and spherical NPs showing a UO2-like structure and measuring 18.0 ± 0.1 nm (SAXS, HR-TEM and PXRD techniques). In comparison with the controlled hydrolysis approach used as a reference, sonochemistry appears to be a simple and original synthesis route providing larger, better defined and more crystalline UO2+x NPs with a narrower size distribution. These well-defined NPs offer new opportunities for the preparation of reference actinide materials devoted to fundamental, technological and environmental studies.
Collapse
Affiliation(s)
| | - Matthieu Virot
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Marcoule, France.
| | - Thomas Dumas
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, France
| | - Olivier Diat
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Marcoule, France.
| | - Xavier Le Goff
- ICSM, Univ Montpellier, CEA, CNRS, ENSCM, Marcoule, France.
| | - Philippe Moisy
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, France
| | | |
Collapse
|
27
|
Montgomery DA, Edayilam N, Page H, Sheriff SA, Tharayil N, Powell BA, Martinez NE. Comparative uptake, translocation, and plant mediated transport of Tc-99, Cs-133, Np-237, and U-238 in Savannah River Site soil columns for the grass species Andropogon virginicus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159400. [PMID: 36243070 DOI: 10.1016/j.scitotenv.2022.159400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/08/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
This study examines the ability of the grass species Andropogon virginicus to alter the subsurface transport and redistribution of a suite of radionuclides (99Tc, 133Cs (stable analog for 135Cs and 137Cs), 237Np, 238U) with varying chemical behaviors in a Savannah River Site soil via the use of vegetated and unvegetated soil columns. After an acclimation period, a small volume of solution containing all radionuclides was introduced into the columns via Rhizon© pore water sampling tubes. Plants were grown for an additional 4 weeks before shoots were harvested, and columns were prepared for sampling. Plant presence led to decreased radionuclide release from the columns, mainly due to radionuclide specific combinations of system hydrology differences resulting from plant transpiration as well as plant uptake. For the most mobile radionuclides, 99Tc followed by 237Np, plant presence resulted in significantly different soil concentration profiles between vegetated and unvegetated columns, including notable upward migration for 237Np in columns with plants. Additionally, plant uptake of 99Tc was the greatest of all the radionuclides, with plant tissues containing an average of 44 % of the 99Tc, while plant uptake only accounted for <2 % of 237Np and <0.5 % of 133Cs and 238U in the system. Although overall plant uptake of 133Cs and 238U were similar, the majority of 133Cs taken up by plants was associated with 133Cs already available in the aqueous phase while 238U uptake was mainly associated with the solid phase, meaning that plant activity resulted in a fraction of the native 238U being mobilized and thus, made available for plant uptake. Overall, this study quantified the influence of several plant-mediated physical and biogeochemical factors that have significant influence on radionuclide mobility and transport in this complex system which can be further utilized in future system or site-specific environmental transport and risk assessment models.
Collapse
Affiliation(s)
- Dawn A Montgomery
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, USA; Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management (NEESRWM), Clemson University, Clemson, SC, USA.
| | - Nimisha Edayilam
- Department of Plant and Environmental Science, Clemson University, Clemson, SC, USA
| | - Hayden Page
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, USA
| | - S Andrew Sheriff
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Nishanth Tharayil
- Department of Plant and Environmental Science, Clemson University, Clemson, SC, USA
| | - Brian A Powell
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, USA; Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management (NEESRWM), Clemson University, Clemson, SC, USA
| | - Nicole E Martinez
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, USA; Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management (NEESRWM), Clemson University, Clemson, SC, USA
| |
Collapse
|
28
|
Chiorescu I, Krüger S, Rösch N. Single-Hydroxide Bridged Dimers of U and Np Actinyls: A Density Functional Study on Their Existence and Structure in Aqueous Solution. Inorg Chem 2023; 62:830-840. [PMID: 36585929 DOI: 10.1021/acs.inorgchem.2c03437] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
With quantum chemical calculations at the density functional theory level, we examined the structure and the stability of diactinyl monohydroxo complexes [(AnO2)2(OH)]3+/+ in aqueous solution for An = U(VI), Np(VI), and Np(V). In particular, this study contributes to understanding the hydrolysis of Np(VI) and Np(V), which is less well characterized than for U(VI). [(UO2)2(OH)]3+ is a known hydrolysis complex of U(VI) at low pH. Although not yet found in experiments, [(NpO2)2(OH)]3+ is suggested to exist due to the similarity between Np(VI) and U(VI) complexes, while [(NpO2)2(OH)]+ is a hypothetical species thus far. Our calculations suggest that the An(VI) complexes favor the parallel orientation of actinyls, whereas for the Np(V) complex a perpendicular arrangement is stabilized by hydrogen bonds between aqua ligands and the actinyl oxygen atoms. The Np(VI) complex [(NpO2)2(OH)]3+ features a structure and stability similar to its U(VI) analogue. From calculated formation constants for An(VI) diactinyl monohydroxo complexes, we find qualitative agreement with the experiment for U(VI). Both An(VI) complexes are only slightly less stable than the separate mononuclear constituents, the actinyl aqua and the monohydroxo complex. For the Np(V) species [(NpO2)2(OH)]+, we calculated a considerably lower complexation constant than for its An(VI) analogues, but it is more stable against decay into its constituents. Thus, this complex may exist at about the pH where Np(V) hydrolysis starts at not too low Np(V) concentrations.
