1
|
Palermo JC, Colombo MC, Scocozza MF, Murgida DH, Estrin DA, Bari SE. Reduction of metmyoglobin by inorganic disulfide species. J Inorg Biochem 2023; 245:112256. [PMID: 37244768 DOI: 10.1016/j.jinorgbio.2023.112256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
The mechanism of the metal centered reduction of metmyoglobin (MbFeIII) by inorganic disulfide species has been studied by combined spectroscopic and kinetic analyses, under argon atmosphere. The process is kinetically characterized by biexponential time traces, for variable ratios of excess disulfide to protein, in the pH interval 6.6-8.0. Using UV-vis and resonance Raman spectroscopies, we observed that MbFeIII is converted into a low spin hexacoordinated ferric complex, tentatively assigned as MbFeIII(HSS-)/MbFeIII(SS2-), in an initial fast step. The complex is slowly converted into a pentacoordinated ferrous form, assigned as MbFeII according to the resonance Raman records. The reduction is a pH-dependent process, but independent of the initial disulfide concentration, suggesting the unimolecular decomposition of the intermediate complex following a reductive homolysis. We estimated the rate of the fast formation of the complex at pH 7.4 (kon = 3.7 × 103 M-1 s-1), and a pKa2 = 7.5 for the equilibrium MbFeIII(HSS-)/MbFeIII(SS2-). Also, we estimated the rate for the slow reduction at the same pH (kred = 10-2 s-1). A reaction mechanism compliant with the experimental results is proposed. This mechanistic study provides a differential kinetic signature for the reactions of disulfide compared to sulfide species on metmyoglobin, which may be considered in other hemeprotein systems.
Collapse
Affiliation(s)
- Juan Cruz Palermo
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina
| | - Melisa Carllinni Colombo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina
| | - Magalí F Scocozza
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina
| | - Daniel H Murgida
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina
| | - Darío A Estrin
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina
| | - Sara E Bari
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina.
| |
Collapse
|
2
|
Vargas-Maya NI, Olmedo-Monfil V, Ramírez-Prado JH, Reyes-Cortés R, Padilla-Vaca F, Franco B. Catalases in the pathogenesis of Sporothrix schenckii research. PeerJ 2022; 10:e14478. [PMID: 36523453 PMCID: PMC9745942 DOI: 10.7717/peerj.14478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
Pathogenic fungal infection success depends on the ability to escape the immune response. Most strategies for fungal infection control are focused on the inhibition of virulence factors and increasing the effectiveness of antifungal drugs. Nevertheless, little attention has been focused on their physiological resistance to the host immune system. Hints may be found in pathogenic fungi that also inhabit the soil. In nature, the saprophyte lifestyle of fungi is also associated with predators that can induce oxidative stress upon cell damage. The natural sources of nutrients for fungi are linked to cellulose degradation, which in turn generates reactive oxygen species (ROS). Overall, the antioxidant arsenal needed to thrive both in free-living and pathogenic lifestyles in fungi is fundamental for success. In this review, we present recent findings regarding catalases and oxidative stress in fungi and how these can be in close relationship with pathogenesis. Additionally, special focus is placed on catalases of Sporothrix schenckii as a pathogenic model with a dual lifestyle. It is assumed that catalase expression is activated upon exposure to H2O2, but there are reports where this is not always the case. Additionally, it may be relevant to consider the role of catalases in S. schenckii survival in the saprophytic lifestyle and why their study can assess their involvement in the survival and therefore, in the virulence phenotype of different species of Sporothrix and when each of the three catalases are required. Also, studying antioxidant mechanisms in other isolates of pathogenic and free-living fungi may be linked to the virulence phenotype and be potential therapeutic and diagnostic targets. Thus, the rationale for this review to place focus on fungal catalases and their role in pathogenesis in addition to counteracting the effect of immune system reactive oxygen species. Fungi that thrive in soil and have mammal hosts could shed light on the importance of these enzymes in the two types of lifestyles. We look forward to encouraging more research in a myriad of areas on catalase biology with a focus on basic and applied objectives and placing these enzymes as virulence determinants.
Collapse
Affiliation(s)
| | | | | | - Ruth Reyes-Cortés
- Biology Department, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Felipe Padilla-Vaca
- Biology Department, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Bernardo Franco
- Biology Department, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| |
Collapse
|
3
|
Bieza S, Mazzeo A, Pellegrino J, Doctorovich F. H 2S/Thiols, NO •, and NO -/HNO: Interactions with Iron Porphyrins. ACS OMEGA 2022; 7:1602-1611. [PMID: 35071856 PMCID: PMC8771695 DOI: 10.1021/acsomega.1c06427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/17/2021] [Indexed: 05/14/2023]
Abstract
In the past decade, gasotransmitters NO• and H2S have been thoroughly studied in biological contexts, as their biosynthesis and physiological effects became known. Moreover, an additional intricate crosstalk reaction scheme between these compounds and related species is thought to exist as part of the cascade signaling processes in physiological conditions. In this context, heme enzymes, as modeled by iron porphyrins, play a central role in catalyzing the key interconversions involved. In this work, iron porphyrin interactions with sulfide and nitric-oxide-related species are described. The stability and reactivity of mixed ternary systems are also described, and future perspectives are discussed.
