1
|
Boothe R, Oppelt J, Franke A, Moore JL, Squarcina A, Zahl A, Senft L, Kellner I, Awalah AL, Bradford A, Obisesan SV, Schwartz DD, Ivanović-Burmazović I, Goldsmith CR. Nickel(II) complexes with covalently attached quinols rely on ligand-derived redox couples to catalyze superoxide dismutation. Dalton Trans 2025; 54:3733-3749. [PMID: 39868440 DOI: 10.1039/d4dt03331k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Although nickel is found in the active sites of a class of superoxide dismutase (SOD), nickel complexes with non-peptidic ligands normally do not catalyze superoxide degradation, and none has displayed activity comparable to those of the best manganese-containing SOD mimics. Here, we find that nickel complexes with polydentate quinol-containing ligands can exhibit catalytic activity comparable to those of the most efficient manganese-containing SOD mimics. The nickel complexes retain a significant portion of their activity in phosphate buffer and under operando conditions and rely on ligand-centered redox processes for catalysis. Although nickel SODs are known to cycle through Ni(II) and Ni(III) species during catalysis, cryo-mass spectrometry studies indicate that the nickel atoms in our catalysts remain in the +2 oxidation state throughout SOD mimicry.
Collapse
Affiliation(s)
- Robert Boothe
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| | - Julian Oppelt
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 München, Germany
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandster. 1, 91508 Erlangen, Germany
| | - Alicja Franke
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 München, Germany
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandster. 1, 91508 Erlangen, Germany
| | - Jamonica L Moore
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| | - Andrea Squarcina
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - Achim Zahl
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandster. 1, 91508 Erlangen, Germany
| | - Laura Senft
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - Ina Kellner
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - Akudo L Awalah
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| | - Alisabeth Bradford
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| | - Segun V Obisesan
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| | - Dean D Schwartz
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | | | | |
Collapse
|
2
|
Mallik R, Saha M, Ghosh B, Chauhan N, Mohan H, Kumaran SS, Mukherjee C. Folate Receptor Targeting Mn(II) Complex Encapsulated Porous Silica Nanoparticle as an MRI Contrast Agent for Early-State Detection of Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2401787. [PMID: 38766969 DOI: 10.1002/smll.202401787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/01/2024] [Indexed: 05/22/2024]
Abstract
Cancer is recognized as one of the major causes of mortality, however, early-stage detection can increase the survival chance greatly. It is recognized that folate receptors are gradually overexpressed in the cellular membrane with the progress of cancer from stage 1 to stage 4. Utilizing the fact, herein, developed a porous silica nanoparticle system C1@SiO2-FA-NP; A) impregnated with thermodynamically stable Mn(II) complex (1) molecules within the core of the nanoparticle, and B) surface functionalized with folate units. It exhibited a high longitudinal relaxivity value r1 = 21.45 mM-1s-1 that substantially increased to r1 = 40.97 mM-1s-1 in the presence of 0.67 mM concentration of BSA under the physiological condition. The in vitro fluorescent images after surface conjugation of C1@SiO2-FA-NP with FITC (fluorescein isothiocyanate) buttressed the inclusion of the nanoparticle exclusively within the cancerous HeLa cells than that of healthy HEK293 cells. The importance of the surface-bound folate unit in the nanoparticle is further established by comparing the fluorescent images of HeLa cells in the absence of the group. Finally, the applicability of C1@SiO2-FA-NP as the T1-weighted MRI contrast agent for early-stage cancer diagnosis is established within C57BL/6 mice after infecting the mice with HeLa cells.
Collapse
Affiliation(s)
- Riya Mallik
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Muktashree Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Basab Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Nisha Chauhan
- Department of NMR, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Hari Mohan
- Department of Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - S Senthil Kumaran
- Department of NMR, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Chandan Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| |
Collapse
|
3
|
Duraiyarasu M, Senthil Kumaran S, Mayilmurugan R. Biotin Conjugated Fe(III)-Triscatecholate Complex as Tumour Targeting T 1 MRI Contrast Agent via Second Sphere Water Relaxation. Chemistry 2025; 31:e202403619. [PMID: 39658512 DOI: 10.1002/chem.202403619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/23/2024] [Accepted: 12/10/2024] [Indexed: 12/12/2024]
Abstract
The biotin-conjugated Fe(III) catecholate complex [Fe(BioL)3]3-, Fe(BioL)3 (BioLH2=N-(3,4-dihydroxyphenethyl)-5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamide) is reported as targeted magnetic resonance imaging (MRI) contrast agents (CAs) to increase the payload for early-stage imaging of tumours. The high spin state and octahedral coordination of the Fe(III) complex are confirmed by EPR spectra and DFT optimized structure, respectively. The overall formation constant (log K) of Fe(BioL)3 is determined as 45, which is higher than the known, more stable complex [Fe(EDTA)]. The complex Fe(BioL)3 exhibited r1 relaxivity of 3.09±0.10 and 1.95±0.09 mM-1 s-1 at 25 °C and 37 °C, respectively, at 1.41 T and pH 7.35 via second-sphere water interactions as due to the absence of inner water coordination. The interaction of Fe(BioL)3 with bovine serum albumin (BSA) and human serum albumin (HSA) displayed enhanced relaxivity of 5.16±0.15 and 10.0±0.19 mM-1 s-1, respectively, at 25 °C and pH 7.3 possibly via lengthening of rotational correlational time. The complex Fe(BioL)3 uptake studies with the avidin, a biotin-binding protein pocket, showed 46 and 37 % enhancements of r1 and r2 relaxivities. Complex Fe(BioL)3 showed 80 % cell viability of the human gastric adenocarcinoma (AGS) cells, and 89 % of iron has been uptaken into cells.
Collapse
Affiliation(s)
- Maheshwaran Duraiyarasu
- Department of Chemistry, & Department of Bioscience & Biomedical Engineering, Indian Institute of Technology Bhilai, Durg, 491002, Chattisgarh, India
- Current Institution, School of Biological and Health Systems Engineering, Arizona State University, Tempe, 85281, Arizona, USA
| | - S Senthil Kumaran
- Department of NMR, All India Institute of Medical Sciences Ansari Nagar, New Delhi, 110 029, India
| | - Ramasamy Mayilmurugan
- Department of Chemistry, & Department of Bioscience & Biomedical Engineering, Indian Institute of Technology Bhilai, Durg, 491002, Chattisgarh, India
| |
Collapse
|
4
|
Abstract
ABSTRACT Recent safety concerns surrounding the use of gadolinium-based contrast agents (GBCAs) have spurred research into identifying alternatives to GBCAs for use with magnetic resonance imaging. This review summarizes the molecular and pharmaceutical properties of a GBCA replacement and how these may be achieved. Complexes based on high-spin, divalent manganese (Mn 2+ ) have shown promise as general purpose and liver-specific contrast agents. A detailed description of the complex Mn-PyC3A is provided, describing its physicochemical properties, its behavior in different animal models, and how it compares with GBCAs. The review points out that, although there are parallels with GBCAs in how the chemical properties of Mn 2+ complexes can predict in vivo behavior, there are also marked differences between Mn 2+ complexes and GBCAs.
Collapse
Affiliation(s)
- Peter Caravan
- From the Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
5
|
Uzal-Varela R, Rodríguez-Rodríguez A, Lalli D, Valencia L, Maneiro M, Botta M, Iglesias E, Esteban-Gómez D, Angelovski G, Platas-Iglesias C. Endeavor toward Redox-Responsive Transition Metal Contrast Agents Based on the Cross-Bridge Cyclam Platform. Inorg Chem 2024; 63:1575-1588. [PMID: 38198518 PMCID: PMC10806912 DOI: 10.1021/acs.inorgchem.3c03486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
We present the synthesis and characterization of a series of Mn(III), Co(III), and Ni(II) complexes with cross-bridge cyclam derivatives (CB-cyclam = 1,4,8,11-tetraazabicyclo[6.6.2]hexadecane) containing acetamide or acetic acid pendant arms. The X-ray structures of [Ni(CB-TE2AM)]Cl2·2H2O and [Mn(CB-TE1AM)(OH)](PF6)2 evidence the octahedral coordination of the ligands around the Ni(II) and Mn(III) metal ions, with a terminal hydroxide ligand being coordinated to Mn(III). Cyclic voltammetry studies on solutions of the [Mn(CB-TE1AM)(OH)]2+ and [Mn(CB-TE1A)(OH)]+ complexes (0.15 M NaCl) show an intricate redox behavior with waves due to the MnIII/MnIV and MnII/MnIII pairs. The Co(III) and Ni(II) complexes with CB-TE2A and CB-TE2AM show quasi-reversible features due to the CoIII/CoII or NiII/NiIII pairs. The [Co(CB-TE2AM)]3+ complex is readily reduced by dithionite in aqueous solution, as evidenced by 1H NMR studies, but does not react with ascorbate. The [Mn(CB-TE1A)(OH)]+ complex is however reduced very quickly by ascorbate following a simple kinetic scheme (k0 = k1[AH-], where [AH-] is the ascorbate concentration and k1 = 628 ± 7 M-1 s-1). The reduction of the Mn(III) complex to Mn(II) by ascorbate provokes complex dissociation, as demonstrated by 1H nuclear magnetic relaxation dispersion studies. The [Ni(CB-TE2AM)]2+ complex shows significant chemical exchange saturation transfer effects upon saturation of the amide proton signals at 71 and 3 ppm with respect to the bulk water signal.
Collapse
Affiliation(s)
- Rocío Uzal-Varela
- Centro
Interdisciplinar de Química e Bioloxía (CICA) and Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Galicia, Spain
| | - Aurora Rodríguez-Rodríguez
- Centro
Interdisciplinar de Química e Bioloxía (CICA) and Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Galicia, Spain
| | - Daniela Lalli
- Dipartimento
di Scienze e Innovazione Tecnologica, Magnetic Resonance Platform
(PRISMA-UPO), Universitá del Piemonte
Orientale, Viale T. Michel
11, Alessandria 15121, Italy
| | - Laura Valencia
- Departamento
de Química Inorgánica, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Marcosende 36310, Pontevedra, Spain
| | - Marcelino Maneiro
- Departamento
de Química Inorgánica, Facultade de Ciencias, Campus
Terra, Universidade de Santiago de Compostela, Lugo 27002, Galicia, Spain
| | - Mauro Botta
- Dipartimento
di Scienze e Innovazione Tecnologica, Magnetic Resonance Platform
(PRISMA-UPO), Universitá del Piemonte
Orientale, Viale T. Michel
11, Alessandria 15121, Italy
| | - Emilia Iglesias
- Centro
Interdisciplinar de Química e Bioloxía (CICA) and Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Galicia, Spain
| | - David Esteban-Gómez
- Centro
Interdisciplinar de Química e Bioloxía (CICA) and Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Galicia, Spain
| | - Goran Angelovski
- Laboratory
of Molecular and Cellular Neuroimaging, International Center for Primate
Brain Research (ICPBR), Center for Excellence in Brain Science and
Intelligence Technology (CEBSIT), Chinese
Academy of Sciences (CAS), Shanghai 201602, PR China
| | - Carlos Platas-Iglesias
- Centro
Interdisciplinar de Química e Bioloxía (CICA) and Departamento
de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Galicia, Spain
| |
Collapse
|
6
|
Anbu S, Kenning L, Stasiuk GJ. ATP-responsive Mn(II)-based T1 contrast agent for MRI. Chem Commun (Camb) 2023; 59:13623-13626. [PMID: 37902503 PMCID: PMC10644988 DOI: 10.1039/d3cc03430e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023]
Abstract
A novel diacetylpyridylcarbohydrazide-DAPyCOHz-based manganese(II) chelate with dipicolylamine/zinc(II) (DPA/Zn2+) arms (MnLDPA-Zn2) was developed for adenosine triphosphate (ATP) responsive magnetic resonance imaging (MRI) T1 contrast applications. Compound 2 shows enhanced relaxivity (r1 = 11.52 mM-1 s-1) upon selective ATP binding over other phosphates.
