1
|
Kotuniak R, Sudzik D, Ufnalska IM, Bal W. Nobody's Perfect: Choice of the Buffer and the Rate of Cu 2+ Ion-Peptide Interaction. Inorg Chem 2024; 63:12323-12332. [PMID: 38872340 PMCID: PMC11220749 DOI: 10.1021/acs.inorgchem.4c01797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
The choice of correct pH buffer is crucial in chemical studies modeling biological processes involving Cu2+ ions. Popular buffers for physiological pH are known to form Cu(II) complexes, but their impact on kinetics of Cu(II) complexation has not been considered. We performed a stopped-flow kinetic study of Cu2+ ion interactions with four popular buffers (phosphate, Tris, HEPES, and MOPS) and two buffers considered as nonbinding (MES and PIPPS). Next, we studied their effects on the rate of Cu2+ reaction with Gly-Gly-His (GGH), a tripeptide modeling physiological Cu(II) sites, which we studied previously at conditions presumably excluding the buffer interference [Kotuniak, R.; Angew. Chem., Int. Ed. 2020, 59, 11234-11239]. We observed that (i) all tested pH 7.4 buffers formed Cu(II) complexes within the stopped-flow instrument dead time; (ii) Cu(II)-peptide complexes were formed via ternary complexes with the buffers; (iii) nevertheless, Good buffers affected the observed rate of Cu(II)-GGH complex formation only slightly; (iv) Tris was a competitive inhibitor of Cu(II)-GGH complexation; while (v) phosphate was a reaction catalyst. This is particularly important as phosphate is a biological buffer.
Collapse
Affiliation(s)
- Radosław Kotuniak
- Institute of Biochemistry
and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Dobromiła
Z. Sudzik
- Institute of Biochemistry
and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Iwona M. Ufnalska
- Institute of Biochemistry
and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Wojciech Bal
- Institute of Biochemistry
and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
2
|
McGary LC, Fetter CM, Gu M, Hamilton MC, Kumar H, Kuehm OP, Douglas CD, Bearne SL. Interrogating l-fuconate dehydratase with tartronate and 3-hydroxypyruvate reveals subtle differences within the mandelate racemase-subgroup of the enolase superfamily. Arch Biochem Biophys 2024; 754:109924. [PMID: 38354877 DOI: 10.1016/j.abb.2024.109924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Enzymes of the enolase superfamily share a conserved structure and a common partial reaction (i.e., metal-assisted, Brønsted base-catalyzed enol(ate) formation). The architectures of the enolization apparatus at the active sites of the mandelate racemase (MR)-subgroup members MR and l-fuconate dehydratase (FucD) are almost indistinguishable at the structural level. Tartronate and 3-hydroxypyruvate (3-HP) recognize the enolization apparatus and can be used to interrogate the active sites for differences that may not be apparent from structural data. We report a circular dichroism-based assay of FucD activity that monitors the change in ellipticity at 216 nm (Δ[Θ]S-P = 8985 ± 87 deg cm2 mol-1) accompanying the conversion of l-fuconate to 2-keto-3-deoxy-l-fuconate. Tartronate was a linear mixed-type inhibitor of FucD (Ki = 8.4 ± 0.7 mM, αKi = 63 ± 11 mM), binding 18-fold weaker than l-fuconate, compared with 2-fold weaker binding of tartronate by MR relative to mandelate. 3-HP irreversibly inactivated FucD (kinact/KI = 0.018 ± 0.002 M-1s-1) with an efficiency that was ∼4.6 × 103-fold less than that observed with MR. The inactivation arose predominantly from modifications at multiple sites and Tris-HCl, but not l-fuconate, afforded protection against inactivation. Similar to the reaction of 3-HP with MR, 3-HP modified the Brønsted base catalyst (Lys 220) at the active site of FucD, which was facilitated by the Brønsted acid catalyst His 351. Thus, the interactions of tartronate and 3-HP with MR and FucD revealed differences in binding affinity and reactivity that differentiated between the enzymes' enolization apparatuses.
Collapse
Affiliation(s)
- Laura C McGary
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Christopher M Fetter
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Minglu Gu
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Meghan C Hamilton
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Himank Kumar
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Oliver P Kuehm
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Colin D Douglas
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada; Department of Chemistry, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
3
|
Sliwiak J, Worsztynowicz P, Pokrywka K, Loch JI, Grzechowiak M, Jaskolski M. Biochemical characterization of L-asparaginase isoforms from Rhizobium etli-the boosting effect of zinc. Front Chem 2024; 12:1373312. [PMID: 38456185 PMCID: PMC10917881 DOI: 10.3389/fchem.2024.1373312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
L-Asparaginases, divided into three structural Classes, catalyze the hydrolysis of L-asparagine to L-aspartic acid and ammonia. The members of Class 3, ReAIV and ReAV, encoded in the genome of the nitrogen fixing Rhizobium etli, have the same fold, active site, and quaternary structure, despite low sequence identity. In the present work we examined the biochemical consequences of this difference. ReAIV is almost twice as efficient as ReAV in asparagine hydrolysis at 37°C, with the kinetic KM, kcat parameters (measured in optimal buffering agent) of 1.5 mM, 770 s-1 and 2.1 mM, 603 s-1, respectively. The activity of ReAIV has a temperature optimum at 45°C-55°C, whereas the activity of ReAV, after reaching its optimum at 37°C, decreases dramatically at 45°C. The activity of both isoforms is boosted by 32 or 56%, by low and optimal concentration of zinc, which is bound three times more strongly by ReAIV then by ReAV, as reflected by the KD values of 1.2 and 3.3 μM, respectively. We also demonstrate that perturbation of zinc binding by Lys→Ala point mutagenesis drastically decreases the enzyme activity but also changes the mode of response to zinc. We also examined the impact of different divalent cations on the activity, kinetics, and stability of both isoforms. It appeared that Ni2+, Cu2+, Hg2+, and Cd2+ have the potential to inhibit both isoforms in the following order (from the strongest to weakest inhibitors) Hg2+ > Cu2+ > Cd2+ > Ni2+. ReAIV is more sensitive to Cu2+ and Cd2+, while ReAV is more sensitive to Hg2+ and Ni2+, as revealed by IC50 values, melting scans, and influence on substrate specificity. Low concentration of Cd2+ improves substrate specificity of both isoforms, suggesting its role in substrate recognition. The same observation was made for Hg2+ in the case of ReAIV. The activity of the ReAV isoform is less sensitive to Cl- anions, as reflected by the IC50 value for NaCl, which is eightfold higher for ReAV relative to ReAIV. The uncovered complementary properties of the two isoforms help us better understand the inducibility of the ReAV enzyme.