Collapse
|
4
|
Sun Q, Wang Z, Liu B, He F, Gai S, Yang P, Yang D, Li C, Lin J. Recent advances on endogenous/exogenous stimuli-triggered nanoplatforms for enhanced chemodynamic therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214267] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Mendiola PJ, Naik JS, Gonzalez Bosc LV, Gardiner AS, Birg A, Kanagy NL. Hydrogen Sulfide Actions in the Vasculature. Compr Physiol 2021; 11:2467-2488. [PMID: 34558672 DOI: 10.1002/cphy.c200036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hydrogen sulfide (H2 S) is a small, gaseous molecule with poor solubility in water that is generated by multiple pathways in many species including humans. It acts as a signaling molecule in many tissues with both beneficial and pathological effects. This article discusses its many actions in the vascular system and the growing evidence of its role to regulate vascular tone, angiogenesis, endothelial barrier function, redox, and inflammation. Alterations in some disease states are also discussed including potential roles in promoting tumor growth and contributions to the development of metabolic disease. © 2021 American Physiological Society. Compr Physiol 11:1-22, 2021.
Collapse
Affiliation(s)
| | - Jay S Naik
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | | | - Amy S Gardiner
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Aleksandr Birg
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Nancy L Kanagy
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
6
|
Diz V, Bieza SA, Oviedo Rouco S, Estrin DA, Murgida DH, Bari SE. Reactivity of inorganic sulfide species towards a pentacoordinated heme model system. J Inorg Biochem 2021; 220:111459. [PMID: 33894504 DOI: 10.1016/j.jinorgbio.2021.111459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/30/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023]
Abstract
The reactivity of inorganic sulfide towards ferric bis(N-acetyl)- microperoxidase 11 in sodium dodecyl sulfate has been explored by means of visible absorption and resonance Raman spectroscopies. The reaction has been previously studied in buffered solutions at neutral pH and in the presence of excess sulfide, revealing the formation of a moderately stable hexacoordinated low spin ferric sulfide complex that yields the ferrous form in the hour's timescale. In the surfactant solution, instead, the ferrous form is rapidly formed. The spectroscopic characterization of the heme structure in the surfactant milieu revealed the stabilization of a major ferric mono-histidyl high spin heme, which may be ascribed to out of plane distortions prompting the detachment of the axially ligated water molecule, thus leading to a differential reactivity. The ferric bis(N-acetyl)- microperoxidase 11 in sodium dodecyl sulfate provides a model for pentacoordinated heme platforms with an imidazole-based ligand.
Collapse
Affiliation(s)
- Virginia Diz
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina
| | - Silvina A Bieza
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina
| | - Santiago Oviedo Rouco
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina
| | - Darío A Estrin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina
| | - Daniel H Murgida
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina
| | - Sara E Bari
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina.
| |
Collapse
|
7
|
Cortese-Krott MM. Red Blood Cells as a "Central Hub" for Sulfide Bioactivity: Scavenging, Metabolism, Transport, and Cross-Talk with Nitric Oxide. Antioxid Redox Signal 2020; 33:1332-1349. [PMID: 33205994 DOI: 10.1089/ars.2020.8171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Sulfide was revealed to be an endogenous signaling molecule regulating a plethora of cellular functions. It is involved in the regulation of fundamental processes, including blood pressure regulation, suspended animation, and metabolic activity of mitochondria, pain, and inflammation. The underlying biochemical pathways and pharmacological targets are still largely unidentified. Recent Advances: Red blood cells (RBCs) are known as oxygen transporters and were proposed to contribute to cardiovascular homeostasis by regulating nitric oxide (NO) metabolism, also via interaction of hemoglobin with nitrite and NO itself. Interestingly, recent evidence indicates that RBCs may also play a central role in systemic sulfide metabolism and homeostasis, and, potentially, in the crosstalk with NO. Heme-containing proteins such as hemoglobin were shown to be targeted by both NO and sulfide. In this article, we aim at revising and discussing the potential impact of RBCs on systemic sulfide metabolism in the cardiovascular system. Critical Issues: Although the synthetic pathways and the reactivity of hemoglobin and other heme proteins with sulfide and NO are known, the in vivo role of RBCs in sulfide metabolism, physiology, pharmacology, and its pathophysiological implications have not been characterized so far. Future Directions: To allow a better understanding of the role of RBCs in systemic sulfide metabolism and its cross-talk with NO, basic and translational science studies should be focused on dissecting the enzymatic and nonenzymatic sulfur metabolic pathways in RBCs in vivo and their impact on the cardiovascular system in animal models and clinical settings.