Collapse
Affiliation(s)
- Sellamuthu Anbu
- Departments of Chemistry and Biomedical Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Lawerence Kenning
- MRI Centre, Royal Infirmary Hospital NHS Trust, Anlaby Road, Hull, HU3 2JZ, UK
| | - Graeme J Stasiuk
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Fourth Floor Lambeth Wing, St Thomas' Hospital, London, SE1 7EH, UK.
| |
Collapse
|
7
|
Henoumont C, Devreux M, Laurent S. Mn-Based MRI Contrast Agents: An Overview. Molecules 2023; 28:7275. [PMID: 37959694 PMCID: PMC10648041 DOI: 10.3390/molecules28217275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
MRI contrast agents are required in the clinic to detect some pathologies, such as cancers. Nevertheless, at the moment, only small extracellular and non-specific gadolinium complexes are available for clinicians. Moreover, safety issues have recently emerged concerning the use of gadolinium complexes; hence, alternatives are urgently needed. Manganese-based MRI contrast agents could be one of these alternatives and increasing numbers of studies are available in the literature. This review aims at synthesizing all the research, from small Mn complexes to nanoparticular agents, including theranostic agents, to highlight all the efforts already made by the scientific community to obtain highly efficient agents but also evidence of the weaknesses of the developed systems.
Collapse
Affiliation(s)
- Céline Henoumont
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (C.H.)
| | - Marie Devreux
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (C.H.)
| | - Sophie Laurent
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (C.H.)
- Center for Microscopy and Molecular Imaging (CMMI), 8 Rue Adrienne Boland, 6041 Gosselies, Belgium
| |
Collapse
|
8
|
Lu X, Wang X, Gao S, Chen Z, Bai R, Wang Y. Bioparameter-directed nanoformulations as MRI CAs enable the specific visualization of hypoxic tumour. Analyst 2023; 148:4967-4981. [PMID: 37724375 DOI: 10.1039/d3an00972f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
A malignant tumour has hypoxic cells of varying degrees. The more severe the hypoxic degree, the more difficult the prognosis of the tumour and the higher the recurrence rate. Therefore, tumour hypoxia imaging is crucial. Magnetic resonance imaging (MRI) shows its strength in high resolution, depth of penetration and noninvasiveness. However, it needs more excellent contrast agents (CAs) to combat the complex tumour microenvironment (TME) and increased targeting of tumours to enhance clinical safety. Many research studies have focused on developing hypoxia-responsive MRI CAs that take advantage of the unique characteristics of hypoxic tumours. The low oxygen pressure, acidic TME, and up-regulated redox molecule levels found in hypoxic tumours serve as biological stimuli for nanoformulations that can accurately image the hypoxic region. This review highlights the importance of developing bioparameter-directed nanoformulations as MRI CAs for accurate tumour diagnosis. The design strategies and mechanisms of tumour-hypoxia imaging with nanoformulations are exemplified, with a focus on pH-responsiveness, redox-responsiveness, and p(O2)-responsiveness. The promising future of bioparameter-responsive nanoformulations for accurate tumour diagnosis and personalised cancer treatment is discussed.
Collapse
Affiliation(s)
- Xinyi Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xin Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Susu Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ziwei Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ru Bai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China.
| | - Yaling Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China.
| |
Collapse
|
9
|
Pinto SMA, Ferreira ARR, Teixeira DSS, Nunes SCC, Batista de Carvalho ALM, Almeida JMS, Garda Z, Pallier A, Pais AACC, Brett CMA, Tóth É, Marques MPM, Pereira MM, Geraldes CFGC. Fluorinated Mn(III)/(II)-Porphyrin with Redox-Responsive 1 H and 19 F Relaxation Properties. Chemistry 2023; 29:e202301442. [PMID: 37606898 DOI: 10.1002/chem.202301442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 08/23/2023]
Abstract
A new fluorinated manganese porphyrin, (Mn-TPP-p-CF3 ) is reported capable of providing, based on the Mn(III)/Mn(II) equilibrium, dual 1 H relaxivity and 19 F NMR response to redox changes. The physical-chemical characterization of both redox states in DMSO-d6 /H2 O evidenced that the 1 H relaxometric and 19 F NMR properties are appropriate for differential redox MRI detection. The Mn(III)-F distance (dMn-F =9.7-10 Å), as assessed by DFT calculations, is well tailored to allow for adequate paramagnetic effect of Mn(III) on 19 F T1 and T2 relaxation times. Mn-TPP-p-CF3 has a reversible Mn(II)/Mn(III) redox potential of 0.574 V vs. NHE in deoxygenated aqueous HEPES/ THF solution. The reduction of Mn(III)-TPP-p-CF3 in the presence of ascorbic acid is slowly, but fully reversed in the presence of air oxygen, as monitored by UV-Vis spectrometry and 19 F NMR. The broad 1 H and 19 F NMR signals of Mn(III)-TPP-p-CF3 disappear in the presence of 1 equivalent ascorbate replaced by a shifted and broadened 19 F NMR signal from Mn(II)-TPP-p-CF3 . Phantom 19 F MR images in DMSO show a MRI signal intensity decrease upon reduction of Mn(III)-TPP-p-CF3 , retrieved upon complete reoxidation in air within ~24 h. 1 H NMRD curves of the Mn(III)/(II)-TPP-p-CF3 chelates in mixed DMSO/water solvent have the typical shape of Mn(II)/Mn(III) porphyrins.
Collapse
Affiliation(s)
- Sara M A Pinto
- University of Coimbra, CQC-IMS, Department of Chemistry, P-3004-535, Coimbra, Portugal
- Coimbra Chemistry Center, University of Coimbra, Rua Larga Largo D. Dinis, 3004-535, Coimbra, Portugal
| | - Ana R R Ferreira
- University of Coimbra, CQC-IMS, Department of Chemistry, P-3004-535, Coimbra, Portugal
- Coimbra Chemistry Center, University of Coimbra, Rua Larga Largo D. Dinis, 3004-535, Coimbra, Portugal
| | - Daniela S S Teixeira
- University of Coimbra, CQC-IMS, Department of Chemistry, P-3004-535, Coimbra, Portugal
- Coimbra Chemistry Center, University of Coimbra, Rua Larga Largo D. Dinis, 3004-535, Coimbra, Portugal
| | - Sandra C C Nunes
- University of Coimbra, CQC-IMS, Department of Chemistry, P-3004-535, Coimbra, Portugal
- Coimbra Chemistry Center, University of Coimbra, Rua Larga Largo D. Dinis, 3004-535, Coimbra, Portugal
| | - Ana L M Batista de Carvalho
- Molecular Physical Chemistry R&D Unit Department of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal
- Department of Life Sciences, Faculty of Science and Technology, Calçada Martim de Freitas, 3000-393, Coimbra, Portugal
| | - Joseany M S Almeida
- University of Coimbra, CQC-IMS, Department of Chemistry, P-3004-535, Coimbra, Portugal
- CEMMPRE, University of Coimbra, Pinhal de Marrocos, 3030-788, Coimbra, Portugal
| | - Zoltan Garda
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d'Orléans, Rue Charles Sadron, 45071, Orléans Cedex 2, France
| | - Agnés Pallier
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d'Orléans, Rue Charles Sadron, 45071, Orléans Cedex 2, France
| | - Alberto A C C Pais
- University of Coimbra, CQC-IMS, Department of Chemistry, P-3004-535, Coimbra, Portugal
- Coimbra Chemistry Center, University of Coimbra, Rua Larga Largo D. Dinis, 3004-535, Coimbra, Portugal
| | - Christopher M A Brett
- University of Coimbra, CQC-IMS, Department of Chemistry, P-3004-535, Coimbra, Portugal
- CEMMPRE, University of Coimbra, Pinhal de Marrocos, 3030-788, Coimbra, Portugal
| | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d'Orléans, Rue Charles Sadron, 45071, Orléans Cedex 2, France
| | - Maria P M Marques
- Molecular Physical Chemistry R&D Unit Department of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal
- Department of Life Sciences, Faculty of Science and Technology, Calçada Martim de Freitas, 3000-393, Coimbra, Portugal
| | - Mariette M Pereira
- University of Coimbra, CQC-IMS, Department of Chemistry, P-3004-535, Coimbra, Portugal
- Coimbra Chemistry Center, University of Coimbra, Rua Larga Largo D. Dinis, 3004-535, Coimbra, Portugal
| | - Carlos F G C Geraldes
- Coimbra Chemistry Center, University of Coimbra, Rua Larga Largo D. Dinis, 3004-535, Coimbra, Portugal
- Department of Life Sciences, Faculty of Science and Technology, Calçada Martim de Freitas, 3000-393, Coimbra, Portugal
- CIBIT/ICNAS, University of Coimbra, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| |
Collapse
|
10
|
Kadakia RT, Ryan RT, Cooke DJ, Que EL. An Fe complex for 19F magnetic resonance-based reversible redox sensing and multicolor imaging. Chem Sci 2023; 14:5099-5105. [PMID: 37206407 PMCID: PMC10189869 DOI: 10.1039/d2sc05222a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
We report a first-in-class responsive, pentafluorosulfanyl (-SF5)-tagged 19F MRI agent capable of reversibly detecting reducing environments via an FeII/III redox couple. In the FeIII form, the agent displays no 19F MR signal due to paramagnetic relaxation enhancement-induced signal broadening; however, upon rapid reduction to FeII with one equivalent of cysteine, the agent displays a robust 19F signal. Successive oxidation and reduction studies validate the reversibility of the agent. The -SF5 tag in this agent enables 'multicolor imaging' in conjunction with sensors containing alternative fluorinated tags and this was demonstrated via simultaneous monitoring of the 19F MR signal of this -SF5 agent and a hypoxia-responsive agent containing a -CF3 group.
Collapse
Affiliation(s)
- Rahul T Kadakia
- Department of Chemistry, University of Texas at Austin 105 E 24th St. Stop A5300 Austin TX 78712 USA
| | - Raphael T Ryan
- Department of Chemistry, University of Texas at Austin 105 E 24th St. Stop A5300 Austin TX 78712 USA
| | - Daniel J Cooke
- Department of Chemistry, University of Texas at Austin 105 E 24th St. Stop A5300 Austin TX 78712 USA
| | - Emily L Que
- Department of Chemistry, University of Texas at Austin 105 E 24th St. Stop A5300 Austin TX 78712 USA
| |
Collapse
|
11
|
Moore JL, Oppelt J, Senft L, Franke A, Scheitler A, Dukes MW, Alix HB, Saunders AC, Karbalaei S, Schwartz DD, Ivanović-Burmazović I, Goldsmith CR. Diquinol Functionality Boosts the Superoxide Dismutase Mimicry of a Zn(II) Complex with a Redox-Active Ligand while Maintaining Catalyst Stability and Enhanced Activity in Phosphate Solution. Inorg Chem 2022; 61:19983-19997. [PMID: 36445832 DOI: 10.1021/acs.inorgchem.2c03256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the current work, we demonstrate ligand design concepts that significantly improve the superoxide dismutase (SOD) activity of a zinc complex; the catalysis is enhanced when two quinol groups are present in the polydentate ligand. We investigate the mechanism through which the quinols influence the catalysis and determine the impact of entirely removing a chelating group from the original hexadentate ligand. Our results suggest that SOD mimicry with these compounds requires a ligand that coordinates Zn(II) strongly in both its oxidized and reduced forms and that the activity proceeds through Zn(II)-semiquinone complexes. The complex with two quinols displays greatly enhanced catalytic ability, with the activity improving by as much as 450% over a related complex with a single quinol. In the reduced form of the diquinol complex, one quinol appears to coordinate to the zinc much more weakly than the other. We believe that superoxide can more readily displace this portion of the ligand, facilitating its coordination to the metal center and thereby hastening the SOD reactivity. Despite the presence of two redox-active groups that may communicate through intramolecular hydrogen bonding and redox tautomerism, only one quinol undergoes two-electron oxidation to a para-quinone during the catalysis. After the formation of the para-quinone, the remaining quinol deprotonates and binds tightly to the metal, ensuring that the complex remains intact in its oxidized state, thereby maintaining its catalytic ability. The Zn(II) complex with the diquinol ligand is highly unusual for a SOD mimic in that it performs more efficiently in phosphate solution.