Collapse
Affiliation(s)
- Ion Chiorescu
- Department Chemie, Technische Universität München, 85747Garching, Germany
| | - Sven Krüger
- Department Chemie, Technische Universität München, 85747Garching, Germany
| | - Notker Rösch
- Department Chemie, Technische Universität München, 85747Garching, Germany
| |
Collapse
|
29
|
Covalent organic frameworks (COF) materials for selective radionuclides removal from water. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-022-08710-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Zhang D, Diao X, Wang Y, Xu K, Jin Q, Chen Z, Guo Z. Effect of Si content, pH, electrolyte and fulvic acid on the stability of Th(IV)-silicate colloids. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08703-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
31
|
Kinsela AS, Payne TE, Bligh MW, Vázquez-Campos X, Wilkins MR, Comarmond MJ, Rowling B, Waite TD. Contaminant release, mixing and microbial fluctuations initiated by infiltrating water within a replica field-scale legacy radioactive waste trench. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158241. [PMID: 36007652 DOI: 10.1016/j.scitotenv.2022.158241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Numerous legacy near-surface radioactive waste sites dating from the mid 20th century have yet to be remediated and present a global contamination concern. Typically, there is insufficient understanding of contaminant release and redistribution, with invasive investigations often impractical due to the risk of disturbing the often significantly radiotoxic contaminants. Consequently, a replica waste trench (~5.4 m3), constructed adjacent to a legacy radioactive waste site (Little Forest Legacy Site, LFLS), was used to assist our understanding of the release and mixing processes of neodymium (Nd) - a chemical analogue for plutonium(III) and americium(III), two significant radionuclides in many contaminated environments. In order to clarify the behaviour of contaminants released from buried objects such as waste containers, a steel drum, representative of the hundreds of buried drums within the LFLS, was placed within the trench. Dissolved neodymium nitrate was introduced as a point-source contaminant to the base of the trench, outside the steel drum. Hydrologic conditions were manipulated to simulate natural rainfall intensities with dissolved lithium bromide added as a tracer. Neodymium was primarily retained both at its point of release at the bottom of the trench (>97 %) as well as at a steel container corrosion point, simulated through the emplacement of steel wool. However, over the 8-month field experiment, advective mixing initiated by surface water intrusions rapidly redistributed a small proportion of Nd to shallower waters (~1.5-1.7 %), as well as throughout the buried steel drum. Suspended particulate forms of Nd (>0.2 μm) were measured at all depths in the suboxic trench and were persistent across the entire study. Analyses of the microbial communities showed that their relative abundances and metabolic functions were strongly influenced by the prevailing geochemical conditions as a result of fluctuating water depths associated with rainfall events. The site representing steel corrosion exhibited divergent biogeochemical results with anomalous changes (sharp decrease) observed in both dissolved contaminant concentration as well as microbial diversity and functionality. This research demonstrates that experimental trenches provide a safe and unique method for simulating the behaviour of subsurface radioactive contaminants with results demonstrating the initial retention, partial shallow water redistribution, and stability of particulate form(s) of this radioactive analogue. These results have relevance for appropriate management and remediation strategies for the adjacent legacy site as well as for similar sites across the globe.
Collapse
Affiliation(s)
- Andrew S Kinsela
- UNSW Water Research Centre and School of Civil and Environmental Engineering, The University of New South Wales, Sydney, Australia
| | - Timothy E Payne
- Environmental Research Theme, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Mark W Bligh
- UNSW Water Research Centre and School of Civil and Environmental Engineering, The University of New South Wales, Sydney, Australia
| | - Xabier Vázquez-Campos
- NSW Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | - Marc R Wilkins
- NSW Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | - M Josick Comarmond
- Environmental Research Theme, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Brett Rowling
- Environmental Research Theme, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - T David Waite
- UNSW Water Research Centre and School of Civil and Environmental Engineering, The University of New South Wales, Sydney, Australia.