Collapse
Affiliation(s)
- Miriam M Cortese-Krott
- Myocardial Infarction Research Laboratory, Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Foglia NO, Bari SE, Estrin DA. In Silico Insight into the Reductive Nitrosylation of Ferric Hemeproteins. Inorg Chem 2020; 59:3631-3641. [DOI: 10.1021/acs.inorgchem.9b03198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Nicolás O. Foglia
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Quı́mica de los Materiales, Medio Ambiente y Energı́a, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Quı́mica Inorgánica, Analı́tica y Quı́mica Fı́sica, Buenos Aires, Argentina
| | - Sara E. Bari
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Quı́mica de los Materiales, Medio Ambiente y Energı́a, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Darío A. Estrin
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Quı́mica de los Materiales, Medio Ambiente y Energı́a, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Quı́mica Inorgánica, Analı́tica y Quı́mica Fı́sica, Buenos Aires, Argentina
| |
Collapse
|
9
|
Boubeta FM, Bieza SA, Bringas M, Palermo JC, Boechi L, Estrin DA, Bari SE. Hemeproteins as Targets for Sulfide Species. Antioxid Redox Signal 2020; 32:247-257. [PMID: 31530164 DOI: 10.1089/ars.2019.7878] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Sulfides are endogenous and ubiquitous signaling species that share the hemeproteins as biochemical targets with O2, nitric oxide, and carbon monoxide. The description of the binding mechanisms is mandatory to anticipate the biochemical relevance of the interaction. Recent Advances: The binding of sulfide to ferric hemeproteins has been described in more than 40 systems, including native proteins, mutants, and model systems. Mechanisms of sulfide binding to ferric hemeproteins have been examined by a combination of kinetic and computational experiments. The distal control of the association process, dissected into the migration of the ligand to the active site and the binding event, reveals that neutral hydrogen sulfide (H2S) reaches the active site and is the predominant binding ligand, while the HS- is excluded by the protein matrix. Experiments with model compounds, devoid of a protein scaffold, reveal that both H2S and HS- can bind the ferric heme if accessing the site. A critical role of the proximal ligand in the prevention of the metal-centered reduction has been experimentally assessed. For metmyoglobin and methemoglobin, the coordination of sulfide leads to noncanonical functions: sulfide storage and its oxidative detoxification have been evidenced under physiological and excess sulfide concentrations, respectively. Critical Issues: The bound species is suggested to predominate in the monoprotonated form, although spectroscopic evidence is pending. Future Directions: A description of the role of hemeproteins as biochemical targets for inorganic sulfide requires understanding the reactivity of bound sulfide, for example: the metal-centered reduction, the reaction with excess sulfide, oxidants, or other gasotransmitters, among other biomolecules.
Collapse
Affiliation(s)
- Fernando Martín Boubeta
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía. (INQUIMAE) CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvina Andrea Bieza
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía. (INQUIMAE) CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mauro Bringas
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía. (INQUIMAE) CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan Cruz Palermo
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía. (INQUIMAE) CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Leonardo Boechi
- Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Darío Ariel Estrin
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía. (INQUIMAE) CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sara Elizabeth Bari
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía. (INQUIMAE) CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
10
|
Pluth MD, Tonzetich ZJ. Hydrosulfide complexes of the transition elements: diverse roles in bioinorganic, cluster, coordination, and organometallic chemistry. Chem Soc Rev 2020; 49:4070-4134. [DOI: 10.1039/c9cs00570f] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Molecules containing transition metal hydrosulfide linkages are diverse, spanning a variety of elements, coordination environments, and redox states, and carrying out multiple roles across several fields of chemistry.