Collapse
Affiliation(s)
- Jamonica L Moore
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama36849, United States
| | - Julian Oppelt
- Department Chemie, Ludwig- Maximilians Universität (LMU) München, München81377, Germany
| | - Laura Senft
- Department Chemie, Ludwig- Maximilians Universität (LMU) München, München81377, Germany
| | - Alicja Franke
- Department Chemie, Ludwig- Maximilians Universität (LMU) München, München81377, Germany
| | - Andreas Scheitler
- Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Egerlandstr. 1, Erlangen91508, Germany
| | - Meghan W Dukes
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama36849, United States
| | - Haley B Alix
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama36849, United States
| | - Alexander C Saunders
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama36849, United States
| | - Sana Karbalaei
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama36849, United States
| | - Dean D Schwartz
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama36849, United States
| | | | - Christian R Goldsmith
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama36849, United States
| |
Collapse
|
12
|
Ndiaye D, Cieslik P, Wadepohl H, Pallier A, Même S, Comba P, Tóth É. Mn 2+ Bispidine Complex Combining Exceptional Stability, Inertness, and MRI Efficiency. J Am Chem Soc 2022; 144:22212-22220. [PMID: 36445192 DOI: 10.1021/jacs.2c10108] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
As an essential metal ion and an efficient relaxation agent, Mn2+ holds a great promise to replace Gd3+ in magnetic resonance imaging (MRI) contrast agent applications, if its stable and inert complexation can be achieved. Toward this goal, four pyridine and one carboxylate pendants have been introduced in coordinating positions on the bispidine platform to yield ligand L3. Thanks to its rigid and preorganized structure and perfect size match for Mn2+, L3 provides remarkably high thermodynamic stability (log KMnL = 19.47), selectivity over the major biological competitor Zn2+ (log(KMnL/KZnL) = 4.4), and kinetic inertness. Solid-state X-ray data show that [MnL3(MeOH)](OTf)2 has an unusual eight-coordinate structure with a coordinated solvent molecule, in contrast to the six-coordinate structure of [ZnL3](OTf), underlining that the coordination cavity is perfectly adapted for Mn2+, while it is too large for Zn2+. In aqueous solution, 17O NMR data evidence one inner sphere water and dissociatively activated water exchange (kex298 = 13.5 × 107 s-1) for MnL3. Its water proton relaxivity (r1 = 4.44 mM-1 s-1 at 25 °C, 20 MHz) is about 30% higher than values for typical monohydrated Mn2+ complexes, which is related to its larger molecular size; its relaxation efficiency is similar to that of clinically used Gd3+-based agents. In vivo MRI experiments realized in control mice at 0.02 mmol/kg injected dose indicate good signal enhancement in the kidneys and fast renal clearance. Taken together, MnL3 is the first chelate that combines such excellent stability, selectivity, inertness and relaxation properties, all of primary importance for MRI use.
Collapse
Affiliation(s)
- Daouda Ndiaye
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071 Orléans, France
| | - Patrick Cieslik
- Anorganisch-Chemisches Institut, Universität Heidelberg, INF 270, D-69120 Heidelberg, Germany
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut, Universität Heidelberg, INF 270, D-69120 Heidelberg, Germany
| | - Agnès Pallier
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071 Orléans, France
| | - Sandra Même
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071 Orléans, France
| | - Peter Comba
- Anorganisch-Chemisches Institut, Universität Heidelberg, INF 270, D-69120 Heidelberg, Germany.,Interdisciplinary Center for Scientific Computing, Universität Heidelberg, INF 205, D-69120 Heidelberg, Germany
| | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071 Orléans, France
| |
Collapse
|
13
|
Daksh S, Kaul A, Deep S, Datta A. Current advancement in the development of manganese complexes as magnetic resonance imaging probes. J Inorg Biochem 2022; 237:112018. [PMID: 36244313 DOI: 10.1016/j.jinorgbio.2022.112018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 01/18/2023]
Abstract
Emerging non-invasive molecular imaging modalities can detect a pathophysiological state at the molecular level before any anatomic changes are observed. Magnetic resonance imaging (MRI) is preferred over other nuclear imaging techniques owing to its radiation-free approach. Conventionally, most MRI contrast agents employed predominantly involve lanthanide metal: Gadolinium (Gd) until the discovery of associated severe nephrogenic toxicity issues. This limitation led a way to the development of manganese-based contrast agents which offer similar positive contrast enhancement capability. A vast quantity of experimental data has been accumulated over the last decade to define the physicochemical characteristics of manganese chelates with various ligand scaffolds. One can now observe how the ligand configurations, rigidity, and donor-acceptor characteristics impact the stability of the complex. This review covers the current trends in the development of manganese-based MRI contrast agents, the mechanisms they are based on and design considerations for newer manganese-based contrast agents with higher diagnostic strength along with better safety profiles.
Collapse
Affiliation(s)
- Shivani Daksh
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India; Department of Chemistry, Indian Institute of Technology, Hauz-Khas, New Delhi 110016, India
| | - Ankur Kaul
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology, Hauz-Khas, New Delhi 110016, India.
| | - Anupama Datta
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India.
| |
Collapse
|
14
|
Pashkunova-Martic I, Kukeva R, Stoyanova R, Pantcheva I, Dorkov P, Friske J, Hejl M, Jakupec M, Hohagen M, Legin A, Lubitz W, Keppler BK, Helbich TH, Ivanova J. Novel Salinomycin-Based Paramagnetic Complexes-First Evaluation of Their Potential Theranostic Properties. Pharmaceutics 2022; 14:2319. [PMID: 36365139 PMCID: PMC9692412 DOI: 10.3390/pharmaceutics14112319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
UNLABELLED Combining therapeutic with diagnostic agents (theranostics) can revolutionize the course of malignant diseases. Chemotherapy, hyperthermia, or radiation are used together with diagnostic methods such as magnetic resonance imaging (MRI). In contrast to conventional contrast agents (CAs), which only enable non-specific visualization of tissues and organs, the theranostic probe offers targeted diagnostic imaging and therapy simultaneously. METHODS Novel salinomycin (Sal)-based theranostic probes comprising two different paramagnetic metal ions, gadolinium(III) (Gd(III)) or manganese(II) (Mn(II)), as signal emitting motifs for MRI were synthesized and characterized by elemental analysis, infrared spectral analysis (IR), electroparamagnetic resonance (EPR), thermogravimetry (TG) differential scanning calorimetry (DSC) and electrospray ionization mass spectrometry (ESI-MS). To overcome the water insolubility of the two Sal-complexes, they were loaded into empty bacterial ghosts (BGs) cells as transport devices. The potential of the free and BGs-loaded metal complexes as theranostics was evaluated by in vitro relaxivity measurements in a high-field MR scanner and in cell culture studies. RESULTS Both the free Sal-complexes (Gd(III) salinomycinate (Sal-Gd(III) and Mn(II) salinomycinate (Sal-Mn(II)) and loaded into BGs demonstrated enhanced cytotoxic efficacy against three human tumor cell lines (A549, SW480, CH1/PA-1) relative to the free salinomycinic acid (Sal-H) and its sodium complex (Sal-Na) applied as controls with IC50 in a submicromolar concentration range. Moreover, Sal-H, Sal-Gd(III), and Sal-Mn(II) were able to induce perturbations in the cell cycle of treated colorectal and breast human cancer cell lines (SW480 and MCF-7, respectively). The relaxivity (r1) values of both complexes as well as of the loaded BGs, were higher or comparable to the relaxivity values of the clinically applied contrast agents gadopentetate dimeglumine and gadoteridol. CONCLUSION This research is the first assessment that demonstrates the potential of Gd(III) and Mn(II) complexes of Sal as theranostic agents for MRI. Due to the remarkable selectivity and mode of action of Sal as part of the compounds, they could revolutionize cancer therapy and allow for early diagnosis and monitoring of therapeutic follow-up.
Collapse
Affiliation(s)
- Irena Pashkunova-Martic
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Structural Preclinical Imaging, Preclinical Imaging Laboratory, Medical University of Vienna & General Hospital of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria
| | - Rositsa Kukeva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Akad. G. Bonchev Str., bl. 11, 1113 Sofia, Bulgaria
| | - Radostina Stoyanova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Akad. G. Bonchev Str., bl. 11, 1113 Sofia, Bulgaria
| | - Ivayla Pantcheva
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, J. Bourchier Blvd., 1, 1164 Sofia, Bulgaria
| | - Peter Dorkov
- Chemistry Department, R&D, BIOVET Ltd., 39 Peter Rakov Str., 4550 Peshtera, Bulgaria
| | - Joachim Friske
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Structural Preclinical Imaging, Preclinical Imaging Laboratory, Medical University of Vienna & General Hospital of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria
| | - Michaela Hejl
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Michael Jakupec
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Mariam Hohagen
- Department of Inorganic Chemistry—Functional Materials, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Anton Legin
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Werner Lubitz
- BIRD-C GmbH, Dr. Bohrgasse 2–8, 1030 Vienna, Austria
| | - Bernhard K. Keppler
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Thomas H. Helbich
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Structural Preclinical Imaging, Preclinical Imaging Laboratory, Medical University of Vienna & General Hospital of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria
| | - Juliana Ivanova
- Faculty of Medicine, Sofia University “St. Kliment Ohridski”, Kozjak Str., 1, 1407 Sofia, Bulgaria
| |
Collapse
|
15
|
Carneiro Neto AN, Moura RT, Carlos LD, Malta OL, Sanadar M, Melchior A, Kraka E, Ruggieri S, Bettinelli M, Piccinelli F. Dynamics of the Energy Transfer Process in Eu(III) Complexes Containing Polydentate Ligands Based on Pyridine, Quinoline, and Isoquinoline as Chromophoric Antennae. Inorg Chem 2022; 61:16333-16346. [PMID: 36201622 PMCID: PMC9580001 DOI: 10.1021/acs.inorgchem.2c02330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
In this work, we investigated from a theoretical point
of view
the dynamics of the energy transfer process from the ligand to Eu(III)
ion for 12 isomeric species originating from six different complexes
differing by nature of the ligand and the total charge. The cationic
complexes present the general formula [Eu(L)(H2O)2]+ (where L = bpcd2– = N,N′-bis(2-pyridylmethyl)-trans-1,2-diaminocyclohexane N,N′-diacetate;
bQcd2– = N,N′-bis(2-quinolinmethyl)-trans-1,2-diaminocyclohexane N,N′-diacetate; and bisoQcd2– = N,N′-bis(2-isoquinolinmethyl)-trans-1,2-diaminocyclohexane N,N′-diacetate), while the neutral complexes present
the Eu(L)(H2O)2 formula (where L = PyC3A3– = N-picolyl-N,N′,N′-trans-1,2-cyclohexylenediaminetriacetate; QC3A3– = N-quinolyl-N,N′,N′-trans-1,2-cyclohexylenediaminetriacetate;
and isoQC3A3– = N-isoquinolyl-N,N′,N′-trans-1,2-cyclohexylenediaminetriacetate).
Time-dependent density functional theory (TD-DFT) calculations provided
the energy of the ligand excited donor states, distances between donor
and acceptor orbitals involved in the energy transfer mechanism (RL), spin-orbit coupling matrix elements, and
excited-state reorganization energies. The intramolecular energy transfer
(IET) rates for both singlet-triplet intersystem crossing and ligand-to-metal
(and vice versa) involving a multitude of ligand and Eu(III) levels
and the theoretical overall quantum yields (ϕovl)
were calculated (the latter for the first time without the introduction
of experimental parameters). This was achieved using a blend of DFT,
Judd–Ofelt theory, IET theory, and rate equation modeling.