| |
Collapse
|
32
|
Gujar RB, Verma PK, Mahanty B, Bhattacharyya A, Musharaf Ali S, J. M. Egberink R, Huskens J, Verboom W, Mohapatra PK. Sequestration of Np4+ and NpO22+ions by using diglycolamide-functionalized aza-crown ethers in C8mim·NTf2 ionic liquid: Extraction, spectroscopic, electrochemical and DFT studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
De Santis M, Sorbelli D, Vallet V, Gomes AS, Storchi L, Belpassi L. Frozen-Density Embedding for Including Environmental Effects in the Dirac-Kohn-Sham Theory: An Implementation Based on Density Fitting and Prototyping Techniques. J Chem Theory Comput 2022; 18:5992-6009. [PMID: 36172757 PMCID: PMC9558305 DOI: 10.1021/acs.jctc.2c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 11/28/2022]
Abstract
Frozen density embedding (FDE) represents an embedding scheme in which environmental effects are included from first-principles calculations by considering the surrounding system explicitly by means of its electron density. In the present paper, we extend the full four-component relativistic Dirac-Kohn-Sham (DKS) method, as implemented in the BERTHA code, to include environmental and confinement effects with the FDE scheme (DKS-in-DFT FDE). The implementation, based on the auxiliary density fitting techniques, has been enormously facilitated by BERTHA's python API (PyBERTHA), which facilitates the interoperability with other FDE implementations available through the PyADF framework. The accuracy and numerical stability of this new implementation, also using different auxiliary fitting basis sets, has been demonstrated on the simple NH3-H2O system, in comparison with a reference nonrelativistic implementation. The computational performance has been evaluated on a series of gold clusters (Aun, with n = 2, 4, 8) embedded into an increasing number of water molecules (5, 10, 20, 40, and 80 water molecules). We found that the procedure scales approximately linearly both with the size of the frozen surrounding environment (consistent with the underpinnings of the FDE approach) and with the size of the active system (in line with the use of density fitting). Finally, we applied the code to a series of heavy (Rn) and super-heavy elements (Cn, Fl, Og) embedded in a C60 cage to explore the confinement effect induced by C60 on their electronic structure. We compare the results from our simulations, with respect to more-approximate models employed in the atomic physics literature. Our results indicate that the specific interactions described by FDE are able to improve upon the cruder approximations currently employed, and, thus, they provide a basis from which to generate more-realistic radial potentials for confined atoms.
Collapse
Affiliation(s)
- Matteo De Santis
- Univ.
Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - Diego Sorbelli
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
- Istituto
di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle
Ricerche c/o Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Valérie Vallet
- Univ.
Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | | | - Loriano Storchi
- Istituto
di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle
Ricerche c/o Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
- Dipartimento
di Farmacia, Università degli Studi
‘G. D’Annunzio’, Via dei Vestini 31, 66100 Chieti, Italy
| | - Leonardo Belpassi
- Istituto
di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle
Ricerche c/o Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
34
|
Zhao W, Chi H, Zhang X, Wang Y, Li T. Cellulose/silsesquioxane grafted Ti3C2Tx MXene for synergistically enhanced adsorption of uranium. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Preparation and performance of amidoximated silver-silica core–shell nanoparticles for uranium extraction from seawater. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
36
|
Srivastava A, Dumpala RMR, Kumar P, Kumar R, Rawat N. Chemical and Redox Speciation of Uranyl with Three Environmentally Relevant Bifunctional Chelates: Multi-Technique Approach Combined with Theoretical Estimations. Inorg Chem 2022; 61:15452-15462. [PMID: 36123167 DOI: 10.1021/acs.inorgchem.2c01991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carbon and phosphorous are two primary elements common to the bio-geosphere and are omnipresent in both biotic and abiotic arenas. Phosphonate and carboxylate are considered as building blocks of glyphosate and humic substances and constituents of the cellular wall of bacteria and are the driving functionalities for most of the chemical interactions involving these two elements. Phosphonocarboxylates, a combination of both the functionalities in one moiety, are ideal models to dig deep into for understanding the chemical interactions of the two functional groups with metal ions. Phosphorous and carbon majorly exist as inorganic/organic phosphate and carboxylate, respectively, in the bio-geosphere. Aquatic contamination is a major concern for uranium, and the presence of complexing agents would alter the uranium concentrations in aquifers. Determination of solution thermodynamic parameters, speciation plots, redox patterns, Eh-pH diagrams, coordination structures, and molecular-level understanding by density functional theory calculations was carried out to interpret the uranyl (UO22+) interaction with three environmentally relevant phosphonocarboxylates, namely, phosphono-formic acid (PFA), phosphono-acetic acid (PAA), and phosphono-propanoic acid (PPA). UO22+ forms 1:1 complexes with the three phosphonocarboxylates in the monoprotonated form, having nearly the same stability, and the complexes [UO2(PFAH)], [UO2(PAAH)], and [UO2(PPAH)] involve chelate formation of five, six, and seven membered rings, respectively, through the participation of an oxygen each from the carboxylate and phosphonate, strengthened by an intra-molecular hydrogen bonding through the proton of the phosphonate moiety with uranyl oxygen. The complex formations are favored both enthalpically and entropically, with the latter being more contributive to the overall free energy of formation. The redox speciation showed an aqueous soluble complex formation over a wide pH range of 1-8. Electrospray ionization mass spectrometry and extended X-ray absorption fine structure established the coordination modes, which are further corroborated by density functional calculations. The knowledge gained from the present studies provide potential inputs in framing the cleanup, sequestering, microbial, and bio-remediation strategies for uranyl from aquatic environments.