Collapse
Affiliation(s)
- Michael D. Pluth
- Department of Chemistry and Biochemistry
- Materials Science Institute
- Knight Campus for Accelerating Scientific Impact
- Institute of Molecular Biology
- University of Oregon
| | | |
Collapse
|
11
|
Boubeta FM, Contestín García RM, Lorenzo EN, Boechi L, Estrin D, Sued M, Arrar M. Lessons learned about steered molecular dynamics simulations and free energy calculations. Chem Biol Drug Des 2019; 93:1129-1138. [PMID: 30793836 DOI: 10.1111/cbdd.13485] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/18/2018] [Accepted: 12/22/2018] [Indexed: 01/30/2023]
Abstract
The calculation of free energy profiles is central in understanding differential enzymatic activity, for instance, involving chemical reactions that require QM-MM tools, ligand migration, and conformational rearrangements that can be modeled using classical potentials. The use of steered molecular dynamics (sMD) together with the Jarzynski equality is a popular approach in calculating free energy profiles. Here, we first briefly review the application of the Jarzynski equality to sMD simulations, then revisit the so-called stiff-spring approximation and the consequent expectation of Gaussian work distributions and, finally, reiterate the practical utility of the second-order cumulant expansion, as it coincides with the parametric maximum-likelihood estimator in this scenario. We illustrate this procedure using simulations of CO, both in aqueous solution and in a carbon nanotube as a model system for biologically relevant nanoheterogeneous environments. We conclude the use of the second-order cumulant expansion permits the use of faster pulling velocities in sMD simulations, without introducing bias due to large dispersion in the non-equilibrium work distribution.
Collapse
Affiliation(s)
- Fernando Martín Boubeta
- CONICET-Facultad de Ciencias Exactas y Naturales, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rocío María Contestín García
- CONICET-Facultad de Ciencias Exactas y Naturales, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ezequiel Norberto Lorenzo
- CONICET-Facultad de Ciencias Exactas y Naturales, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Leonardo Boechi
- CONICET-Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Dario Estrin
- CONICET-Facultad de Ciencias Exactas y Naturales, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariela Sued
- CONICET-Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mehrnoosh Arrar
- CONICET-Facultad de Ciencias Exactas y Naturales, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
12
|
Pal N, Majumdar A. Transfer of hydrosulfide from thiols to iron(ii): a convenient synthetic route to nonheme diiron(ii)–hydrosulfide complexes. Dalton Trans 2019; 48:5903-5908. [DOI: 10.1039/c8dt04092c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The synthesis and reactivity of an unprecedented nonheme diiron(ii)–hydrosulfide complex via Fe(ii) mediated C–S bond cleavage of thiols.
Collapse
Affiliation(s)
- Nabhendu Pal
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Amit Majumdar
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| |
Collapse
|
13
|
Ranji-Burachaloo H, Gurr PA, Dunstan DE, Qiao GG. Cancer Treatment through Nanoparticle-Facilitated Fenton Reaction. ACS NANO 2018; 12:11819-11837. [PMID: 30457834 DOI: 10.1021/acsnano.8b07635] [Citation(s) in RCA: 360] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Currently, cancer is the second largest cause of death worldwide and has reached critical levels. In spite of all the efforts, common treatments including chemotherapy, photodynamic therapy, and photothermal therapy suffer from various problems which limit their efficiency and performance. For this reason, different strategies are being explored which improve the efficiency of these traditional therapeutic methods or treat the tumor cells directly. One such strategy utilizing the Fenton reaction has been investigated by many groups for the possible treatment of cancer cells. This approach is based on the knowledge that high levels of hydrogen peroxide exist within cancer cells and can be used to catalyze the Fenton reaction, leading to cancer-killing reactive oxygen species. Analysis of the current literature has shown that, due to the diverse morphologies, different sizes, various chemical properties, and the tunable structure of nanoparticles, nanotechnology offers the most promising method to facilitate the Fenton reaction with cancer therapy. This review aims to highlight the use of the Fenton reaction using different nanoparticles to improve traditional cancer therapies and the emerging Fenton-based therapy, highlighting the obstacles, challenges, and promising developments in each of these areas.
Collapse
|
14
|
Boubeta FM, Bieza SA, Bringas M, Estrin DA, Boechi L, Bari SE. Mechanism of Sulfide Binding by Ferric Hemeproteins. Inorg Chem 2018; 57:7591-7600. [DOI: 10.1021/acs.inorgchem.8b00478] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fernando M. Boubeta
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET and Universidad de Buenos Aires, Buenos Aires 1053, Argentina
| | - Silvina A. Bieza
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET and Universidad de Buenos Aires, Buenos Aires 1053, Argentina
| | - Mauro Bringas
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET and Universidad de Buenos Aires, Buenos Aires 1053, Argentina
| | - Darío A. Estrin
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET and Universidad de Buenos Aires, Buenos Aires 1053, Argentina
| | | | - Sara E. Bari
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET and Universidad de Buenos Aires, Buenos Aires 1053, Argentina
| |
Collapse
|
15
|
Mot AC, Bischin C, Damian G, Attia AAA, Gal E, Dina N, Leopold N, Silaghi-Dumitrescu R. Fe(III) - Sulfide interaction in globins: Characterization and quest for a putative Fe(IV)-sulfide species. J Inorg Biochem 2017; 179:32-39. [PMID: 29156293 DOI: 10.1016/j.jinorgbio.2017.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 10/16/2017] [Accepted: 10/31/2017] [Indexed: 01/06/2023]
Abstract
The present study reports findings regarding the contrast between H2S interaction with bovine hemoglobin (Hb) and horse heart myoglobin (Mb), in terms of binding and dissociation kinetics, affinities, and mechanism. At pH9.5, oxidation of ferric-sulfide adducts in presence of no free sulfide, using hexachloroiridate as oxidant is examined using stopped-flow UV-vis, EPR, vibrational spectroscopy and mass spectrometry. Oxidation of the ferric-sulfide adduct in such conditions occurs with a putative unstable Fe(IV)-sulfide adduct as intermediate that finally leads to a paramagnetic ferric species with distinct EPR features. As detected by MS spectrometry, this final species appears to be a truncated form of globin at a distinct Tyr. In case of Hb, only β-chain is truncated at Tyr144.