Collapse
Affiliation(s)
- Joanna Sliwiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | - Kinga Pokrywka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Joanna I. Loch
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Marta Grzechowiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Mariusz Jaskolski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
4
|
Jomova K, Cvik M, Lauro P, Valko M, Cizmar E, Alomar SY, Alwasel SH, Oleksak P, Chrienova Z, Nepovimova E, Kuca K, Rhodes CJ. The role of redox active copper(II) on antioxidant properties of the flavonoid baicalein: DNA protection under Cu(II)-Fenton reaction and Cu(II)-ascorbate system conditions. J Inorg Biochem 2023; 245:112244. [PMID: 37178556 DOI: 10.1016/j.jinorgbio.2023.112244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
The antioxidant properties of flavonoids are mediated by their functional hydroxyl groups, which are capable of both chelating redox active metals such as iron, copper and scavenging free radicals. In this paper, the antioxidant vs. prooxidant and DNA protecting properties of baicalein and Cu(II)-baicalein complexes were studied under the conditions of the Copper-Fenton reaction and of the Copper-Ascorbate system. From the relevant EPR spectra, the interaction of baicalein with Cu(II) ions was confirmed, while UV-vis spectroscopy demonstrated a greater stability over time of Cu(II)-baicalein complexes in DMSO than in methanol and PBS and Phosphate buffers. An ABTS study confirmed a moderate ROS scavenging efficiency, at around 37%, for both free baicalein and Cu(II)-baicalein complexes (in the ratios 1:1 and 1:2). The results from absorption titrations are in agreement with those from viscometric studies and confirmed that the binding mode between DNA and both free baicalein and Cu-baicalein complexes, involves hydrogen bonds and van der Waals interactions. The DNA protective effect of baicalein has been investigated by means of gel electrophoresis under the conditions of the Cu-catalyzed Fenton reaction and of the Cu-Ascorbate system. In both cases, it was found that, at sufficiently high concentrations, baicalein offers some protection to cells from DNA damage caused by ROS (singlet oxygen, hydroxyl radicals and superoxide radical anions). Accordingly, baicalein may be useful as a therapeutic agent in diseases with a disturbed metabolism of redox metals such as copper, for example Alzheimer's disease, Wilson's disease and various cancers. While therapeutically sufficient concentrations of baicalein may protect neuronal cells from Cu-Fenton-induced DNA damage in regard to neurological conditions, conversely, in the case of cancers, low concentrations of baicalein do not inhibit the pro-oxidant effect of copper ions and ascorbate, which can, in turn, deliver an effective damage to DNA in tumour cells.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra, Nitra 949 74, Slovakia.
| | - Marcel Cvik
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra, Nitra 949 74, Slovakia
| | - Peter Lauro
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra, Nitra 949 74, Slovakia
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava 812 37, Slovakia; King Saud University, Zoology Department, College of Science, Riyadh 11451, Saudi Arabia
| | - Erik Cizmar
- Department of Condensed Matter Physics, Faculty of Science, University of P. J. Safarik, Park Angelinum 9, Kosice 040 01, Slovakia
| | - Suliman Y Alomar
- King Saud University, Zoology Department, College of Science, Riyadh 11451, Saudi Arabia
| | - Saleh H Alwasel
- King Saud University, Zoology Department, College of Science, Riyadh 11451, Saudi Arabia
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005 Hradec Kralove, Czech Republic
| | - Zofia Chrienova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005 Hradec Kralove, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005 Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005 Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital in Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic
| | | |
Collapse
|
5
|
Diem-Tran PT, Ho TT, Tuan NV, Bao LQ, Phuong HT, Chau TTG, Minh HTB, Nguyen CT, Smanova Z, Casanola-Martin GM, Rasulev B, Pham-The H, Cuong LCV. Stability Constant and Potentiometric Sensitivity of Heavy Metal-Organic Fluorescent Compound Complexes: QSPR Models for Prediction and Design of Novel Coumarin-like Ligands. TOXICS 2023; 11:595. [PMID: 37505560 PMCID: PMC10383909 DOI: 10.3390/toxics11070595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
Industrial wastewater often consists of toxic chemicals and pollutants, which are extremely harmful to the environment. Heavy metals are toxic chemicals and considered one of the major hazards to the aquatic ecosystem. Analytical techniques, such as potentiometric methods, are some of the methods to detect heavy metals in wastewaters. In this work, the quantitative structure-property relationship (QSPR) was applied using a range of machine learning techniques to predict the stability constant (logβML) and potentiometric sensitivity (PSML) of 200 ligands in complexes with the heavy metal ions Cu2+, Cd2+, and Pb2+. In result, the logβML models developed for four ions showed good performance with square correlation coefficients (R2) ranging from 0.80 to 1.00 for the training and 0.72 to 0.85 for the test sets. Likewise, the PSML displayed acceptable performance with an R2 of 0.87 to 1.00 for the training and 0.73 to 0.95 for the test sets. By screening a virtual database of coumarin-like structures, several new ligands bearing the coumarin moiety were identified. Three of them, namely NEW02, NEW03, and NEW07, showed very good sensitivity and stability in the metal complexes. Subsequent quantum-chemical calculations, as well as physicochemical/toxicological profiling were performed to investigate their metal-binding ability and developability of the designed sensors. Finally, synthesis schemes are proposed to obtain these three ligands with major efficiency from simple resources. The three coumarins designed clearly demonstrated capability to be suitable as good florescent chemosensors towards heavy metals. Overall, the computational methods applied in this study showed a very good performance as useful tools for designing novel fluorescent probes and assessing their sensing abilities.
Collapse
Affiliation(s)
- Phan Thi Diem-Tran
- Mientrung Institute for Scientific Research, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, Hue 53000, Vietnam
| | - Tue-Tam Ho
- Faculty of Pharmaceutical Chemistry and Technology, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Nguyen-Van Tuan
- Faculty of Pharmaceutical Chemistry and Technology, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Le-Quang Bao
- Faculty of Pharmaceutical Chemistry and Technology, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Ha Tran Phuong
- Mientrung Institute for Scientific Research, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, Hue 53000, Vietnam
| | - Trinh Thi Giao Chau
- Mientrung Institute for Scientific Research, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, Hue 53000, Vietnam
| | - Hoang Thi Binh Minh
- Mientrung Institute for Scientific Research, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, Hue 53000, Vietnam
| | - Cong-Truong Nguyen
- Faculty of Pharmaceutical Chemistry and Technology, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Zulayho Smanova
- Department of Chemistry, National University of Uzbekistan after Mirzo Ulugbek, Tashkent 100012, Uzbekistan
| | | | - Bakhtiyor Rasulev
- Department of Chemistry, National University of Uzbekistan after Mirzo Ulugbek, Tashkent 100012, Uzbekistan
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA
| | - Hai Pham-The
- Faculty of Pharmaceutical Chemistry and Technology, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Le Canh Viet Cuong
- Mientrung Institute for Scientific Research, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, Hue 53000, Vietnam
| |
Collapse
|
6
|
Barrera J, H Haeri H, Heinrich J, Stein M, Hinderberger D, Kulak N. Impact of N-heteroaromatic N-termini in Cu(II) ATCUN metallopeptides on their biorelevant redox activity. Dalton Trans 2023; 52:3279-3286. [PMID: 36633467 DOI: 10.1039/d2dt02044k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cu(II) complexes with ATCUN peptide ligands have been investigated for their ROS (reactive oxygen species) generation and oxidative DNA degradation abilities. The biological activity of most ATCUN complexes such as Cu-GGH (Gly-Gly-His) is, however, low. Tuning the redox chemistry by incorporation of N-heteroaromatics reinstates ROS production which leads to efficient DNA cleavage.