Collapse
Affiliation(s)
- Ashutosh Srivastava
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Rama Mohana Rao Dumpala
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.,Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology, P.O. Box 3640, Karlsruhe 76021, Germany
| | - Pranaw Kumar
- Fuel Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Ravi Kumar
- Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Neetika Rawat
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| |
Collapse
|
37
|
Georgiev V, Dakova I, Karadjova I. Uranium Determination in Waters, Wine and Honey by Solid Phase Extraction with New Ion Imprinted Polymer. Molecules 2022; 27:molecules27175516. [PMID: 36080286 PMCID: PMC9457621 DOI: 10.3390/molecules27175516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
An analytical method for uranium determination in waters, wine and honey was developed based on solid phase extraction (SPE) with new ion imprinted polymer. The sorbent was synthesized using 4-(2-Pyridylazo)resorcinol (PAR) as a ligand via dispersion polymerization and characterized by SEM for morphology and shape of polymer particles and nitrogen adsorption–desorption studies for their surface area and total pore volume. The kinetic experiments performed showed that the rate limiting step is the complexation between U(VI) ions and chelating ligand PAR incorporated in the polymer matrix. Investigations by Freundlich and Langmuir adsorption isotherm models showed that sorption process occurs as a surface monolayer on homogeneous sites. The high extraction efficiency of synthesized sorbent toward U(VI) allows its application for SPE determination of U(VI) in wine and honey without preliminary sample digestion using ICP-OES as measurement method. The recoveries achieved varied: (i) between 88 to 95% for surface and ground waters, (ii) between 90–96% for 5% aqueous solution of honey, (iii) between 86–93% for different types of wine. The validity and versatility of proposed analytical methods were confirmed by parallel measurement of U in water samples using Alpha spectrometry and U analysis in wine and honey after sample digestion and ICP-MS measurement. The analytical procedure proposed for U determination in surface waters is characterized with low limits of detection/quantification and good reproducibility ensuring its application for routine control in national monitoring of surface waters. The application of proposed method for honey and wine samples analysis provides data for U content in traditional Bulgarian products.
Collapse
|
38
|
An Optical Fiber Sensor for Uranium Detection in Water. BIOSENSORS 2022; 12:bios12080635. [PMID: 36005031 PMCID: PMC9406232 DOI: 10.3390/bios12080635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/28/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022]
Abstract
An optical sensor for uranyl has been prepared based on a gold-plated D-shaped plastic optical fiber (POF) combined with a receptor consisting of a bifunctional synthetic molecule, 11-mercaptoundecylphosphonic acid (MUPA), with a phosphonic group for complexing the considered ion, and a sulfide moiety through which the molecule is fixed at the gold resonant surface as a molecular layer in an easy and reproducible way. The sensor is characterized by evaluating the response in function of the uranyl concentration in aqueous solutions of different compositions and real-life samples, such as tap water and seawater. The mechanism of the uranyl/MUPA interaction was investigated. Two different kinds of interactions of uranyl with the MUPA layer on gold from water are observed: a strong one and a weak one. In the presence of competing metal ions as Ca2+ and Mg2+, only the strong interaction takes place, with a high affinity constant (around 107 M−1), while a somewhat lower constant (i.e., around 106 M−1) is obtained in the presence of Mg2+ which forms stronger complexes with MUPA than Ca2+. Due to the high affinity and the good selectivity of the recognition element MUPA, a detection limit of a few μg L−1 is reached directly in natural water samples without any time-consuming sample pretreatment, making it possible for rapid, in situ controls of uranyl by the proposed sensor.
Collapse
|
39
|
Kusaka R, Watanabe M. Development of Heavy Element Chemistry at Interfaces: Observing Actinide Complexes at the Oil/Water Interface in Solvent Extraction by Nonlinear Vibrational Spectroscopy. J Phys Chem Lett 2022; 13:7065-7071. [PMID: 35900124 PMCID: PMC9358700 DOI: 10.1021/acs.jpclett.2c01550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Understanding the chemistry of elements at the bottom of the periodic table is a challenging goal in chemistry. Observing actinide species at interfaces by using interface-selective second-order nonlinear optical spectroscopy, such as vibrational sum frequency generation (VSFG) spectroscopy, is a promising route for developing heavy element chemistry; however, such attempts are scarce. Here, we investigated the phase transfer mechanism of uranyl ions (UO22+) in solvent extraction using the di(2-ethylhexyl)phosphoric acid (HDEHP) extractant dissolved in the dodecane organic phase by probing the oil/water liquid-liquid interface using VSFG spectroscopy. The POO- symmetric stretch vibrational signals of the HDEHP ligands clearly demonstrated that uranyl ions form interfacial complexes with HDEHP at the oil/water interface. The interfacial uranyl-HDEHP complexes were formed with uranyl ions coming from both the aqueous and oil phases, strongly suggesting that the interfacial complex is an intermediate to cross the oil/water interface. Density functional theory calculations proposed the molecular structure of the interfacial uranyl-HDEHP complex.