Collapse
Affiliation(s)
- Augustin C Mot
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania.
| | - Cristina Bischin
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Grigore Damian
- Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Amr A A Attia
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Emese Gal
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Nicoleta Dina
- National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Nicolae Leopold
- Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Radu Silaghi-Dumitrescu
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania.
| |
Collapse
|
16
|
Prieto T, Santana V, Britto AMM, Araujo-Chaves JC, R Nascimento O, L Nantes-Cardoso I. Structure and Catalysis of Fe(III) and Cu(II) Microperoxidase-11 Interacting with the Positively Charged Interfaces of Lipids. Molecules 2017; 22:molecules22081212. [PMID: 28933729 PMCID: PMC6151982 DOI: 10.3390/molecules22081212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/20/2017] [Accepted: 07/14/2017] [Indexed: 11/24/2022] Open
Abstract
Numerous applications have been described for microperoxidases (MPs) such as in photoreceptors, sensing, drugs, and hydrogen evolution. The last application was obtained by replacing Fe(III), the native central metal, by cobalt ion and inspired part of the present study. Here, the Fe(III) of MP-11 was replaced by Cu(II) that is also a stable redox state in aerated medium, and the structure and activity of both MPs were modulated by the interaction with the positively charged interfaces of lipids. Comparative spectroscopic characterization of Fe(III) and Cu(II)MP-11 in the studied media demonstrated the presence of high and low spin species with axial distortion. The association of the Fe(III)MP-11 with CTAB and Cu(II)MP-11 with DODAB affected the colloidal stability of the surfactants that was recovered by heating. This result is consistent with hydrophobic interactions of MPs with DODAB vesicles and CTAB micelles. The hydrophobic interactions decreased the heme accessibility to substrates and the Fe(III) MP-11catalytic efficiency. Cu(II)MP-11 challenged by peroxides exhibited a cyclic Cu(II)/Cu(I) interconversion mechanism that is suggestive of a mimetic Cu/ZnSOD (superoxide dismutase) activity against peroxides. Hydrogen peroxide-activated Cu(II)MP-11 converted Amplex Red® to dihydroresofurin. This study opens more possibilities for technological applications of MPs.
Collapse
Affiliation(s)
- Tatiana Prieto
- Universidade Federal do ABC, Santo André 09210-170, SP, Brazil.
| | - Vinicius Santana
- Universidade de São Paulo, Instituto de Física de São Carlos, São Carlos 13400-970, SP, Brazil.
| | | | | | - Otaciro R Nascimento
- Universidade de São Paulo, Instituto de Física de São Carlos, São Carlos 13400-970, SP, Brazil.
| | | |
Collapse
|
17
|
Hartle MD, Tillotson MR, Prell JS, Pluth MD. Spectroscopic investigation of the reaction of metallo-protoporphyrins with hydrogen sulfide. J Inorg Biochem 2017; 173:152-157. [PMID: 28551529 DOI: 10.1016/j.jinorgbio.2017.04.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/10/2017] [Accepted: 04/23/2017] [Indexed: 11/16/2022]
Abstract
Hydrogen sulfide (H2S) is the most recently discovered gasotransmitter molecule joining nitric oxide and carbon monoxide. In addition to being biologically important gases, these gasotransmitters also provide distinct modes of reactivity with biomimetic metal complexes. The majority of previous investigations on the reactivity of H2S with bioinorganic models have focused on Fe-based porphyrin systems, whereas investigations with other metals remains underinvestigated. To address this gap, we report here an examination of the reactions of H2S, HS-, and S8 with MgII, CuII, CoII, ZnII, CrII, SnIV, and MnII/III protoporphyrins.