Thanks to this study, for each isomeric species, the most efficient
IET process feeding the Eu(III) excited state, its related physical
mechanism (exchange interaction), and the reasons for a better or
worse overall energy transfer efficiency (ηsens)
in the different complexes were determined. The spectroscopically
measured ϕovl values are in good agreement with the
ones obtained theoretically in this work. Photophysical properties of 12 Eu(III)
complexes with pyridine,
quinoline, and isoquinoline ligands in aqueous solutions were elucidated
and predicted through a theoretical protocol using a blend of DFT,
Judd−Ofelt theory, intramolecular energy transfer theory, and
coupled rate equation modeling calculations. The theoretical procedure
is general and can be extended to any lanthanide-based complexes.
Collapse
Affiliation(s)
- Albano N Carneiro Neto
- Physics Department and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193Aveiro, Portugal
| | - Renaldo T Moura
- Department of Chemistry and Physics, Federal University of Paraíba, 58397-000Areia, Brazil.,Department of Chemistry, Southern Methodist University, Dallas, Texas75275-0314, United States
| | - Luís D Carlos
- Physics Department and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193Aveiro, Portugal
| | - Oscar L Malta
- Department of Fundamental Chemistry, Federal University of Pernambuco, 50740-560Recife, Brazil
| | - Martina Sanadar
- Dipartimento Politecnico di Ingegneria e Architettura, Laboratorio di Tecnologie Chimiche, University of Udine, 33100Udine, Italy
| | - Andrea Melchior
- Dipartimento Politecnico di Ingegneria e Architettura, Laboratorio di Tecnologie Chimiche, University of Udine, 33100Udine, Italy
| | - Elfi Kraka
- Department of Chemistry, Southern Methodist University, Dallas, Texas75275-0314, United States
| | - Silvia Ruggieri
- Luminescent Materials Laboratory, Department of Biotechnology, University of Verona and INSTM, UdR Verona, 37134Verona, Italy
| | - Marco Bettinelli
- Luminescent Materials Laboratory, Department of Biotechnology, University of Verona and INSTM, UdR Verona, 37134Verona, Italy
| | - Fabio Piccinelli
- Luminescent Materials Laboratory, Department of Biotechnology, University of Verona and INSTM, UdR Verona, 37134Verona, Italy
| |
Collapse
|
16
|
Barandov A, Ghosh S, Jasanoff A. Probing nitric oxide signaling using molecular MRI. Free Radic Biol Med 2022; 191:241-248. [PMID: 36084790 PMCID: PMC10204116 DOI: 10.1016/j.freeradbiomed.2022.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022]
Abstract
Wide field measurements of nitric oxide (NO) signaling could help understand and diagnose the many physiological processes in which NO plays a key role. Magnetic resonance imaging (MRI) can support particularly powerful approaches for this purpose if equipped with molecular probes sensitized to NO and NO-associated targets. In this review, we discuss the development of MRI-detectable probes that could enable studies of nitrergic signaling in animals and potentially human subjects. Major families of probes include contrast agents designed to capture and report integrated NO levels directly, as well as molecules that respond to or emulate the activity of nitric oxide synthase enzymes. For each group, we outline the relevant molecular mechanisms and discuss results that have been obtained in vitro and in animals. The most promising in vivo data described to date have been acquired using NO capture-based relaxation agents and using engineered nitric oxide synthases that provide hemodynamic readouts of NO signaling pathway activation. These advances establish a beachhead for ongoing efforts to improve the sensitivity, specificity, and clinical applicability of NO-related molecular MRI technology.
Collapse
Affiliation(s)
- Ali Barandov
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Souparno Ghosh
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA; Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA; Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA.
| |
Collapse
|
17
|
Zoumpoulaki M, Schanne G, Delsuc N, Preud'homme H, Quévrain E, Eskenazi N, Gazzah G, Guillot R, Seksik P, Vinh J, Lobinski R, Policar C. Deciphering the Metal Speciation in Low‐Molecular‐Weight Complexes by IMS‐MS: Application to the Detection of Manganese Superoxide Dismutase Mimics in Cell Lysates. Angew Chem Int Ed Engl 2022; 61:e202203066. [DOI: 10.1002/anie.202203066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Martha Zoumpoulaki
- Laboratoire des biomolécules (LBM) Département de chimie École normale supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
- SMBP ESPCI Paris PSL University, UMR 8249 CNRS France
- Centre de Recherche de Saint-Antoine, INSERM, UMRS 938 Sorbonne University, INSERM 75012 Paris France
| | - Gabrielle Schanne
- Laboratoire des biomolécules (LBM) Département de chimie École normale supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
- Centre de Recherche de Saint-Antoine, INSERM, UMRS 938 Sorbonne University, INSERM 75012 Paris France
| | - Nicolas Delsuc
- Laboratoire des biomolécules (LBM) Département de chimie École normale supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
| | | | - Elodie Quévrain
- Laboratoire des biomolécules (LBM) Département de chimie École normale supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
| | | | - Géraldine Gazzah
- Laboratoire des biomolécules (LBM) Département de chimie École normale supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
| | - Regis Guillot
- ICMMO UMR CNRS 8182 Université Paris-Saclay 91405 Orsay France
| | - Philippe Seksik
- Centre de Recherche de Saint-Antoine, INSERM, UMRS 938 Sorbonne University, INSERM 75012 Paris France
- Gastroenterology Department Saint-Antoine Hospital Sorbonne Université, APHP Paris France
| | - Joelle Vinh
- SMBP ESPCI Paris PSL University, UMR 8249 CNRS France
| | - Ryszard Lobinski
- Universite de Pau, CNRS, E2S, IPREM-UMR5254, Hélioparc 64053 Pau France
- Chair of Analytical Chemistry Warsaw University of Technology, Noakowskiego 3 00-664 Warsaw Poland
| | - Clotilde Policar
- Laboratoire des biomolécules (LBM) Département de chimie École normale supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
| |
Collapse
|
18
|
Morrow JR, Raymond JJ, Chowdhury MSI, Sahoo PR. Redox-Responsive MRI Probes Based on First-Row Transition-Metal Complexes. Inorg Chem 2022; 61:14487-14499. [PMID: 36067522 DOI: 10.1021/acs.inorgchem.2c02197] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The presence of multiple oxidation and spin states of first-row transition-metal complexes facilitates the development of switchable MRI probes. Redox-responsive probes capitalize on a change in the magnetic properties of the different oxidation states of the paramagnetic metal ion center upon exposure to biological oxidants and reductants. Transition-metal complexes that are useful for MRI can be categorized according to whether they accelerate water proton relaxation (T1 or T2 agents), induce paramagnetic shifts of 1H or 19F resonances (paraSHIFT agents), or are chemical exchange saturation transfer (CEST) agents. The various oxidation state couples and their properties as MRI probes are summarized with a focus on Co(II)/Co(III) or Fe(II)/Fe(III) complexes as small molecules or as liposomal agents. Solution studies of these MRI probes are reviewed with an emphasis on redox changes upon treatment with oxidants or with enzymes that are physiologically important in inflammation and disease. Finally, we outline the challenges of developing these probes further for in vivo MRI applications.
Collapse
Affiliation(s)
- Janet R Morrow
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| | - Jaclyn J Raymond
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| | - Md Saiful I Chowdhury
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| | - Priya Ranjan Sahoo
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| |
Collapse
|
19
|
Uzal-Varela R, Pérez-Fernández F, Valencia L, Rodríguez-Rodríguez A, Platas-Iglesias C, Caravan P, Esteban-Gómez D. Thermodynamic Stability of Mn(II) Complexes with Aminocarboxylate Ligands Analyzed Using Structural Descriptors. Inorg Chem 2022; 61:14173-14186. [PMID: 35994514 PMCID: PMC9455602 DOI: 10.1021/acs.inorgchem.2c02364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We present a quantitative analysis of the thermodynamic
stabilities
of Mn(II) complexes, defined by the equilibrium constants (log KMnL values) and the values of pMn obtained as
−log[Mn]free for total metal and ligand concentrations
of 1 and 10 μM, respectively. We used structural descriptors
to analyze the contributions to complex stability of different structural
motifs in a quantitative way. The experimental log KMnL and pMn values can be predicted to a good accuracy
by adding the contributions of the different motifs present in the
ligand structure. This allowed for the identification of features
that provide larger contributions to complex stability, which will
be very helpful for the design of efficient chelators for Mn(II) complexation.
This issue is particularly important to develop Mn(II) complexes for
medical applications, for instance, as magnetic resonance imaging
(MRI) contrast agents. The analysis performed here also indicates
that coordination number eight is more common for Mn(II) than is generally
assumed, with the highest log KMnL values generally observed for hepta- and octadentate ligands. The
X-ray crystal structure of [Mn2(DOTA)(H2O)2], in which eight-coordinate [Mn(DOTA)]2– units are bridged by six-coordinate exocyclic Mn(II) ions, is also
reported. We present empirical relationships
that allow estimating
the log K and pMn values of Mn(II) complexes
relevant as contrast agents for magnetic resonance imaging (MRI).
The prediction of complex stability with these expressions relies
on structural descriptors, providing a very powerful tool to aid with
ligand design.
Collapse
Affiliation(s)
- Rocío Uzal-Varela
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia, Spain
| | - Francisco Pérez-Fernández
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia, Spain
| | - Laura Valencia
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Marcosende, 36310 Pontevedra, Spain
| | - Aurora Rodríguez-Rodríguez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia, Spain
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia, Spain
| | - Peter Caravan
- The Institute for Innovation in Imaging and the A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149, 13th Street, Suite 2301, Charlestown, Massachusetts 02129, United States
| | - David Esteban-Gómez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Galicia, Spain
| |
Collapse
|
20
|
Karbalaei S, Franke A, Jordan A, Rose C, Pokkuluri PR, Beyers RJ, Zahl A, Ivanović‐Burmazović I, Goldsmith CR. A Highly Water‐ and Air‐Stable Iron‐Containing MRI Contrast Agent Sensor for H
2
O
2. Chemistry 2022; 28:e202201179. [DOI: 10.1002/chem.202201179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Sana Karbalaei
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| | - Alicja Franke
- Department of Chemistry Ludwig-Maximilians-Universität München 81377 München Germany
| | - Aubree Jordan
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| | - Cayla Rose
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| | - P. Raj Pokkuluri
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| | - Ronald J. Beyers
- Auburn University Magnetic Resonance Imaging Research Center Auburn AL 36849 USA
| | - Achim Zahl
- Department of Chemistry and Pharmacy Friedrich-Alexander University Erlangen-Nuremberg 91058 Erlangen Germany
| | | | | |
Collapse
|
21
|
Deciphering the Metal Speciation in Low‐Molecular‐Weight Complexes by IMS‐MS: Application to the Detection of Manganese Superoxide Dismutase Mimics in Cell Lysates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Uselman TW, Medina CS, Gray HB, Jacobs RE, Bearer EL. Longitudinal manganese-enhanced magnetic resonance imaging of neural projections and activity. NMR IN BIOMEDICINE 2022; 35:e4675. [PMID: 35253280 PMCID: PMC11064873 DOI: 10.1002/nbm.4675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/19/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) holds exceptional promise for preclinical studies of brain-wide physiology in awake-behaving animals. The objectives of this review are to update the current information regarding MEMRI and to inform new investigators as to its potential. Mn(II) is a powerful contrast agent for two main reasons: (1) high signal intensity at low doses; and (2) biological interactions, such as projection tracing and neural activity mapping via entry into electrically active neurons in the living brain. High-spin Mn(II) reduces the relaxation time of water protons: at Mn(II) concentrations typically encountered in MEMRI, robust hyperintensity is obtained without adverse effects. By selectively entering neurons through voltage-gated calcium channels, Mn(II) highlights active neurons. Safe doses may be repeated over weeks to allow for longitudinal imaging of brain-wide dynamics in the same individual across time. When delivered by stereotactic intracerebral injection, Mn(II) enters active neurons at the injection site and then travels inside axons for long distances, tracing neuronal projection anatomy. Rates of axonal transport within the brain were measured for the first time in "time-lapse" MEMRI. When delivered systemically, Mn(II) enters active neurons throughout the brain via voltage-sensitive calcium channels and clears slowly. Thus behavior can be monitored during Mn(II) uptake and hyperintense signals due to Mn(II) uptake captured retrospectively, allowing pairing of behavior with neural activity maps for the first time. Here we review critical information gained from MEMRI projection mapping about human neuropsychological disorders. We then discuss results from neural activity mapping from systemic Mn(II) imaged longitudinally that have illuminated development of the tonotopic map in the inferior colliculus as well as brain-wide responses to acute threat and how it evolves over time. MEMRI posed specific challenges for image data analysis that have recently been transcended. We predict a bright future for longitudinal MEMRI in pursuit of solutions to the brain-behavior mystery.