Collapse
|
40
|
Beccia MR, Creff G, Den Auwer C, Di Giorgio C, Jeanson A, Michel H. Environmental Chemistry of Radionuclides : Open Questions and Perspectives. Chempluschem 2022; 87:e202200108. [PMID: 35778807 DOI: 10.1002/cplu.202200108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/13/2022] [Indexed: 11/10/2022]
Abstract
Since the discovery of nuclear fission, atomic energy has become for mankind a source of energy, but it has also become a source of consternation. This Perspective presents and discusses the methodological evolution of the work performed in the radiochemistry laboratory that is part of the Institut de Chimie de Nice (France). Most studies in radioecology and environmental radiochemistry have intended to assess the impact and inventory of very low levels of radionuclides in specific environmental compartments. But chemical mechanisms at the molecular level remain a mystery because it is technically impossible (due to large dilution factors) to assess speciation in those systems. Ultra-trace levels of contamination and heterogeneity often preclude the use of spectroscopic techniques and the determination of direct speciation data, thus forming the bottleneck of speciation studies. The work performed in the Nice radiochemistry laboratory underlines this effort to input speciation data (using spectroscopic techniques like X ray Absorption Spectroscopy) in environmental and radioecological metrics.
Collapse
Affiliation(s)
| | - Gaëlle Creff
- Université Côte d'Azur, CNRS, ICN, 06108, Nice, France
| | | | | | | | - Hervé Michel
- Université Côte d'Azur, CNRS, ICN, 06108, Nice, France
| |
Collapse
|
41
|
Wang C, Myshkin VF, Khan VA, Panamareva AN. A review of the migration of radioactive elements in clay minerals in the context of nuclear waste storage. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08394-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Restoration Insights Gained from a Field Deployment of Dithionite and Acetate at a Uranium In Situ Recovery Mine. MINERALS 2022. [DOI: 10.3390/min12060711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mining uranium by in situ recovery (ISR) typically involves injecting an oxidant and a complexing agent to mobilize and extract uranium in a saturated ore zone. This strategy involves less infrastructure and invasive techniques than traditional mining, but ISR often results in persistently elevated concentrations of U and other contaminants of concern in groundwater after mining. These concentrations may remain elevated for an extended period without remediation. Here, we describe a field experiment at an ISR facility in which both a chemical reductant (sodium dithionite) and a biostimulant (sodium acetate) were sequentially introduced into a previously mined ore zone in an attempt to establish reducing geochemical conditions that, in principle, should decrease and stabilize aqueous U concentrations. While several lines of evidence indicated that reducing conditions were established, U concentrations did not decrease, and in fact increased after the amendment deployments. We discuss likely reasons for this behavior, and we also discuss how the results provide insights into improvements that could be made to the restoration process to benefit from the seemingly detrimental behavior.
Collapse
|
43
|
Moreno Martinez D, Guillaumont D, Guilbaud P. Force Field Parameterization of Actinyl Molecular Cations Using the 12-6-4 Model. J Chem Inf Model 2022; 62:2432-2445. [PMID: 35537184 DOI: 10.1021/acs.jcim.2c00153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, a set of 12-6-4 force fields (FFs) parameters were developed for the actinyl molecular cations, AnO2n+ (n = 1, 2), from uranium to plutonium for classical molecular dynamics (MD) for four water models: TIP3P, SPC/E, OPC3, and TIP4Pew. Such a non-bonded potential model taking into account the induced dipole between the metallic center and the surrounding molecules has shown better performances for various cations than the classic 12-6 non-bonded potentials. The parametrization method proposed elsewhere for metallic cations has been extended to these molecular cations. In contrast to the actinyl 12-6 FFs from the literature, the new models reproduce correctly both solvation and thermodynamic properties, thanks to the inclusion of the induced dipole term (C4). The transferability of such force fields was assessed by performing MD simulations of carbonato actinyl species, which are highly implicated in actinide migration or actinide extraction from seawater. A highly satisfying agreement was found when comparing the EXAFS signals computed from our MD simulation to the experimental ones. The set of FFs developed here opens new possibilities for the study of actinide chemistry.