Collapse
Affiliation(s)
- Matthew D Hartle
- Department of Chemistry & Biochemistry, Materials Science Institute, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1253, USA
| | - McKinna R Tillotson
- Department of Chemistry & Biochemistry, Materials Science Institute, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1253, USA
| | - James S Prell
- Department of Chemistry & Biochemistry, Materials Science Institute, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1253, USA
| | - Michael D Pluth
- Department of Chemistry & Biochemistry, Materials Science Institute, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1253, USA.
| |
Collapse
|
18
|
Mittra K, Singha A, Dey A. Mechanism of Reduction of Ferric Porphyrins by Sulfide: Identification of a Low Spin FeIII–SH Intermediate. Inorg Chem 2017; 56:3916-3925. [DOI: 10.1021/acs.inorgchem.6b02878] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kaustuv Mittra
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| | - Asmita Singha
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| | - Abhishek Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| |
Collapse
|
19
|
Meininger DJ, Arman HD, Tonzetich ZJ. Synthesis, characterization, and binding affinity of hydrosulfide complexes of synthetic iron(II) porphyrinates. J Inorg Biochem 2017; 167:142-149. [DOI: 10.1016/j.jinorgbio.2016.08.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 01/23/2023]
|
20
|
Galardon E, Huguet F, Herrero C, Ricoux R, Artaud I, Padovani D. Reactions of persulfides with the heme cofactor of oxidized myoglobin and microperoxidase 11: reduction or coordination. Dalton Trans 2017; 46:7939-7946. [DOI: 10.1039/c7dt01638g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Persulfides reduce both met- and ferryl-oxidized forms of myoglobin, and coordinate to N-acetylated microperoxidase-11.
Collapse
Affiliation(s)
- Erwan Galardon
- UMR 8601
- LCBPT
- CNRS-Université Paris Descartes
- 75006 Paris
- France
| | - Florian Huguet
- UMR 8601
- LCBPT
- CNRS-Université Paris Descartes
- 75006 Paris
- France
| | - Christian Herrero
- UMR 8182
- ICMMO
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- Université Paris-Sud
- 91405 Orsay Cedex
| | - Rémy Ricoux
- UMR 8182
- ICMMO
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- Université Paris-Sud
- 91405 Orsay Cedex
| | - Isabelle Artaud
- UMR 8601
- LCBPT
- CNRS-Université Paris Descartes
- 75006 Paris
- France
| | | |
Collapse
|
21
|
Studies on the contributions of steric and polarity effects to the H2S-binding properties of Vitreoscilla hemoglobin. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.08.082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Boubeta FM, Bari SE, Estrin DA, Boechi L. Access and Binding of H2S to Hemeproteins: The Case of HbI of Lucina pectinata. J Phys Chem B 2016; 120:9642-53. [DOI: 10.1021/acs.jpcb.6b06686] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Fernando M. Boubeta
- Departamento de
Química Inorgánica, Analítica y Química
Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| | - Sara E. Bari
- Departamento de
Química Inorgánica, Analítica y Química
Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| | - Dario A. Estrin
- Departamento de
Química Inorgánica, Analítica y Química
Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| | - Leonardo Boechi
- Instituto de Cálculo/CONICET,
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,
Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
23
|
Potentiation of hydrogen peroxide toxicity: From catalase inhibition to stable DNA-iron complexes. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 773:274-281. [PMID: 28927535 DOI: 10.1016/j.mrrev.2016.08.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/29/2016] [Indexed: 12/15/2022]
Abstract
Hydrogen peroxide (H2O2) is unique among general toxins, because it is stable in abiotic environments at ambient temperature and neutral pH, yet rapidly kills any type of cells by producing highly-reactive hydroxyl radicals. This life-specific reactivity follows the distribution of soluble iron, Fe(II) (which combines with H2O2 to form the famous Fenton's reagent),Fe(II) is concentrated inside cells, but is virtually absent outside them. Because of the immediate danger of H2O2, all cells have powerful H2O2 scavengers, the equally famous catalases, which enable cells to survive thousand-fold higher concentrations of H2O2 and, in combination with adequate movement of H2O2 across membranes, make the killing H2O2 concentrations virtually impractical to generate in vivo. And yet, low concentrations of H2O2 are somehow used as an efficient biological weapon. Here we review several examples of how cells potentiate H2O2 toxicity with other chemicals. At first, these potentiators were thought to simply inhibit catalases, but recent findings with cyanide suggest that potentiators mostly promote the other side of Fenton's reaction, recruiting iron from cell depots into stable DNA-iron complexes that, in the presence of elevated H2O2, efficiently break duplex DNA, pulverizing the chromosome. This multifaceted potentiation of H2O2 toxicity results in robust and efficient killing.