Collapse
Affiliation(s)
- Taylor W. Uselman
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | | | - Harry B. Gray
- Beckman Institute, California Institute of Technology, Pasadena, California, USA
| | - Russell E. Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Elaine L. Bearer
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
- Beckman Institute, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
23
|
Karbalaei S, Goldsmith CR. Recent advances in the preclinical development of responsive MRI contrast agents capable of detecting hydrogen peroxide. J Inorg Biochem 2022; 230:111763. [DOI: 10.1016/j.jinorgbio.2022.111763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/10/2023]
|
24
|
Greenwood HE, Witney TH. Latest Advances in Imaging Oxidative Stress in Cancer. J Nucl Med 2021; 62:1506-1510. [PMID: 34353871 PMCID: PMC7611938 DOI: 10.2967/jnumed.120.256974] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress is the imbalance of harmful reactive oxygen species (ROS) and the action of neutralizing antioxidant mechanisms. If left unchecked, the deleterious effects of oxidative stress result in damage to DNA, proteins, and membranes, ultimately leading to cell death. Tumors are highly proliferative and consequently generate high levels of mitochondrial ROS. To compensate for this and maintain redox homeostasis, cancer cells upregulate protective antioxidant pathways, which are further amplified in drug-resistant tumors. This review provides an overview of the latest molecular imaging techniques designed to image oxidative stress in cancer. New probes can now assess heterogeneous ROS and antioxidant production within tumors and across lesions. Together, the noninvasive imaging of these dynamic processes holds great promise for monitoring response to treatment and predicting drug resistance and may provide insight into the metastatic potential of tumors.
Collapse
Affiliation(s)
- Hannah E Greenwood
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Timothy H Witney
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
25
|
Senft L, Moore JL, Franke A, Fisher KR, Scheitler A, Zahl A, Puchta R, Fehn D, Ison S, Sader S, Ivanović-Burmazović I, Goldsmith CR. Quinol-containing ligands enable high superoxide dismutase activity by modulating coordination number, charge, oxidation states and stability of manganese complexes throughout redox cycling. Chem Sci 2021; 12:10483-10500. [PMID: 34447541 PMCID: PMC8356818 DOI: 10.1039/d1sc02465e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/05/2021] [Indexed: 01/01/2023] Open
Abstract
Reactivity assays previously suggested that two quinol-containing MRI contrast agent sensors for H2O2, [Mn(H2qp1)(MeCN)]2+ and [Mn(H4qp2)Br2], could also catalytically degrade superoxide. Subsequently, [Zn(H2qp1)(OTf)]+ was found to use the redox activity of the H2qp1 ligand to catalyze the conversion of O2˙− to O2 and H2O2, raising the possibility that the organic ligand, rather than the metal, could serve as the redox partner for O2˙− in the manganese chemistry. Here, we use stopped-flow kinetics and cryospray-ionization mass spectrometry (CSI-MS) analysis of the direct reactions between the manganese-containing contrast agents and O2˙− to confirm the activity and elucidate the catalytic mechanism. The obtained data are consistent with the operation of multiple parallel catalytic cycles, with both the quinol groups and manganese cycling through different oxidation states during the reactions with superoxide. The choice of ligand impacts the overall charges of the intermediates and allows us to visualize complementary sets of intermediates within the catalytic cycles using CSI-MS. With the diquinolic H4qp2, we detect Mn(iii)-superoxo intermediates with both reduced and oxidized forms of the ligand, a Mn(iii)-hydroperoxo compound, and what is formally a Mn(iv)-oxo species with the monoquinolate/mono-para-quinone form of H4qp2. With the monoquinolic H2qp1, we observe a Mn(ii)-superoxo ↔ Mn(iii)-peroxo intermediate with the oxidized para-quinone form of the ligand. The observation of these species suggests inner-sphere mechanisms for O2˙− oxidation and reduction that include both the ligand and manganese as redox partners. The higher positive charges of the complexes with the reduced and oxidized forms of H2qp1 compared to those with related forms of H4qp2 result in higher catalytic activity (kcat ∼ 108 M−1 s−1 at pH 7.4) that rivals those of the most active superoxide dismutase (SOD) mimics. The manganese complex with H2qp1 is markedly more stable in water than other highly active non-porphyrin-based and even some Mn(ii) porphyrin-based SOD mimics. Manganese complexes with polydentate quinol-containing ligands are found to catalyze the degradation of superoxide through inner-sphere mechanisms. The redox activity of the ligand stabilizes higher-valent manganese species.![]()
Collapse
Affiliation(s)
- Laura Senft
- Department of Chemistry, Ludwig-Maximilian-University Butenandtstr. 5-13 D 81377 Munich Germany
| | - Jamonica L Moore
- Department of Chemistry and Biochemistry, Auburn University Auburn AL 36849 USA
| | - Alicja Franke
- Department of Chemistry, Ludwig-Maximilian-University Butenandtstr. 5-13 D 81377 Munich Germany
| | - Katherine R Fisher
- Department of Chemistry, Ludwig-Maximilian-University Butenandtstr. 5-13 D 81377 Munich Germany
| | - Andreas Scheitler
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg 91058 Erlangen Germany
| | - Achim Zahl
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg 91058 Erlangen Germany
| | - Ralph Puchta
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg 91058 Erlangen Germany
| | - Dominik Fehn
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg 91058 Erlangen Germany
| | - Sidney Ison
- Department of Chemistry and Biochemistry, Auburn University Auburn AL 36849 USA
| | - Safaa Sader
- Department of Chemistry and Biochemistry, Auburn University Auburn AL 36849 USA
| | | | | |
Collapse
|
26
|
Karbalaei S, Knecht E, Franke A, Zahl A, Saunders AC, Pokkuluri PR, Beyers RJ, Ivanović-Burmazović I, Goldsmith CR. A Macrocyclic Ligand Framework That Improves Both the Stability and T1-Weighted MRI Response of Quinol-Containing H 2O 2 Sensors. Inorg Chem 2021; 60:8368-8379. [PMID: 34042423 DOI: 10.1021/acs.inorgchem.1c00896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Previously prepared Mn(II)- and quinol-containing magnetic resonance imaging (MRI) contrast agent sensors for H2O2 relied on linear polydentate ligands to keep the redox-activatable quinols in close proximity to the manganese. Although these provide positive T1-weighted relaxivity responses to H2O2 that result from oxidation of the quinol groups to p-quinones, these reactions weaken the binding affinity of the ligands, promoting dissociation of Mn(II) from the contrast agent in aqueous solution. Here, we report a new ligand, 1,8-bis(2,5-dihydroxybenzyl)-1,4,8,11-tetraazacyclotetradecane, that consists of two quinols covalently tethered to a cyclam macrocycle. The macrocycle provides stronger thermodynamic and kinetic barriers for metal-ion dissociation in both the reduced and oxidized forms of the ligand. The Mn(II) complex reacts with H2O2 to produce a more highly aquated Mn(II) species that exhibits a 130% greater r1, quadrupling the percentile response of our next best sensor. With a large excess of H2O2, there is a noticeable induction period before quinol oxidation and r1 enhancement occurs. Further investigation reveals that, under such conditions, catalase activity initially outcompetes ligand oxidation, with the latter occurring only after most of the H2O2 has been depleted.
Collapse
Affiliation(s)
- Sana Karbalaei
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Erik Knecht
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Alicja Franke
- Department of Chemistry, Ludwig-Maximilians-Universität München. Butenandtstrasse 5-13, Haus D 81377 München, Germany
| | - Achim Zahl
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Alexander C Saunders
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - P Raj Pokkuluri
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Ronald J Beyers
- Magnetic Resonance Imaging Research Center, Auburn University, Auburn, Alabama 36849, United States
| | - Ivana Ivanović-Burmazović
- Department of Chemistry, Ludwig-Maximilians-Universität München. Butenandtstrasse 5-13, Haus D 81377 München, Germany
| | - Christian R Goldsmith
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
27
|
Asik D, Abozeid SM, Turowski SG, Spernyak JA, Morrow JR. Dinuclear Fe(III) Hydroxypropyl-Appended Macrocyclic Complexes as MRI Probes. Inorg Chem 2021; 60:8651-8664. [PMID: 34110140 PMCID: PMC9942924 DOI: 10.1021/acs.inorgchem.1c00634] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Four high-spin Fe(III) macrocyclic complexes, including three dinuclear and one mononuclear complex, were prepared toward the development of more effective iron-based magnetic resonance imaging (MRI) contrast agents. All four complexes contain a 1,4,7-triazacyclononane macrocyclic backbone with two hydroxypropyl pendant groups, an ancillary aryl or biphenyl group, and a coordination site for a water ligand. The pH potentiometric titrations support one or two deprotonations of the complexes, most likely deprotonation of hydroxypropyl groups at near-neutral pH. Variable-temperature 17O NMR studies suggest that the inner-sphere water ligand is slow to exchange with bulk water on the NMR time scale. Water proton T1 relaxation times measured for solutions of the Fe(III) complexes at pH 7.2 showed that the dinuclear complexes have a 2- to 3-fold increase in r1 relaxivity in comparison to the mononuclear complex per molecule at field strengths ranging from 1.4 T to 9.4 T. The most effective agent, a dinuclear complex with macrocycles linked through para-substitution of an aryl group (Fe2(PARA)), has an r1 of 6.7 mM-1 s-1 at 37 °C and 4.7 T or 3.3 mM-1 s-1 per iron center in the presence of serum albumin and shows enhanced blood pool and kidney contrast in mice MRI studies.
Collapse
Affiliation(s)
- Didar Asik
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, New York 14260, United States
| | - Samira M. Abozeid
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, New York 14260, United States
| | - Steven G. Turowski
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, New York 14263 United States
| | - Joseph A. Spernyak
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, New York 14263 United States
| | - Janet R. Morrow
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, New York 14260, United States
| |
Collapse
|
28
|
The Design of Abnormal Microenvironment Responsive MRI Nanoprobe and Its Application. Int J Mol Sci 2021; 22:ijms22105147. [PMID: 34067989 PMCID: PMC8152268 DOI: 10.3390/ijms22105147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023] Open
Abstract
Magnetic resonance imaging (MRI) is often used to diagnose diseases due to its high spatial, temporal and soft tissue resolution. Frequently, probes or contrast agents are used to enhance the contrast in MRI to improve diagnostic accuracy. With the development of molecular imaging techniques, molecular MRI can be used to obtain 3D anatomical structure, physiology, pathology, and other relevant information regarding the lesion, which can provide an important reference for the accurate diagnosis and treatment of the disease in the early stages. Among existing contrast agents, smart or activatable nanoprobes can respond to selective stimuli, such as proving the presence of acidic pH, active enzymes, or reducing environments. The recently developed environment-responsive or smart MRI nanoprobes can specifically target cells based on differences in the cellular environment and improve the contrast between diseased tissues and normal tissues. Here, we review the design and application of these environment-responsive MRI nanoprobes.