Collapse
|
44
|
Fellhauer D, Lee JY, DiBlasi NA, Walter O, Gaona X, Schild D, Altmaier M. Crystal Structure and Stability in Aqueous Solutions of Na 0.5[NpO 2(OH) 1.5]·0.5H 2O and Na[NpO 2(OH) 2]. J Am Chem Soc 2022; 144:9217-9221. [PMID: 35588478 DOI: 10.1021/jacs.2c03479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ternary neptunium(V) (Np(V)) hydroxides Na0.5[NpO2(OH)1.5]·0.5H2O (I) and Na[NpO2(OH)2] (II) were synthesized in aqueous NaOH solutions at T = 80 °C, and their crystal structures were determined to be monoclinic, P21, Z = 2, a = 5.9859(2), b = 10.1932(3), c = 12.1524(4) Å, β = 98.864(1)°, V = 732.63(4) Å3 for (I) and orthorhombic, P212121, Z = 4, a = 5.856(7), b = 7.621(9), c = 8.174(9) Å, V = 364.8(7) Å3 for (II). By combining the detailed structural information with results from systematic solubility investigations, a comprehensive chemical and thermodynamic model of the Np(V) behavior in NaCl-NaOH solutions was evaluated. The results reveal a great stability of the ternary Na-Np(V)-OH solid phases that significantly enhances the predominance field of the entire Np(V) redox state to high alkalinity.
Collapse
Affiliation(s)
- David Fellhauer
- Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Jun-Yeop Lee
- School of Mechanical Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, South Korea
| | - Nicole A DiBlasi
- Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Olaf Walter
- Joint Research Centre Karlsruhe, European Commission, P.O. Box 2340, 76125 Karlsruhe, Germany
| | - Xavier Gaona
- Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Dieter Schild
- Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Marcus Altmaier
- Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany
| |
Collapse
|
45
|
Chardi KJ, Satpathy A, Schenkeveld WDC, Kumar N, Noël V, Kraemer SM, Giammar DE. Ligand-Induced U Mobilization from Chemogenic Uraninite and Biogenic Noncrystalline U(IV) under Anoxic Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6369-6379. [PMID: 35522992 PMCID: PMC9118557 DOI: 10.1021/acs.est.1c07919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Microbial reduction of soluble hexavalent uranium (U(VI)) to sparingly soluble tetravalent uranium (U(IV)) has been explored as an in situ strategy to immobilize U. Organic ligands might pose a potential hindrance to the success of such remediation efforts. In the current study, a set of structurally diverse organic ligands were shown to enhance the dissolution of crystalline uraninite (UO2) for a wide range of ligand concentrations under anoxic conditions at pH 7.0. Comparisons were made to ligand-induced U mobilization from noncrystalline U(IV). For both U phases, aqueous U concentrations remained low in the absence of organic ligands (<25 nM for UO2; 300 nM for noncrystalline U(IV)). The tested organic ligands (2,6-pyridinedicarboxylic acid (DPA), desferrioxamine B (DFOB), N,N'-di(2-hydroxybenzyl)ethylene-diamine-N,N'-diacetic acid (HBED), and citrate) enhanced U mobilization to varying extents. Over 45 days, the ligands mobilized only up to 0.3% of the 370 μM UO2, while a much larger extent of the 300 μM of biomass-bound noncrystalline U(IV) was mobilized (up to 57%) within only 2 days (>500 times more U mobilization). This work shows the potential of numerous organic ligands present in the environment to mobilize both recalcitrant and labile U forms under anoxic conditions to hazardous levels and, in doing so, undermine the stability of immobilized U(IV) sources.
Collapse
Affiliation(s)
- Kyle J. Chardi
- Centre
for Microbiology and Environmental Systems Science, Department for
Environmental Geosciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Anshuman Satpathy
- Department
of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Note Dame, Indiana 46556, United States
| | - Walter D. C. Schenkeveld
- Soil
Chemistry and Chemical Soil Quality Group, Wageningen University and Research, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands
| | - Naresh Kumar
- Soil
Chemistry and Chemical Soil Quality Group, Wageningen University and Research, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands
| | - Vincent Noël
- Stanford
Synchrotron Radiation Lightsource, SLAC
National Accelerator Laboratory, 2575 Sand Hill Road, Menlo
Park, California 94025, United States
| | - Stephan M. Kraemer
- Centre
for Microbiology and Environmental Systems Science, Department for
Environmental Geosciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Daniel E. Giammar
- Department
of Energy, Environmental, and Chemical Engineering, Washington University, One Brookings Drive, St. Louis, Missouri 63130, United
States
| |
Collapse
|
46
|
Verma PK, Mohapatra PK. Fate of Neptunium in nuclear fuel cycle streams: state-of-the art on separation strategies. RADIOCHIM ACTA 2022. [DOI: 10.1515/ract-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Neptunium, with a half life of 2.14 million years is one of the most notorious activation products in the nuclear fuel cycle. It has been more than 5 decades in the reprocessing of nuclear fuels by the well documented PUREX process, but the fate of Np in the PUREX cycle is still not well controlled. Although Np being stable in its pentavalent state in low acid media, its starts to undergo disproportionation at higher acidities. This disproportionation along with the oxidizing conditions of the HNO3 medium makes Np to exits as Np(IV), Np(V) and Np(VI) in the dissolver solution. The overall extractability of Np in the co-decontamination step of the PUREX cycle is dependent on its oxidation state in the medium as Np(VI) and Np(IV) being extractable while Np(V) being least extractable. The present review article discusses about the speciation of Np in HNO3 and its disproportionation. The variety of redox reagents are discussed for their effectiveness towards controlling Np redox behavior in the HNO3 media. The extraction of Np with the different class of extractant has also been discussed and the results are compared for better understanding. Solid phase extraction of Np using both commercially available resin and lab based synthesized resins were discussed. The anion exchange resins with the different cationic centers were shown to behave differently towards the uptake of Np form the acidic medium. The present review also highlight the chemical conditions required for controlling or minimizing the fate of Np in different process streams of the nuclear fuel cycle.