Collapse
|
24
|
Bostelaar T, Vitvitsky V, Kumutima J, Lewis BE, Yadav PK, Brunold TC, Filipovic M, Lehnert N, Stemmler TL, Banerjee R. Hydrogen Sulfide Oxidation by Myoglobin. J Am Chem Soc 2016; 138:8476-88. [PMID: 27310035 PMCID: PMC5464954 DOI: 10.1021/jacs.6b03456] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Enzymes in the sulfur network generate the signaling molecule, hydrogen sulfide (H2S), from the amino acids cysteine and homocysteine. Since it is toxic at elevated concentrations, cells are equipped to clear H2S. A canonical sulfide oxidation pathway operates in mitochondria, converting H2S to thiosulfate and sulfate. We have recently discovered the ability of ferric hemoglobin to oxidize sulfide to thiosulfate and iron-bound hydropolysulfides. In this study, we report that myoglobin exhibits a similar capacity for sulfide oxidation. We have trapped and characterized iron-bound sulfur intermediates using cryo-mass spectrometry and X-ray absorption spectroscopy. Further support for the postulated intermediates in the chemically challenging conversion of H2S to thiosulfate and iron-bound catenated sulfur products is provided by EPR and resonance Raman spectroscopy in addition to density functional theory computational results. We speculate that the unusual sensitivity of skeletal muscle cytochrome c oxidase to sulfide poisoning in ethylmalonic encephalopathy, resulting from the deficiency in a mitochondrial sulfide oxidation enzyme, might be due to the concentration of H2S by myoglobin in this tissue.
Collapse
Affiliation(s)
- Trever Bostelaar
- Department of Biological Chemistry, University of Michigan,
Ann Arbor, Michigan 48109, United States
| | - Victor Vitvitsky
- Department of Biological Chemistry, University of Michigan,
Ann Arbor, Michigan 48109, United States
| | - Jacques Kumutima
- Department of Chemistry and Department of Biophysics,
University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brianne E. Lewis
- Department of Pharmaceutical Science, Wayne State
University, Detroit, Michigan 48201-2417, United States
| | - Pramod K. Yadav
- Department of Biological Chemistry, University of Michigan,
Ann Arbor, Michigan 48109, United States
| | - Thomas C. Brunold
- Department of Chemistry, University of Wisconsin, Madison,
Wisconsin 53706, United States
| | - Milos Filipovic
- University of Bordeaux, IBGC, and CNRS, IBGC, UMR 5095,
F-33077 Bordeaux, France
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics,
University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Timothy L. Stemmler
- Department of Pharmaceutical Science, Wayne State
University, Detroit, Michigan 48201-2417, United States
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan,
Ann Arbor, Michigan 48109, United States
| |
Collapse
|
25
|
Wang D, Liu L, Wang H, Xu H, Chen L, Ma L, Li Z. Clues for discovering a new biological function of Vitreoscilla
hemoglobin in organisms: potential sulfide receptor and storage. FEBS Lett 2016; 590:1132-42. [DOI: 10.1002/1873-3468.12141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/08/2016] [Accepted: 03/15/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Dandan Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education; College of Life Science; Jilin University; Changchun Jilin Province China
| | - Li Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education; College of Life Science; Jilin University; Changchun Jilin Province China
| | - Hui Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education; College of Life Science; Jilin University; Changchun Jilin Province China
| | - Haoran Xu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education; College of Life Science; Jilin University; Changchun Jilin Province China
| | - Lei Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education; College of Life Science; Jilin University; Changchun Jilin Province China
| | - Li Ma
- Department of Physics Georgia Southern University; Statesboro GA USA
| | - Zhengqiang Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education; College of Life Science; Jilin University; Changchun Jilin Province China
| |
Collapse
|
26
|
Meininger DJ, Chee-Garza M, Arman HD, Tonzetich ZJ. Gallium(III) Tetraphenylporphyrinates Containing Hydrosulfide and Thiolate Ligands: Structural Models for Sulfur-Bound Iron(III) Hemes. Inorg Chem 2016; 55:2421-6. [DOI: 10.1021/acs.inorgchem.5b02822] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Daniel J. Meininger
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio Texas 78249, United States
| | - Max Chee-Garza
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio Texas 78249, United States
| | - Hadi D. Arman
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio Texas 78249, United States
| | - Zachary J. Tonzetich
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio Texas 78249, United States
| |
Collapse
|
27
|
Hartle MD, Prell JS, Pluth MD. Spectroscopic investigations into the binding of hydrogen sulfide to synthetic picket-fence porphyrins. Dalton Trans 2016; 45:4843-53. [DOI: 10.1039/c5dt04563k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The picket-fence porphyrin system is used a model for a sterically-constrained, protected binding environment to study H2S and HS−ligation.