Collapse
Affiliation(s)
- Jannis Barrera
- Institute of Chemistry, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany. .,Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Haleh H Haeri
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Julian Heinrich
- Institute of Chemistry, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Matthias Stein
- Max Planck Institute for Dynamics of Complex Technical Systems, Molecular Simulations and Design Group, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Dariush Hinderberger
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Nora Kulak
- Institute of Chemistry, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
| |
Collapse
|
7
|
Hormann J, Verbitsky O, Zhou X, Battistella B, van der Meer M, Sarkar B, Zhao C, Kulak N. Experimental and computational investigation of heteroatom substitution in nucleolytic Cu(II) cyclen complexes for balancing stability and redox activity. Dalton Trans 2023; 52:3176-3187. [PMID: 36790350 DOI: 10.1039/d2dt03284h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cu(II) complexes of cyclen-based ligands CuL1-CuL6 were synthesized and characterized. The corresponding ligands L1-L6 comprise different donor sets including S and O atoms. Whereas cyclen (L1) is commercially available, L2-L6 were synthesized according to protocols available in the literature. Cleavage activity of the complexes towards plasmid DNA was tested in the presence and absence of ascorbate as a reducing agent (oxidative vs. hydrolytic cleavage). As previously shown, the substitution of N donor atoms with hard donor O atoms leads to efficient oxidative nucleases, but dissociation of the complex upon reduction. We thus opted for S substitution (soft donors) to stabilize the reduced Cu(I) species. Increasing the S content, however, leads to species that are difficult to reoxidize in order to ensure efficient oxidative DNA cleavage. We are showing by experimental (cyclic voltammetry) and computational means (DFT) that the rational combination of O and S atoms next to two nitrogen donors within the macrocycle (oxathiacyclen complex CuL6) leads to the stabilization of both redox states. The complex thus exhibits the highest oxidative DNA cleavage activity within this family of cyclen-based Cu(II) complexes - without leaching of the metal ion during reduction.
Collapse
Affiliation(s)
- Jan Hormann
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195 Berlin, Germany
| | - Olga Verbitsky
- Institut für Chemie, Otto-von-Guericke-Universität, Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Xiaoyu Zhou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, XinGang Rd. W., Guangzhou 510275, China.
| | - Beatrice Battistella
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195 Berlin, Germany.,Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Margarete van der Meer
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195 Berlin, Germany
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195 Berlin, Germany.,Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Cunyuan Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, XinGang Rd. W., Guangzhou 510275, China.
| | - Nora Kulak
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195 Berlin, Germany.,Institut für Chemie, Otto-von-Guericke-Universität, Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
| |
Collapse
|
8
|
Jayawardena BM, Peacey L, Gamsjaeger R, Jones CE. Essential Role of Histidine for Rapid Copper(II)-Mediated Disassembly of Neurokinin B Amyloid. Biomolecules 2022; 12:biom12111585. [PMID: 36358935 PMCID: PMC9687585 DOI: 10.3390/biom12111585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 12/02/2022] Open
Abstract
Neurokinin B is a tachykinin peptide involved in a diverse range of neuronal functions. It rapidly forms an amyloid, which is considered physiologically important for efficient packing into dense core secretory vesicles within hypothalamic neurons. Disassembly of the amyloid is thought to require the presence of copper ions, which interact with histidine at the third position in the peptide sequence. However, it is unclear how the histidine is involved in the amyloid structure and why copper coordination can trigger disassembly. In this work, we demonstrate that histidine contributes to the amyloid structure via π-stacking interactions with nearby phenylalanine residues. The ability of neurokinin B to form an amyloid is dependent on any aromatic residue at the third position in the sequence; however, only the presence of histidine leads to both amyloid formation and rapid copper-induced disassembly.
Collapse
|
9
|
Dragone M, Grazioso R, D’Abrosca G, Baglivo I, Iacovino R, Esposito S, Paladino A, Pedone PV, Russo L, Fattorusso R, Malgieri G, Isernia C. Copper (I) or (II) Replacement of the Structural Zinc Ion in the Prokaryotic Zinc Finger Ros Does Not Result in a Functional Domain. Int J Mol Sci 2022; 23:ijms231911010. [PMID: 36232306 PMCID: PMC9569694 DOI: 10.3390/ijms231911010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
A strict interplay is known to involve copper and zinc in many cellular processes. For this reason, the results of copper’s interaction with zinc binding proteins are of great interest. For instance, copper interferences with the DNA-binding activity of zinc finger proteins are associated with the development of a variety of diseases. The biological impact of copper depends on the chemical properties of its two common oxidation states (Cu(I) and Cu(II)). In this framework, following the attention addressed to unveil the effect of metal ion replacement in zinc fingers and in zinc-containing proteins, we explore the effects of the Zn(II) to Cu(I) or Cu(II) replacement in the prokaryotic zinc finger domain. The prokaryotic zinc finger protein Ros, involved in the horizontal transfer of genes from A. tumefaciens to a host plant infected by it, belongs to a family of proteins, namely Ros/MucR, whose members have been recognized in different bacteria symbionts and pathogens of mammals and plants. Interestingly, the amino acids of the coordination sphere are poorly conserved in most of these proteins, although their sequence identity can be very high. In fact, some members of this family of proteins do not bind zinc or any other metal, but assume a 3D structure similar to that of Ros with the residues replacing the zinc ligands, forming a network of hydrogen bonds and hydrophobic interactions that surrogates the Zn-coordinating role. These peculiar features of the Ros ZF domain prompted us to study the metal ion replacement with ions that have different electronic configuration and ionic radius. The protein was intensely studied as a perfectly suited model of a metal-binding protein to study the effects of the metal ion replacement; it appeared to tolerate the Zn to Cd substitution, but not the replacement of the wildtype metal by Ni(II), Pb(II) and Hg(II). The structural characterization reported here gives a high-resolution description of the interaction of copper with Ros, demonstrating that copper, in both oxidation states, binds the protein, but the replacement does not give rise to a functional domain.
Collapse
Affiliation(s)
- Martina Dragone
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Rinaldo Grazioso
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Gianluca D’Abrosca
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Rosa Iacovino
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Sabrina Esposito
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Antonella Paladino
- Institute of Biostructures and Bioimaging, National Research Council (IBB-CNR), Via Pietro Castellino 111, 80131 Naples, Italy
| | - Paolo V. Pedone
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
- Correspondence:
| |
Collapse
|
10
|
Elbadawy HA, El-Dissouky A, Attia AA, Khalil TE. The tendency of the charge transfer system, derived from chloranilic acid and 2-amino-2-(hydroxymethyl)-1,3-propanediol towards copper(II) complex-formation: characterization, anion impact, and biological studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Nakano S, Marumo K, Kazami R, Saito T, Haraga T, Tasaki-Handa Y, Saito S. Stoichiometry between Humate Unit Molecules and Metal Ions in Supramolecular Assembly Induced by Cu 2+ and Tb 3+ Measured by Gel Electrophoresis Techniques. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15172-15180. [PMID: 34730943 DOI: 10.1021/acs.est.1c03993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Humic acid (HA), a fraction of humic substances, can strongly complex with metal ions to form a supramolecular assembly via coordination binding and other intermolecular forces. However, determining the supramolecular size distribution and stoichiometry between small HA unit molecules constituting HA supramolecules and metal ions has proven to be challenging. Here, we investigated the changes in the size distributions of HAs induced by Cu2+ and Tb3+ ions using unique PAGE for the separation and quantification of HA complexes and metal ions bound, followed by UV-vis spectroscopy and excitation-emission matrix-parallel factor analysis. By determining the concentrations of HA and metal ions, it was possible to estimate the stoichiometry of the HA unit molecule to metal ions in supramolecular complexes. It was found that the supramolecular behaviors of Cu2+ and Tb3+ complexes with HA collected from peat (PAHA) and deep groundwater (HHA) differed. For example, two HHA unit molecules form a supramolecule via cross-linking by a Cu2+ ion in the case of Cu2+-HHA. Our results suggest that this supramolecular stoichiometry is related to the abundance of sulfur atoms in the elemental composition of HHA. Our experimental results and analysis provide new insights into HA supramolecules formed via metal complexation.