Collapse
Affiliation(s)
- Parveen K. Verma
- Radiochemistry Division , Bhabha Atomic Research Centre , Trombay , Mumbai 400085 , India
| | - Prasanta K. Mohapatra
- Radiochemistry Division , Bhabha Atomic Research Centre , Trombay , Mumbai 400085 , India
| |
Collapse
|
47
|
Hakey BM, Leary DC, Lopez LM, Valerio LR, Brennessel WW, Milsmann C, Matson EM. Synthesis and Characterization of Pyridine Dipyrrolide Uranyl Complexes. Inorg Chem 2022; 61:6182-6192. [PMID: 35420825 PMCID: PMC9044449 DOI: 10.1021/acs.inorgchem.2c00348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The first actinide complexes of the pyridine dipyrrolide (PDP) ligand class, (MesPDPPh)UO2(THF) and (Cl2PhPDPPh)UO2(THF), are reported as the UVI uranyl adducts of the bulky aryl substituted pincers (MesPDPPh)2- and (Cl2PhPDPPh)2- (derived from 2,6-bis(5-(2,4,6-trimethylphenyl)-3-phenyl-1H-pyrrol-2-yl)pyridine (H2MesPDPPh, Mes = 2,4,6-trimethylphenyl), and 2,6-bis(5-(2,6-dichlorophenyl)-3-phenyl-1H-pyrrol-2-yl)pyridine (H2Cl2PhPDPPh, Cl2Ph = 2,6-dichlorophenyl), respectively). Following the in situ deprotonation of the proligand with lithium hexamethyldisilazide to generate the corresponding dilithium salts (e.g., Li2ArPDPPh, Ar = Mes of Cl2Ph), salt metathesis with [UO2Cl2(THF)2]2 afforded both compounds in moderate yields. The characterization of each species has been undertaken by a combination of solid- and solution-state methods, including combustion analysis, infrared, electronic absorption, and NMR spectroscopies. In both complexes, single-crystal X-ray diffraction has revealed a distorted octahedral geometry in the solid state, enforced by the bite angle of the rigid meridional (ArPDPPh)2- pincer ligand. The electrochemical analysis of both compounds by cyclic voltammetry in tetrahydrofuran (THF) reveals rich redox profiles, including events assigned as UVI/UV redox couples. A time-dependent density functional theory study has been performed on (MesPDPPh)UO2(THF) and provides insight into the nature of the transitions that comprise its electronic absorption spectrum.
Collapse
Affiliation(s)
- Brett M Hakey
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Dylan C Leary
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lauren M Lopez
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Leyla R Valerio
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - William W Brennessel
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Carsten Milsmann
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Ellen M Matson
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
48
|
Köhler L, Patzschke M, Bauters S, Vitova T, Butorin SM, Kvashnina KO, Schmidt M, Stumpf T, März J. Insights into the Electronic Structure of a U(IV) Amido and U(V) Imido Complex. Chemistry 2022; 28:e202200119. [PMID: 35179271 PMCID: PMC9310906 DOI: 10.1002/chem.202200119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 01/02/2023]
Abstract
Reaction of the N-heterocylic carbene ligand i PrIm (L1 ) and lithium bis(trimethylsilyl)amide (TMSA) as a base with UCl4 resulted in U(IV) and U(V) complexes. Uranium's +V oxidation state in (HL1 )2 [U(V)(TMSI)Cl5 ] (TMSI=trimethylsilylimido) (2) was confirmed by HERFD-XANES measurements. Solid state characterization by SC-XRD and geometry optimisation of [U(IV)(L1 )2 (TMSA)Cl3 ] (1) indicated a silylamido ligand mediated inverse trans influence (ITI). The ITI was examined regarding different metal oxidation states and was compared to transition metal analogues by theoretical calculations.