Collapse
Affiliation(s)
- Matthew D. Hartle
- Department of Chemistry and Biochemistry
- Materials Science Institute
- Institute of Molecular Biology
- University of Oregon
- Eugene
| | - James S. Prell
- Department of Chemistry and Biochemistry
- Materials Science Institute
- Institute of Molecular Biology
- University of Oregon
- Eugene
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry
- Materials Science Institute
- Institute of Molecular Biology
- University of Oregon
- Eugene
| |
Collapse
|
28
|
Zhao Z, Wang D, Wang M, Sun X, Wang L, Huang X, Ma L, Li Z. Proximal environment controlling the reactivity between inorganic sulfide and heme-peptide model. RSC Adv 2016. [DOI: 10.1039/c6ra14100e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synthesized deuterohemin-peptide, which is lack of the distal protein structure, is used as a heme model to investigate the effects of the proximal environment on the reactivity of inorganic sulfide to heme center.
Collapse
Affiliation(s)
- Zijian Zhao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- College of Life Science
- Jilin University
- Changchun 130012
- PR China
| | - Dandan Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- College of Life Science
- Jilin University
- Changchun 130012
- PR China
| | - Mingyang Wang
- National Engineering Laboratory for AIDS Vaccine
- Jilin University
- Changchun 130012
- PR China
| | - Xiaoli Sun
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130023
- PR China
| | - Liping Wang
- National Engineering Laboratory for AIDS Vaccine
- Jilin University
- Changchun 130012
- PR China
| | - Xuri Huang
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130023
- PR China
| | - Li Ma
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- College of Life Science
- Jilin University
- Changchun 130012
- PR China
| | - Zhengqiang Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- College of Life Science
- Jilin University
- Changchun 130012
- PR China
| |
Collapse
|
29
|
|
30
|
Howes BD, Boechi L, Boffi A, Estrin DE, Smulevich G. Bridging Theory and Experiment to Address Structural Properties of Truncated Haemoglobins: Insights from Thermobifida fusca HbO. Adv Microb Physiol 2015; 67:85-126. [PMID: 26616516 DOI: 10.1016/bs.ampbs.2015.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this chapter, we will discuss the paradigmatic case of Thermobifida fusca (Tf-trHb) HbO in its ferrous and ferric states and its behaviour towards a battery of possible ligands. This choice was dictated by the fact that it has been one of the most extensively studied truncated haemoglobins, both in terms of spectroscopic and molecular dynamics studies. Tf-trHb typifies the structural properties of group II trHbs, as the active site is characterized by a highly polar distal environment in which TrpG8, TyrCD1, and TyrB10 provide three potential H-bond donors in the distal cavity capable of stabilizing the incoming ligands. The role of these residues in key topological positions, and their interplay with the iron-bound ligands, has been addressed in studies carried out on the CO, F(-), OH(-), CN(-), and HS(-) adducts formed with the wild-type protein and a combinatorial set of mutants, in which the distal polar residues, TrpG8, TyrCD1, and TyrB10, have been singly, doubly, or triply replaced by a Phe residue. In this context, such a complete analysis provides an excellent benchmark for the investigation of the relationship between protein structure and function, allowing one to translate physicochemical properties of the active site into the observed functional behaviour. Tf-trHb will be compared with other members of the group II trHbs and, more generally, with members of the other trHb subgroups.
Collapse
Affiliation(s)
- Barry D Howes
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Sesto Fiorentino, Italy
| | - Leonardo Boechi
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Alberto Boffi
- Dipartimento di Scienze Biochimiche, Università "Sapienza", Rome, Italy
| | - Dario E Estrin
- Departamento de Química Inorgánica, Analítica y Química Física and Inquimae-Conicet, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Giulietta Smulevich
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Sesto Fiorentino, Italy.
| |
Collapse
|
31
|
Watanabe K, Suzuki T, Kitagishi H, Kano K. Reaction between a haemoglobin model compound and hydrosulphide in aqueous solution. Chem Commun (Camb) 2015; 51:4059-61. [DOI: 10.1039/c5cc00057b] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The reaction between hydrosulphide and a haemoglobin model compound, composed of a Fe(iii)-porphyrin and a cyclodextrin dimer possessing a pyridine-linker, was studied.
Collapse
Affiliation(s)
- Kenji Watanabe
- Graduate School of Pharmaceutical Sciences
- Kyushu University
- Fukuoka 812-8582
- Japan
| | - Toshikane Suzuki
- Department of Molecular Chemistry and Biochemistry
- Faculty of Science and Engineering
- Doshisha University
- Kyotanabe
- Japan
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry
- Faculty of Science and Engineering
- Doshisha University
- Kyotanabe
- Japan
| | - Koji Kano
- Department of Molecular Chemistry and Biochemistry
- Faculty of Science and Engineering
- Doshisha University
- Kyotanabe
- Japan
| |
Collapse
|