Collapse
Affiliation(s)
- Sumika Nakano
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Kazuki Marumo
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Rintaro Kazami
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Takumi Saito
- Nuclear Professional School, Graduate School of Engineering, The University of Tokyo, 2-21 Shirakata-Shirane, Tokai-mura, Ibaraki 319-1188, Japan
| | - Tomoko Haraga
- Department of Decommissioning and Waste Management, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - Yuiko Tasaki-Handa
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Shingo Saito
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| |
Collapse
|
12
|
Parveen S, Cowan JA, Yu Z, Arjmand F. Enantiomeric copper based anticancer agents promoting sequence-selective cleavage of G-quadruplex telomeric DNA and non-random cleavage of plasmid DNA. Metallomics 2021; 12:988-999. [PMID: 32400839 DOI: 10.1039/d0mt00084a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Copper-based binuclear enantiomeric complexes 1S and 1R were synthesized as anticancer chemotherapeutic agents to target G-quadruplex rich region of DNA and thoroughly characterized by various spectroscopic and single X-ray crystal diffraction studies. The structure elucidation of Schiff base ligand LS and complexes 1S & 1R, was carried out by single crystal X-ray studies which showed that ligand crystallized in the monoclinic P21/n space group while complexes 1S and 1R crystallized in triclinic space groups P1[combining macron] and P1, respectively with two copper units connected to each other via an alkoxide bridge to exhibit square planar geometry which is in good agreement with other spectroscopic studies {IR, ESI-MS, EPR and magnetic moment values}. In vitro binding studies of complexes 1S and 1R were carried out with G-quadruplex DNA and CT-DNA which showed higher binding affinity and selectivity toward quadruplex DNA over the duplex DNA. To validate the potential of complexes to act as therapeutic drug candidates, the cleavage studies of complexes 1S and 1R were carried out with G-quadruplex telomeric DNA by PAGE Gel assay which showed sequence selective cleavage of 22G4via oxidative cleavage pathway. The major cleavage sites identified were G15, T6, G8, G9, G14 for complex 1S whereas for 1R G15, G20, G21, G14 cleavage sites were observed. Furthermore, these complexes were capable of cleaving pUC19 plasmid DNA in double-stranded non-random fashion which is considered to be more potent than single-strand cleavage as a source of lethal DNA lesions. Cellular studies of 1S and 1R were performed on a panel of human cancer cell lines; Huh7, MCF7, BxPC3 and AsPC1, which displayed significant cytotoxicity and differential responses toward different cancer phenotypes.
Collapse
Affiliation(s)
- Sabiha Parveen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| | - J A Cowan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Zhen Yu
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| |
Collapse
|
13
|
Gamov GA. Processing of the spectrofluorimetric data using the graphical methods and the maximum likelihood approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119334. [PMID: 33360207 DOI: 10.1016/j.saa.2020.119334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/18/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
The present work describes the calculation of the binding constants from spectrofluorimetric data using simple graphical methods and specialized software implementing the maximum likelihood approach. The following popular cases are analyzed: 1) protein-small molecule; 2) protein-metal complex; 3) DNA-small molecule; 4) DNA-metal complex interactions. The inability of graphical plots to return the correct results except for the simplest situation (single reaction with a non-fluorescent product) is demonstrated. The possibility of determining the most probable stoichiometric model using the maximum likelihood estimation (LSQ as its special case) is discussed as well as the limitations.
Collapse
Affiliation(s)
- G A Gamov
- Research Institute of Thermodynamics and Kinetics of Chemical Processes, Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Sheremetevskii pr. 7, Russia.
| |
Collapse
|
14
|
Lüdtke C, Sobottka S, Heinrich J, Liebing P, Wedepohl S, Sarkar B, Kulak N. Forty Years after the Discovery of Its Nucleolytic Activity: [Cu(phen) 2 ] 2+ Shows Unattended DNA Cleavage Activity upon Fluorination. Chemistry 2021; 27:3273-3277. [PMID: 33245157 PMCID: PMC7898652 DOI: 10.1002/chem.202004594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/20/2020] [Indexed: 11/30/2022]
Abstract
[Cu(phen)2]2+ (phen=1,10‐phenanthroline) is the first and still one of the most efficient artificial nucleases. In general, when the phen ligand is modified, the nucleolytic activity of its CuII complex is significantly reduced. This is most likely due to higher steric bulk of such ligands and thus lower affinity to DNA. CuII complexes with phen ligands having fluorinated substituents (F, CF3, SF5, SCF3) surprisingly showed excellent DNA cleavage activity—in contrast to the unsubstituted [Cu(phen)2]2+—in the absence of the otherwise required classical, bioabundant external reducing agents like thiols or ascorbate. This nucleolytic activity correlates well with the half‐wave potentials E1/2 of the complexes. Cancer cell studies show cytotoxic effects of all complexes with fluorinated ligands in the low μm range, whereas they were less toxic towards healthy cells (fibroblasts).
Collapse
Affiliation(s)
- Carsten Lüdtke
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Sebastian Sobottka
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Julian Heinrich
- Institut für Chemie, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Phil Liebing
- Institut für Chemie, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Stefanie Wedepohl
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany.,Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Nora Kulak
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany.,Institut für Chemie, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| |
Collapse
|
15
|
Gamov GA, Zavalishin MN, Pimenov OA, Klochkov VV, Khodov IA. La(III), Ce(III), Gd(III), and Eu(III) Complexation with Tris(hydroxymethyl)aminomethane in Aqueous Solution. Inorg Chem 2020; 59:17783-17793. [DOI: 10.1021/acs.inorgchem.0c03082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- George A. Gamov
- Research Institute of Thermodynamics and Kinetics of Chemical Processes, Ivanovo State University of Chemistry and Technology (ISUCT), Sheremetevskii pr. 7, 153000 Ivanovo, Russia
| | - Maksim N. Zavalishin
- Research Institute of Thermodynamics and Kinetics of Chemical Processes, Ivanovo State University of Chemistry and Technology (ISUCT), Sheremetevskii pr. 7, 153000 Ivanovo, Russia
| | - Oleg A. Pimenov
- Research Institute of Thermodynamics and Kinetics of Chemical Processes, Ivanovo State University of Chemistry and Technology (ISUCT), Sheremetevskii pr. 7, 153000 Ivanovo, Russia
| | - Vladimir V. Klochkov
- Kazan Federal University, Kremlyovskaya str. 18, 420008 Kazan, Russian Federation
| | - Ilya A. Khodov
- G. A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences (RAS), Akademicheskaya str. 1, 153045 Ivanovo, Russia Federation
| |
Collapse
|
16
|