Collapse
|
29
|
De Rosa C, Melchior A, Sanadar M, Tolazzi M, Duerkop A, Piccinelli F. Isoquinoline-based Eu(iii) luminescent probes for citrate sensing in complex matrix. Dalton Trans 2021; 50:4700-4712. [PMID: 33729252 DOI: 10.1039/d1dt00511a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A neutral Eu(iii) complex containing the S,S enantiomer of isoQC3A3- ligand (isoQC3A3- = N-isoquinolyl-N,N',N'-trans-l,2-cyclohexylenediaminetriacetate) was synthesized and characterized. The complex was spectroscopically investigated and the results compared with those obtained for the similar bis-anionic ligand bisoQcd2- (bisoQcd2- = N,N'-bis(2-isoquinolinmethyl)-trans-1,2-diaminocyclohexane N,N'-diacetate). Both Eu(iii)-complexes show similar binding constants upon titration with the main analytes contained in interstitial extracellular fluid (i.e. hydrogen carbonate, serum albumin and citrate). However, the analyte affinity is accompanied by different enhancements of the Eu(iii) intrinsic quantum yield (QY). Structures and hydration numbers of the complexes are determined by luminescence decay measurements and DFT calculations. The QYs as well as the binding constants of the individual adducts of the complexes with hydrogen carbonate, bovine serum albumin (BSA) and citrate are determined. The study of the Eu(iii) emission upon the systematic variation of one analyte in a complex mixture has been carried out to predict the performance of the luminescent sensor in conditions close to the real extracellular environment. Both Eu(iii) complexes can detect citrate at extracellular concentrations up to 500 μM, even at millimolar concentrations of the other interfering species. In the case of the Eu(bisoQcd)OTf complex, an increase of 23% of the Eu(iii) luminescence intensity at 615 nm upon addition of 0.3 mM of citrate was recorded. This feature makes the latter complex a viable probe for luminescence analysis of citrate in a complex matrix.
Collapse
Affiliation(s)
- Chiara De Rosa
- Luminescent Materials Laboratory, DB, Università di Verona, and INSTM, UdR Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | | | | | | | | | | |
Collapse
|
30
|
Bailey MD, Jin GX, Carniato F, Botta M, Allen MJ. Rational Design of High-Relaxivity Eu II -Based Contrast Agents for Magnetic Resonance Imaging of Low-Oxygen Environments. Chemistry 2021; 27:3114-3118. [PMID: 33226696 PMCID: PMC7902434 DOI: 10.1002/chem.202004450] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/21/2020] [Indexed: 01/01/2023]
Abstract
Metal-based contrast agents for magnetic resonance imaging present a promising avenue to image hypoxia. EuII -based contrast agents have a unique biologically relevant redox couple, EuII/III , that distinguishes this metal for use in hypoxia imaging. To that end, we investigated a strategy to enhance the contrast-enhancing capabilities of EuII -based cryptates in magnetic resonance imaging by controlling the rotational dynamics. Two dimetallic, EuII -containing cryptates were synthesized to test the efficacy of rigid versus flexible coupling strategies. A flexible strategy to dimerization led to a modest (114 %) increase in contrast enhancement per Eu ion (60 MHz, 298 K), but a rigid linking strategy led to an excellent (186 %) increase in contrast enhancement despite this compound's having the smaller molecular mass of the two dimetallic complexes. We envision the rigid linking strategy to be useful in the future design of potent EuII -based contrast agents for magnetic resonance imaging.
Collapse
Affiliation(s)
- Matthew D Bailey
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Guo-Xia Jin
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "Amedeo Avogadro", Viale T. Michel 11, 15121, Alessandria, Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "Amedeo Avogadro", Viale T. Michel 11, 15121, Alessandria, Italy
| | - Matthew J Allen
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| |
Collapse
|
31
|
Porcar-Tost O, Pallier A, Esteban-Gómez D, Illa O, Platas-Iglesias C, Tóth É, Ortuño RM. Stability, relaxometric and computational studies on Mn 2+ complexes with ligands containing a cyclobutane scaffold. Dalton Trans 2021; 50:1076-1085. [PMID: 33367361 DOI: 10.1039/d0dt03402a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stability constants of Mn2+ complexes with ligands containing a trans-1,2-cyclobutanediamine spacer functionalized with picolinate and/or carboxylate functions were determined using potentiometric titrations (25 °C, 0.1 M KCl). The stability constant of the complex with a hexadentate ligand containing four acetate groups (L14-, log KMnL = 10.26) is improved upon replacing one (L24-, log KMnL = 14.71) or two (L34-, log KMnL = 15.81) carboxylate groups with picolinates. The [Mn(L1)]2- complex contains a water molecule coordinated to the metal ion in aqueous solutions, as evidenced by 1H NMRD studies and 17O chemical shifts and transverse relaxation rates. The 1H relaxivities determined at 60 MHz (3.3 and 2.4 mM-1 s-1 at 25 and 37 °C, respectively) are comparable to those of monohydrated complexes such as [Mn(edta)]2-. The exchange rate of the inner-sphere water molecule (k = 248 × 106 s-1) is slightly lower than that of the edta4- analogue. DFT calculations (M11/def2-TZVP) suggest that the water exchange reaction follows a dissociatively activated mechanism, providing activation parameters in reasonably good agreement with the experimental data. DFT calculations also show that the 17O hyperfine coupling constant A/ℏ is affected slightly by changes in the Mn-Owater distance and the orientation of the water molecule with respect to the Mn-O vector.
Collapse
Affiliation(s)
- Oriol Porcar-Tost
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Molecular magnetic resonance (MR) imaging utilizes molecular probes to provide added biochemical or cellular information to what can already be achieved with anatomical and functional MR imaging. This review provides an overview of molecular MR and focuses specifically on molecular MR contrast agents that provide contrast by shortening the T1 time. We describe the requirements for a successful molecular MR contrast agent and the challenges for clinical translation. The review highlights work from the last 5 years and places an emphasis on new contrast agents that have been validated in multiple preclinical models. Applications of molecular MR include imaging of inflammation, fibrosis, fibrogenesis, thromboembolic disease, and cancers. Molecular MR is positioned to move beyond detection of disease to the quantitative staging of disease and measurement of treatment response.
Collapse
Affiliation(s)
| | | | - Peter Caravan
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
33
|
Wang H, Wong A, Lewis LC, Nemeth GR, Jordan VC, Bacon JW, Caravan P, Shafaat HS, Gale EM. Rational Ligand Design Enables pH Control over Aqueous Iron Magnetostructural Dynamics and Relaxometric Properties. Inorg Chem 2020; 59:17712-17721. [PMID: 33216537 DOI: 10.1021/acs.inorgchem.0c02923] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Complexes of Fe3+ engage in rich aqueous solution speciation chemistry in which discrete molecules can react with solvent water to form multinuclear μ-oxo and μ-hydroxide bridged species. Here we demonstrate how pH- and concentration-dependent equilibration between monomeric and μ-oxo-bridged dimeric Fe3+ complexes can be controlled through judicious ligand design. We purposed this chemistry to develop a first-in-class Fe3+-based MR imaging probe, Fe-PyCy2AI, that undergoes relaxivity change via pH-mediated control of monomer vs dimer speciation. The monomeric complex exists in a S = 5/2 configuration capable of inducing efficient T1-relaxation, whereas the antiferromagnetically coupled dimeric complex is a much weaker relaxation agent. The mechanisms underpinning the pH dependence on relaxivity were interrogated by using a combination of pH potentiometry, 1H and 17O relaxometry, electronic absorption spectroscopy, bulk magnetic susceptibility, electron paramagnetic resonance spectroscopy, and X-ray crystallography measurements. Taken together, the data demonstrate that PyCy2AI forms a ternary complex with high-spin Fe3+ and a rapidly exchanging water coligand, [Fe(PyCy2AI)(H2O)]+ (ML), which can deprotonate to form the high-spin complex [Fe(PyCy2AI)(OH)] (ML(OH)). Under titration conditions of 7 mM Fe complex, water coligand deprotonation occurs with an apparent pKa 6.46. Complex ML(OH) dimerizes to form the antiferromagnetically coupled dimeric complex [(Fe(PyCy2AI))2O] ((ML)2O) with an association constant (Ka) of 5.3 ± 2.2 mM-1. The relaxivity of the monomeric complexes are between 7- and 18-fold greater than the antiferromagnetically coupled dimer at applied field strengths ranging between 1.4 and 11.7 T. ML(OH) and (ML)2O interconvert rapidly within the pH 6.0-7.4 range that is relevant to human pathophysiology, resulting in substantial observed relaxivity change. Controlling Fe3+ μ-oxo bridging interactions through rational ligand design and in response to local chemical environment offers a robust mechanism for biochemically responsive MR signal modulation.
Collapse
Affiliation(s)
| | | | - Luke C Lewis
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | | | | | - Jeffrey W Bacon
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | | | - Hannah S Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | | |
Collapse
|
34
|
Li Y, Zhang H, Guo C, Hu G, Wang L. Multiresponsive Nanoprobes for Turn-On Fluorescence/19F MRI Dual-Modal Imaging. Anal Chem 2020; 92:11739-11746. [DOI: 10.1021/acs.analchem.0c01786] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yawei Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hecheng Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Chang Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Gaofei Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
35
|
Wu C, Chen T, Deng L, Xia Q, Chen C, Lan M, Pu Y, Tang H, Xu Y, Zhu J, Xu C, Shen C, Zhang X. Mn(ii) chelate-coated superparamagnetic iron oxide nanocrystals as high-efficiency magnetic resonance imaging contrast agents. NANOSCALE ADVANCES 2020; 2:2752-2757. [PMID: 36132378 PMCID: PMC9416939 DOI: 10.1039/d0na00117a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/15/2020] [Indexed: 06/15/2023]
Abstract
In this communication, a paramagnetic bifunctional manganese(ii) chelate ([Mn(Dopa-EDTA)]2-) containing a catechol group is designed and synthesized. The catechol can bind iron ions on the surface of superparamagnetic iron oxide (SPIO) nanocrystals to form core-shell nanoparticles. Both 4 and 7 nm SPIO@[Mn(Dopa-EDTA)]2- show good water solubility, single-crystal dispersion, and low cytotoxicity. The study of the interplay between the longitudinal and transverse relaxation revealed that 4 nm SPIO@[Mn(Dopa-EDTA)]2- with lower r 2/r 1 = 1.75 at 0.5 T tends to be a perfect T 1 contrast agent while 7 nm SPIO@[Mn(Dopa-EDTA)]2- with a higher r 2/r 1 = 15.0 at 3.0 T tends to be a T 2 contrast agent. Interestingly, 4 nm SPIO@[Mn(Dopa-EDTA)]2- with an intermediate value of r 2/r 1 = 5.26 at 3.0 T could act as T 1-T 2 dual-modal contrast agent. In vivo imaging with the 4 nm SPIO@[Mn(Dopa-EDTA)]2- nanoparticle shows unique imaging features: (1) long-acting vascular imaging and different signal intensity changes between the liver parenchyma and blood vessels with the CEMRA sequence; (2) the synergistic contrast enhancement of hepatic imaging with the T 1WI and T 2WI sequence. In summary, these Fe/Mn hybrid core-shell nanoparticles, with their ease of synthesis, good biocompatibility, and synergistic contrast enhancement ability, may provide a useful method for tissue and vascular MR imaging.