Collapse
Affiliation(s)
- Luisa Köhler
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR)Institute of Resource EcologyBautzner Landstraße 40001328DresdenGermany
| | - Michael Patzschke
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR)Institute of Resource EcologyBautzner Landstraße 40001328DresdenGermany
| | - Stephen Bauters
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR)Institute of Resource EcologyBautzner Landstraße 40001328DresdenGermany
- The Rossendorf Beamline at ESRF at the European Synchrotron, CS4022038043Grenoble Cedex 9France
| | - Tonya Vitova
- Karlsruhe Institute of TechnologyInstitute for Nuclear Waste Disposal (INE)P.O. Box 364076021KarlsruheGermany
| | - Sergei M. Butorin
- Condensed Matter Physics of Energy MaterialsX-ray Photon ScienceDepartment of Physics and AstronomyUppsala UniversityP.O. Box 516SE-751 20UppsalaSweden
| | - Kristina O. Kvashnina
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR)Institute of Resource EcologyBautzner Landstraße 40001328DresdenGermany
- The Rossendorf Beamline at ESRF at the European Synchrotron, CS4022038043Grenoble Cedex 9France
| | - Moritz Schmidt
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR)Institute of Resource EcologyBautzner Landstraße 40001328DresdenGermany
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR)Institute of Resource EcologyBautzner Landstraße 40001328DresdenGermany
| | - Juliane März
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR)Institute of Resource EcologyBautzner Landstraße 40001328DresdenGermany
| |
Collapse
|
49
|
Liu Y, Wu S, Nguyen TAH, Chan TS, Lu YR, Huang L. Biochar mediated uranium immobilization in magnetite rich Cu tailings subject to organic matter amendment and native plant colonization. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127860. [PMID: 34823947 DOI: 10.1016/j.jhazmat.2021.127860] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Organic matter (OM) amendments and plant colonization can accelerate mineral weathering and soil formation in metal mine tailings for ecological rehabilitation. However, the weathering effects may dissolve uranium (U)-bearing minerals (e.g., ianthinite) and increase U dissolution in porewater and seepages. The present study aimed to characterize the U solubility and distribution among different fractions and investigate if biochar (BC) could decrease soluble U levels and facilitate U immobilization in the OM-amended and plant-colonized tailings. A native plant species, Red Flinders grass (Iseilema vaginiflorum) was cultivated in the tailings for four weeks, which were amended with sugarcane residue (SR) with or without BC addition. The results showed that OM amendment and plant colonization increased porewater U concentrations by almost 10 folds from ~ 0.2 mg L-1 to > 2.0 mg L-1. The BC addition decreased porewater U concentrations by 40%. Further micro-spectroscopic analysis revealed that U was immobilized through adsorption onto BC porous surfaces, via possibly complexing with oxygen-rich organic groups. Besides, the BC amendment facilitated U sequestration by secondary Fe minerals in the tailings. These findings provide important information about U biogeochemistry in Cu-tailings mediated by BC, OM and rhizosphere interactions for mitigating potential pollution risks of tailings rehabilitation.
Collapse
Affiliation(s)
- Yunjia Liu
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Songlin Wu
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Tuan A H Nguyen
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Centre, Hsinchu Science Park, Hsinchu 30078, Taiwan
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Centre, Hsinchu Science Park, Hsinchu 30078, Taiwan
| | - Longbin Huang
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
50
|
Hu Y, Shen Z, Li B, Tan X, Han B, Ji Z, Wang J, Zhao G, Wang X. State-of-the-art progress for the selective crystallization of actinides, synthesis of actinide compounds and their functionalization. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127838. [PMID: 34844805 DOI: 10.1016/j.jhazmat.2021.127838] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Crystallization and immobilization of actinides to form actinide compounds are of significant importance for the extraction and reutilization of nuclear waste in the nuclear industry. In this paper, the state-of-art progress in the crystallization of actinides are summarized, as well as the main functionalization of the actinide compounds, i.e., as adsorbents for heavy metal ions and organic pollutant in waste management, as (photo)catalysts for organic degradation and conversion, including degradation of organic dyes and antibiotics, dehydrogenation of N-heterocycles, CO2 cycloaddition, selective alcohol oxidation and selective oxidation of sulfides. This review will give a comprehensive summary about the synthesis and application exploration of solid actinide crystalline salts and actinide-based metal organic frameworks in the past decades. Finally, the future perspectives and challenges are proposed in the end to give a promising direction for future investigation.
Collapse
Affiliation(s)
- Yezi Hu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Zewen Shen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Bingfeng Li
- POWERCHINA SICHUAN Electric Power Engineering CO., LTD, Chengdu 610041, PR China
| | - Xiaoli Tan
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Bing Han
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Zhuoyu Ji
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Jianjun Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Guixia Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| | - Xiangke Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| |
Collapse
|