Berdal M, Gouard S, Eychenne R, Marionneau-Lambot S, Croyal M, Faivre-Chauvet A, Chérel M, Gaschet J, Gestin JF, Guérard F. Investigation on the reactivity of nucleophilic radiohalogens with arylboronic acids in water: access to an efficient single-step method for the radioiodination and astatination of antibodies. Chem Sci 2020; 12:1458-1468. [PMID: 34163909 PMCID: PMC8179031 DOI: 10.1039/d0sc05191h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Easy access to radioiodinated and 211At-labelled bio(macro)molecules is essential to develop new strategies in nuclear imaging and targeted radionuclide therapy of cancers. Yet, the labelling of complex molecules with heavy radiohalogens is often poorly effective due to the multiple steps and intermediate purifications needed. Herein, we investigate the potential of arylboron chemistry as an alternative approach for the late stage labelling of antibodies. The reactivity of a model precursor, 4-chlorobenzeneboronic acid (1) with nucleophilic iodine-125 and astatine-211 was at first investigated in aqueous conditions. In the presence of a copper(ii) catalyst and 1,10-phenanthroline, quantitative radiochemical yields (RCYs) were achieved within 30 minutes at room temperature. The optimum conditions were then applied to a CD138 targeting monoclonal antibody (mAb) that has previously been validated for imaging and therapy in a preclinical model of multiple myeloma. RCYs remained high (>80% for 125I-labelling and >95% for 211At-labelling), and the whole procedure led to increased specific activities within less time in comparison with previously reported methods. Biodistribution study in mice indicated that targeting properties of the radiolabelled mAb were well preserved, leading to a high tumour uptake in a CD138 expressing tumour model. The possibility of divergent synthesis from a common modified carrier protein demonstrated herein opens facilitated perspectives in radiotheranostic applications with the radioiodine/211At pairs. Overall, the possibility to develop radiolabelling kits offered by this procedure should facilitate its translation to clinical applications. The high reactivity of astatine and iodine in water with arylboronic acids provides access to an efficient single-step antibody radiolabelling.![]()
Collapse
Affiliation(s)
- Marion Berdal
- Université de Nantes, CNRS, Inserm, CRCINA F-44000 Nantes France
| | - Sébastien Gouard
- Université de Nantes, CNRS, Inserm, CRCINA F-44000 Nantes France
| | - Romain Eychenne
- Université de Nantes, CNRS, Inserm, CRCINA F-44000 Nantes France .,Arronax GIP Saint-Herblain France
| | - Séverine Marionneau-Lambot
- Université de Nantes, CNRS, Inserm, CRCINA F-44000 Nantes France .,Department of Nuclear Medicine, CHU Nantes Nantes France
| | - Mikaël Croyal
- CRNH-O, Mass Spectrometry Core Facility F-44000 Nantes France.,NUN, INRA, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O F-44000 Nantes France
| | - Alain Faivre-Chauvet
- Université de Nantes, CNRS, Inserm, CRCINA F-44000 Nantes France .,Department of Nuclear Medicine, CHU Nantes Nantes France
| | - Michel Chérel
- Université de Nantes, CNRS, Inserm, CRCINA F-44000 Nantes France .,ICO-René Gauducheau Saint-Herblain France
| | - Joëlle Gaschet
- Université de Nantes, CNRS, Inserm, CRCINA F-44000 Nantes France
| | | | - François Guérard
- Université de Nantes, CNRS, Inserm, CRCINA F-44000 Nantes France
| |
Collapse
|
17
|
Herrmann M, Abdalla A, Patel BA. Potassium Concentration Alters Calibration Sensitivities of Dopamine but not Serotonin. ELECTROANAL 2020. [DOI: 10.1002/elan.202060235] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mareike Herrmann
- School of Pharmacy and Biomolecular Sciences Brighton UK BN2 4GJ
- Centre for Stress and Age-Related Disease Brighton UK BN2 4GJ
| | - Aya Abdalla
- School of Pharmacy and Biomolecular Sciences Brighton UK BN2 4GJ
- Centre for Stress and Age-Related Disease Brighton UK BN2 4GJ
| | - Bhavik Anil Patel
- School of Pharmacy and Biomolecular Sciences Brighton UK BN2 4GJ
- Centre for Stress and Age-Related Disease Brighton UK BN2 4GJ
| |
Collapse
|
18
|
Stability constants of bio-relevant, redox-active metals with amino acids: The challenges of weakly binding ligands. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213253] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Dimitrijević MS, Bogdanović Pristov J, žiŽić M, Stanković DM, Bajuk-Bogdanović D, Stanić M, Spasić S, Hagen W, Spasojević I. Biliverdin-copper complex at physiological pH. Dalton Trans 2019; 48:6061-6070. [PMID: 30734795 DOI: 10.1039/c8dt04724c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Biliverdin (BV), a product of heme catabolism, is known to interact with transition metals, but the details of such interactions under physiological conditions are scarce. Herein, we examined coordinate/redox interactions of BV with Cu2+ in phosphate buffer at pH 7.4, using spectrophotometry, HESI-MS, Raman spectroscopy, 1H NMR, EPR, fluorimetry, and electrochemical methods. BV formed a stable coordination complex with copper in 1 : 1 stoichiometry. The structure of BV was more planar and energetically stable in the complex. The complex showed strong paramagnetic effects that were attributed to an unpaired delocalized e-. The delocalized electron may come from BV or Cu2+, so the complex is formally composed either of BV radical cation and Cu1+ or of BV radical anion and Cu3+. The complex underwent oxidation only in the presence of both O2 and an excess of Cu2+, or a strong oxidizing agent, and it was resistant to reducing agents. The biological effects of the stable BV metallocomplex containing a delocalized unpaired electron should be further examined, and may provide an answer to the long-standing question of high energy investment in the catabolism of BV, which represents a relatively harmless molecule per se.
Collapse
Affiliation(s)
- Milena S Dimitrijević
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Stefaniak E, Bal W. Cu II Binding Properties of N-Truncated Aβ Peptides: In Search of Biological Function. Inorg Chem 2019; 58:13561-13577. [PMID: 31304745 DOI: 10.1021/acs.inorgchem.9b01399] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As life expectancy increases, the number of people affected by progressive and irreversible dementia, Alzheimer's Disease (AD), is predicted to grow. No drug designs seem to be working in humans, apparently because the origins of AD have not been identified. Invoking amyloid cascade, metal ions, and ROS production hypothesis of AD, herein we share our point of view on Cu(II) binding properties of Aβ4-x, the most prevalent N-truncated Aβ peptide, currently known as the main constituent of amyloid plaques. The capability of Aβ4-x to rapidly take over copper from previously tested Aβ1-x peptides and form highly stable complexes, redox unreactive and resistant to copper exchange reactions, prompted us to propose physiological roles for these peptides. We discuss the new findings on the reactivity of Cu(II)Aβ4-x with coexisting biomolecules in the context of synaptic cleft; we suggest that the role of Aβ4-x peptides is to quench Cu(II) toxicity in the brain and maintain neurotransmission.
Collapse
Affiliation(s)
- Ewelina Stefaniak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Pawińskiego 5a , 02-106 Warsaw , Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Pawińskiego 5a , 02-106 Warsaw , Poland
| |
Collapse
|
21
|
Tabbì G, Magrì A, Rizzarelli E. The copper(II) binding centres of carbonic anhydrase are differently affected by reductants that ensure the redox intracellular environment. J Inorg Biochem 2019; 199:110759. [PMID: 31299377 DOI: 10.1016/j.jinorgbio.2019.110759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/18/2019] [Accepted: 07/01/2019] [Indexed: 01/25/2023]
Abstract
Copper is involved in several biological processes. The static and labile copper pools are controlled by means of a network of influx and efflux transporters, storage proteins, chaperones, transcription factors and small molecules as glutathione (GSH), which contributes to the cell reducing environment. To follow the fate of intracellular copper labile pool, a variant of human apocarbonic anhydrase has been proposed as fluorescent probe to monitor cytoplasmic Cu2+. Aware that in this cellular compartment copper ion is present as Cu+, electron spin resonance technique (ESR) was used to ascertain whether (bovine or human) carbonic anhydrase (CA) was able to accommodate Cu+ in the same sites occupied by Cu2+, in the presence of naturally occurring reducing agents such as ascorbate and GSH. Our ESR results on Cu2+ complexes with CA allow for a complete characterization of the two metal binding sites of the protein in solution. The use of the reported affinity constants of zinc in the catalytic site and of Cu2+ in the peripheral and catalytic site, allow us to obtain the speciation of copper species mimicking the spectroscopic study conditions. The different Cu2+ coordination features in the catalytic and the peripheral (the N-terminus cleft mouth) binding sites influence the chemical reduction effect of the two main naturally occurring reductants. Ascorbate reversibly reduces the Cu2+ complex with CA, while glutathione irreversibly induces the formation of Cu2+ complex with its oxidized form (GSSG). Our results questioned the use of CA as intracellular Cu2+ sensor. Furthermore, translating these findings to intracellular environment, the conversion of GSH in GSSG can significantly alter the metallostasis.