Collapse
Affiliation(s)
- Changqiang Wu
- Sichuan Key Laboratory of Medical Imaging and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
| | - Tianwu Chen
- Sichuan Key Laboratory of Medical Imaging and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
| | - Lihua Deng
- Sichuan Key Laboratory of Medical Imaging and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
- Department of Radiology, First People's Hospital of Neijiang Neijiang 641000 China
| | - Qian Xia
- Sichuan Key Laboratory of Medical Imaging and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
| | - Chuan Chen
- School of Pharmacy, North Sichuan Medical College Nanchong 637000 China
| | - Mu Lan
- Sichuan Key Laboratory of Medical Imaging and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
| | - Yu Pu
- Sichuan Key Laboratory of Medical Imaging and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
| | - Hongjie Tang
- Department of Radiology, Nanchong Hospital of Traditional Chinese Medicine Nanchong 637000 China
| | - Ye Xu
- Department of Radiology, Children's Hospital of Chongqing Medical University Chongqing 401122 China
| | - Jiang Zhu
- Sichuan Key Laboratory of Medical Imaging and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
- School of Pharmacy, North Sichuan Medical College Nanchong 637000 China
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore
| | - Chengyi Shen
- Sichuan Key Laboratory of Medical Imaging and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
| | - Xiaoming Zhang
- Sichuan Key Laboratory of Medical Imaging and School of Medical Imaging, Affiliated Hospital of North Sichuan Medical College Nanchong 637000 China
| |
Collapse
|
36
|
Gupta A, Caravan P, Price WS, Platas-Iglesias C, Gale EM. Applications for Transition-Metal Chemistry in Contrast-Enhanced Magnetic Resonance Imaging. Inorg Chem 2020; 59:6648-6678. [PMID: 32367714 DOI: 10.1021/acs.inorgchem.0c00510] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Contrast-enhanced magnetic resonance imaging (MRI) is an indispensable tool for diagnostic medicine. However, safety concerns related to gadolinium in commercial MRI contrast agents have emerged in recent years. For patients suffering from severe renal impairment, there is an important unmet medical need to perform contrast-enhanced MRI without gadolinium. There are also concerns over the long-term effects of retained gadolinium within the general patient population. Demand for gadolinium-free MRI contrast agents is driving a new wave of inorganic chemistry innovation as researchers explore paramagnetic transition-metal complexes as potential alternatives. Furthermore, advances in personalized care making use of molecular-level information have motivated inorganic chemists to develop MRI contrast agents that can detect pathologic changes at the molecular level. Recent studies have highlighted how reaction-based modulation of transition-metal paramagnetism offers a highly effective mechanism to achieve MRI contrast enhancement that is specific to biochemical processes. This Viewpoint highlights how recent advances in transition-metal chemistry are leading the way for a new generation of MRI contrast agents.
Collapse
Affiliation(s)
- Abhishek Gupta
- Nanoscale Organisation and Dynamics Group, School of Science and Health, Western Sydney University, Penrith, New South Wales 2751, Australia.,Ingham Institute of Applied Medical Research, Liverpool, New South Wales 2170, Australia
| | | | - William S Price
- Nanoscale Organisation and Dynamics Group, School of Science and Health, Western Sydney University, Penrith, New South Wales 2751, Australia.,Ingham Institute of Applied Medical Research, Liverpool, New South Wales 2170, Australia
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, Galicia 15071, Spain
| | | |
Collapse
|
37
|
Hutchinson TE, Bashir A, Yu M, Beyers RJ, Goldsmith CR. An overly anionic metal coordination environment eliminates the T-weighted response of quinol-containing MRI contrast agent sensors to H2O2. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Akakuru OU, Iqbal MZ, Saeed M, Liu C, Paunesku T, Woloschak G, Hosmane NS, Wu A. The Transition from Metal-Based to Metal-Free Contrast Agents for T1 Magnetic Resonance Imaging Enhancement. Bioconjug Chem 2019; 30:2264-2286. [PMID: 31380621 DOI: 10.1021/acs.bioconjchem.9b00499] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Magnetic resonance imaging (MRI) has received significant attention as the noninvasive diagnostic technique for complex diseases. Image-guided therapeutic strategy for diseases such as cancer has also been at the front line of biomedical research, thanks to the innovative MRI, enhanced by the prior delivery of contrast agents (CAs) into patients' bodies through injection. These CAs have contributed a great deal to the clinical utility of MRI but have been based on metal-containing compounds such as gadolinium, manganese, and iron oxide. Some of these CAs have led to cytotoxicities such as the incurable Nephrogenic Systemic Fibrosis (NSF), resulting in their removal from the market. On the other hand, CAs based on organic nitroxide radicals, by virtue of their structural composition, are metal free and without the aforementioned drawbacks. They also have improved biocompatibility, ease of functionalization, and long blood circulation times, and have been proven to offer tissue contrast enhancement with longitudinal relaxivities comparable with those for the metal-containing CAs. Thus, this Review highlights the recent progress in metal-based CAs and their shortcomings. In addition, the remarkable goals achieved by the organic nitroxide radical CAs in the enhancement of MR images have also been discussed extensively. The focal point of this Review is to emphasize or demonstrate the crucial need for transition into the use of organic nitroxide radicals-metal-free CAs-as against the metal-containing CAs, with the aim of achieving safer application of MRI for early disease diagnosis and image-guided therapy.
Collapse
Affiliation(s)
- Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China.,University of Chinese Academy of Sciences , No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , P.R. China
| | - M Zubair Iqbal
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China.,Department of Materials Engineering, College of Materials and Textiles , Zhejiang Sci-Tech University , No. 2 Road of Xiasha , Hangzhou 310018 , P.R. China
| | - Madiha Saeed
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China.,University of Chinese Academy of Sciences , No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , P.R. China
| | - Chuang Liu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China.,University of Chinese Academy of Sciences , No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , P.R. China
| | - Tatjana Paunesku
- Department of Radiation Oncology , Northwestern University , Chicago , Illinois 60611 , United States
| | - Gayle Woloschak
- Department of Radiation Oncology , Northwestern University , Chicago , Illinois 60611 , United States
| | - Narayan S Hosmane
- Department of Chemistry and Biochemistry , Northern Illinois University , DeKalb , Illinois 60115 , United States
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China
| |
Collapse
|
39
|
Pinto SM, Tomé V, Calvete MJ, Castro MMC, Tóth É, Geraldes CF. Metal-based redox-responsive MRI contrast agents. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
40
|
Abstract
Mn(II) has several favorable physicochemical characteristics and a good toxicity profile, which makes it a viable alternative to the Gd(III)-based MRI contrast agents currently used in clinics. Although many studies have been undertaken in the last 10 years, this is a field of investigation still in rapid and continuous development. This review aims to critically discuss the chemical and magnetic properties of Mn(II) compounds relevant as MRI probes, both small complexes and nanosystems containing a large number of metal centers, the possible approaches for optimizing their efficiency by understanding the role of various molecular parameters that control the relaxation processes, and the most important issues related to stability and kinetic inertness.
Collapse
|
41
|
Wang H, Jordan VC, Ramsay IA, Sojoodi M, Fuchs BC, Tanabe KK, Caravan P, Gale EM. Molecular Magnetic Resonance Imaging Using a Redox-Active Iron Complex. J Am Chem Soc 2019; 141:5916-5925. [PMID: 30874437 PMCID: PMC6726119 DOI: 10.1021/jacs.9b00603] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We introduce a redox-active iron complex, Fe-PyC3A, as a biochemically responsive MRI contrast agent. Switching between Fe3+-PyC3A and Fe2+-PyC3A yields a full order of magnitude relaxivity change that is field-independent between 1.4 and 11.7 T. The oxidation of Fe2+-PyC3A to Fe3+-PyC3A by hydrogen peroxide is very rapid, and we capitalized on this behavior for the molecular imaging of acute inflammation, which is characterized by elevated levels of reactive oxygen species. Injection of Fe2+-PyC3A generates strong, selective contrast enhancement of inflamed pancreatic tissue in a mouse model (caerulein/LPS model). No significant signal enhancement is observed in normal pancreatic tissue (saline-treated mice). Importantly, signal enhancement of the inflamed pancreas correlates strongly and significantly with ex vivo quantitation of the pro-inflammatory biomarker myeloperoxidase. This is the first example of using metal ion redox for the MR imaging of pathologic change in vivo. Redox-active Fe3+/2+ complexes represent a new design paradigm for biochemically responsive MRI contrast agents.
Collapse
Affiliation(s)
- Huan Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States
| | - Veronica Clavijo Jordan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Ian A. Ramsay
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States
| | - Mozhdeh Sojoodi
- Division of Surgical Oncology, Massachusetts General Hospital/Harvard Medical School, WRN401, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Bryan C. Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital/Harvard Medical School, WRN401, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Kenneth K. Tanabe
- Division of Surgical Oncology, Massachusetts General Hospital/Harvard Medical School, WRN401, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
42
|
Corbin BA, Pollard AC, Allen MJ, Pagel MD. Summary of Imaging in 2020: Visualizing the Future of Healthcare with MR Imaging. Mol Imaging Biol 2019; 21:193-199. [PMID: 30680525 PMCID: PMC6450763 DOI: 10.1007/s11307-019-01315-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Imaging in 2020 meeting convenes biannually to discuss innovations in medical imaging. The 2018 meeting, titled "Visualizing the Future of Healthcare with MR Imaging," sought to encourage discussions of the future goals of MRI research, feature important discoveries, and foster scientific discourse between scientists from a variety of fields of expertise. Here, we highlight presented research and resulting discussions of the meeting.
Collapse
Affiliation(s)
- Brooke A Corbin
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, USA
| | - Alyssa C Pollard
- Department of Chemistry, Rice University, 6100 S Main Street, Houston, TX, USA
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, TX, USA
| | - Matthew J Allen
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, USA.
| | - Mark D Pagel
- Department of Chemistry, Rice University, 6100 S Main Street, Houston, TX, USA.
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, TX, USA.
| |
Collapse
|
43
|
Pujales-Paradela R, Carniato F, Esteban-Gómez D, Botta M, Platas-Iglesias C. Controlling water exchange rates in potential Mn 2+-based MRI agents derived from NO2A 2. Dalton Trans 2019; 48:3962-3972. [PMID: 30834411 DOI: 10.1039/c9dt00211a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report a series of pentadentate ligands based on a 1,4,7-triazacyclononane-1,4-diacetic acid (H2NO2A) containing different substituents attached to the third nitrogen atom of the macrocyclic unit. Detailed 1H Nuclear Magnetic Relaxation Dispersion (NMRD) characterisation of the corresponding Mn2+ complexes suggests the formation of six-coordinate species in solution containing an inner-sphere water molecule. This was confirmed by recording the transverse 17O relaxation time and chemical shift measurements. The water exchange rate of the coordinated water molecule was found to be strongly influenced by the nature of the substituent R at position 7 of the triazacyclononane unit (R = Me, k298ex = 62.6 × 107 s-1; R = Bz, k298ex = 4.4 × 107 s-1; R = 1-phenylethyl, k298ex = 2.6 × 107 s-1). The decreasing exchange rates are explained by the increasing bulkiness of the substituent, which hinders the approach of the entering water molecule in an associatively activated water exchange mechanism. This is supported by DFT calculations (M062X/TZVP), which confirm the associative nature of the water exchange reaction. A potentially decadentate ligand containing two NO2A units linked by a xylenyl spacer in the meta position was also synthesised. The corresponding binuclear Mn2+ complex contains two metal ions with different hydration numbers, as evidenced by 1H NMRD and 17O NMR measurements. DFT calculations show that this is related to the presence of a bridging bidentate μ-η1-carboxylate group connecting the two metal centers. The results reported in this work provide a straightforward strategy to control the exchange rate of the coordinated water molecule in this family of MRI contrast agent candidates.