Collapse
Affiliation(s)
- Giovanni Tabbì
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, via P. Gaifami 18, Catania, Italy
| | - Antonio Magrì
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, via P. Gaifami 18, Catania, Italy
| | - Enrico Rizzarelli
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, via P. Gaifami 18, Catania, Italy; Department of Chemical Sciences, University of Catania, Viale A. Doria 6, Catania, Italy; Consorzio Interuniversitario per la Ricerca dei Metalli nei Sistemi Biologici, Via Ulpiani 27, Bari, Italy.
| |
Collapse
|
22
|
Flexible vs. rigid bis(2-benzimidazolyl) ligands in Cu(II) complexes: Impact on redox chemistry and oxidative DNA cleavage activity. J Inorg Biochem 2019; 194:223-232. [DOI: 10.1016/j.jinorgbio.2019.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/27/2019] [Accepted: 01/27/2019] [Indexed: 11/21/2022]
|
23
|
Kodera M, Kadoya Y, Aso K, Fukui K, Nomura A, Hitomi Y, Kitagishi H. Acceleration of Hydrolytic DNA Cleavage by Dicopper(II) Complexes with p-Cresol-Derived Dinucleating Ligands at Slightly Acidic pH and Mechanistic Insights. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Masahito Kodera
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Yuki Kadoya
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Kenta Aso
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Katsuki Fukui
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Akiko Nomura
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Yutaka Hitomi
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| |
Collapse
|
24
|
Gamov GA, Zavalishin MN, Aleksandriyskii VV, Sharnin VA. Pyrazine-2-carbohydrazone of Pyridoxal 5′-Phosphate: Synthesis, Stability, Formation Kinetics, and Interaction with DNA. RUSS J GEN CHEM+ 2019. [DOI: 10.1134/s1070363219020105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
van der Weel L, As KS, Dekker WJ, van den Eijnden L, van Helmond W, Schiphorst C, Hagen WR, Hagedoorn PL. ZraP, the most prominent zinc protein under zinc stress conditions has no direct role in in-vivo zinc tolerance in Escherichia coli. J Inorg Biochem 2019; 192:98-106. [DOI: 10.1016/j.jinorgbio.2018.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/28/2018] [Accepted: 12/21/2018] [Indexed: 10/27/2022]
|
26
|
Gamov GA, Zavalishin MN, Sharnin VA. Comment on the frequently used method of the metal complex-DNA binding constant determination from UV-Vis data. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 206:160-164. [PMID: 30099313 DOI: 10.1016/j.saa.2018.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/02/2018] [Accepted: 08/04/2018] [Indexed: 06/08/2023]
Abstract
Present contribution describes the UV-Vis study of the mixture of Cu(II) ions, pyridoxal 5'-phosphate nicotinoyl hydrazone and DNA. Neither free hydrazone nor its copper(II) complex interacts with DNA under the given concentration conditions. The changes in the UV-Vis spectra of the mixture containing metal complex and DNA are caused by partial dissociation of the coordination compound and complexation of the released Cu(II) ions with DNA. This result was obtained by the analysis of a number of the reactions that could occur in the solution of Cu(II) ions, buffer components (namely, Tris), ligand (hydrazone), and DNA.
Collapse
Affiliation(s)
- G A Gamov
- Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Sheremetevskii ave. 7, Russia.
| | - M N Zavalishin
- Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Sheremetevskii ave. 7, Russia
| | - V A Sharnin
- Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Sheremetevskii ave. 7, Russia
| |
Collapse
|
27
|
Cu(II) complexes with hydrazone-functionalized phenanthrolines as self-activating metallonucleases. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Hormann J, Malina J, Lemke O, Hülsey MJ, Wedepohl S, Potthoff J, Schmidt C, Ott I, Keller BG, Brabec V, Kulak N. Multiply Intercalator-Substituted Cu(II) Cyclen Complexes as DNA Condensers and DNA/RNA Synthesis Inhibitors. Inorg Chem 2018; 57:5004-5012. [DOI: 10.1021/acs.inorgchem.8b00027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jan Hormann
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195 Berlin, Germany
| | - Jaroslav Malina
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 61265 Brno, Czech Republic
| | - Oliver Lemke
- Institut für Chemie und Biochemie, Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Max J. Hülsey
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195 Berlin, Germany
- Biochemistry Center, Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Stefanie Wedepohl
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Jan Potthoff
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195 Berlin, Germany
| | - Claudia Schmidt
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstr. 55, 38106 Braunschweig, Germany
| | - Ingo Ott
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstr. 55, 38106 Braunschweig, Germany
| | - Bettina G. Keller
- Institut für Chemie und Biochemie, Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Viktor Brabec
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 61265 Brno, Czech Republic
| | - Nora Kulak
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195 Berlin, Germany
| |
Collapse
|
29
|
Tao L, Stich TA, Liou SH, Soldatova AV, Delgadillo DA, Romano CA, Spiro TG, Goodin DB, Tebo BM, Casey WH, Britt RD. Copper Binding Sites in the Manganese-Oxidizing Mnx Protein Complex Investigated by Electron Paramagnetic Resonance Spectroscopy. J Am Chem Soc 2017; 139:8868-8877. [DOI: 10.1021/jacs.7b02277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | | | - Alexandra V. Soldatova
- Department
of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - David A. Delgadillo
- Department of Chemistry & Chemical Biology, University of California, 5200 North Lake Road, Merced, California 95343, United States
| | - Christine A. Romano
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Thomas G. Spiro
- Department
of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | | | - Bradley M. Tebo
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon 97239, United States
| | | | | |
Collapse
|
30
|
Calzaferri G. Entropy in multiple equilibria, theory and applications. Phys Chem Chem Phys 2017; 19:10611-10621. [DOI: 10.1039/c7cp00584a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Entropy controls the dependence of the equilibrium constants in the synthesis of host–guest composites on the occupation rc for channels of different length.
Collapse
Affiliation(s)
- Gion Calzaferri
- Department of Chemistry and Biochemistry
- 3012 Bern
- Switzerland
| |
Collapse
|
31
|
ZHENG Y, WANG X, XU L. Autofluorescent Hyperbranched Poly(amide amine) as Effective Fluorescent Probe for Label-free Detection of Copper(II) Ions. ANAL SCI 2017; 33:1345-1350. [DOI: 10.2116/analsci.33.1345] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Ying ZHENG
- School of Chemistry and Chemical Engineering, Southwest University
| | - Xiao WANG
- School of Chemistry and Chemical Engineering, Southwest University
| | - Lan XU
- School of Chemistry and Chemical Engineering, Southwest University
| |
Collapse
|
32
|
Sursyakova VV, Burmakina GV, Rubaylo AI. Composition and stability constants of copper(II) complexes with succinic acid determined by capillary electrophoresis. J COORD CHEM 2016. [DOI: 10.1080/00958972.2016.1270450] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Viktoria V. Sursyakova
- Laboratory of molecular spectroscopy and analysis, Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
| | - Galina V. Burmakina
- Laboratory of molecular spectroscopy and analysis, Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
- School of Non-Ferrous Metals and Material Science, Siberian Federal University, Krasnoyarsk, Russia
| | - Anatoly I. Rubaylo
- Laboratory of molecular spectroscopy and analysis, Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
- School of Non-Ferrous Metals and Material Science, Siberian Federal University, Krasnoyarsk, Russia
- Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
| |
Collapse
|
33
|
Špec T, Peljhan S, Vidič J, Krajnc NL, Fonović M, Tavzes Č, Ropret P. CIM® monolith chromatography-enhanced ELISA detection of proteins in artists' paints: Ovalbumin as a case study. Microchem J 2016. [DOI: 10.1016/j.microc.2016.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Copper complexes of pyridyl–tetrazole ligands with pendant amide and hydrazide arms: synthesis, characterization, DNA-binding and antioxidant properties. TRANSIT METAL CHEM 2016. [DOI: 10.1007/s11243-016-0047-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Quinn CF, Carpenter MC, Croteau ML, Wilcox DE. Isothermal Titration Calorimetry Measurements of Metal Ions Binding to Proteins. Methods Enzymol 2016; 567:3-21. [PMID: 26794348 DOI: 10.1016/bs.mie.2015.08.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ITC measurements involving metal ions are susceptible to a number of competing reactions (oxidation, precipitation, and hydrolysis) and coupled reactions involving the buffer and protons. Stabilization and delivery of the metal ion as a well-defined and well-characterized complex with the buffer, or a specific ligand, can suppress undesired solution chemistry and, depending on the stability of the metal complex, allow accurate measurements of higher affinity protein-binding sites. This requires, however, knowledge of the thermodynamics of formation of the metal complex and accounting for its contribution to the experimentally measured values (KITC and ΔHITC) through a post hoc analysis that provides the condition-independent binding thermodynamics (K, ΔG(o), ΔH, ΔS, and ΔCP). This analysis also quantifies the number of protons that are displaced when the metal ion binds to the protein.
Collapse
Affiliation(s)
- Colette F Quinn
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire, USA
| | | | - Molly L Croteau
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire, USA
| | - Dean E Wilcox
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire, USA.
| |
Collapse
|
36
|
Pathirathna P, Siriwardhane T, Morgan SL, McElmurry SP, Hashemi P. Fast voltammetry of metals at carbon-fiber microelectrodes: rapid determination of solution formation constants. Analyst 2016; 141:6025-6030. [DOI: 10.1039/c6an01401a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
FSCV can be utilized to predict solution formation constants.
Collapse
Affiliation(s)
| | | | - Stephen L. Morgan
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia
- USA
| | - Shawn P. McElmurry
- Department of Civil and Environmental Engineering
- Wayne State University
- Detroit
- USA
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia
- USA
| |
Collapse
|
37
|
Perera-Bobusch C, Hormann J, Weise C, Wedepohl S, Dernedde J, Kulak N. Significantly enhanced proteolytic activity of cyclen complexes by monoalkylation. Dalton Trans 2016; 45:10500-4. [PMID: 27277522 DOI: 10.1039/c6dt00681g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The activity of Cu(ii) and Co(iii) cyclen complexes in the cleavage of proteins was remarkably improved by introducing long alkyl chains thus generating efficient proteolytic amphiphilic metal complexes.
Collapse
Affiliation(s)
| | - Jan Hormann
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Christoph Weise
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Stefanie Wedepohl
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
- Charité – Universitätsmedizin Berlin
| | - Jens Dernedde
- Charité – Universitätsmedizin Berlin
- Institut für Laboratoriumsmedizin
- Klinische Chemie und Pathobiochemie
- CVK
- 13353 Berlin
| | - Nora Kulak
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| |
Collapse
|
38
|
Kocyła A, Pomorski A, Krężel A. Molar absorption coefficients and stability constants of metal complexes of 4-(2-pyridylazo)resorcinol (PAR): Revisiting common chelating probe for the study of metalloproteins. J Inorg Biochem 2015; 152:82-92. [PMID: 26364130 DOI: 10.1016/j.jinorgbio.2015.08.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 01/14/2023]
Abstract
4-(2-Pyridylazo)resorcinol (PAR) is one of the most popular chromogenic chelator used in the determination of the concentrations of various metal ions from the d, p and f blocks and their affinities for metal ion-binding biomolecules. The most important characteristics of such a sensor are the molar absorption coefficient and the metal-ligand complex dissociation constant. However, it must be remembered that these values are dependent on the specific experimental conditions (e.g. pH, solvent components, and reactant ratios). If one uses these values to process data obtained in different conditions, the final result can be under- or overestimated. We aimed to establish the spectral properties and the stability of PAR and its complexes accurately with Zn(2+), Cd(2+), Hg(2+), Co(2+), Ni(2+), Cu(2+), Mn(2+) and Pb(2+) at a multiple pH values. The obtained results account for the presence of different species of metal-PAR complexes in the physiological pH range of 5 to 8 and have been frequently neglected in previous studies. The effective molar absorption coefficient at 492 nm for the ZnHx(PAR)2 complex at pH7.4 in buffered water solution is 71,500 M(-1) cm(-1), and the dissociation constant of the complex in these conditions is 7.08×10(-13) M(2). To confirm these values and estimate the range of the dissociation constants of zinc-binding biomolecules that can be measured using PAR, we performed several titrations of zinc finger peptides and zinc chelators. Taken together, our results provide the updated parameters that are applicable to any experiment conducted using inexpensive and commercially available PAR.
Collapse
Affiliation(s)
- Anna Kocyła
- Laboratory of Chemical Biology, University of Wrocław, ul. Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Adam Pomorski
- Laboratory of Chemical Biology, University of Wrocław, ul. Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Artur Krężel
- Laboratory of Chemical Biology, University of Wrocław, ul. Joliot-Curie 14a, 50-383 Wrocław, Poland.
| |
Collapse
|
39
|
Hormann J, van der Meer M, Sarkar B, Kulak N. From Cyclen to 12-Crown-4 Copper(II) Complexes: Exchange of Donor Atoms Improves DNA Cleavage Activity. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500596] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Johnson RA, Manley OM, Spuches AM, Grossoehme NE. Dissecting ITC data of metal ions binding to ligands and proteins. Biochim Biophys Acta Gen Subj 2015; 1860:892-901. [PMID: 26327285 DOI: 10.1016/j.bbagen.2015.08.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/19/2015] [Accepted: 08/25/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND ITC is a powerful technique that can reliably assess the thermodynamic underpinnings of a wide range of binding events. When metal ions are involved, complications arise in evaluating the data due to unavoidable solution chemistry that includes metal speciation and a variety of linked equilibria. SCOPE OF REVIEW This paper identifies these concerns, provides recommendations to avoid common mistakes, and guides the reader through the mathematical treatment of ITC data to arrive at a set of thermodynamic state functions that describe identical chemical events and, ideally, are independent of solution conditions. Further, common metal chromophores used in biological metal sensing studies are proposed as a robust system to determine unknown solution competition. MAJOR CONCLUSIONS Metal ions present several complications in ITC experiments. This review presents strategies to avoid these pitfalls and proposes and experimentally validates mathematical approaches to deconvolute complex equilibria that exist in these systems. GENERAL SIGNIFICANCE This review discusses the wide range of complications that exists in metal-based ITC experiments. It provides a starting point for scientists new to this field and articulates concerns that will help experienced researchers troubleshoot experiments.