Collapse
Affiliation(s)
- Rosa Pujales-Paradela
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| | | | | | | | | |
Collapse
|
44
|
Accelerated 19F·MRI Detection of Matrix Metalloproteinase-2/-9 through Responsive Deactivation of Paramagnetic Relaxation Enhancement. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:4826520. [PMID: 30944549 PMCID: PMC6421815 DOI: 10.1155/2019/4826520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/10/2018] [Indexed: 01/12/2023]
Abstract
Paramagnetic gadolinium ions (GdIII), complexed within DOTA-based chelates, have become useful tools to increase the magnetic resonance imaging (MRI) contrast in tissues of interest. Recently, "on/off" probes serving as 19F·MRI biosensors for target enzymes have emerged that utilize the increase in transverse (T 2 ∗ or T 2) relaxation times upon cleavage of the paramagnetic GdIII centre. Molecular 19F·MRI has the advantage of high specificity due to the lack of background signal but suffers from low signal intensity that leads to low spatial resolution and long recording times. In this work, an "on/off" probe concept is introduced that utilizes responsive deactivation of paramagnetic relaxation enhancement (PRE) to generate 19F longitudinal (T 1) relaxation contrast for accelerated molecular MRI. The probe concept is applied to matrix metalloproteinases (MMPs), a class of enzymes linked with many inflammatory diseases and cancer that modify bioactive extracellular substrates. The presence of these biomarkers in extracellular space makes MMPs an accessible target for responsive PRE deactivation probes. Responsive PRE deactivation in a 19F biosensor probe, selective for MMP-2 and MMP-9, is shown to enable molecular MRI contrast at significantly reduced experimental times compared to previous methods. PRE deactivation was caused by MMP through cleavage of a protease substrate that served as a linker between the fluorine-containing moiety and a paramagnetic GdIII-bound DOTA complex. Ultrashort echo time (UTE) MRI and, alternatively, short echo times in standard gradient echo (GE) MRI were employed to cope with the fast 19F transverse relaxation of the PRE active probe in its "on-state." Upon responsive PRE deactivation, the 19F·MRI signal from the "off-state" probe diminished, thereby indicating the presence of the target enzyme through the associated negative MRI contrast. Null point 1H·MRI, obtainable within a short time course, was employed to identify false-positive 19F·MRI responses caused by dilution of the contrast agent.
Collapse
|
45
|
Pujales‐Paradela R, Savić T, Esteban‐Gómez D, Angelovski G, Carniato F, Botta M, Platas‐Iglesias C. Gadolinium(III)‐Based Dual1H/19F Magnetic Resonance Imaging Probes. Chemistry 2019; 25:4782-4792. [DOI: 10.1002/chem.201806192] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Rosa Pujales‐Paradela
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento, de QuímicaFacultade de CienciasUniversidade da Coruña 15071 A Coruña Galicia Spain
| | - Tanja Savić
- MR Neuroimaging AgentsMax Planck Institute for Biological Cybernetics Tübingen Germany
| | - David Esteban‐Gómez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento, de QuímicaFacultade de CienciasUniversidade da Coruña 15071 A Coruña Galicia Spain
| | - Goran Angelovski
- MR Neuroimaging AgentsMax Planck Institute for Biological Cybernetics Tübingen Germany
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione TecnologicaUniversità del Piemonte Orientale “A. Avogadro” Viale T. Michel 11 15121 Alessandria Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione TecnologicaUniversità del Piemonte Orientale “A. Avogadro” Viale T. Michel 11 15121 Alessandria Italy
| | - Carlos Platas‐Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento, de QuímicaFacultade de CienciasUniversidade da Coruña 15071 A Coruña Galicia Spain
| |
Collapse
|
46
|
Piccinelli F, De Rosa C, Melchior A, Faura G, Tolazzi M, Bettinelli M. Eu(iii) and Tb(iii) complexes of 6-fold coordinating ligands showing high affinity for the hydrogen carbonate ion: a spectroscopic and thermodynamic study. Dalton Trans 2019; 48:1202-1216. [PMID: 30460363 DOI: 10.1039/c8dt03621g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In the present contribution, four classes of Ln(iii) complexes (Ln = Eu and Tb) have been synthesized and characterized in aqueous solution. They differ by charge, Ln(bpcd)+ [bpcd2- = N,N'-bis(2-pyridylmethyl)-trans-1,2-diaminocyclohexane N,N'-diacetate] and Ln(bQcd)+ (bQcd2- = N,N'-bis(2-quinolinmethyl)-trans-1,2-diaminocyclohexane N,N'-diacetate) being positively charged and Ln(PyC3A) (PyC3A3- = N-picolyl-N,N',N'-trans-l,2-cyclohexylenediaminetriacetate) and Ln(QC3A) (QC3A3- = N-quinolyl-N,N',N'-trans-l,2-cyclohexylenediaminetriacetate) being neutral. Combined DFT, spectrophotometric and potentiometric studies reveal the presence, under physiological conditions (pH 7.4), of a couple of equally and highly stable isomers differing by the stereochemistry of the ligands (trans-N,N and trans-O,O for bpcd2- and bQcd2-; trans-O,O and trans-N,O for PyC3A3- and QC3A3-). Their high log β values (9.97 < log β < 15.68), the presence of an efficient antenna effect and the strong increase of the Ln(iii) luminescence intensity as a function of the hydrogen carbonate concentration in physiological solution, render these complexes as very promising optical probes for a selective detection of HCO3-in cellulo or in extracellular fluid. This particularly applies to the cationic Eu(bpcd)+, Tb(bpcd)+ and Eu(bQcd)+ complexes, which are capable of guesting up to two hydrogen carbonate anions in the inner coordination sphere of the metal ion, so that they show an unprecedented affinity towards HCO3- (log K for the formation of the adduct in the 4.6-5.9 range).
Collapse
Affiliation(s)
- Fabio Piccinelli
- Laboratorio Materiali Luminescenti, DB, Università di Verona, and INSTM, UdR Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | | | | | | | | | | |
Collapse
|
47
|
Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem Rev 2019; 119:957-1057. [PMID: 30350585 PMCID: PMC6516866 DOI: 10.1021/acs.chemrev.8b00363] [Citation(s) in RCA: 939] [Impact Index Per Article: 156.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tens of millions of contrast-enhanced magnetic resonance imaging (MRI) exams are performed annually around the world. The contrast agents, which improve diagnostic accuracy, are almost exclusively small, hydrophilic gadolinium(III) based chelates. In recent years concerns have arisen surrounding the long-term safety of these compounds, and this has spurred research into alternatives. There has also been a push to develop new molecularly targeted contrast agents or agents that can sense pathological changes in the local environment. This comprehensive review describes the state of the art of clinically approved contrast agents, their mechanism of action, and factors influencing their safety. From there we describe different mechanisms of generating MR image contrast such as relaxation, chemical exchange saturation transfer, and direct detection and the types of molecules that are effective for these purposes. Next we describe efforts to make safer contrast agents either by increasing relaxivity, increasing resistance to metal ion release, or by moving to gadolinium(III)-free alternatives. Finally we survey approaches to make contrast agents more specific for pathology either by direct biochemical targeting or by the design of responsive or activatable contrast agents.
Collapse
Affiliation(s)
- Jessica Wahsner
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Aurora Rodríguez-Rodríguez
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
48
|
Pujales-Paradela R, Carniato F, Uzal-Varela R, Brandariz I, Iglesias E, Platas-Iglesias C, Botta M, Esteban-Gómez D. A pentadentate member of the picolinate family for Mn(ii) complexation and an amphiphilic derivative. Dalton Trans 2019; 48:696-710. [PMID: 30547165 DOI: 10.1039/c8dt03856b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We report a pentadentate ligand containing a 2,2'-azanediyldiacetic acid moiety functionalized with a picolinate group at the nitrogen atom (H3paada), as well as a lipophylic derivative functionalized with a dodecyloxy group at position 4 of the pyridyl ring (H3C12Opaada). The protonation constants of the paada3- ligand and the stability constant of the Mn(ii) complex were determined using a combination of potentiometric and spectrophotometric titrations (25 °C, 0.15 M NaCl). A detailed relaxometric characterisation was accomplished by recording 1H Nuclear Magnetic Relaxation Dispersion (NMRD) profiles and 17O chemical shifts and relaxation rates. These studies provide detailed information on the microscopic parameters that control their efficiency as relaxation agents in vitro. For the sake of completeness and to facilitate comparison, we also characterised the related [Mn(nta)]- complex (nta = nitrilotriacetate). Both the [Mn(paada)]- and [Mn(nta)]- complexes turned out to contain two inner-sphere water molecules in aqueous solution. The exchange rate of these coordinated water molecules was slower in [Mn(paada)]- (k298ex = 90 × 107 s-1) than in [Mn(nta)]- (k298ex = 280 × 107 s-1). The complexes were also characterised using both DFT (TPSSh/def2-TZVP) and ab initio CAS(5,5) calculations. The lipophylic [Mn(C12Opaada)]- complex forms micelles in solution characterised by a critical micellar concentration (cmc) of 0.31 ± 0.01 mM. This complex also forms a rather strong adduct with Bovine Serum Albumin (BSA) with an association constant of 5.5 × 104 M-1 at 25 °C. The enthalpy and entropy changes obtained for the formation of the adduct indicate that the binding event is driven by hydrophobic interactions.
Collapse
Affiliation(s)
- Rosa Pujales-Paradela
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, 15071, A Coruña, Galicia, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Pinto SMA, Calvete MJF, Ghica ME, Soler S, Gallardo I, Pallier A, Laranjo MB, Cardoso AMS, Castro MMCA, Brett CMA, Pereira MM, Tóth É, Geraldes CFGC. A biocompatible redox MRI probe based on a Mn(ii)/Mn(iii) porphyrin. Dalton Trans 2019; 48:3249-3262. [DOI: 10.1039/c8dt04775h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A water-soluble fluorinated MnIII/II porphyrin responds reversibly to ascorbate redox state as a turn-on MRI probe.
Collapse
|
50
|
Bonnitcha P, Grieve S, Figtree G. Clinical imaging of hypoxia: Current status and future directions. Free Radic Biol Med 2018; 126:296-312. [PMID: 30130569 DOI: 10.1016/j.freeradbiomed.2018.08.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/30/2018] [Accepted: 08/14/2018] [Indexed: 12/20/2022]
Abstract
Tissue hypoxia is a key feature of many important causes of morbidity and mortality. In pathologies such as stroke, peripheral vascular disease and ischaemic heart disease, hypoxia is largely a consequence of low blood flow induced ischaemia, hence perfusion imaging is often used as a surrogate for hypoxia to guide clinical diagnosis and treatment. Importantly, ischaemia and hypoxia are not synonymous conditions as it is not universally true that well perfused tissues are normoxic or that poorly perfused tissues are hypoxic. In pathologies such as cancer, for instance, perfusion imaging and oxygen concentration are less well correlated, and oxygen concentration is independently correlated to radiotherapy response and overall treatment outcomes. In addition, the progression of many diseases is intricately related to maladaptive responses to the hypoxia itself. Thus there is potentially great clinical and scientific utility in direct measurements of tissue oxygenation. Despite this, imaging assessment of hypoxia in patients is rarely performed in clinical settings. This review summarises some of the current methods used to clinically evaluate hypoxia, the barriers to the routine use of these methods and the newer agents and techniques being explored for the assessment of hypoxia in pathological processes.
Collapse
Affiliation(s)
- Paul Bonnitcha
- Northern and Central Clinical Schools, Faculty of Medicine, Sydney University, Sydney, NSW 2006, Australia; Chemical Pathology Department, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; Kolling Institute of Medical Research, University of Sydney, St Leonards, New South Wales 2065, Australia.
| | - Stuart Grieve
- Sydney Translational Imaging Laboratory, Heart Research Institute, Charles Perkins Centre and Sydney Medical School, University of Sydney, NSW 2050, Australia
| | - Gemma Figtree
- Kolling Institute of Medical Research, University of Sydney, St Leonards, New South Wales 2065, Australia; Cardiology Department, Royal North Shore Hospital, St Leonards, New South Wales 2065, Australia
| |
Collapse
|