Collapse
Affiliation(s)
- Rachel A Johnson
- Department of Chemistry, East Carolina University, Greenville, NC 27858, United States
| | - Olivia M Manley
- Department of Chemistry, Physics and Geology, Winthrop University, Rock Hill, SC 29730, United States
| | - Anne M Spuches
- Department of Chemistry, East Carolina University, Greenville, NC 27858, United States.
| | - Nicholas E Grossoehme
- Department of Chemistry, Physics and Geology, Winthrop University, Rock Hill, SC 29730, United States.
| |
Collapse
|
41
|
Pathirathna P, Samaranayake S, Atcherley CW, Parent KL, Heien ML, McElmurry SP, Hashemi P. Fast voltammetry of metals at carbon-fiber microelectrodes: copper adsorption onto activated carbon aids rapid electrochemical analysis. Analyst 2015; 139:4673-80. [PMID: 25051455 DOI: 10.1039/c4an00937a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rapid, in situ trace metal analysis is essential for understanding many biological and environmental processes. For example, trace metals are thought to act as chemical messengers in the brain. In the environment, some of the most damaging pollution occurs when metals are rapidly mobilized and transported during hydrologic events (storms). Electrochemistry is attractive for in situ analysis, primarily because electrodes are compact, cheap and portable. Electrochemical techniques, however, do not traditionally report trace metals in real-time. In this work, we investigated the fundamental mechanisms of a novel method, based on fast-scan cyclic voltammetry (FSCV), that reports trace metals with sub-second temporal resolution at carbon-fiber microelectrodes (CFMs). Electrochemical methods and geochemical models were employed to find that activated CFMs rapidly adsorb copper, a phenomenon that greatly advances the temporal capabilities of electrochemistry. We established the thermodynamics of surface copper adsorption and the electrochemical nature of copper deposition onto CFMs and hence identified a unique adsorption-controlled electrochemical mechanism for ultra-fast trace metal analysis. This knowledge can be exploited in the future to increase the sensitivity and selectivity of CFMs for fast voltammetry of trace metals in a variety of biological and environmental models.
Collapse
Affiliation(s)
- Pavithra Pathirathna
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Mao L, Young SD, Bailey EH. Lability of copper bound to humic acid. CHEMOSPHERE 2015; 131:201-208. [PMID: 25863164 DOI: 10.1016/j.chemosphere.2015.03.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 03/02/2015] [Accepted: 03/15/2015] [Indexed: 06/04/2023]
Abstract
Geochemical speciation models generally include the assumption that all metal bound to humic acid and fulvic acid (HA, FA) is labile. However, in the current study, we determined the presence of a soluble 'non-labile' Cu fraction bound to HA extracted from grassland and peat soils. This was quantified by determining isotopically-exchangeable Cu (E-value) and EDTA-extraction of HA-bound Cu, separated by size-exclusion chromatography (SEC) and assayed by coupled ICP-MS. Evidence of time-dependent Cu fixation by HA was found during the course of an incubation study (160 d); up to 50% of dissolved HA-bound Cu was not isotopically exchangeable. This result was supported by extraction with EDTA where approximately 40% of Cu remained bound to HA despite dissolution in 0.05 M Na2-EDTA. The presence of a substantial non-labile metal fraction held by HA challenges the assumption of wholly reversible equilibrium which is central to current geochemical models of metal binding to humic substances.
Collapse
Affiliation(s)
- Lingchen Mao
- Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom.
| | - Scott D Young
- Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom.
| | - Elizabeth H Bailey
- Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom.
| |
Collapse
|
43
|
Nettles WL, Song H, Farquhar ER, Fitzkee NC, Emerson JP. Characterization of the Copper(II) Binding Sites in Human Carbonic Anhydrase II. Inorg Chem 2015; 54:5671-80. [PMID: 26010488 PMCID: PMC4482258 DOI: 10.1021/acs.inorgchem.5b00057] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Human carbonic anhydrase (CA) is a well-studied, robust, mononuclear Zn-containing metalloprotein that serves as an excellent biological ligand system to study the thermodynamics associated with metal ion coordination chemistry in aqueous solution. The apo form of human carbonic anhydrase II (CA) binds 2 equiv of copper(II) with high affinity. The Cu(2+) ions bind independently forming two noncoupled type II copper centers in CA (CuA and CuB). However, the location and coordination mode of the CuA site in solution is unclear, compared to the CuB site that has been well-characterized. Using paramagnetic NMR techniques and X-ray absorption spectroscopy we identified an N-terminal Cu(2+) binding location and collected information on the coordination mode of the CuA site in CA, which is consistent with a four- to five-coordinate N-terminal Cu(2+) binding site reminiscent to a number of N-terminal copper(II) binding sites including the copper(II)-amino terminal Cu(2+) and Ni(2+) and copper(II)-β-amyloid complexes. Additionally, we report a more detailed analysis of the thermodynamics associated with copper(II) binding to CA. Although we are still unable to fully deconvolute Cu(2+) binding data to the high-affinity CuA site, we derived pH- and buffer-independent values for the thermodynamics parameters K and ΔH associated with Cu(2+) binding to the CuB site of CA to be 2 × 10(9) and -17.4 kcal/mol, respectively.
Collapse
Affiliation(s)
- Whitnee L. Nettles
- Mississippi State University: Department of Chemistry Box 9573 Mississippi State University Mississippi State, MS 39762-9573
| | - He Song
- Mississippi State University: Department of Chemistry Box 9573 Mississippi State University Mississippi State, MS 39762-9573
| | - Erik R. Farquhar
- Case Western Reserve University Center for Synchrotron Biosciences, National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Nicholas C. Fitzkee
- Mississippi State University: Department of Chemistry Box 9573 Mississippi State University Mississippi State, MS 39762-9573
| | - Joseph P. Emerson
- Mississippi State University: Department of Chemistry Box 9573 Mississippi State University Mississippi State, MS 39762-9573
| |
Collapse
|
44
|
Li W, Chen X, Fu Y, Zhang J, Li W. Enantioselective recognition mechanism of ofloxacin via Cu(II)-modulated DNA. J Phys Chem B 2014; 118:5300-9. [PMID: 24825361 DOI: 10.1021/jp412460y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The specific interactions of Cu(2+) with self-complementary DNA sequences involving d[G4C4(GC)2G4C4], d[(GC)10], and d[(AT)10], as well as the chiral recognition mechanism of ofloxacin enantiomers via the Cu(II)-modulated DNAs, were investigated using characterizations of circular dichroism, gel electrophoresis, FT-IR spectroscopy, UV melting measurement, electron paramagnetic resonance, and HPLC. The Cu(II)-coordinated GC-rich DNAs exhibit amplified enantioselectivity toward the S-enantiomer of ofloxacin. Especially in the case of d[G4C4(GC)2G4C4], ofloxacin enantiomers intercalate into the two adjacent guanine bases through the minor groove mediated by Cu(2+), which leads to a more favorable binding between S-ofloxacin and DNA. The highest ee value of ofloxacin enantiomers in the permeate after being adsorbed by the Cu(II)-DNA complex is obtained as 49.2% in the R-enantiomer at the [Cu(2+)]/[base] molar ratio of 0.25, while at the [Cu(2+)]/[base] molar ratio of 0.05 the highest ee value of ofloxacin enantiomers in the retentate reaches 26.3% in the S-enantiomer. This work illustrates a novel promising route to construct DNA-based chiral selectors toward certain drug enantiomers through the programmable enantioselective recognition on the basis of DNA chirality and the specific binding of transition metal ions.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory for Green Chemical Technology MOE and ‡Key Laboratory of Systems Bioengineering MOE, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) , Tianjin 300072, People's Republic of China
| | | | | | | | | |
Collapse
|